Maximum Permissible Exposure (MPE)

Standard Applicable

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a Mobile device, the MPE is required.

According to §1.1310 and §2.1093 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minute)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	F/1500	30
1500-15000	/	/	1.0	30

F = frequency in MHz

* = Plane-wave equipment power density

Maximum Permissible Exposure (MPE) Evaluation

The worst case of Average power: refer to section 6.5 for detail measurement date.

002.	110			
Cable loss $= 0$		Output Power		Limit
СН	Frequency	Detector		(dBm)
	(MHz)	РК	AV	
		(dBm)	(dBm)	
1	2412	19.20	17.13	
6	2437	19.29	17.15	30
11	2462	19.52	17.31	

802.11b

MPE Prediction (802.11b)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$

Where: S = Power density

 $\mathbf{P} = \mathbf{Power}$ input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

Maximum average output power at antenna input	17.31	(dBm)
Maximum Average output power at antenna input	53.82697825	(mW)
Duty cycle:	100	(%)
Maximum Pav :	53.82697825	(mW)
Antenna gain (typical):	2.5	(dBi)
Maximum antenna gain:	1.77827941	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2462	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.0190524	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.0191 mW/cm². This is below the uncontrolled exposure limit of 1 mW/cm² at 2462MHz.

The worst case of Average power: refer to section 6.5 for detail measurement date.

Cable loss $= 0$		Output Power		Limit
СН	Frequency	Detector		(dBm)
	(MHz)	РК	AV	
		(dBm)	(dBm)	
149	5745	23.15	14.28	
153	5765	23.08	14.11	
157	5785	23.88	14.01	30
161	5805	23.42	13.84	
165	5825	20.93	10.63	

MPE Prediction (802.11b)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4 π R²

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

Maximum average output power at antenna input	14.28	(dBm)
Maximum Average output power at antenna input	26.79168325	(mW)
Duty cycle:	100	(%)
Maximum Pav :	26.79168325	(mW)
Antenna gain (typical):	4	(dBi)
Maximum antenna gain:	2.511886432	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	5745	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.0133952	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.0134 mW/cm^2 . This is below the uncontrolled exposure limit of 1 mW/cm^2 at 5745MHz.