

Engineering and Testing for EMC and Safety Compliance

## **APPLICATION FOR CERTIFICATION**

## PART 95(B) FRS

Topaz3, LLC 10828 NW Air World Drive Kansas City, MO 64153

> MODEL: TK - 514 FCC ID: 07KTK514

> > April 11, 2001

| STANDARDS REFERENCED FOR | THIS REPORT                                                                  |
|--------------------------|------------------------------------------------------------------------------|
| Part 2; 1999             | FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND            |
|                          | REGULATIONS                                                                  |
| PART 15; 1999            | RADIO FREQUENCIES DEVICES                                                    |
| PART 95; 1998            | PERSONAL RADIO SERVICES                                                      |
| ANSI C63.4-1992          | STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL COMPUTER AND           |
|                          | PERIPHERALS                                                                  |
| ANSI/TIA/EIA 603-1; 1998 | ADDENDUM TO ANSI/TIA/EIA 603-1992                                            |
| RSS-210; Issue 4; 2000   | LOW POWER LICENCE-EXEMPT RADIOCOMMUNICATION DEVICES (ALL FREQUENCY BANDS)    |
| RSS-102; Issue 1; 1999   | EVALUATION PROCEDURE FOR MOBILE AND PORTABLE RADIO TRANSMITTERS WITH RESPECT |
|                          | TO HEALTH CANADA'S SAFETY CODE 6 FOR EXPOSURE OF HUMANS TO RADIO FREQUENCY   |
|                          | FIELDS                                                                       |

| FREQUENCY RANGE MHZ | OUTPUT POWER (W)<br>ERP | FREQUENCY TOLERANCE | EMISSION DESIGNATOR |
|---------------------|-------------------------|---------------------|---------------------|
| 462.5625-467.7125   | 0.360                   | 0.00025%            | 11K0F3E             |

#### **REPORT PREPARED BY:**

Test Engineer:Daniel BaltzellAdministrative/Technical Writer:Melissa Fleming

#### Rhein Tech Laboratories, Inc.

Document Number: 2001037

No part of this report may be reproduced without the full written approval of Rhein Tech Laboratories, Inc.



## **Table of Contents**

| FCC                                                                        | nd Canadian Certification Report Page 2 of 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1.<br>1.                                                                   | 1 WARNING LABEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23<br>23                               |
| 13                                                                         | LABEL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                     |
| 12                                                                         | PRODUCT DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                     |
| 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | <ul> <li>FCC §95.637: MODULATION STANDARDS.</li> <li>I FCC Rules and Regulations Part 2 §2.1047 (b): Modulation Characteristics -</li> <li>Doulation Limiting.</li> <li>1.1.1 Test Procedure.</li> <li>2 FCC Rules and Regulations Part 2 §2.1047 (a): Modulation Characteristics - Audio L</li> <li>2 SFILTER RESPONSE.</li> <li>1.2.1 Test Procedure.</li> <li>3 FCC Rules and Regulations Part 2 §2.1047 (a): Modulation Characteristics - Audio L</li> <li>3 FCC Rules and Regulations Part 2 §2.1047 (a): Modulation Characteristics - Audio L</li> <li>3 FCC Rules and Regulations Part 2 §2.1047 (a): Modulation Characteristics - Audio L</li> <li>3 FCC Rules and Regulations Part 2 §2.1047 (a): Modulation Characteristics - Audio L</li> </ul> | 18<br>18<br>18<br>20<br>20<br>21<br>21 |
| 1(<br>1(                                                                   | 1 TEST PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                     |
| 10                                                                         | FCC §95.635: UNWANTED RADIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>17                               |
| 0.<br>8.<br>9<br>8.                                                        | TEST PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>15                               |
| 8                                                                          | CC §95.633: EMISSION BANDWIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                     |
| 7.                                                                         | FCC RULES AND REGULATION PART 2 §2.1055: FREQUENCY STABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b> 13</b><br>13                       |
| 7                                                                          | CC §95.627(B): FREQUENCY TOLERANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                                     |
| U                                                                          | <ul> <li>FCC Part 95.639 - Effective Radiated Power (Channel 1)</li> <li>FCC \$15 109: Radiated Emissions: (Receiver/DIGITAL)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                     |
| 6<br>6                                                                     | RADIATED EMISSIONS MEASUREMENTS<br>RADIATED EMISSION DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11<br>12                               |
| 5.<br>5.                                                                   | CONDUCTED EMISSIONS MEASUREMENTS<br>FCC Part 15.207: Conducted EMISSION DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9<br>10                                |
| 4<br>5                                                                     | CONDUCTED EMISSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7<br>9                                 |
| 3                                                                          | CONFORMANCE STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                      |
| 2.                                                                         | POWER CAPABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                      |
| 2                                                                          | YSTEM TEST CONFIGURATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                      |
| 1.<br>1.<br>1.                                                             | Modifications<br>Related Submittal(s)/Grant(s)<br>Test Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>4<br>4                            |
| 1                                                                          | GENERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                      |



| 13.3         | LOCATION OF LABEL ON EUT                                                  |  |
|--------------|---------------------------------------------------------------------------|--|
| 14           | MANUAL                                                                    |  |
| 15           | BILL OF MATERIALS                                                         |  |
| 16           | SCHEMATICS                                                                |  |
| 17           | BLOCK DIAGRAM                                                             |  |
| 18           | TEST CONFIGURATION PHOTOGRAPHS                                            |  |
| 18.1<br>18.2 | RADIATED CONFIGURATION PHOTOGRAPHS<br>Conducted Configuration Photographs |  |
| 19           | EXTERNAL PHOTOGRAPHS                                                      |  |
| 20           | INTERNAL PHOTOGRAPHS                                                      |  |



## **1 GENERAL INFORMATION**

The following Application for FCC Type Certification of a Scanning Receiver is prepared on behalf of *Topaz3*, *LLC* in accordance with Part 2, and Part 95(B) of the Federal Communications Commissions rules and regulations and Industry Canada RSS-210 and RSS-119. The Equipment Under Test (EUT) was the *TK-514*, *FCC ID: O7KTK514*. The test results reported in this document relate only to the item that was tested.

## **1.1 MODIFICATIONS**

No modifications were made to the EUT during testing.

## **1.2 RELATED SUBMITTAL(S)/GRANT(S)**

This is an original certification submission.

## **1.3 TEST FACILITY**

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report, submitted to and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing.



## **2** SYSTEM TEST CONFIGURATION

#### 2.1 **POWER CAPABILITY**

The EUT meets the following condition as specified in FCC Rules and Regulation Part 95 Section 95.639:

- The operating power is fixed at the factory.
   The antenna is fixed and non-adjustable.



## **3** CONFORMANCE STATEMENT

| STANDARDS REFERENCED FOR | THIS REPORT                                                                  |
|--------------------------|------------------------------------------------------------------------------|
| Part 2; 1999             | FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND            |
|                          | REGULATIONS                                                                  |
| Part 15; 1999            | RADIO FREQUENCIES DEVICES                                                    |
| Part 95; 1998            | PERSONAL RADIO SERVICES                                                      |
| ANSI C63.4-1992          | STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL COMPUTER AND           |
|                          | PERIPHERALS                                                                  |
| ANSI/TIA/EIA 603-1; 1998 | ADDENDUM TO ANSI/TIA/EIA 603-1992                                            |
| RSS-210; Issue 4; 2000   | LOW POWER LICENCE-EXEMPT RADIOCOMMUNICATION DEVICES (ALL FREQUENCY BANDS)    |
| RSS-102; Issue 1; 1999   | EVALUATION PROCEDURE FOR MOBILE AND PORTABLE RADIO TRANSMITTERS WITH RESPECT |
|                          | TO HEALTH CANADA'S SAFETY CODE 6 FOR EXPOSURE OF HUMANS TO RADIO FREQUENCY   |
|                          | FIELDS                                                                       |

| FREQUENCY RANGE MHZ | <b>OUTPUT POWER (W)</b> | FREQUENCY TOLERANCE | <b>EMISSION DESIGNATOR</b> |
|---------------------|-------------------------|---------------------|----------------------------|
| 462.5625-467.7125   | 0.360                   | 0.00025%            | 11K0F3E                    |

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described above. Modifications were not made during testing to the equipment in order to achieve compliance with these standards.

Signature: Dupa Fin

Date: February 14, 2001

Typed/Printed Name: Desmond A. Fraser

Position: President (NVLAP Signatory)

RIVLAP Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 200061-0.

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.



## 4 EMISSIONS EQUIPMENT LIST

| RTL Asset<br>Number | Manufacturer         | Model                                     | Part Type Serial Numb                               |                       | Calibration due<br>date |
|---------------------|----------------------|-------------------------------------------|-----------------------------------------------------|-----------------------|-------------------------|
| 900969              | Hewlett Packard      | 85650A                                    | Quasi-Peak Adapter (30 Hz – 40 GHz)                 | 2412A00414            | 03/23/01                |
| 900929              | Hewlett Packard      | 85650A                                    | Quasi-Peak Adapter (30 Hz – 40 GHz)                 | 2811A01276            | 03/28/01                |
| 900901              | Hewlett Packard      | 85650A                                    | Quasi-Peak Adapter (30 Hz – 40 GHz)                 | 3145A01599            | 11/02/01                |
| 900339              | Hewlett Packard      | 85650A                                    | Quasi-Peak Adapter (30 Hz – 40 GHz)                 | 2521A00743            | 03/27/01                |
| 900042              | Hewlett Packard      | 85650A                                    | Quasi-Peak Adapter (30 Hz – 40 GHz)                 | 2521A01032            | 11/05/01                |
| 900924              | Amplifier Research   | 75A220                                    | Amplifier (10 kHz – 220 MHz)                        |                       | N/A                     |
| 900933              | Hewlett Packard      | 11975A                                    | Power Amplifier (2 - 8 GHz)                         | 2304A00348            | 11/15/01                |
| 901067              | Hewlett Packard      | 8903B                                     | Audio Analyzer                                      | 2303A00307            | 06/28/01                |
| 901055              | Hewlett Packard      | 8901A Opt. 002-<br>003                    | Modulation Analyzer                                 | 2545A04102            | 06/08/01                |
| 900926              | Hewlett Packard      | 8753D                                     | RF Vector Network Analyzer                          | 3410A09659            | 03/28/01                |
| 901089              | Hewlett Packard      | HP875ET                                   | Transmission/Reflection Network Analyzer US391700   |                       | N/A                     |
| 900968              | Hewlett Packard      | 8567A                                     | Spectrum Analyzer (10 kHz – 1.5 GHz)                | 2602A00160            | 03/23/01                |
| 900903              | Hewlett Packard      | 8567A                                     | Spectrum Analyzer (10 kHz – 1.5 GHz)                | 2841A00614            | 11/02/01                |
| 900897              | Hewlett Packard      | 8567A                                     | Spectrum Analyzer (10 kHz – 1.5 GHz)                | 2727A00535            | 11/08/01                |
| 900931              | Hewlett Packard      | 8566B                                     | Spectrum Analyzer (100 Hz – 22 GHz)                 | 3138A07771            | 03/27/01                |
| 900912              | Hewlett Packard      | 8568A                                     | RF Spectrum Analyzer (100 Hz – 1.5 GHz)             | 2634A02704            | 08/02/01                |
| 900824              | Hewlett Packard      | 8591E                                     | RF Spectrum Analyzer (9 KHz – 1.8 GHz)              | 3710A06135            | 11/14/01                |
| 900724              | ARA                  | LPB-2520                                  | Log Periodic / Biconical Antenna (25-1000 1037 MHz) |                       | 2/1/01                  |
| 900725              | ARA                  | LPB-2520                                  | Log Periodic / Biconical Antenna (25-1000 1036 MHz) |                       | 07/12/01                |
| 900967              | A.H. Systems         | TDS-206/535-1<br>through<br>TDS-206/535-4 | Tuned Dipole set (30 – 1000 MHz)                    | 126, 128, 129,<br>132 | 12/15/00                |
| 900154              | Compliance Design    | Roberts Dipole                            | Adjustable Elements Dipole antenna (30-<br>1000MHz) | N/A                   | 7/26/01                 |
| 900814              | Electro-Metrics      | RGA -60                                   | Double Ridges Guide Antenna (1-18 GHz)              | 2310                  | 2/26/01                 |
| 900081              | EMCO                 | 3146                                      | Log-Periodic Antenna (200-1000 MHz)                 | 1850                  |                         |
| 900800              | ЕМСО                 | 3301B                                     | Active Monopole (Rod antenna) (30 Hz – 50 MHz)      | 9809-4071             | 05/02/01                |
| 900151              | Rohde and<br>Schwarz | HFH2-Z2                                   | Loop Antenna (9kHz-30 MHz)                          | 82825/019             | 05/26/01                |
| 900791              | Schaffner – Chase    | CSL6112                                   | Bilog antenna (30 MHz – 2GHz)                       | 2099                  | 2/22/01                 |
| 901053              | Schaffner – Chase    | CBL6112B                                  | Bilog Chase antenna (200 MHz – 2 GHz)               | 2648                  | 05/24/01                |
| 900060              | Hewlett Packard      | 86634B                                    | Auxiliary Section for External Pulse<br>Modulator   | 1314A02913            | 11/08/01                |
| 901041              | ACO Pacific          | 511E                                      | Sound Level Calibrator                              | 028751                | In calibration          |
| 900970              | Hewlett Packard      | 85662A                                    | Spectrum Analyzer Display                           | 254211239             | 03/23/01                |
| 900930              | Hewlett Packard      | 85662A                                    | Spectrum Analyzer Display                           | 3144A20839            | 03/28/01                |
| 900911              | Hewlett Packard      | 85662A                                    | Spectrum Analyzer Display                           | 2542A12739            | 08/02/01                |
| 900902              | Hewlett Packard      | 85662A                                    | Spectrum Analyzer Display                           | 2848A17585            | 11/02/01                |
| 900896              | Hewlett Packard      | 85662A                                    | Spectrum Analyzer Display 2816A1647                 |                       | 11/02/01                |
| 900914              | Hewlett Packard      | 8546OA                                    | RF Filter Section, (100 KHz to 6.5 GHz)             | 3330A00107            | 11/07/01                |
| 901057              | Hewlett Packard      | 3336B                                     | Synthesizer/Level Generator 2514A02585              |                       | 06/21/01                |
| 900059              | Hewlett Packard      | 8660C                                     | Signal Generator (9 KHz – 3200 MHz)                 | 1947A02956            | 11/08/01                |
| 900960              | Hewlett Packard      | 8444A                                     | Tracking Generator (0.5 – 1500MHz)                  | 2325A07827            | 03/08/01                |
| 900917              | Hewlett Packard      | 8648C                                     | Synthesized. Signal Generator<br>(9 KHz – 3200 MHz) | 3537A01741            | 03/28/01                |



360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com

| RTL Asset<br>Number | Manufacturer         | Model          | Part Type                                                      | Serial Number | Calibration due<br>date |
|---------------------|----------------------|----------------|----------------------------------------------------------------|---------------|-------------------------|
| 900821              | Hewlett Packard      | 33120A         | 15 MHz Function / Arbitrary Waveform<br>Generator              | US36029992    | 11/14/01                |
| 900059              | Hewlett Packard      | 8660C          | Synthesized. Signal Generator<br>(9 kHz –3200 MHz)             | 1947A02956    | 11/08/01                |
| 900195              | Tektronix            | CFG280         | Function Generator (0.1 Hz – 11 MHz)                           | TW12167       | N/A                     |
| 900927              | Tektronix            | ASG 100        | Audio Signal Generator                                         | B03274 V2.3   | N/A                     |
| 900268              | Taylor               | 5565           | Hygrometer / Thermometer N/A                                   |               | 09/05/01                |
| 901056              | Hewlett Packard      | 8954A, Opt.H03 | Transceiver Interface                                          | 2924A00830    | 06/02/01                |
| 901088              | Hewlett Packard      | 8954A          | Transceiver Interface 2146A00139                               |               | 07/28/01                |
| 901082              | AFJ International    | AFJ LS16       | LISN (9 kHz – 30 MHz) 16010020081                              |               | 06/16/01                |
| 901083              | AFJ International    | AFJ LS16       | LISN (9 kHz - 30 MHz) 16010020082                              |               | 06/16/01                |
| 901084              | AFJ International    | AFJ LS16       | LISN (9 kHz – 30 MHz) 1601002008                               |               | 06/16/01                |
| 901090              | Bajog electronic     | 4V-100/200     | LISN (150 kHz – 30 MHz) 00-44-007                              |               | 08/03/01                |
| 900726              | Solar                | 7225-1         | LISN N/A                                                       |               | 03/29/01                |
| 900727              | Solar                | 7225-1         | LISN                                                           | N/A           | 03/29/01                |
| 900078              | Solar                | 7225-1         | LISN                                                           | N/A           | 03/29/01                |
| 900077              | Solar                | 7225-1         | LISN                                                           | N/A           | 03/29/01                |
| 901054              | Hewlett Packard      | HP 3586B       | Selective Level Meter                                          | 1928A01892    | 06/08/01                |
| 900793              | Hewlett Packard      | 432A           | Thermistor Power Meter                                         | 1848a22632    | N/A                     |
| 900721              | Hewlett Packard      | 8447D          | Preamplifier (0.1-1300 MHz)                                    | 2727A05397    | N/A                     |
| 900889              | Hewlett Packard      | 85685A         | RF Preselector for HP 8566B or 8568B 3146A01309<br>(20Hz-2GHz) |               | 11/14/01                |
| 900566              | Amplifier Research   | FP 2000        | Isotropic Field Probe                                          | 20760         | 08/29/01                |
| 900854              | Solar Electronics Co | 9119-IN        | RF Current Probe 972501                                        |               |                         |
| 900849              | Solar Electronics Co | 9121-IN        | Injection Probe (10 MHz – 1 GHz)                               | 953501        |                         |
| 900848              | Solar Electronics Co | 9320-IN        | RF Current Probe                                               | 990521        |                         |
| 900913              | Hewlett Packard      | 85462A         | EMI Receiver RF Section (9 KHz – 6.5 GHz)                      | 3325A00159    | 03/29/01                |



## **5** CONDUCTED EMISSIONS

#### 5.1 CONDUCTED EMISSIONS MEASUREMENTS

The power line conducted emission measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 80 centimeters high. Power was fed to the EUT through a 50 ohm / 50 microhenry Line Impedance Stabilization Network (EUT LISN). The EUT LISN was fed power through an A.C. filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed A.C. power. A metal power outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

The spectrum analyzer was connected to the A.C. line through an isolation transformer. The 50-ohm output of the EUT LISN was connected to the spectrum analyzer input through a Solar 400 kHz high-pass filter. The filter is used to prevent overload of the spectrum analyzer from noise below 400 kHz. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or peak mode if applicable). The analyzer's 6 dB bandwidth was set to 9 kHz. No video filter less than 10 times the resolution bandwidth was used. Average measurements are performed in linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, and by increasing the sweep time in order to obtain a calibrated measurement. The emission spectrum was scanned from 450 kHz to 30 MHz. The highest emission amplitudes relative to the appropriate limit were measured and have been recorded in this report.



## 5.2 FCC PART 15.207: CONDUCTED EMISSION DATA

## NEUTRAL SIDE (Line 1) {Channel: 1}

| Emission<br>Frequency<br>(MHz) | Test<br>Detector | Analyzer<br>Reading<br>(dBuV) | Site<br>Correction<br>Factor<br>(dB) | Emission<br>Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) |
|--------------------------------|------------------|-------------------------------|--------------------------------------|-----------------------------|-----------------|----------------|
| 0.486                          | Pk               | 29.7                          | -0.7                                 | 29.0                        | 48.0            | -19.0          |
| 0.548                          | Pk               | 25.9                          | -0.7                                 | 25.2                        | 48.0            | -22.8          |
| 0.656                          | Pk               | 22.8                          | -0.7                                 | 22.1                        | 48.0            | -25.9          |
| 1.318                          | Pk               | 18.9                          | -0.9                                 | 18.0                        | 48.0            | -30.0          |
| 7.160                          | Pk               | 16.1                          | -1.9                                 | 14.2                        | 48.0            | -33.8          |
| 15.490                         | Pk               | 18.7                          | -2.8                                 | 15.9                        | 48.0            | -32.1          |
| 27.460                         | Pk               | 15.0                          | -3.5                                 | 11.5                        | 48.0            | -36.5          |

## HOT SIDE (Line 2) {Channel:1}

| Emission<br>Frequency<br>(MHz) | Test<br>Detector | Analyzer<br>Reading<br>(dBuV) | Site<br>Correction<br>Factor<br>(dB) | Emission<br>Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) |
|--------------------------------|------------------|-------------------------------|--------------------------------------|-----------------------------|-----------------|----------------|
| 0.456                          | Pk               | 27.9                          | -0.8                                 | 27.1                        | 48.0            | -20.9          |
| 0.584                          | Pk               | 26.7                          | -0.7                                 | 26.0                        | 48.0            | -22.0          |
| 1.783                          | Pk               | 17.4                          | -1.1                                 | 16.3                        | 48.0            | -31.7          |
| 6.450                          | Pk               | 15.1                          | -1.8                                 | 13.3                        | 48.0            | -34.7          |
| 13.130                         | Pk               | 15.1                          | -2.4                                 | 12.7                        | 48.0            | -35.3          |
| 24.830                         | Pk               | 14.8                          | -3.4                                 | 11.4                        | 48.0            | -36.6          |

TEST PERSONNEL:

Namiel W. Baty Signature:

Date: February 14, 2001

Typed/Printed Name: Daniel Baltzell



## 6 RADIATED EMISSIONS MEASUREMENTS

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one meter and three meter distances, in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to insure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three-meter, open-field test site. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane. The spectrum was examined from 30 MHz to 1000 MHz using a Hewlett Packard 8566B spectrum analyzer, a Hewlett Packard 85650A quasi-peak adapter, and EMCO log periodic and biconical antenna. In order to gain sensitivity, a HP8447 preamplifier was connected in series between the antenna and the input of the spectrum analyzer.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations. The spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the CISPR quasi-peak detection mode. No video filter less than 10 times the resolution bandwidth was used. When any clock exceeds 108 MHz, the EUT was tested between 1 to 2 Gigahertz in peak mode with the resolution bandwidth set at 1 MHz as stated in ANSI C63.4. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech quality manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as well as daily calibration methods, technician training, and emphasis to employees on avoiding error.



## 6.1 RADIATED EMISSION DATA

## 6.1.1 FCC PART 95.639 - EFFECTIVE RADIATED POWER (CHANNEL 1)

| Emission  | Signal Generator | Cable Loss and TX Antenna | Corrected Signal | Watt  | Limit      |
|-----------|------------------|---------------------------|------------------|-------|------------|
| Frequency | Reading          | Gain Correction           | Generator Level  |       | 95.639 (d) |
| (MHz)     | (dBm)            | (dB)                      | (dBm) ERP        |       | Watt       |
| 462.5625  | 28.8             | -3.2                      | 25.6             | 0.360 | 0.5        |

Measurement uncertainty = 0.5 dB

## 6.1.2 FCC §15.109: RADIATED EMISSIONS: (RECEIVER/DIGITAL)

| Temperature: 76°F              |                  |                              |                               |                          |                               | nidity: 77%                            |                               |                   |                |
|--------------------------------|------------------|------------------------------|-------------------------------|--------------------------|-------------------------------|----------------------------------------|-------------------------------|-------------------|----------------|
| Emission<br>Frequency<br>(MHz) | Test<br>Detector | Antenna<br>Polarity<br>(H/V) | Turntable<br>Azimuth<br>(deg) | Antenna<br>Height<br>(m) | Analyzer<br>Reading<br>(dBuV) | Site<br>Correction<br>Factor<br>(dB/m) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
| 141.151                        | Qp               | V                            | 30                            | 1.0                      | 30.5                          | -16.2                                  | 14.3                          | 43.5              | -29.2          |
| 282.302                        | Qp               | Н                            | 265                           | 1.0                      | 49.3                          | -13.5                                  | 35.8                          | 46.0              | -10.2          |
| 423.453                        | Qp               | Н                            | 30                            | 1.0                      | 39.3                          | -8.6                                   | 30.7                          | 46.0              | -15.3          |
| 564.604                        | Qp               | Н                            | 0                             | 1.6                      | 34.9                          | -6.2                                   | 28.7                          | 46.0              | -17.3          |
| 705.755                        | Qp               | Н                            | 0                             | 1.0                      | 45.7                          | -4.8                                   | 40.9                          | 46.0              | -5.1           |
| 846.906                        | Qp               | Н                            | 180                           | 1.0                      | 46.8                          | -3.0                                   | 43.8                          | 46.0              | -2.2           |

\*All readings are quasi-peak, unless stated otherwise.

TEST PERSONNEL:

Daniel W. Balgel

Signature:

Date: February 14, 2001

Typed/Printed Name: Daniel Baltzell



## 7 FCC §95.627(B): FREQUENCY TOLERANCE

Limit 0.00025 %

## 7.1 FCC RULES AND REGULATION PART 2 §2.1055: FREQUENCY STABILITY

## 7.1.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.2

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

The EUT was evaluated over the temperature range  $-30^{\circ}$ C to  $+50^{\circ}$ C.

The temperature was initially set to  $-30^{\circ}$ C and a 2-hour period was observed for stabilization of the EUT. The frequency stability was measured within one minute after application of primary power to the transmitter. The temperature was raised at intervals of 10 degrees centigrade through the range. A  $\frac{1}{2}$  an hour period was observed to stabilize the EUT at each measurement step and the frequency stability was measured within one minute after application of primary power to the transmitter.

Additionally, the power supply voltage of the EUT was varied from 85% to 115% of the nominal voltage.

The worst-case test data are shown.

## 7.1.1.1 Temperature Frequency Stability

#### Temperature Frequency Stability





## 7.1.1.2 Voltage Frequency Stability



#### Voltage Frequency Stability (Battery end-point=5.7V)



## 8 FCC §95.633: EMISSION BANDWIDTH

## 8.1 FCC RULES AND REGULATIONS PART 2 §2.1049 (C) (1): OCCUPIED BANDWIDTH

Occupied Bandwidth  $\,$  - Compliance with the emission masks

## 8.2 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.11

Device with audio modulation: Transmitter is modulated with a 2500 Hz sine wave at an input level of 16 dB greater than that required to produce 50% of rated system deviation at 1000 Hz.





# 9 FCC RULES AND REGULATIONS PART 2.202: NECESSARY BANDWIDTH AND EMISSION BANDWIDTH

## FCC Part 95.631 and FCC 95.193:

#### FCC Part 95.631 (d): Emission Types

"An FRS unit may transmit only emission type F3E."

Type of Emission: F3E

Necessary Bandwidth and Emission Bandwidth: 12.5kHz (NB channel) : Bn = 11K0F3E

<u>Calculation</u>: Max modulation(M) in kHz : 3 Max deviation (D) in kHz: 2.5 (NB) Constant factor (K) : 1 Bn = 2xM+2xDK

## FCC Part 95.633 (c) Emission Bandwidth

"The authorized bandwidth for emission type F3E transmitted by a FRS unit is 12.5 kHz."



## 10 FCC §95.635: UNWANTED RADIATION

## **10.1 TEST PROCEDURE**

ANSI/TIA/EIA-603-1992, section 2.2.12

The transmitter is terminated with a 50  $\Omega$  load and is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1000 Hz.

## 10.2 TEST DATA

| Frequency<br>(MHz) | dBuV/m<br>@ 3 m | Signal<br>Generator<br>(dBm) | Cable<br>Loss (dB) | Corrected<br>Antenna<br>Gain<br>(dB) | Corrected<br>Signal<br>Generator<br>Level (dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|--------------------|-----------------|------------------------------|--------------------|--------------------------------------|-------------------------------------------------|----------------|----------------|
| 925.126            | 43.4            | -49.3                        | 4.2                | -1.1                                 | -54.6                                           | -13.0          | -41.6          |
| 1387.689           | 48.5            | -43.6                        | 6.5                | 3.6                                  | -46.5                                           | -13.0          | -33.5          |
| 1850.252           | 37.1            | -47.1                        | 7.5                | 4.8                                  | -49.8                                           | -13.0          | -36.8          |
| 2312.815           | 32.9            | -21.5                        | 10.4               | 5.0                                  | -26.9                                           | -13.0          | -13.9          |
| 2775.378           | 29.4            | -13.9                        | 12.0               | 5.8                                  | -20.1                                           | -13.0          | -7.1           |
| 3237.941           | 30.5            | -9.8                         | 13.3               | 6.2                                  | -16.9                                           | -13.0          | -3.9           |
| 3700.504           | 23.7            | -24.2                        | 15.8               | 6.0                                  | -34.0                                           | -13.0          | -21.0          |
| 4163.067           | 12.7            | -26.6                        | 17.9               | 6.3                                  | -38.2                                           | -13.0          | -25.2          |
| 4625.630           | 23.1            | -17.0                        | 19.8               | 7.1                                  | -29.7                                           | -13.0          | -16.7          |



## 11 FCC §95.637: MODULATION STANDARDS

## 11.1 FCC RULES AND REGULATIONS PART 2 §2.1047 (B): MODULATION CHARACTERISTICS - MODULATION LIMITING

## **11.1.1 TEST PROCEDURE**

ANSI/TIA/EIA-603-1992, section 2.2.3

The transmitter is adjusted for full rated system deviation. The audio input level is adjusted for 60% of rated system deviation at 1000Hz. Using this level as a reference (0dB) the audio input level is varied from the reference to a level +25 dB above it and -25 dB under it, for modulation frequencies of 300Hz, 1,000Hz, and 2,500Hz. The system deviation obtained as a function of the input level is recorded. Both Positive and Negative Peak deviations were recorded.

## **11.1.1.1 Modulation Limiting Positive Peak**



FCC and Canadian Certification Report 2001037



## 11.1.1.2 Modulation Limiting Negative Peak





## 11.2 FCC RULES AND REGULATIONS PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO LOW PASS FILTER RESPONSE

## **11.2.1 TEST PROCEDURE**

ANSI/TIA/EIA-603-1992, 2.2.15

The Audio Low Pass Filter Response is the frequency response of the post limiter low pass filter circuit above 3000 Hz.

## 11.2.1.1 Audio Low Pass Filter Response





## 11.3 FCC RULES AND REGULATIONS PART 2 §2.1047 (A): MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE

## **11.3.1 TEST PROCEDURE**

## ANSI/TIA/EIA-603-1992, section 2.2.6

The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic.

The input audio level at 1000 Hz is set to produce 20% of the rated system deviation. This point is shown as the 0 dB reference level, noted DEVref.

The audio signal generator was varied from 100Hz to 5kHz with the input level held constant.

The deviation in kHz was recorded using a modulation analyzer as DEVfreq.

The response in dB relative to 1 kHz was calculated as follows:

Audio Frequency Response = 20 LOG (DEVfreq/DEVref)

## 11.3.1.1 Audio Frequency Response

