TEST REPORT

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-390, Korea TEL: 82 70 5008 1021 Page(1)/(43) PagesFAX: 82 505 299 8311 **1. Applicant** Name: HUMAX Co., Ltd Address: HUMAX B/D, 2, Yeongmun-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-934, KOREA 2. Sample Description: FCC ID: O6ZC61-500 Type of equipment: **Client Receiver** Basic Model: C61-500 3. Date of Test: December 11 ~ December 14, 2015 4. Test method used: FCC Part 15 Subpart C, 15.247 5. Test Results Test Item: Refer to page 7 Result: Refer to page 8 ~ page 42 Measurement Uncertainty: Refer to page 7

This result shown in this report refer only to the sample(s) tested unless otherwise stated.

Affirmation	Tested by AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Technical Manager Name: SON, MIN GI
]	2015. 12. 16 KCTL Inc. Testing Laboratory

Report No.: KCTL15-FR0093

KCTL-TIR001-003/0

KCTL Inc.

[Contents]

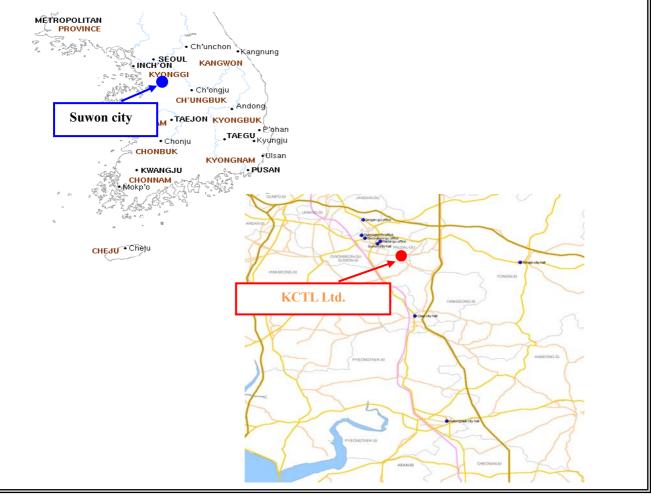
1. Client information	.3
2. Laboratory information	.4
3. Description of E.U.T	.5
3.1 Basic description	. 5
3.2 General description	.5
3.3 Test frequency	.6
3.4 Test Voltage	.6
4. Summary of test results	.7
4.1 Standards & results	
4.2 Uncertainty	.7
5. Test results	
5.1 Antenna Requirement	. 8
5.2 Maximum Peak Output Power	.9
5.3 Peak Power Spectral Density	1
5.4 6 dB Bandwidth(DTS Channel Bandwidth)1	6
5.5 Spurious Emission, Band Edge, and Restricted bands2	24
5.6 Conducted Emission	1
6. Test equipment used for test	13

1. Client information

Applicant:	HUMAX Co., Ltd
Address:	HUMAX B/D, 2, Yeongmun-ro, Cheoin-gu, Yongin-si, Gyeonggi-
	do, 449-934, KOREA
Telephone number:	+82-31-776 6386
Facsimile number:	+82-31-776-6748
Contact person:	Jung Chan Hun / jungch@humaxdigital.com
Manufacturer:	HUMAX Co., Ltd
Address:	HUMAX B/D, 2, Yeongmun-ro, Cheoin-gu, Yongin-si, Gyeonggi-
	do, 449-934, KOREA

2. Laboratory information

Address


KCTL Ltd.

65 Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea Telephone Number: 82-70-5008-1016 Facsimile Number: 82-505-299-8311

Certificate

KOLAS No.: 231 FCC Site Designation No.: KR0040 FCC Site Registration No.: 687132 VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849 IC Site Registration No.:8035A-2

SITE MAP

KCTL-TIR001-003/0

Page: (4) / (43) Pages

3. Description of E.U.T.

3.1 Basic description

Applicant:	HUMAX Co., Ltd
Address of Applicant	HUMAX B/D, 2, Yeongmun-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-934, KOREA
Manufacturer	HUMAX Co., Ltd
Address of Manufacturer	HUMAX B/D, 2, Yeongmun-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-934, KOREA
Type of equipment	Client Receiver
Basic Model	C61-500
Serial number	N/A

3.2 General description

Frequency Range	$2 425 \text{ MHz} \sim 2 475 \text{ MHz}$
Type of Modulation	O-QPSK
Number of Channels	11 ch
Type of Antenna	PCB Antenna
Antenna Gain	Ant 1: 4.0 dBi Ant 2: 0.9 dBi
Transmit Power	2.06 dBm
Power supply	DC 12 V
Product SW/HW version	1.0
Radio SW/HW version	1.0
Test SW Version	tera term
RF power setting in TEST SW	w 3

Note : The above EUT information was declared by the manufacturer.

KCTL-TIR001-003/0

3.3 Test frequency

	Frequency
Lowest frequency	2 425 ₩z
Middle frequency	2 450 ₩z
Highest frequency	2 475 ₩z

3.4 Test Voltage

Mode	Voltage	
Norminal Voltage	DC 12 V	

KCTL-TIR001-003/0

Page: (6) / (43) Pages

4. Summary of test results

4.1 Standards & results

FCC Rule Reference	IC Rule Reference	Parameter	Report Section	Test Result	
15.203, 15.247(b)(4)	-	Antenna Requirement	5.1	С	
15.247(b)(3)	RSS-247, 5.4(4)	Maximum Peak Output Power	5.2	С	
15.247(e)	RSS-247, 5.2	Peak Power Spectral Density	5.3	С	
15.247(a)(2)	RSS-247, 5.2	6 dB Channel Bandwidth	5.4	С	
-	RSS-247, 5.2	Occupied Bandwidth	5.4	С	
15.247(d), 15.205(a), 15.209(a)	RSS-247, 5.5 RSS-GEN,8.9, 10	Spurious Emission, Band Edge, and Restricted bands	5.5	С	
15.207(a)	RSS-GEN, 8.8	Conducted Emissions	5.6	С	
Note: C = complies NC = Not complies NT = Not tested NA = Not Applicable					

* The general test methods used to test this device is ANSI C63.10:2013

4.2 Uncertainty

Measurement Item	Expanded Uncertainty U = kUc (k = 2)		
Conducted RF power	1	.30 dB	
Conducted Spurious Emissions	1	.52 dB	
	30 MHz ~ 300 MHz:	+ 4.94 dB, - 5.06 dB	
	$30 \text{ mez} \sim 300 \text{ mez}$:	+ 4.93 dB, - 5.05 dB	
Radiated Spurious Emissions	300 MHz ~ 1 000 MHz:	+ 4.97 dB, - 5.08 dB	
	$300 \text{ MHz} \sim 1000 \text{ MHz}.$	+ 4.84 dB, - 4.96 dB	
	1 GHz ~ 25 GHz:	+ 6.03 dB, - 6.05 dB	
Conducted Emissions	9 kHz ~ 150 kHz:	3.75 dB	
Conducted Emissions	$150 \text{ kHz} \sim 30 \text{ MHz}$:	3.36 dB	

KCTL-TIR001-003/0

5. Test results

5.1 Antenna Requirement

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBI. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result

- Complied

The transmitter has a PCB pattern antenna as internal antenna.

5.2 Maximum Peak Output Power

5.2.1 Regulation

According to §15.247(b)(3), For systems using digital modulation in the 902-928 Mz, 2 400-2 483.5 Mz, and 5 725-5 850 Mz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.2 Measurement Procedure

These test measurement settings are specified in section 9.0 of 558074 D01 DTS Meas Guidance.

5.2.2.1 PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

5.2.3 Test Result

- Complied

-Ant 1

Channel	Frequency [Mtz]	Result [dBm]	Limit [dBm]	Margin [dB]	Average Power [dBm]
Lowest	2 425	2.06	30.00	27.94	1.94
Middle	2 450	2.06	30.00	27.94	1.97
Highest	2 475	2.06	30.00	27.94	1.91

-Ant 2

Channel	Frequency [Mtz]	Result [dBm]	Limit [dBm]	Margin [dB]	Average Power [dBm]
Lowest	2 425	1.26	30.00	28.74	1.10
Middle	2 450	1.06	30.00	28.94	0.97
Highest	2 475	0.96	30.00	29.04	0.82

-<u>NOTE:</u>

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.3 Peak Power Spectral Density

5.3.1 Regulation

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3.2 Measurement Procedure

These test measurement settings are specified in section 10.0 of 558074 D01 DTS Meas Guidance.

5.3.2.1 Method PKPSD (peak PSD)

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

1) Set analyzer center frequency to DTS channel center frequency.

2) Set the span to 1.5 times the DTS bandwidth.

3) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.

4) Set the VBW \geq 3 x RBW.

5) Detector = peak.

6) Sweep time = auto couple.

7) Trace mode = max hold.

8) Allow trace to fully stabilize.

9) Use the peak marker function to determine the maximum amplitude level within the RBW.

10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3.3 Test Result

- Complied

Channel	Frequency [Mtz]	Result [dBm]	Limit [dBm]	Margin [dBm]
Lowest	2 425	-2.15	8.00	10.15
Middle	2 450	-2.25	8.00	10.25
Highest	2 475	-2.38	8.00	10.38

- Complied

Channel	Frequency [Mtz]	Result [dBm]	Limit [dBm]	Margin [dBm]
Lowest	2 425	-3.00	8.00	11.00
Middle	2 450	-3.01	8.00	11.01
Highest	2 475	-3.34	8.00	11.34

-<u>NOTE:</u>

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.3.4 Test Plot

Figure 1. Plot of the Power Density

-Ant 1

Lowest Channel (2 425 MHz)

Att	20.00 54	VI 41.96 µs	ARM 300	kHz Mode	Auto FFT				
Frequency	Sween								1Pk Max
ricquenty					5		0	1	M1[1] -2.15 dB 2.4252 GF
d8m			-		~	 -	~~~		_
10 dēm	/							-	-
00 dām									-
30 d8m									
40 dBm									
50 dām	-								
50 d8m									
70 dām									
90 d8m						 -	_		_

Middle Channel (2 450 ₩z)

TDF		 300 kHz Mod	a Paterri					
1 Frequency S	weep						M	100 Max [1] -2.25 dB 2.4503 G
0 d8m				~~~	T			
-10 d8m	~					~	~	
\sim								
-20 ditm								
-30 d8m								
-40 dBm								
-50 dBm								
-60 dBm								
-70 d8m								
-80 d8m								

KCTL-TIR001-003/0

Page: (13) / (43) Pages

ghest Channel (2 4	175 MHz)				
Shest Channel (2 4					
	Interior II Inches I Inch	a I fpe.ml I family	un d X Spectrum Y X	Textbesh 1	
		= RBW 100 kHz µs = VBW 300 kHz Mode Auto FFT	un I X Iprobue Y X	Spectrum B A	
	Att 20 dB SWT 41.96 TDF 1 Frequency Sweep	6 μs = VBW 300 kHz Mode Auto FFT			1Pk Max
	The delay Sweet				M1[1] -2.38 dBm 2.4747 GHz
	0 dām				
	-10 d8m				~
	-20 d8m				_
	-30 dbm				
	-40 d8m				
	-50 d8m				_
	-60 dim				
	-70 dēm				
	-60 d8m				
	and weath				
	CF 2.475 GHz	1001 pts	240.0 kHz/		Span 2.4 MHz

- Ant 2

Lowest Channel(2 425 Mz)

Induition 🗄 Igentrum 🛛 X	Span 7 X Span 8	X Ipertran.A	X Spectrum b X	Spectrum K X	
Ref Level 10.00 dBm Att 20 dB SWT 4 TDF	= RBW 100 kHz 1.96 µs = VBW 300 kHz Mo	de Auto FFT			
I Frequency Sweep					1Pk Max
					M1[1] -3.00 dB 2.4248 GF
0 dêm		-			
_		hand	~~~~		
-10 dBm					-
~					m
-20 dêm					
-30 dEm					
12.12.21					
-40 d8m					
91.50 Mr					
-50 d8m					
of den					
-60 d&m					
-70 d8m					
-00 dBm					
CF 2.425 GHz	1001 p	te.	240.0 kHz/		Span 2.4 MH

KCTL-TIR001-003/0

Page: (14) / (43) Pages

Middle Channel (2 45	O MHz)					
Wildele Chamiler (2 45						
	Justifies Jactime X (Jaca)	2 Januar 1	X Interferent X	lpsilves1 X is	ilem 8 X	
	Ref Level 10.00 dBm	= RBW 100 kHz s = VBW 300 kHz Mode				
	TDF 1 Frequency Sweep	a - 100 200 stat 1100				■1Pk Max
						M1[1] -3.01 dBm 2.4497 GHz
	0 dēm					
	-10 dbm				m	
	-20 dam-					
	-30 dBm					
	-40 dêm					
	-40 dem-					
	-50 dēm					
	-60 d8m					
	-70 dBm					
	-80 d8m					
	CF 2.45 GHz	1001 pts		240.0 kHz/		Span 2.4 MHz
$\mathbf{U}_{\mathbf{r}}^{\mathbf{r}}$	7.5 MIL.)					
Highest Channel (247	75 MHZ)					
			~	~~		
	RefLevel 10.00 dBm	# RBW 100 kHz	X Iperious X	Pyrel brank X . (by	relation to T	Ψ
	TDF	ns = VBW 300 kHz Mode	e Auto FFT			
	1 Frequency Sweep	6				M1[1] -3.34 dBm 2.4751 GHz
	0 dêm		MI			
	-10 dêm				~	
						~

KCTL-TIR001-003/0

F 2.475 GH

Page: (15) / (43) Pages

1001 p

40.0 kHz/

an 2.4 MH

5.4 6 dB Bandwidth(DTS Channel Bandwidth)

5.4.1 Regulation

According to \$15.247(a)(2) Systems using digital modulation techniques may operate in the 902–928 Mz, 2 400–2 483.5 Mz, and 5 725–5 850 Mz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.4.2 Measurement Procedure

These test measurement settings are specified in section 8.0 of 558074 D01 DTS Meas Guidance.

5.4.2.1 DTS Channel Bandwidth-Option 1

- 1) Set RBW = 100 kHz.
- 2) Set the video bandwidth (VBW) \geq 3 x RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.
- 5) Sweep = auto couple.
- 6) Allow the trace to stabilize.
- 7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.4.2.2 DTS Channel Bandwidth Measurement Procedure-Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 x RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

5.4.3 Test Result

- Complied

- Ant 1

Channel	Frequency [Mtz]	6 dB Bandwidth [₩z]	Min. Limit [ᢂ᠌]	Occupied Bandwidth (99 % BW) [Mb]
Lowest	2 425	1.66	0.50	2.39
Middle	2 450	1.64	0.50	2.36
Highest	2 475	1.62	0.50	2.34

- Ant 2

Channel	Frequency [Mtz]	6 dB Bandwidth [₩z]	Min. Limit [ᢂz]	Occupied Bandwidth (99 % BW) [Mb]
Lowest	2 425	1.67	0.50	2.39
Middle	2 450	1.62	0.50	2.37
Highest	2 475	1.63	0.50	2.37

-<u>NOTE:</u>

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.

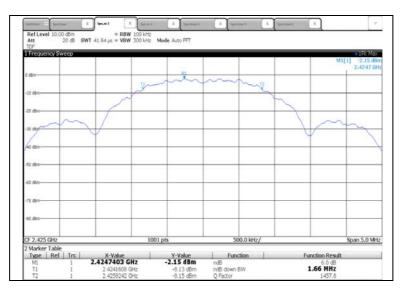
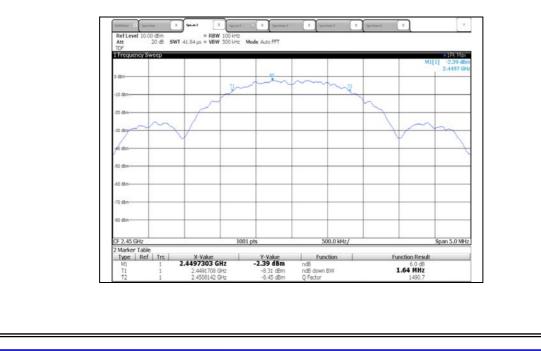
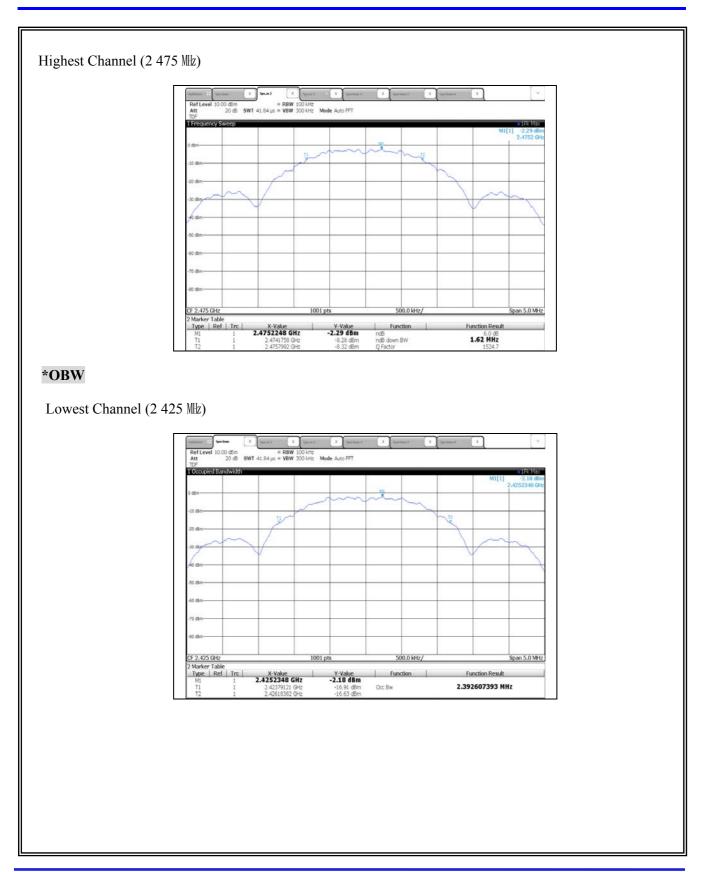

5.4.4 Test Plot

Figure 2. Plot of the 6dB Bandwidth & Occupied Bandwidth


- Ant 1

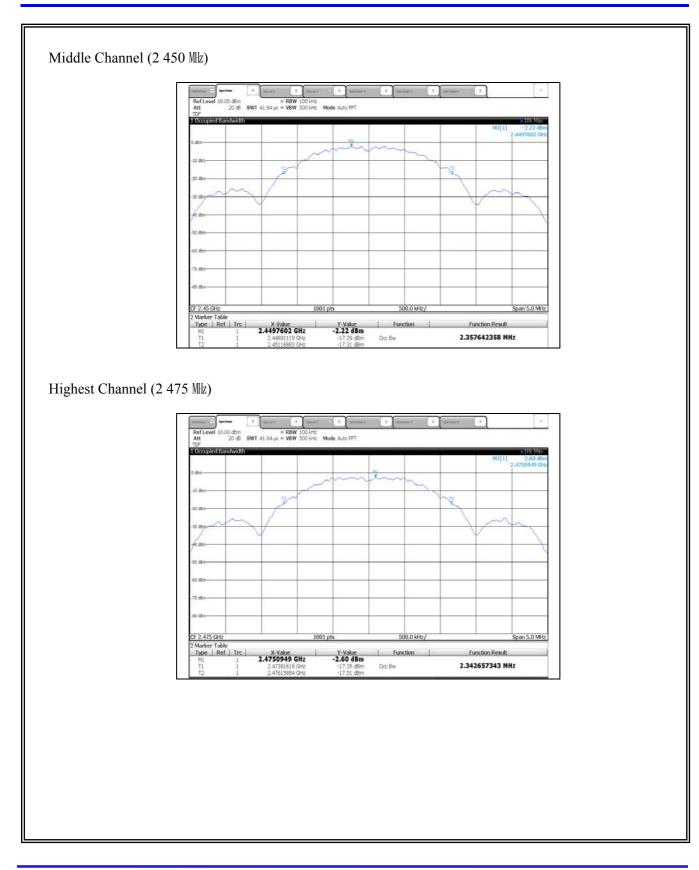
* 6 dB Bandwidth

Lowest Channel (2 425 Mz)


Middle Channel (2 450 Mz)

KCTL-TIR001-003/0

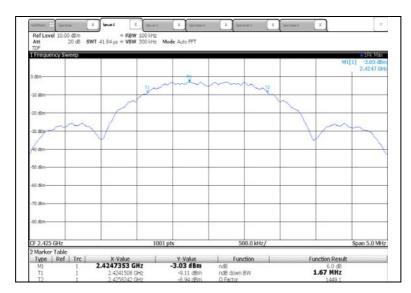
Page: (18) / (43) Pages

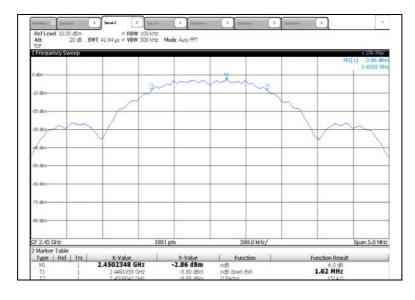


KCTL-TIR001-003/0

Page: (19) / (43) Pages

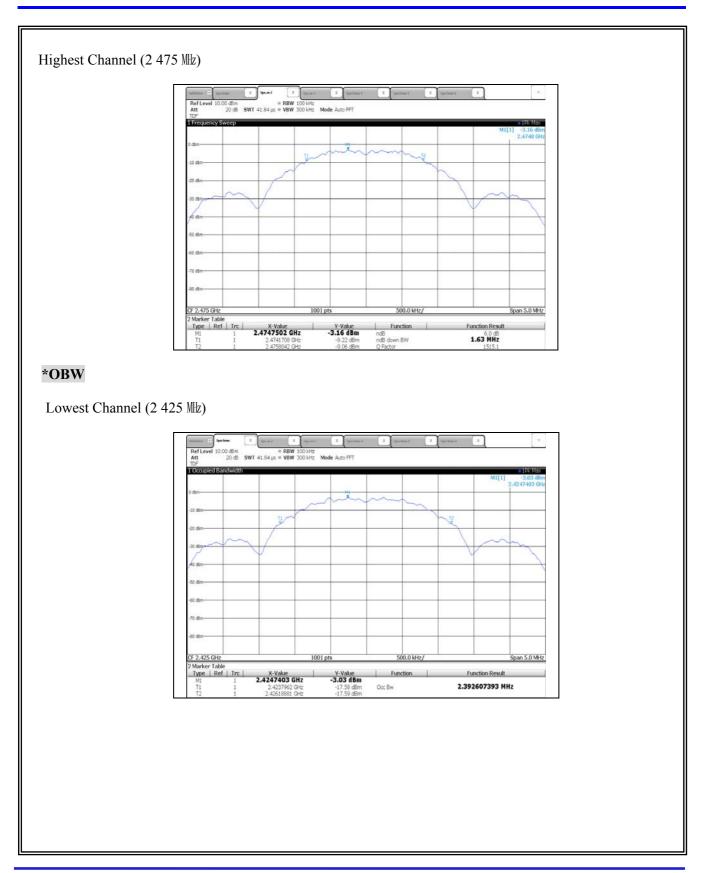
KCTL-TIR001-003/0


Page: (20) / (43) Pages


- Ant 2

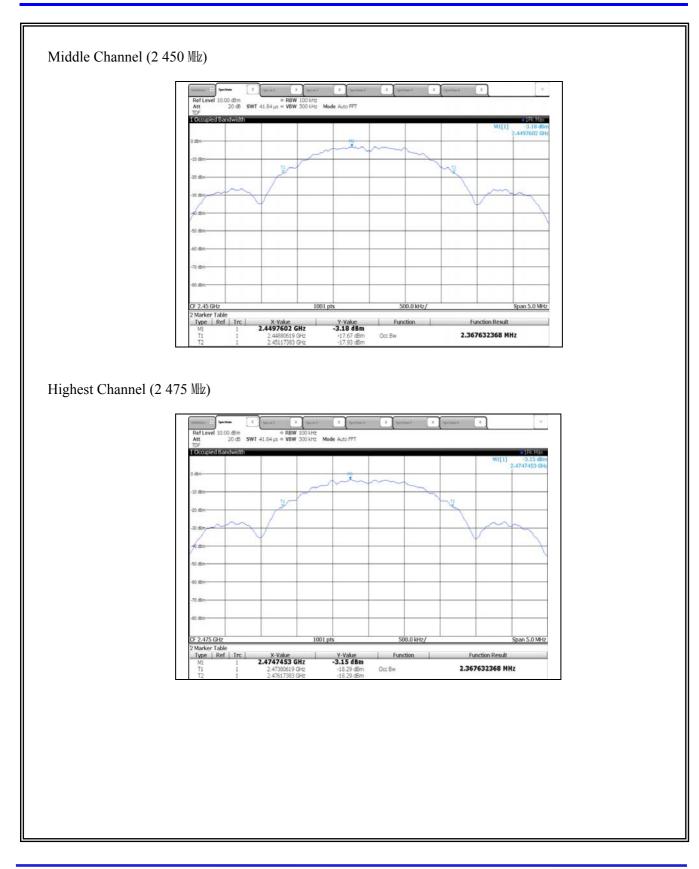
* 6 dB Bandwidth

Lowest Channel (2 425 Mz)


Middle Channel (2 450 Mz)

KCTL-TIR001-003/0

Page: (21) / (43) Pages



KCTL-TIR001-003/0

Page: (22) / (43) Pages

KCTL-TIR001-003/0

Page: (23) / (43) Pages

5.5 Spurious Emission, Band Edge, and Restricted bands

5.5.1 Regulation

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

Frequency (MHz)	Field strength ($\mu N/m$)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

According to §15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall notexceed the field strength levels specified in the following table:

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 Mb, 76–88 Mb, 174–216 Mb or 470–806 Mb. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 - 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 - 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 - 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 - 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 - 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	$2\ 200 - 2\ 300$	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 - 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525 25	$2\ 483.5 - 2\ 500$	17.7 - 21.4
8.376 25 - 8.386 75	156.7 - 156.9	2 690 - 2 900	22.01 - 23.12
8.414 25 - 8.414 75	162.012 5 - 167.17	3 260 - 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 - 3 339	31.2 - 31.8
12.519 75 - 12.520 25	240 - 285	3 345.8 - 3 358	36.43 - 36.5
12.576 75 - 12.577 25	322 - 335.4	3 600 - 4 400	Above 38.6
13.36 - 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 Mb, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

5.5.2Measurement Procedure

5.5.2.1 Band-edge Compliance of RF Conducted Emissions

5.5.2.1.1 Reference Level Measurement

Establish a reference level by using the following procedure:

- 1) Set instrument center frequency to DTS channel center frequency.
- 2) Set the span to ≥ 1.5 times the DTS bandwidth.
- 3) Set the RBW = 100 kHz.
- 4) Set the VBW \geq 3 x RBW.
- 5) Detector = peak.
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum PSD level.

5.5.2.1.2 Emissions Level Measurement

- 1) Set the center frequency and span to encompass frequency range to be measured.
- 2) Set the RBW = 100 kHz.
- 3) Set the VBW \geq 3 x RBW.
- 4) Detector = peak.
- 5) Ensure that the number of measurement points \geq span/RBW
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

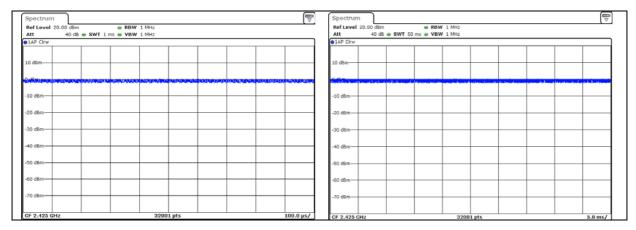
5.5.2.2 Conducted Spurious Emissions

Set the spectrum analyzer as follows:

- Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
- 2) RBW = 100 kHz
- 3) VBW \ge RBW
- 4) Sweep = auto
- 5) Detector function = peak
- 6) Trace = max hold
- 7) Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 8) Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

KCTL-TIR001-003/0

Page: (27) / (43) Pages


5.5.2.3 Radiated Spurious Emissions

- 1) The preliminary and final rdiated measurements were performed to determine the frequency producing the maximum emissions in at a 10m anechoic chamber. The EUT was tested at a distance 3 meters.
- 2) The EUT was placed on the top of the 0.8-meter height, 1×1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3) The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1 000 MHz using the TRILOG broadband antenna, and from 1 000 MHz to 26 500 MHz using the horn antenna.
- 4) Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 5) The 0.8m height is for below 1 G testing, and 1.5m is for above 1G testing.

Note

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb and the video bandwidth is 3 Mb for Average detection (AV) at frequency above 1 Gb.

(Detector=RMS, Average type=power, Perform a trace average: at least 100 traces)

*Note: In zero-span status, Above plots prove that 100% duty-cycle.

5.5.3 Test Result

- Complied

- 1. Conducted Spurious Emissions was shown in figure 3. Note: We took the insertion loss of the cable into consideration within the measuring instrument.
- 2. Measured value of the Field strength of spurious Emissions (Radiated)
- 3. It tested x,y and z 3 axis each, mentioned only worst case data at this report.

* Below 1 🕀 data (worst-case)

- Ant 1

Middle Channel (2 450 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin			
[MHz]	[kHz]	[V/H]	$[dB(\mu N)]$	[dB]	$[dB(\mu N/m)]$	$[dB(\mu V/m)]$	[dB]			
Quasi-Peak D	Quasi-Peak DATA. Emissions below 30 Mz									
Below 30.00	Not Detected	-	-	-	-	-	-			
Quasi-Peak D	Quasi-Peak DATA. Emissions below 1 Gz									
Above 30.00	Not Detected	-	-	-	-	-	-			

* Above 1 GHz data_Ant 1

Lowest channel (2 425 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]
Peak DATA. Emis	ssions above 1 GHz						
1 597.125	1 000	Н	51.90	-2.50	49.40	74.00	24.60
*2 389.75	1 000	Н	40.60	1.30	41.90	74.00	32.10
3 198.75	1 000	Н	48.20	4.10	52.30	74.00	21.70
4 848.75	1 000	Н	41.60	8.00	49.60	74.00	24.40
Above	Not		-		_		
5 000.00	Detected	-	-	-	-	-	-
Average DATA. E	missions above 1	GHz					
1 597.125	1 000	Н	30.30	-2.50	27.80	54.00	26.20
*2 389.75	1 000	Н	26.30	1.30	27.60	54.00	26.40
3 198.75	1 000	Н	38.40	4.10	42.50	54.00	11.50
4 848.75	1 000	Н	35.80	8.00	43.80	54.00	10.20
Above	Not						
5 000.00	Detected	-	-	-	-	-	-

* Asterisks mean Restricted band.

Middle channel (2 450 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]
Peak DATA. Emi	ssions above 1 GHz	:					
1 295.00	1 000	Н	53.50	0.10	53.60	74.00	20.40
1 597.75	1 000	Н	57.00	0.00	57.00	74.00	17.00
2 112.25	1 000	V	48.80	4.00	52.80	74.00	21.20
3 198.75	1 000	Н	48.00	6.40	54.40	74.00	19.60
4 899.38	1 000	Н	39.50	9.60	49.10	74.00	24.90
Above 5 000.00	Not Detected	-	-	-	-	-	-
Average DATA. E	Emissions above 1	l GHz					
1 295.00	1 000	Н	41.70	0.10	41.80	54.00	12.20
1 597.75	1 000	Н	30.70	0.00	30.70	54.00	23.30
2 112.25	1 000	V	31.60	4.00	35.60	54.00	18.40
3 198.75	1 000	Н	39.50	6.40	45.90	54.00	8.10
4 899.38	1 000	Н	31.80	9.60	41.40	54.00	12.60
Above 5 000.00	Not Detected	-	-	-	-	-	-

KCTL-TIR001-003/0

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu N/m)]$	$[dB(\mu V/m)]$	[dB]
Peak DATA. Emis	sions above 1 🕀	:					
1 299.75	1 000	Н	52.30	-3.30	49.00	74.00	25.00
1 600.00	1 000	V	55.50	-2.50	53.00	74.00	21.00
*2 483.50	1 000	Н	52.00	1.00	53.00	74.00	21.00
3 198.75	1 000	Н	48.30	4.10	52.40	74.00	21.60
Above	Not						
4 000.00	Detected	-	-	-	-	-	-
Average DATA. E	missions above 1	GHz					
1 299.75	1 000	Н	41.60	-3.30	38.30	54.00	15.70
1 600.00	1 000	V	47.20	-2.50	44.70	54.00	9.30
*2 483.50	1 000	Н	44.30	1.00	45.30	54.00	8.70
3 198.75	1 000	Н	35.70	4.10	39.80	54.00	14.20
Above	Not						
4 000.00	Detected	-	-	-	-	-	-

* Asterisks mean Restricted band.

* Above 1 GHz data_Ant 2

Lowest channel (2 425 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	[dB(µV)]	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]
Peak DATA. Emis	sions above 1 GHz	<u>.</u>					
1 286.00	1 000	Н	52.90	0.10	53.00	74.00	21.00
1 593.25	1 000	V	57.80	0.00	57.80	74.00	16.20
*2 389.50	1 000	Н	42.10	5.60	47.70	74.00	26.30
3 198.75	1 000	Н	48.00	4.10	52.10	74.00	21.90
4 848.75	1 000	Н	39.70	8.00	47.70	74.00	26.30
Above 5 000.00	Not Detected	-	-	-	-	-	-
Average DATA. E	missions above 1	l GHz					
1 286.00	1 000	Н	44.30	0.10	44.40	54.00	9.60
1 593.25	1 000	V	30.90	0.00	30.90	54.00	23.10
*2 389.50	1 000	Н	30.30	5.60	35.90	54.00	18.10
3 198.75	1 000	Н	37.90	4.10	42.00	54.00	12.00
4 848.75	1 000	Н	32.40	8.00	40.40	54.00	13.60
Above 5 000.00	Not Detected	-	-	-	-	-	-

Asterisks mean Restricted band.

KCTL-TIR001-003/0

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin
[MHz]	[kHz]	[V/H]	$[dB(\mu N)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu N/m)]$	[dB]
Peak DATA. Emi	ssions above 1 GH						
1 288.75	1 000	Н	53.10	0.10	53.20	74.00	20.80
1 597.75	1 000	V	58.00	0.00	58.00	74.00	16.00
3 198.75	1 000	Н	48.00	6.40	54.40	74.00	19.60
4 899.38	1 000	Н	39.50	9.60	49.10	74.00	24.90
Above	Not		-				
5 000.00	Detected	-	-	-	-	-	-
Average DATA. E	missions above 1	l GHz					
1 288.75	1 000	Н	41.70	0.10	41.80	54.00	12.20
1 597.75	1 000	V	39.90	0.00	39.90	54.00	14.10
3 198.75	1 000	Н	39.50	6.40	45.90	54.00	8.10
4 899.38	1 000	Н	31.80	9.60	41.40	54.00	12.60
Above	Not						
		_	_	_	_	_	_
5 000.00	Detected	-	-	-	-	-	-
5 000.00 Highest channe Frequency	I (2 475 MHz) Receiver	- Pol.	Reading	- Factor	- Result	- Limit	Margin
Highest channe	I (2 475 Mz)	Pol.	- Reading [dB(,∠V)]	- Factor [dB]	- Result [dB(μ V/m)]	- Limit [dB(,∠V/m)]	
Highest channe Frequency	I (2 475 MHz) Receiver Bandwidth [kHz]	[V/H]	•				Margin
Highest channe Frequency [Mtz]	I (2 475 MHz) Receiver Bandwidth [kHz]	[V/H]	•				Margin
Highest channe Frequency [Mt] Peak DATA. Emis 1 599.75 *2 483.50	I (2 475 MHz) Receiver Bandwidth [kHz] ssions above 1 GH	[V/H]	[dB(µV)]	[dB]	[dB(µV/m)]	[dB(,,,//m)] 74.00 74.00	Margin [dB]
Highest channe Frequency [Mt] Peak DATA. Emis 1 599.75	I (2 475 MHz) Receiver Bandwidth [kHz] ssions above 1 GHz 1 000	[V/H]	[dB(, μ V)] 57.30	[dB] -2.50	[dB(µV/m)]	[dB(,//m)]	Margin [dB] 19.20
Highest channe Frequency [M₺] Peak DATA. Emis 1 599.75 *2 483.50 3 198.75 Above	I (2 475 MHz) Receiver Bandwidth [kHz] ssions above 1 GH 1 000 1 000 1 000 Not	[V/H]	[dB(, μ)] 57.30 49.30	[dB] -2.50 1.00	[dB(µV/m)] 54.80 50.30	[dB(,,,//m)] 74.00 74.00	Margin [dB] 19.20 23.70
Highest channe Frequency [M₺] Peak DATA. Emis 1 599.75 *2 483.50 3 198.75	I (2 475 MEz) Receiver Bandwidth [kHz] ssions above 1 GHz 1 000 1 000 1 000 1 000 1 000	[V/H]	[dB(, μ)] 57.30 49.30	[dB] -2.50 1.00	[dB(µV/m)] 54.80 50.30	[dB(,,,//m)] 74.00 74.00	Margin [dB] 19.20 23.70
Highest channe Frequency [M₺] Peak DATA. Emis 1 599.75 *2 483.50 3 198.75 Above	1 (2 475 MHz) Receiver Bandwidth [kHz] ssions above 1 GHz 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	[V/H] H V H -	[dB(, μ)] 57.30 49.30	[dB] -2.50 1.00	[dB(µV/m)] 54.80 50.30	[dB(,,,//m)] 74.00 74.00	Margin [dB] 19.20 23.70
Highest channe Frequency [M [±]] Peak DATA. Emis 1 599.75 *2 483.50 3 198.75 Above 4 000.00 Average DATA. E 1 599.75	I (2 475 MHz) Receiver Bandwidth [kHz] ssions above 1 GHz 1 000 1 000 1 000 Not Detected Cmissions above 1 1 000	[V/H] 2 H H -	[dB(, μ V)] 57.30 49.30 48.70 - 42.40	[dB] -2.50 1.00 4.10 -	[dB(µV/m)] 54.80 50.30 52.80 - 39.90	[dB(, 2V/m)] 74.00 74.00 - - 54.00	Margin [dB] 19.20 23.70 21.20 - 14.10
Highest channe Frequency [M⊭] Peak DATA. Emis 1 599.75 *2 483.50 3 198.75 Above 4 000.00 Average DATA. E 1 599.75 *2 483.50	I (2 475 MHz) Receiver Bandwidth [kHz] ssions above 1 GHz 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	[V/H] - H GHz H V H	[dB(, μ V)] 57.30 49.30 48.70 - 42.40 45.10	[dB] -2.50 1.00 4.10 - - -2.50 1.00	[dB(µ/m)] 54.80 50.30 52.80 - 39.90 46.10	[dB(, 2V/m)] 74.00 74.00 - - 54.00 54.00	Margin [dB] 19.20 23.70 21.20 - 14.10 7.90
Highest channe Frequency [M [⊥]] Peak DATA. Emis 1 599.75 *2 483.50 3 198.75 Above 4 000.00 Average DATA. E 1 599.75 *2 483.50 3 198.75	I (2 475 MHz) Receiver Bandwidth [kHz] ssions above 1 GHz 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	[V/H] 2 H H -	[dB(, μ V)] 57.30 49.30 48.70 - 42.40	[dB] -2.50 1.00 4.10 -	[dB(µV/m)] 54.80 50.30 52.80 - 39.90	[dB(, 2V/m)] 74.00 74.00 - - 54.00	Margin [dB] 19.20 23.70 21.20 - 14.10
Highest channe Frequency [M⊭] Peak DATA. Emis 1 599.75 *2 483.50 3 198.75 Above 4 000.00 Average DATA. E 1 599.75 *2 483.50	I (2 475 MHz) Receiver Bandwidth [kHz] ssions above 1 GHz 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	[V/H] - H GHz H V H	[dB(, μ V)] 57.30 49.30 48.70 - 42.40 45.10	[dB] -2.50 1.00 4.10 - - -2.50 1.00	[dB(µ/m)] 54.80 50.30 52.80 - 39.90 46.10	[dB(, 2V/m)] 74.00 74.00 - - 54.00 54.00	Margin [dB] 19.20 23.70 21.20 - 14.10 7.90

* Asterisks mean Restricted band.

KCTL-TIR001-003/0

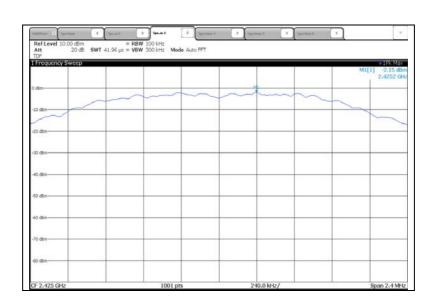
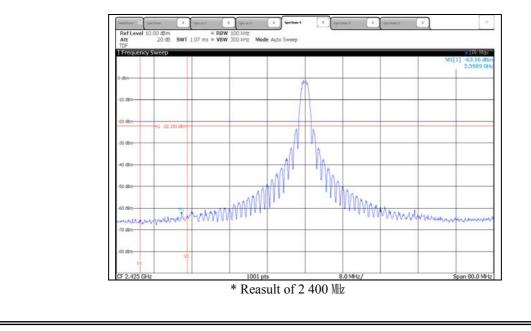

5.5.4 Test Plot

Figure 3. Plot of the Band-edge & Conducted Spurious Emissions


- Ant 1

Lowest Channel (2 425 ₩z)

Reference

Band-edge

KCTL-TIR001-003/0

Page: (33) / (43) Pages

Conducted Spurious Emissions

Frequency Sweep			M1[1] -59.03 dB
			4.8520 GH
man (
10 dēm			
41 -22,150 dBm			
30 d8m			
40 dBm			
50 dBm			
	MI		
60 dBm			mail
Taken in allowed a	were here and the love and and a second	un marken and an and a second a	our along war and the white

Middle Channel (2 450 ₩z)

Reference

TDF	41.96 µs = VBW 300 kHz	Mode Auto FF1		
Frequency Sweep			MI	 193 Max 1] -2.25 dBi 2.4503 GF
) dBm			 	214505 0
~			 	
10 dēm				-
20 dām			 	
30 dēm			 	-
40 d8m-				
50 dBm			 	-
60 d8m			 	
70 d8m				
JU dem				
80 d8m			 	

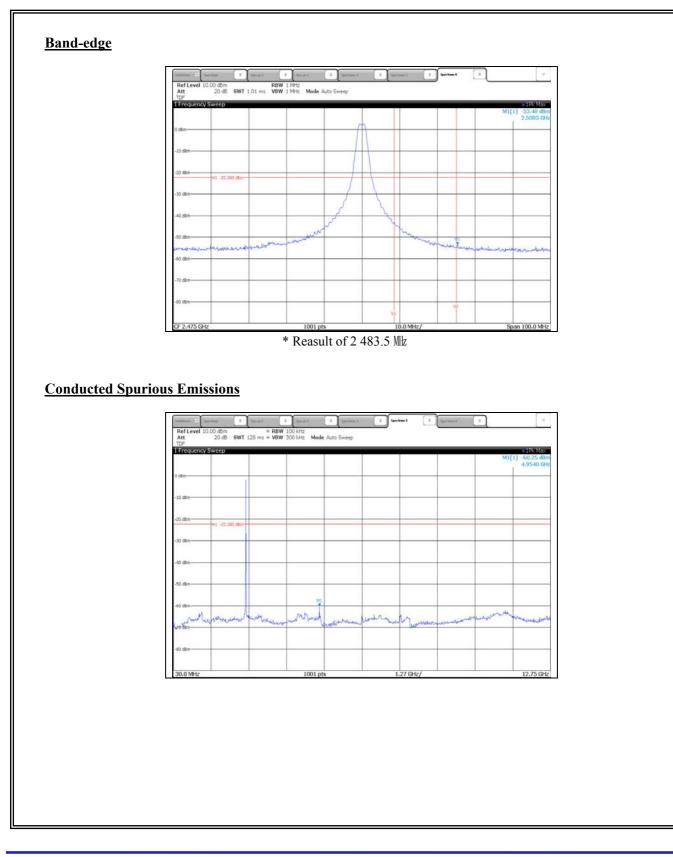
KCTL-TIR001-003/0

Page: (34) / (43) Pages

Conducted Spurious Emissions

riequenc	y Sweep								 1Pk Max
								M1[1] -59.56 dBr 4.9030 GH
) dBm		1	-			-	-		
10 dēm									
20 dēm	++1 -22.250 dBr	h							
30 dêm			_			-	-		
40 dêm									
50 d8m									
60 d8m			MI						
Jaco	hicknew	Mawalken	wowend	and all the second	housething	New Junitrolen	Allen Hannes May	munch	Marshame
10 dem-				all a second second					

Highest Channel (2 475 ₩z)

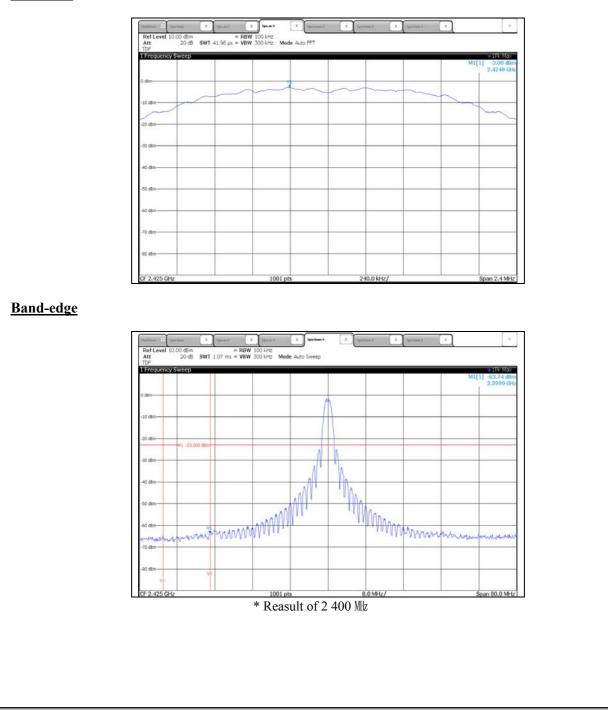

Reference

TDF	The second second	300 kHz Mode Auto	12.20		
Frequency Sweep		_			 1Pk Max
					41[1] -2.38 dB 2.4747 G
mit of the second secon		111			
_			\sim		
10 dēm					 -
-					m
-20 dBm				-	
-30 dēm					
-40 dBm					
50 dBm					
60 dBm-					
70 dêm					
80 dBm					

KCTL-TIR001-003/0

Page: (35) / (43) Pages

KCTL-TIR001-003/0


Page: (36) / (43) Pages

-Ant 2

Lowest Channel (2 425 Mz)

Reference

KCTL-TIR001-003/0

Page: (37) / (43) Pages

Conducted Spurious Emissions

Frequency Sweep			 IPk Max
			M1[1] -57.54 dB 4.8520 G
0 dēm			
10 dBm			
H1 -23.000 dBm			
30 d8m			
40 d8m			
50 d8m			
	MI		
co dem	in many	have the weeks we have	- here - marken - and the second and
pater -	mandadatar war numerican	- hand we had a water when and	Manage Contraction
60 džm			

Middle Channel (2 450 ₩z)

Reference

Ref Level 10.00 dBm Att 20 dB SWT 41. TDF	 RBW 100 kHz 96 μs = VBW 300 kHz Mode 	e Auto FFT	
Frequency Sweep			 = 1Pk Max
			M1[1] -3.01 dB 2,4497 G
) dēm			
	~~~~		 ~
10 dBm			
20 dbm			
150300			
30 dBm-			 
2.202			
40 d£m-			
50 dłm			 
60 d8m			 
70 dBm			
60 džm			
2012010			

KCTL-TIR001-003/0

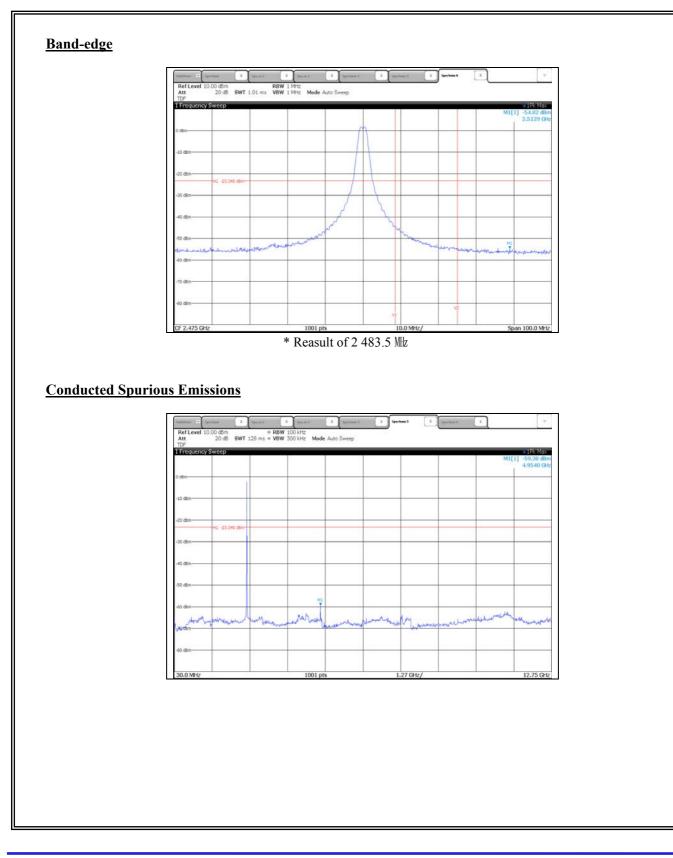
Page: (38) / (43) Pages



### **Conducted Spurious Emissions**

TDF Frequency Swee	:p			<ul> <li>1Pk Max</li> </ul>
				M1[1] -58.42 dE 4.9030 G
				4.9030 G
) dēm	1			
10 dBm				
20 dBm	23.010 dBm			
111	22.010 (80)			
mit 00				
40 dēm				
50 dBm				
		ML		
60 d8m		1		
and let	umpore.	weighted merely mercules	where here	up made we with the managers
motem	We a show	where where a	and white approver	- entrane
80 džm				

### Highest Channel (2 475 ₩z)


### **Reference**

Ref Level         10.00 dBm           Att         20 dB         SWT           TDF         SWT         SWT	■ RBW 100 k 41.96 µs ■ VBW 300 k	Hz Mode Auto FFT		
Frequency Sweep				 1Pk Max
				M1[1] -3.34 dB 2.4751 G
math 0			MI	 
10 d8m-			-	
~				
-20 dtm				 
-30 dBm				 
40 dBm				
50 dBm				
-bu demi-				
60 d8m				
220342				
70 d8m				 
-80 dBm				 

KCTL-TIR001-003/0

Page: (39) / (43) Pages





KCTL-TIR001-003/0

Page: (40) / (43) Pages



### 5.6 Conducted Emission

#### 5.6.1 Regulation

According to \$15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50  $\Omega$  line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Execution of omission (Mg)	Conducted limit (dBµN)		
Frequency of emission (Mb)	Qausi-peak	Average	
0.15 - 0.5	66 to 56 *	56 to 46 *	
0.5 - 5	56	46	
5-30	60	50	

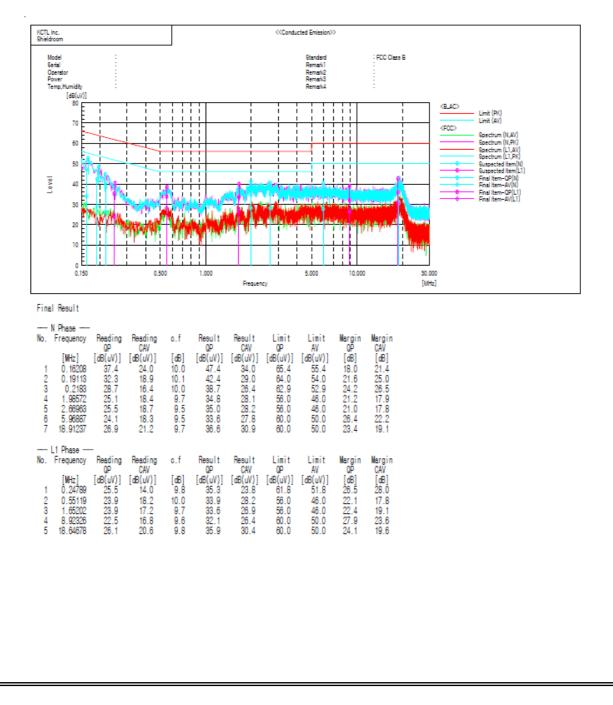
* Decreases with the logarithm of the frequency.

According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

#### 5.6.2 Measurement Procedure

- 1) The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2) Each current-carrying conductor of the EUT power cord was individually connected through a  $50\Omega/50\mu$ H LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3) Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4) The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 Mz to 30 Mz.
- 5) The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

KCTL-TIR001-003/0




### 5.6.3 Test Result

### - Complied

Figure 4. plot of Conducted Emission

*Conducted worst-case data : Middle Channel (2 450 Mz)



KCTL-TIR001-003/0

Page: (42) / (43) Pages



1		•		1	C	
6	lest	eann	pment	used	tor	test
υ.	1000	oqui		ubcu	101	COL

Description	M	M. J.IN.	C	No. 4 Col Dott
 Description	Manufacturer	Model No.	Serial No.	Next Cal Date.
DC Power Supply	AGILENT	E3632A	KR73001026	16.01.06
Spectrum Analyzer	R&S	FSW26	101353	16.07.16
Spectrum Analyzer	R&S	FSV30	101437	16.11.03
Signal Generator	R&S	SMR40	100007	16.06.15
EMI Test Receiver	R&S	ESR7	101078	16.09.02
Loop Antenna	R&S	HFH2-Z2	861971003	17.03.03
Bi-Log Antenna	SCHWARZBECK	vulb9168	583	16.06.19
Horn Antenna	ETS.lindgren	3115	62589	16.11.12
Horn Antenna	ETS.lindgren	3116	00086635	16.04.29
Broadband Preamplifier	SCHWARZBECK	BBV9718	216	16.11.11
Broadband Preamplifier	SCHWARZBECK	BBV9721	2	16.05.19
Amplifier	SONOMA INSTRUMENT	310	186280	16.09.01
Attenuator	Weinschel ENGINEERING	DGA9552N	BU2404	16.06.16
Wideband Power Sensor	R&S	NRP-Z81	100677	16.01.26
Test Receiver	R&S	100001	ESCI	16.08.04
Two-Line V-Network	R&S	101358	ENV216	16.09.03
Two-Line V-Network	R&S	100267	ESH3-Z5	16.06.16

KCTL-TIR001-003/0

Page: (43) / (43) Pages