

RF TEST REPORT

Test Equipment	÷	Car audio
Model Name	÷	HARN1006
FCC ID	÷	O6Z-HARN1006A
Date of receipt	÷	2023-10-18
Test duration	:	2023-11-03 ~ 2023-11-09
Date of issue		2023-11-29

Applicant : Humax Co., Ltd.

2. Yeongmun-ro, Cheoin-gu Yong-in-si, Gyeonggi-do, Korea

Test Laboratory : Lab-T, Inc.

2182-42 Baegok-daero, Mohyeon-eup, Cheoin-gu, Yongin-si Gyeonggi-do, 17036, Korea

Test specification	:	FCC Part 15 Subpart C 15.247
RF Output Power	:	0.71 dBm
Test result	:	Pass

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of Lab-T, Inc This test report is not related to KOLAS.

Tested by:

Engineer HyunWoo Lee Reviewed by:

Technical Manager SangHoon Yu

TRF-R-003(00)

Copyright © 2023, Lab-T, Inc.

CONTENTS

1.	Revision history	3
2.	Information	4
2	2.1 Applicant Information	4
2	2.2 Test Laboratory information	4
2	2.3 Test Site	4
3.	Information About Test Equipment	5
3	3.1 Equipment Information	5
3	3.2 Antenna Information	5
3	3.3 Test Frequency	5
3	8.4 Worst-Case	5
3	3.5 Tested Companion Device Information	6
Э	3.6 Operating conditions for the EUT	6
4.	Test Report	7
Z	I.1 Summary	7
Z	I.2 Measurement Uncertainty	7
Z	I.3 Transmitter Requirements	8
	4.3.1 Antenna Requirement	8
	4.3.2 20 dB Bandwidth and Occupied Bandwidth	9
	4.3.3 Number of Hopping Frequencies	17
	4.3.4 Time of occupancy (Dwell Time)	23
	4.3.5 Carrier Frequencies Separation	26
	4.3.6 Peak Output Power	
	4.3.7 Spurious Emission, Band Edge, and Restricted bands	40
	4.3.8 Conducted Emission	60
AP	PENDIX I	61

1. Revision history

Test Report No.	Date	Description
TRRFCC23-0010	2023-11-29	Initial issue

2. Information

2.1 Applicant Information

Applicant name	Humax Co., Ltd.
Address	2. Yeongmun-ro, Cheoin-gu Yong-in-si, Gyeonggi-do,Korea
Telephone No.	+82 10-6395-2516
Person in charge	Tae hoonn.kim / taehun.kim@kanavi-auto.com
Manufacturer	Humax Co., Ltd.
Address	2. Yeongmun-ro, Cheoin-gu Yong-in-si, Gyeonggi-do,Korea
1. Factory	Humax Co., Ltd.
Address	2. Yeongmun-ro, Cheoin-gu Yong-in-si, Gyeonggi-do,Korea
2. Factory	HUMAX Poland Sp.z.o.o.
Address	UI. Przemyslowa 4, 97-400 Belchatow, Poland

2.2 Test Laboratory information

Corporate name	Lab-T, Inc.				
Representative	Duke (Jongyoung) Kim				
Address	2182-42 Baegok-daero, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17036, Korea(Republic of)				
Telephone	+82-31-322-6767				
Fax	+82-31-322-6768				
E-mail	info@lab-t.net				
FCC Designation No.	KR0159				

2.3 Test Site

Test Site	used	Address
Building L	\boxtimes	2182-40 Baegok-daero, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17036, Korea(Republic of)
Building T	\boxtimes	2182-42 Baegok-daero, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17036, Korea(Republic of)
Building A		2182-44 Baegok-daero, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17036, Korea(Republic of)

3. Information About Test Equipment

3.1 Equipment Information

Equipment type	Car Audio
Model name	HARN1006
Variant model name ^{Note2} HARN1006A ^{Note2} , HARN3001 ^{Note3} , HARN3001A ^{Note3}	
Frequency range	2 402 ~ 2 480 MHz
Modulation type (Symbol rate / Bit rate)	GFSK(1 Msps / 1 Mbps), π/4DQPSK(1 Msps / 2 Mbps), 8DPSK (1 Msps / 3 Mbps)
Power supply	DC 13.5 V
H/W version	REV1.0
S/W version	V0074

Note 1 : The above EUT information was declared by the manufacturer.

Note 2 : The only difference is model number due to marketing or trading purposes.

Note 3 : This model is dentical to basic model except for removed front panel and buyer model name.

3.2 Antenna Information

Туре	Model No.	Gain	Note
PCB Antenna	HARN1006	-1.1 dBi	-

3.3 Test Frequency

Test mode	Test frequency (MHz)			
	Lowest frequency	Middle frequency	Highest frequency	
GFSK	2 402	2 441	2 480	
π/4DQPSK	2 402	2 441	2 480	
8DPSK	2 402	2 441	2 480	

3.4 Worst-Case

Test Mode	BDR	EDR
Bluetooth	GFSK(DH5)	8DPSK(3-DH5)

Note: The power measurement has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

3.5 Tested Companion Device Information

Туре	Manufacturer	Model	Note
Bluetooth Tester	TESCOM	TC-3000C	-

3.6 Operating conditions for the EUT

Firmware state		N/A
Test software name(v	version)	Used native test mode(-)
Test power setting		Default setting value
Serial number	EUT #1	#1 (Conducted Emission)
(Setup mode) EUT #2		#2 (Radiated Emission)

4. Test Report

4.1 Summary

FCC Part 15				
FCC Rule	C Rule Parameter			
Transmitter Require	ments			
15.203 15.247(b)(4)	Antenna Requirement	4.3.1	С	
15.247(a)(1)	20 dB Channel Bandwidth	4.3.2	С	
-	Occupied Bandwidth	4.3.2	-	
15.247(a)(1)(iii)	Number of Hopping Frequencies	4.3.3	С	
15.247(a)(1)(iii)	Time of occupancy (Dwell Time)	4.3.4	С	
15.247(a)(1)	Carrier Frequencies Separation	4.3.5	С	
15.247(b)(1)	Peak Output Power	4.3.6	С	
15.247(d) 15.205(a) 15.209(a)	Spurious Emission, Band Edge and Restricted bands	4.3.7	С	
15.207(a)	Conducted Emissions	4.3.8	С	
NOTE 1 : C = Comply N/C = Not Comply N/T = Not Tested N/A = Not Applicable				

* The general test methods used to test this device is ANSI C63.10:2020 * Standard(s) : KDB 558074 D01 DTS Meas Guidance

4.2 Measurement Uncertainty

Mesurement items	Expanded Uncertainty		
RF Output Power	0.76 dB	(The confidence level is about 95 %, <i>k</i> =2)	
Occupied Channel Bandwidth	6.80 kHz	(The confidence level is about 95 %, <i>k</i> =2)	
Conducted Spurious Emissions	0.71 dB	(The confidence level is about 95 %, <i>k</i> =2)	
Radiated Spurious Emissions (1 GHz under)	4.84 dB	(The confidence level is about 95 %, <i>k</i> =2)	
Radiated Spurious Emissions (Above 1 GHz)	5.96 dB	(The confidence level is about 95 %, <i>k</i> =2)	
Conducted emission	2.36 dB	(The confidence level is about 95 %, <i>k</i> =2)	

4.3 Transmitter Requirements

4.3.1 Antenna Requirement

4.3.1.1 Regulation

Accoding to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Accoding to \$15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.1.2 Result

Comply

(The transmitter has a PCB Antenna. The directional peak gain of the antenna is -1.1 dBi.)

4.3.2 20 dB Bandwidth and Occupied Bandwidth

4.3.2.1 Regulation

20 dB and 99% emission bandwidth reporting only, measurement is also used to determine limits for other requirements of FHSS transmitters.

4.3.2.2 Measurement Procedure

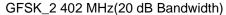
ANSI C63.10 § 6.9.2 Occupied bandwidth 20dB Relative procedure ANSI C63.10 § 6.9.3 Occupied bandwidth 99% procedure

4.3.2.3 Result

Comply (measurement data : refer to the next page)

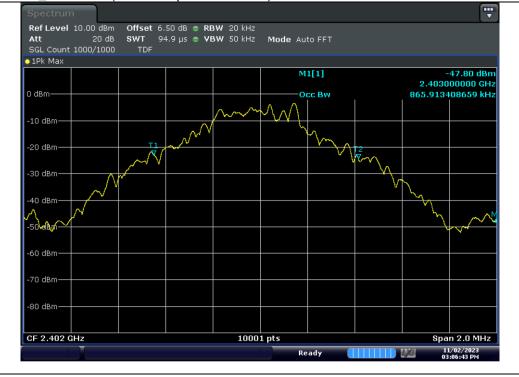
4.3.2.4 Measurement data

Test mode : GFSK


Frequency (MHz)	20 dB Bandwidth (MHz)	Min. Limit (MHz)	Occupied Bandwidth (99 % Bandwith)(MHz)
2 402	0.81	0.25	0.87
2 441	0.81	0.25	0.89
2 480	0.81	0.25	0.90

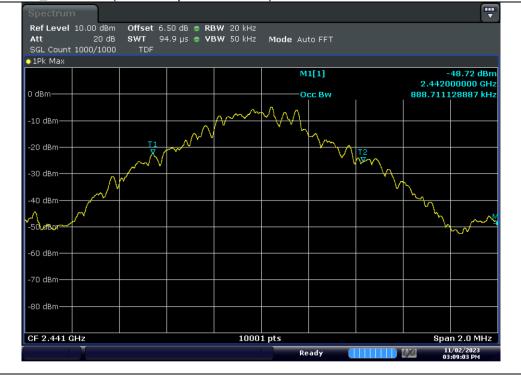
Test mode : 8DPSK

Frequency (MHz)	20 dB Bandwidth (MHz)	Min. Limit (MHz)	Occupied Bandwidth (99 % Bandwith)(MHz)
2 402	1.26	0.25	1.16
2 441	1.26	0.25	1.16
2 480	1.26	0.25	1.16



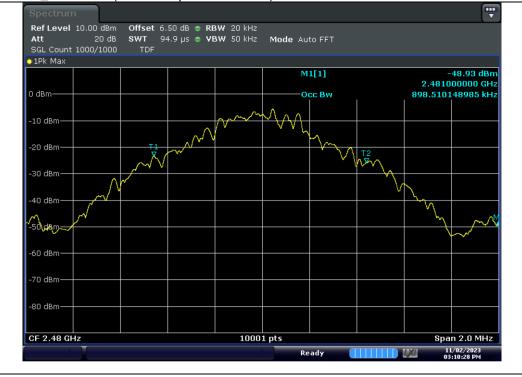
4.3.2.5 Test Plot

GFSK_2 402 MHz(99% Occupied Bandwidth)



GFSK_2 441 MHz(20 dB Bandwidth)

GFSK_2 441 MHz(99% Occupied Bandwidth)

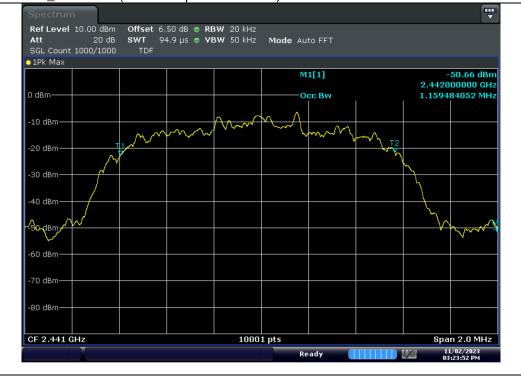


GFSK_2 480 MHz(20 dB Bandwidth)

GFSK_2 480 MHz(99% Occupied Bandwidth)

8DPSK_2 402 MHz(20 dB Bandwidth)

8DPSK_2 402 MHz(99% Occupied Bandwidth)



8DPSK_2 441 MHz(20 dB Bandwidth)

8DPSK_2 441 MHz(99% Occupied Bandwidth)

8DPSK_2 480 MHz(20 dB Bandwidth)

8DPSK_2 480 MHz(99% Occupied Bandwidth)

4.3.3 Number of Hopping Frequencies

4.3.3.1 Regulation

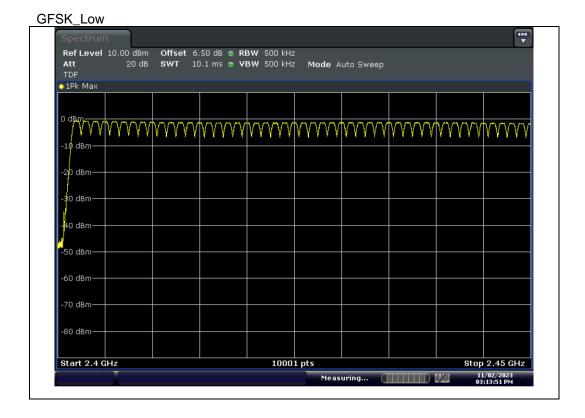
According to §15.247(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band <u>shall</u> <u>use at least 15 channels</u>. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

4.3.3.2 Measurement Procedure

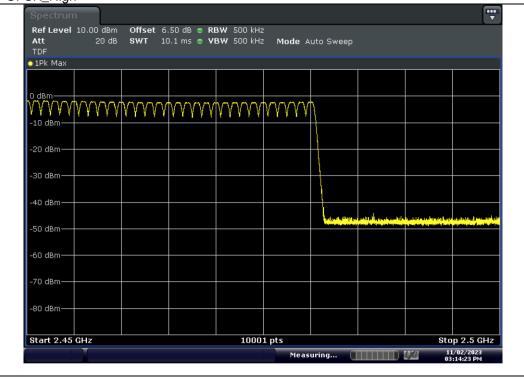
ANSI C63.10 § 7.8.3 Number of hopping frequencies

4.3.3.3 Result

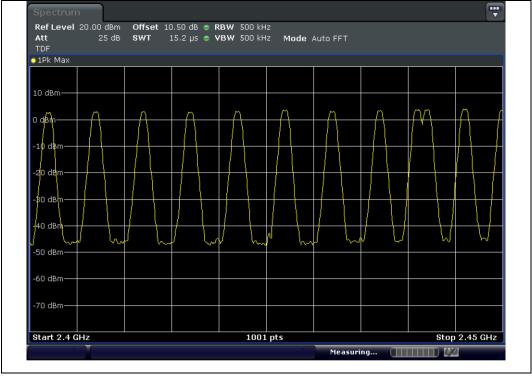
Comply (measurement data : refer to the next page)



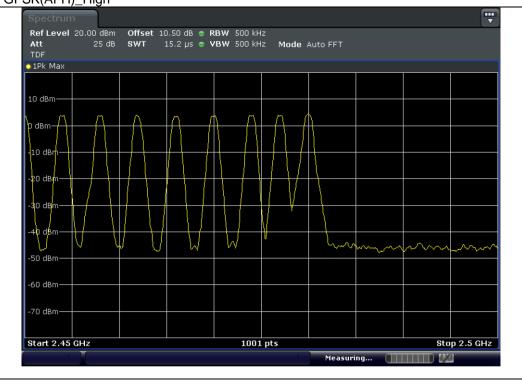
4.3.3.4 Measurement data


TEST MODE	Number of Hopping channels	
GFSK	79	
GFSK(AFH)	20	
8DPSK	79	
8DPSK(AFH)	20	

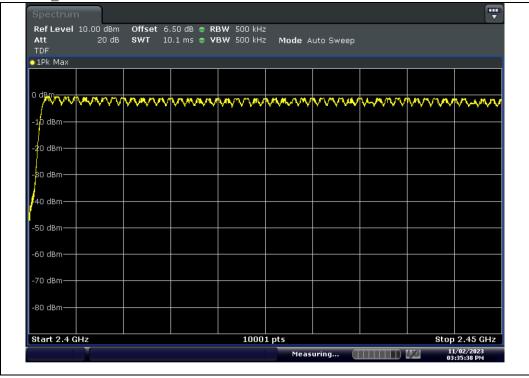
4.3.3.5 Test Plot



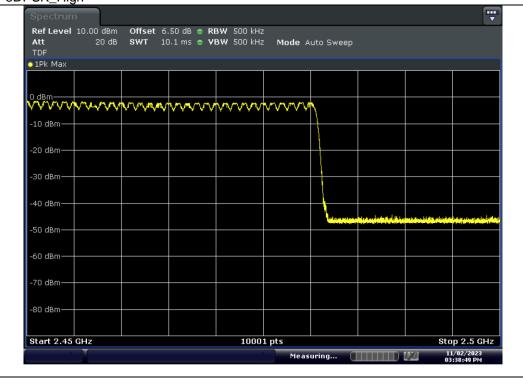
GFSK_High



GFSK(AFH)_Low

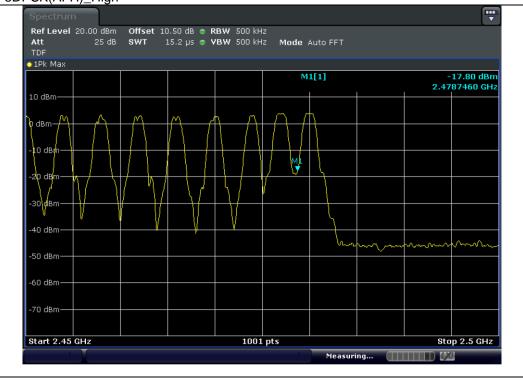


GFSK(AFH)_High



8DPSK_Low

8DPSK_High



8DPSK(AFH)_Low

8DPSK(AFH)_High

4.3.4 Time of occupancy (Dwell Time)

4.3.4.1 Regulation

According to §15.247(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel <u>shall not be greater</u> than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels <u>employed</u>. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

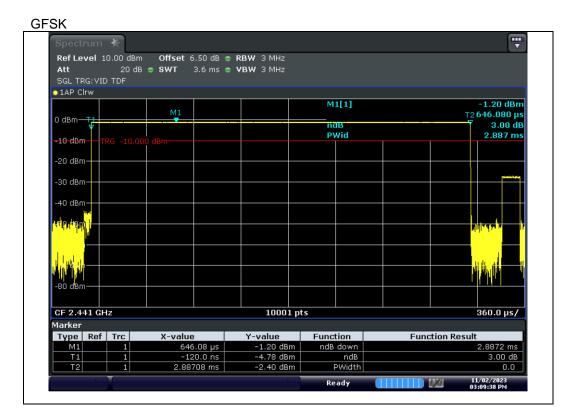
4.3.4.2 Measurement Procedure

ANSI C63.10 § 7.8.3 Time of Occupancy

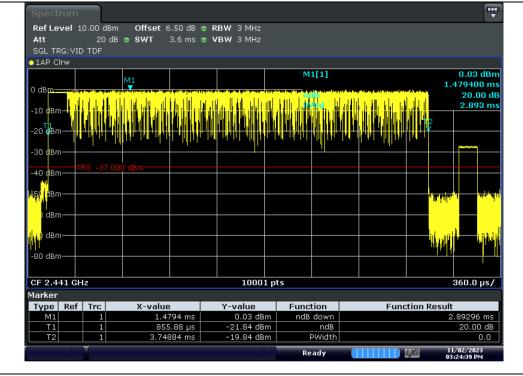
4.3.4.3 Result

Comply (measurement data : refer to the next page)

4.3.4.4 Measurement data


Test mode : Hopping

Time of occupancy				
Packet Type	Number of hopping Channels	Burst On Time (ms)	Result (sec)	Limit (sec)
GFSK(non-AFH)	79	2.89	0.31	0.40
GFSK(AFH)	20	2.89	0.15	0.40
8DPSK (non-AFH)	79	2.89	0.31	0.40
8DPSK(AFH)	20	2.89	0.15	0.40


Result = 0.4 * Hopping Channel * Burst On Time * ((Hopping rate/Time slots)/Hopping channel) - Time slots for DH5 = 6 slots(TX = 5 slot, RX = 1 slot) - Hopping Rate = 1600 for FH mode - Hopping Rate = 800 for AFH mode NOTE1 :

4.3.4.5 Test Plot

8DPSK

4.3.5 Carrier Frequencies Separation

4.3.5.1 Regulation

According to §15.247(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by <u>25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel</u>, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

4.3.5.2 Measurement Procedure

ANSI C63.10 § 7.8.2 Carrier frequency separation

4.3.5.3 Result

Comply (measurement data : refer to the next page)

4.3.5.4 Measurement data

Test mode : GFSK

Carrier Frequency Separation				
Test hopping channel No.	Result (MHz)	Min. Limit (MHz)		
Channel 1 to Channel 2	1.00	0.81		
Channel 39 to Channel 40	1.00	0.81		
Channel 78 to Channel 79	1.00	0.81		

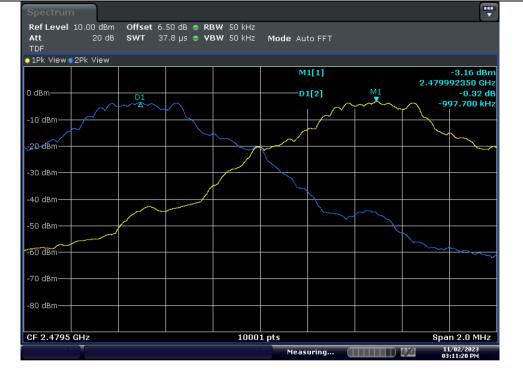
NOTE1 : Limit(kHz) : Result of 20 dB Bandwidth

Test mode : 8DPSK

Carrier Frequency Separation				
Test hopping channel No.	Result (MHz)	Min. Limit (MHz)		
Channel 1 to Channel 2	1.00	0.84		
Channel 39 to Channel 40	1.00	0.84		
Channel 78 to Channel 79 1.00 0.84				

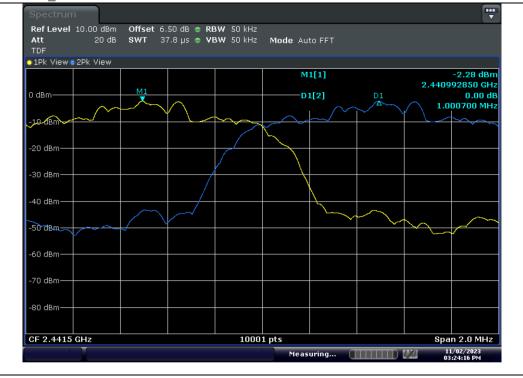
NOTE1 : Limit(kHz) : Result of 20 dB Bandwidth*2/3

4.3.5.5 Test Plot

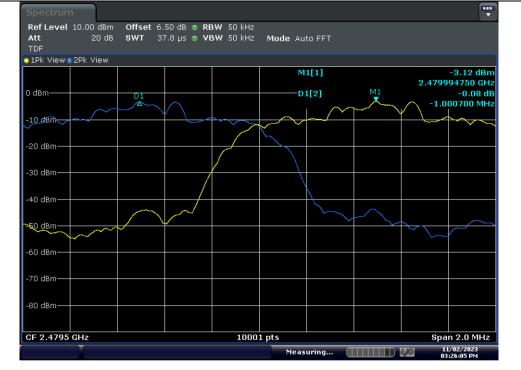


GFSK_ Channel 39 to Channel 40

GFSK_ Channel 78 to Channel 79



8DPSK_ Channel 1 to Channel 2



8DPSK_ Channel 39 to Channel 40

8DPSK_ Channel 78 to Channel 79

4.3.6 Peak Output Power

4.3.6.1 Regulation

According to §15.247(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to §15.247(b)(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

4.3.6.2 Measurement Procedure

ANSI C63.10 § 7.8.5 Output Power test procedure for FHSS

4.3.6.3 Result Comply (measurement data : refer to the next page)

4.3.6.4 Measurement data

Test mode : GFSK

Frequency (MHz)	Peak Output Power Result (dBm)	Peak Output Power Result (mW)	Peak Output Power Limit (mW)
2 402	-0.64	0.86	1000.00
2 441	-1.33	0.74	1000.00
2 480	-2.09	0.62	1000.00

NOTE1: Since the directional gain of the PCB Antenna declared by the manufacturer, does not exceed 6.0 dBi ,there was no need to reduce the output power.

We took the insertion loss of the cable loss into consideration within the measuring instrument. NOTE2 :

Peak Output Power Result(mW) = (10⁽Peak Output Power Result(dBm)/10)) NOTE3 :

NOTE4 : In the case of AFH, the limit for peak power is 0.125W

Test mode : $\pi/4DQPSK$

Frequency (MHz)	Peak Output Power Result (dBm)	Peak Output Power Result (mW)	Peak Output Power Limit (mW)
2 402	0.25	1.06	125.00
2 441	-0.41	0.91	125.00
2 480	-1.28	0.75	125.00

NOTE1: Since the directional gain of the PCB Antenna declared by the manufacturer, does not exceed 6.0 dBi ,there was no need to reduce the output power.

NOTE2 : We took the insertion loss of the cable loss into consideration within the measuring instrument.

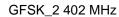
Peak Output Power Result(mW) = $(10^{(Peak Output Power Result(dBm)/10)})$ In the case of AFH, the limit for peak power is 0.125W NOTE3 :

NOTE4 :

Test mode : 8DPSK

Frequency (MHz)	Peak Output Power Result (dBm)	Peak Output Power Result (mW)	Peak Output Power Limit (mW)
2 402	0.71	1.18	125.00
2 441	0.07	1.02	125.00
2 480	-0.79	0.83	125.00

Since the directional gain of the PCB Antenna declared by the manufacturer, does not exceed 6.0 dBi ,there was no NOTE1: need to reduce the output power.


NOTE2 : We took the insertion loss of the cable loss into consideration within the measuring instrument.

NOTE3 : Peak Output Power Result(mW) = (10⁽Peak Output Power Result(dBm)/10))

In the case of AFH, the limit for peak power is 0.125W NOTE4 :

4.3.6.5 Test Plot

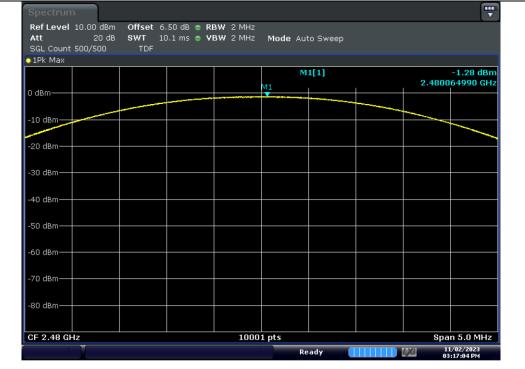

Ref Level 10.00 Att 2	dBm Offset :0 dB SWT	6.50 dB 😑 R 10.1 ms 😑 V		Mode Auto Swee			
SGL Count 500/5		10.1 ms 🧉 🖣	DW 2 191112	Mode Auto Swee			
⊙1Pk Max							
				M1[1]	-0.64 dBm 2.401960500 GHz		
0 dBm			M1		 2.4019	60500 GH	
o ubiii							
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
-/0 ubiii-							
-80 dBm							
CF 2.402 GHz			10001	. pts		n 5.0 MHz /02/2023 :06:30 PM	

GFSK_2 441 MHz

Ref Level 10.00 dBn Att 20 dB					
Att 20 df SGL Count 500/500	3 SWT 10.1 ms (TDF	VBW 2 MHz Mod	le Auto Sweep		
0 1Pk Max					
			M1[1]	-1.33 d	
		м1		2.440977000	GH:
0 dBm					
-10 dBm					
-20 dBm					
-20 0611					
-30 dBm					
-50 0.011					
-40 dBm					
10 dbiii					
-50 dBm					
-60 dBm					
-70 dBm					
-80 dBm					
CF 2.441 GHz				Span 5.0 M	Hz
		Louot pro	Ready 🚺	44 (00 (0000	

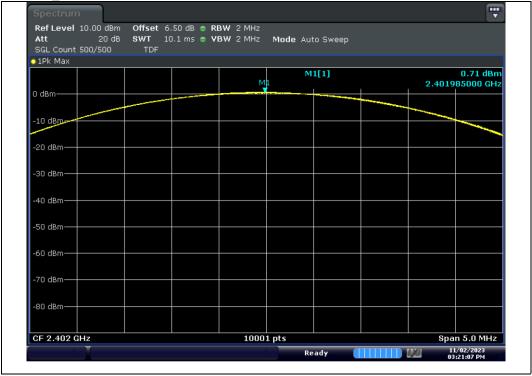
GFSK_2 480 MHz

π/4DQPSK_2 402 MHz


⊙1Pk Max							
		M1	M1[1]		0.25 dBn 2.401890010 GH		
0 dBm		 M1					
-10 dBm							
-10 dBms							
-20 dBm							
-30 dBm							
-50 dbiii							
-40 dBm—		 					
-50 dBm							
00 0.0111							
-60 dBm							
-70 dBm							
-80 dBm							
-80 dBm							

π/4DQPSK_2 441 MHz

Spectrum Ref Level 10.00 dBr	m Offset 6.50 dB m	RBW 2 MHz			Ţ
Att 20 d	B SWT 10.1 ms	VBW 2 MHz	Mode Auto Sweep		
SGL Count 500/500	TDF				
o 1Pk Max					0.44.40.5
			M1[1]		-0.41 dBm 2.441088990 GHz
0 dBm			M1	+	
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
-80 dBm					
CF 2.441 GHz		1000	l pts		Span 5.0 MHz
			Ready		11/02/2023 03:16:36 PM



π/4DQPSK_2 480 MHz

8DPSK_2 402 MHz

8DPSK_2 441 MHz

Spectrum Ref Level 10.00 dBr	n Offset 6.50 dB 😑	RBW 2 MHz			▼
Att 20 d		VBW 2 MHz 👔	1ode Auto Sweep		
SGL Count 500/500	TDF				
🔵 1Pk Max					
		мı	M1[1]	2 440	0.07 dBm 977000 GHz
0 dBm				2.440	
-10 dBm					
10 000					
-20 dBm					
-30 dBm					
00 0.0					
-40 dBm					
- TO UBIN					
-50 dBm					
oo abiii					
-60 dBm					
-70 dBm					
-80 dBm					
CF 2.441 GHz		10001			an 5.0 MHz
			Ready 🚺		11/02/2023 3:23:40 PM

8DPSK_2 480 MHz

Att 20 c SGL Count 500/500	B SWT 1 TDF	0.1 ms 😑 V	BW 2 MH2	Mode Aut	o Sweep		
)1Pk Max							
				M	1[1]		-0.79 dBn
0 dBm			M1			2.479	915510 GHz
o abiii							
-10 dBm							
							and the second division of the second divisio
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
-80 dBm							
CF 2.48 GHz			1000	1 ntc		- Cros	an 5.0 MHz

4.3.7 Spurious Emission, Band Edge, and Restricted bands

4.3.7.1 Regulation

According to §15.247(d) in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a) and RSS-GEN §8.9 Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall notexceed the field strength levels specified in the following table:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shallnot be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§15.231 and 15.241.

According to §15.205(a),(b) only spurious emissions are permitted in any of the frequency bands	
listed below:	

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 – 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525 25	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.386 75	156.7 - 156.9	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	162.012 5 - 167.17	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	240 - 285	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	322 - 335.4	3 600 – 4 400	Above 38.6
13.36 - 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurement

4.3.7.2 Measurement Procedure

ANSI C63.10 § 6.10.4 Authorized band-edge relative method (lower bandedge) ANSI C63.10 § 6.10.6 Marker Delta Method (upper restricted bandedge) ANSI C63.10 § 11.11.1 General Information ANSI C63.10 § 11.11.3 Emission level measurement

4.3.7.2.1 Band-edge Compliance of RF Conducted Emissions

Span	:	wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation
RBW	:	≥ 1% of the span
VBW	:	≥ RBW
Sweep	:	Auto
Detector	:	Peak
Trace	:	Max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section. Submit this plot.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit. Submit this plot.

4.3.7.2.2 Conducted Spurious Emissions

Span : wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation

RBW:≥ 1% of the spanVBW:≥ RBWSweep:AutoDetector:Peak

Trace : Max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section. Submit these plots.

4.3.7.2.3 Radiated Spurious Emissions

1) The preliminary and final rdiated measurements were performed to determine the frequency producing the maximum emissions in at a 10m anechoic chamber. The EUT was tested at a distance 3 m(Below 1 GHz) and 1 m(Above 1 GHz).

2) The EUT was placed on the top of the 0.8-meter height, 1×1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.

3) The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1 000 MHz using the BILOG broadband antenna, and from 1 000 MHz to 10 000 MHz using the horn antenna.

4) Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

Span	:	wide enough to fully capture the emission being measured
RBW	:	≥ 1 MHz for f ≥1 GHz, 100 kHz for f < 1 GHz
VBW	:	≥ RBW
Sweep	:	Auto
Detector	:	Peak
Trace	:	Max hold

Follow the guidelines in ANSI C63.4 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

- NOTE1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 GHz.
- NOTE2: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
- NOTE3 : The 0.8 m height is for below 1 GHz testing, and 1.5 m is for above 1 GHz testing

4.3.7.3 Note

- Below 1GHz

- Note 1 : Measured the worst case.
- Note 2: Loss : Cable loss - Amp gain
- Note 3: Result : Reading + Ant Factor + Loss
- Measured distance : 3 m Note 4:

- Above 1GHz

- Note 1: Factor : Ant Factor + Cable loss - Amp gain + Distance Factor
- Peak Result : Reading + Factor Note 2:
- Note 3:
- Average Reasult : Average Reading + Factor + DCCF DCCF(Duty Cyle Correction Factor) : 20 x Log(worst case dwell time / 100 ms) dB, refer to 4.3.7.8 Note 4:
- Note 5 : Measured distance : 1 m, Distance Factor = $20\log(1/3) = -9.54$
- Note 6: Not Detected means that peak data does not exceed the average limit.

4.3.7.4 Result

Comply (measurement data : refer to the next page)

Test mode :	Test mode : Below 1 GHz (Worst case : 8DPSK_2 402 MHz)											
Frequency (MHz)	Detector	Pol. (V/H)	Reading (dBµV)	Ant Factor (dB)	Loss (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)				
188.713	QP	V	43.90	16.90	-27.70	33.10	43.50	10.40				
239.030	QP	V	41.60	17.70	-27.10	32.20	46.00	13.80				

4.3.7.5 Measurement data_Radiated Spurious Emissions

Fraguanay	Del	Deading	Ant Costor	

Frequency (MHz)	Detector	Pol. (V/H)	Reading (dBµV)	Factor (dB)	DCCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
2387.64	PK	Н	44.90	-2.70	-	42.16	74.00	31.84			
2387.64	PK	V	43.50	-2.70	-	40.76	74.00	33.24			
4803.81	PK	Н	48.10	3.40	-	51.46	74.00	22.54			
4803.81	PK	V	47.70	3.40	-	51.06	74.00	22.94			

Test mode : Above 1 GHz_GFSK_2 402

Test mode : Above 1 GHz_GFSK_2 441

Frequency (MHz)	Detector	Pol. (V/H)	Reading (dBµV)	Factor (dB)	DCCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4880.32	PK	Н	46.20	3.60	-	49.76	74.00	24.24
4880.32	PK	V	44.90	3.60	-	48.46	74.00	25.54

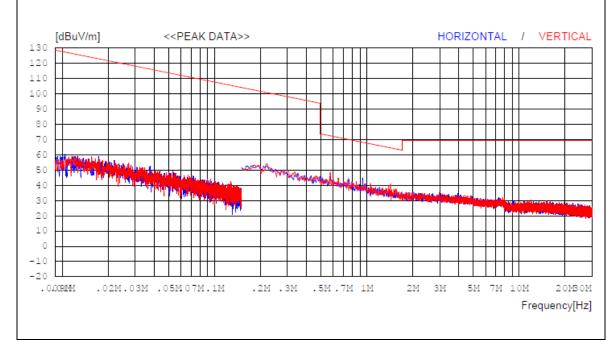
Test mode : Above 1 GHz_GFSK_2 480

Frequency (MHz)	Detector	Pol. (V/H)	Reading (dBµV)	Factor (dB)	DCCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2488.34	PK	Н	40.30	-2.20	-	38.06	74.00	35.94
2488.34	PK	V	40.40	-2.20	-	38.16	74.00	35.84
4958.92	PK	Н	41.90	3.90	-	45.76	74.00	28.24
4958.92	PK	V	43.80	3.90	-	47.66	74.00	26.34

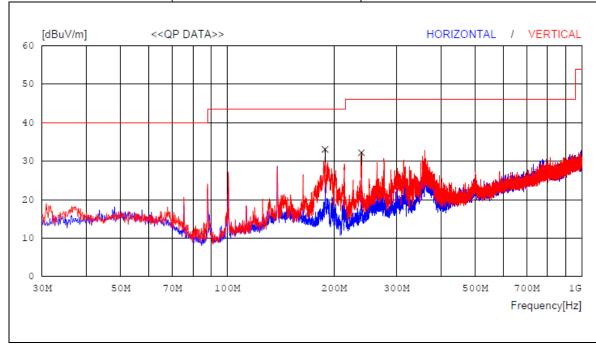
Frequency (MHz)	Detector	Pol. (V/H)	Reading (dBµV)	Factor (dB)	DCCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2387.60	PK	Н	41.50	-2.70	-	38.76	74.00	35.24
2387.60	PK	V	43.00	-2.70	-	40.26	74.00	33.74
4803.87	PK	Н	45.70	3.40	-	49.06	74.00	24.94
4803.87	PK	V	44.30	3.40	-	47.66	74.00	26.34

Test mode : Above 1 GHz_ 8DPSK _2 402

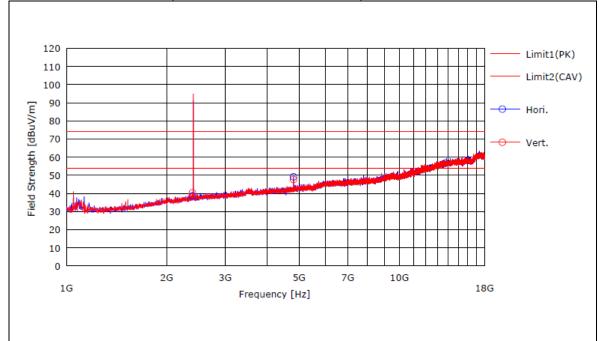
Test mode : Above 1 GHz_ 8DPSK _2 441

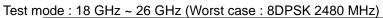

Frequency (MHz)	Detector	Pol. (V/H)	Reading (dBµV)	Factor (dB)	DCCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4880.25	PK	V	44.10	3.60	-	47.66	74.00	26.34
4882.38	PK	Н	44.70	3.60	-	48.26	74.00	25.74

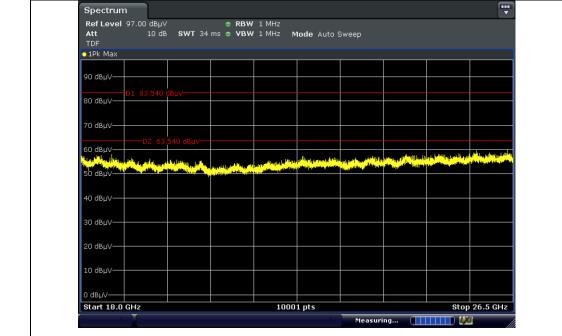
Test mode : Above 1 GHz_ 8DPSK _2 480


Frequency (MHz)	Detector	Pol. (V/H)	Reading (dBµV)	Factor (dB)	DCCF (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2488.18	PK	Н	41.50	-2.20	-	39.26	74.00	34.74
2488.18	PK	V	39.60	-2.20	-	37.36	74.00	36.64

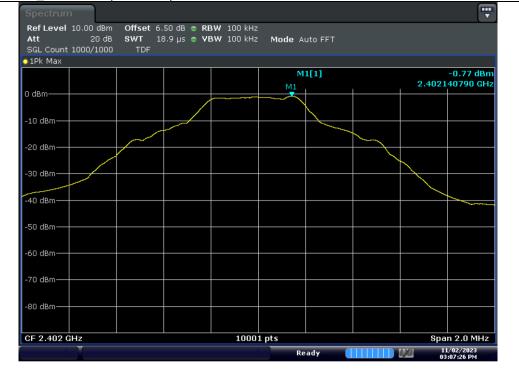
4.3.7.6 Measurement Plot_Radiated Spurious Emissions



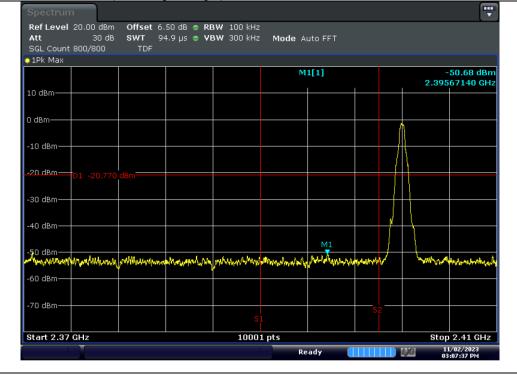



Test mode : 30 MHz ~ 1 GHz (Worst case : 8DPSK 2402 MHz)

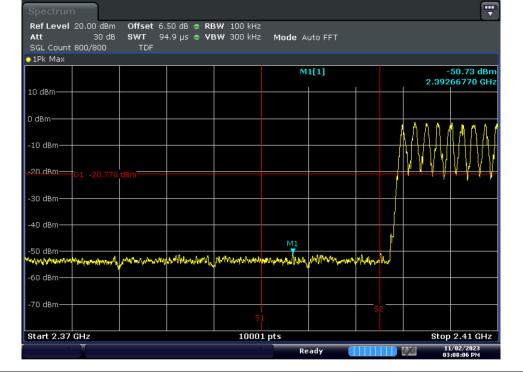
Test mode : 1 GHz ~ 18 GHz (Worst case : 8DPSK 2402 MHz)



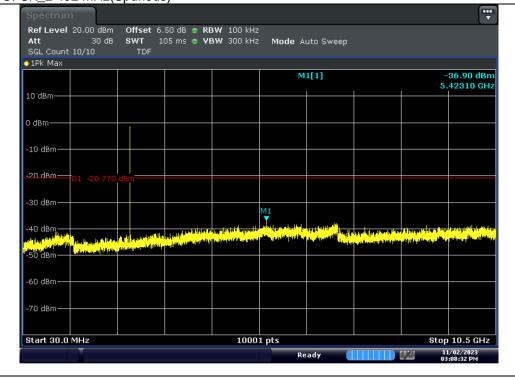
Note 1 : Limit : Peak : 83.54 dBµV/m, Average : 63.54 dBµV/m



4.3.7.7 Measurement data_Conducted Spurious Emissions

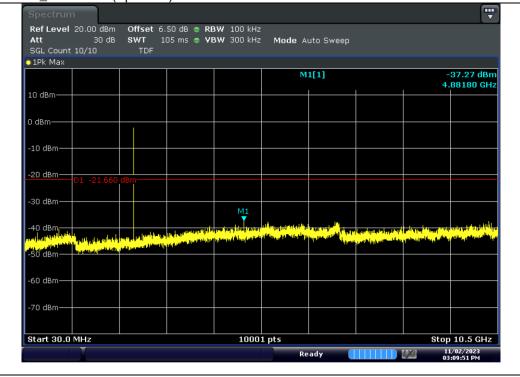

GFSK_2 402 MHz(Bandedge_Single)

NOTE: F1 : 2 390 MHz, F2 : 2 400 MHz



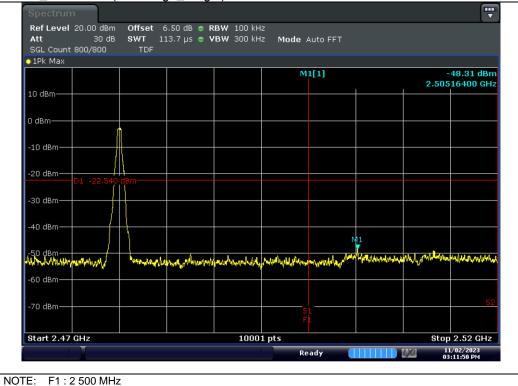
GFSK_2 402 MHz(Bandedge_Hopping)

NOTE: F1 : 2 390 MHz, F2 : 2 400 MHz

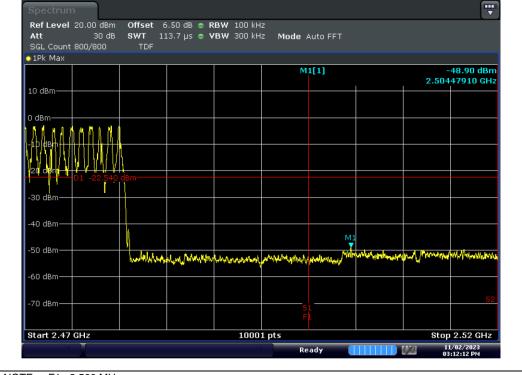


GFSK_2 441 MHz(reference)

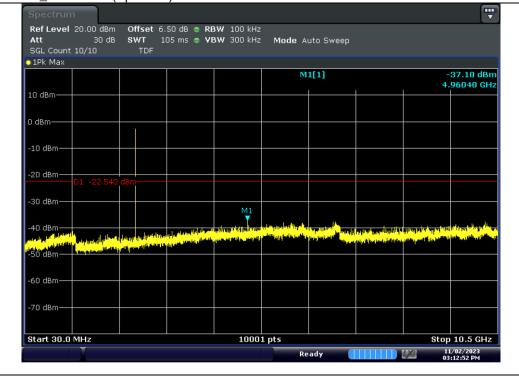
GFSK_2 441 MHz(Spurious)



GFSK_2 480 MHz(reference)



GFSK_2 480 MHz(Bandedge_Single)

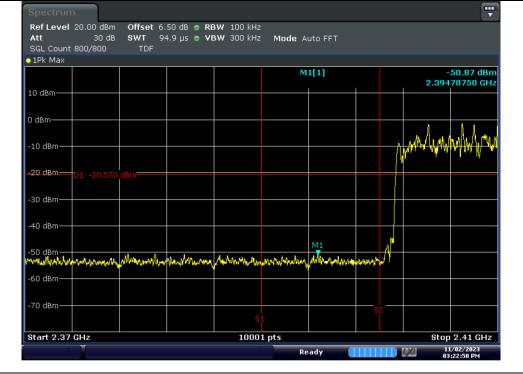


GFSK_2 480 MHz(Bandedge_Hopping)

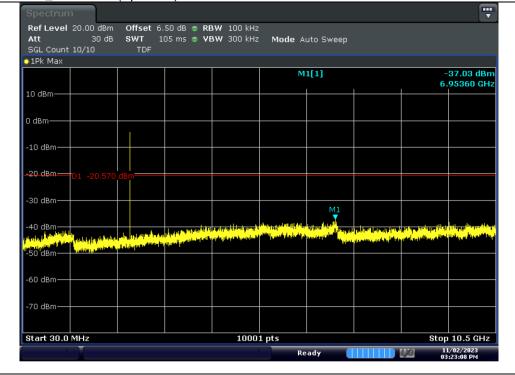
NOTE: F1 : 2 500 MHz



8DPSK_2 402 MHz(reference)


8DPSK_2 402 MHz(Bandedge_Single)

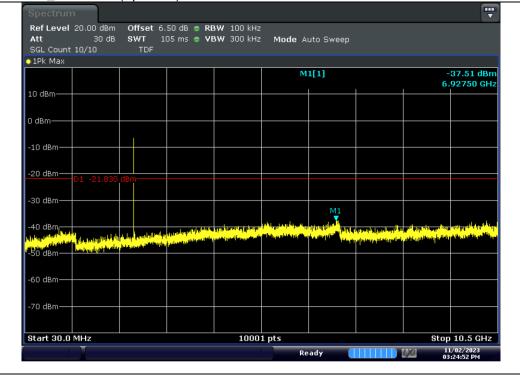
NOTE: F1 : 2 390 MHz, F2 : 2 400 MHz



8DPSK_2 402 MHz(Bandedge_Hopping)

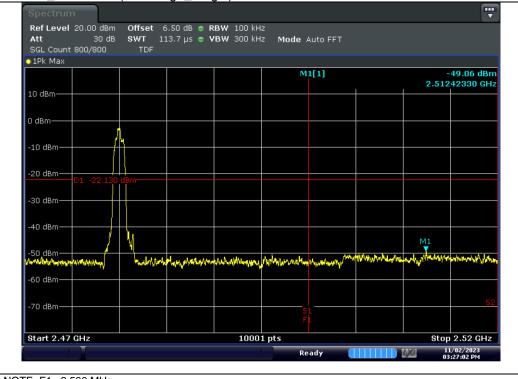
NOTE: F1 : 2 390 MHz, F2 : 2 400 MHz

8DPSK	2 402 M	IHz(Spurious)	

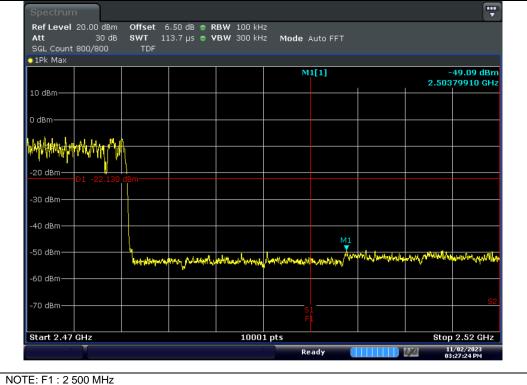


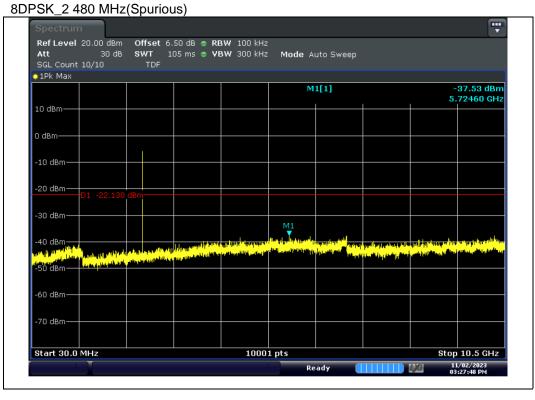
8DPSK_2 441 MHz(reference)

8DPSK_2 441 MHz(Spurious)



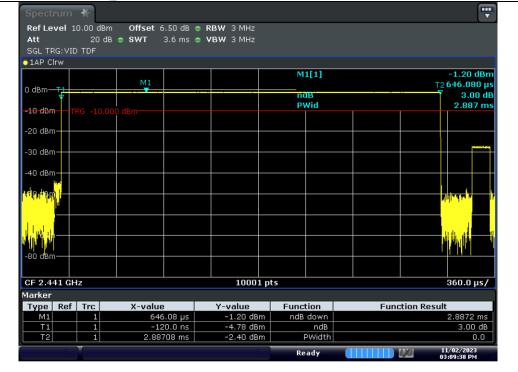
8DPSK_2 480 MHz(reference)


8DPSK_2 480 MHz(Bandedge_Single)

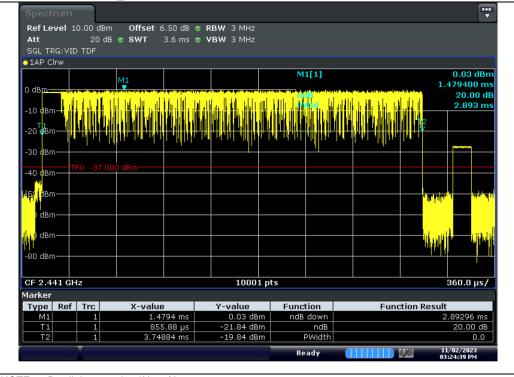


NOTE: F1 : 2 500 MHz

8DPSK_2 480 MHz(Bandedge_Hopping)



4.3.7.8 Measurement Plot_Dutycycle


Test mode : GFSK_2 441 MHz

NOTE: Dwell time: on time*No. of hop

Dutycycle Factor : 20log(dwell time/100) = 20log((2.889*2)/100) = -24.77

Test mode : 8DPSK_2 441 MHz

NOTE: Dwell time: on time*No. of hop

Dutycycle Factor : 20log(dwell time/100) = 20log((2.893*2)/100) = -24.75

4.3.8 Conducted Emission

4.3.8.1 Regulation

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of optionian (MUT)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Qausi-peak	Average			
0.15 – 0.5	66 to 56 *	56 to 46 *			
0.5 – 5	56	46			
5 - 30	60	50			

* Decreases with the logarithm of the frequency.

According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

4.3.8.2 Measurement Procedure

1) The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5 m away from the side wall of the shielded room.

2) Each current-carrying conductor of the EUT power cord was individually connected through a 50 Ω /50 μ H LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.

3) Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.

4) The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.

5) The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASIPEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

4.3.8.3 Result

Not Applicable

(This device gets power supply from vehicle battery. Therefore this test item was not performed)

APPENDIX I

TEST EQUIPMENT USED FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, e	each item of test equipment.

Equipment	Manufacturer	Model	Serial No.	Cal. Date (yy.mm.dd)	Next Cal.Date (yy.mm.dd)
FSV Signal Analyzer	ROHDE&SCHWARZ	FSV40	101010	2023-04-13	2024-04-13
Power Sensor	KEYSIGHT	U2022XA	MY55320008	2023-08-16	2024-08-16
Dynamic Measurement DC Source	HP	66332A	US37471465	2023-01-10	2024-01-10
Digital MultiMeter	HP	34401A	US36025428	2023-01-10	2024-01-10
ATTENUATOR	INMET	26A-6	TR008	2023-10-11	2024-10-11
Signal Generator	ROHDE&SCHWARZ	SMB100A	178384	2023-10-11	2024-10-11
EMI Test Receiver	ROHDE&SCHWARZ	ESU40	100445	2023-09-05	2024-09-05
BiLog Antenna	Schwarzbeck	VULB9168	00821	2023-03-29	2025-03-29
ATTENUATOR	JFW	50F-006	6 dB-3	2023-04-13	2024-04-13
Preamplifier	TSJ	MLA-10k01- b01-27	1870367	2023-04-13	2024-04-13
Antenna Mast(10 m)	TOKIN	5977	-	-	-
Antenna Mast(10 m)	Innco	MA4640- XPET-0800	578	-	-
Controller(10 m)	ΤΟΚΙΝ	5909L	141909L-1	-	-
Controller(10 m)	Innco	CO3000	40040217	-	-
Turn Table(10 m)	TOKIN	5983-1.5	-	-	-
10 m Semi-Anechoic Chamber	SY CORPORATION	-	-	-	-
Active Loop H-Field	ETS	6502	00150598	2023-06-27	2025-06-27
Double Ridege Horn Antenna	ETS	3117	00168719	2023-08-10	2024-08-10
Double Ridege Horn Antenna	A.H Systems, Inc	SAS-574	465	2023-04-18	2025-04-18
PREAMPLIFIER	Agilent	8449B	3008A02110	2023-01-09	2024-01-09
PREAMPLIFIER	A.H Systems, Inc	PAM- 1840VH	166	2023-01-09	2024-01-09
EMI Test Receiver	ROHDE&SCHWARZ	ESR7	101440	2023-09-05	2024-09-05
LISN	ROHDE&SCHWARZ	ENV216	101883	2023-04-12	2024-04-12
Pulse Limiter	Schwarzbeck	VTSD 9561- F	00189	2023-04-12	2024-04-12