

Engineering and Testing for EMC and Safety Compliance

CERTIFICATION APPLICATION REPORT FCC PART 24

Test Lab:		Applicant:			
Rhein Tech Laboratories, Inc. Phone: 703-689-0368 360 Herndon Parkway Fax: 703-689-2056 Suite 1400 Web Site: www.rheintech.com Herndon, VA 20170 Email: ATCBINFO@rheintech.com		UTStarcom, Inc. Phone: 732-767-5263 33 Wood Avenue South Fax: 732-548-1099 3 rd Floor Iselin, NJ 08830 USA Contact: Scott Black (sblack@utstar.com)			
FCC ID:	O6YUTS-718	GRANTEE FRN:	0005823877		
PLAT FORM:	N/A	RTL WORK ORDER #:	2003069		
MODEL(S):	UTS718	QRTL03-818			
TEST REPORT DATE:	July 1, 2003				
American National Standard Institute:	ANSI/TIA/EIA603 and AN	SI/TIA/EIA 603-1			
FCC Classification:	PCE - Part 24 Licensed Por	table Tx held to ear			
FCC Rule Part(s):	PART 24: PERSONAL CO Subpart E - Broadband PCS	OMMUNICATIONS SERVICES	CES		
Digital Interface Information	Digital Interface was found to be compliant				
Receiver Information	Receiver was found to be compliant				
Frequency Range (MHz)	Peak EIRP (W)	Frequency Tolerance	Emission Designator		
1893.65-1909.85	0.105	2.4 ppm	263KDXW		

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this test report.

Furthermore, there was no deviation from, additions to, or exclusions from the FCC Part 2, FCC Part 24, ANSI/TIA/EIA603, and ANSI/TIA/EIA 603-1.

Signature: Date: July 1, 2003

Typed/Printed Name: Desmond A. Fraser Position: President

TABLE OF CONTENTS

1	GI	ENERAL INFORMATION	5
	1.1	SCOPE	5
	1.2	TEST FACILITY	5
	1.3	RELATED SUBMITTAL(S)/GRANT(S)	5
2	EC	QUIPMENT INFORMATION	6
	2.1	TEST JUSTIFICATION	6
	2.2	EXERCISING THE EUT	6
	2.3	TEST RESULT SUMMARY	
	2.4	TEST SYSTEM DETAILS	
	2.5	CONFIGURATION OF TESTED SYSTEM	
3	DO	C VOLTAGES AND CURRENTS - PART §2.1033(C)(8)	8
	3.1	DC VOLTAGES AND CURRENTS TEST EQUIPMENT	
	3.2	DC VOLTAGES AND CURRENTS TEST DATA	
4		F POWER OUTPUT - §2.1046	
	4.1	RF POWER OUTPUT TEST EQUIPMENT	
	4.2	RF POWER OUTPUT TEST DATA	
	4.3	ANSI/TIA/EIA-603-1992, SECTION 2.2.1 TEST PROCEDURE	10
	4.4	EFFECTIVE ISOTROPIC RADIATED POWER LIMITS - §24.232 (B) TEST PROCEDURE	
	4.5	RF POWER TEST EQUIPMENT	10
	4.6	EFFECTIVE ISOTROPIC RADIATED POWER TEST DATA- §2.1046	
5	00	CCUPIED BANDWIDTH - \$2.1049; NECESSARY BANDWIDTH \$2.202 (OCCUPIED BANDWIDTH	I) – PART
24		(B) (EMISSION BANDWIDTH)	
	5.1	TEST PROCEDURE	12
	5.2	OCCUPIED BANDWIDTH TEST EQUIPMENT	12
_	5.3	TEST DATA (CHANNEL 25: EMISSION BANDWIDTH = 263 KHZ)	13
6		ONDUCTED SPURIOUS AND HARMONIC EMISSIONS - §2.1051	14
	6.1	TEST PROCEDURE	
	6.2	CONDUCTED SPURIOUS AND HARMONIC TEST EQUIPMENT	
_	6.3	CONDUCTED SPURIOUS AND HARMONIC TEST DATA - §2.1051	
7	7.1	ADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053	1 /
	7.1	RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1033	
	7.3	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA - §2.1053	
8	,	LOCK/BAND-EDGE COMPLIANCE - PART 24.238	
o	8.1	TEST PROCEDURE:	
	8.2	BAND-EDGE TEST EQUIPMENT	
	8.3	TEST DATA	
9	6.5	REQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055	24
,	9.1	MEASUREMENT METHOD:	24 24
	9.2	FREQUENCY STABILITY TEST EQUIPMENT	
	9.3	TIME PERIOD AND PROCEDURE:	
	9.4	FREQUENCY STABILITY § 24.235.	
	9.5	FREQUENCY STABILITY TEST DATA - §2.1055	
10		CONCLUSION	
- '		~ ~	

TABLE INDEX

TABLE 4.1	TEGT DEGLIET GUNDALDW FOR FOG DIN EG AND DEGLIE ATIONG	
TABLE 2-1:	TEST RESULT SUMMARY FOR FCC RULES AND REGULATIONS	
TABLE 2-2:	EQUIPMENT UNDER TEST (EUT)	
TABLE 3-1: TABLE 3-2:	DC VOLTAGES AND CURRENTS TEST EQUIPMENTDC VOLTAGES AND CURRENTS DATA	
TABLE 3-2.		
TABLE 4-1.	RF POWER OUTPUT TEST EQUIPMENTPOWER OUTPUT AT THE ANTENNA PORT DATA - \$2.1046	9
TABLE 4-2:	RF POWER TEST EQUIPMENT	
TABLE 4-3.	OCCUPIED BANDWIDTH TEST EQUIPMENT	
TABLE 5-1:	CONDUCTED SPURIOUS AND HARMONIC TEST EQUIPMENT	1.1
TABLE 6-1:	CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051	
TABLE 6-2:	CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051	14
TABLE 6-4:	CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051	
TABLE 0-4.	RADIATED SPURIOUS TEST EQUIPMENT	
TABLE 7-1:	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053	
TABLE 7-2.	BAND-EDGE TEST EQUIPMENTBAND-EDGE TEST EQUIPMENT	
TABLE 9-1:	FREQUENCY STABILITY TEST EQUIPMENT	
TABLE 9-1:	TEMPERATURE FREQUENCY STABILITY DATA - §2.1055	
TABLE 9-2:	VOLTAGE FREQUENCY STABILITY DATA - §2.1055	
TIBEL > 5.	, ozozzecz., oz. zzecz., z	
	ADDENING INDEX	
	APPENDIX INDEX	
APPENDIX A:		
APPENDIX B:	AGENCY AUTHORIZATION LETTER	
APPENDIX C:	CONFIDENTIALITY REQUEST LETTER	
APPENDIX D:	PRODUCT DESCRIPTION	
APPENDIX E:	LABEL AND LABEL LOCATION	
APPENDIX F:	BILL OF MATERIAL (PARTS LIST)	34
APPENDIX G:	SCHEMATICS	
APPENDIX H:		
APPENDIX I:	ADDITIONAL TEST DATA	
APPENDIX J:	TEST PHOTOGRAPHS	
APPENDIX K:		
APPENDIX L:	INTERNAL PHOTOGRAPHS	62
	PLOT INDEX	
	EMISSION BANDWIDTH (-26 DB)	
PLOT 8-1:	LOWER BAND EDGE (LOWER BLOCK F)	20
	UPPER BLOCK EDGE F	
	LOWER BLOCK EDGE C	
	UPPER BAND EDGE (UPPER BLOCK C)	
	TEMPERATURE FREQUENCY STABILITY - \$2.1055	
PLOT 9-2:	VOLTAGE FREQUENCY STABLITY	26

PHOTOGRAPH INDEX

PHOTOGRAPH 1:	FCC ID LABEL LOCATION	33
PHOTOGRAPH 2:	RADIATED FRONT VIEW	
PHOTOGRAPH 3:	RADIATED BACK VIEW	
PHOTOGRAPH 4:	CONDUCTED FRONT VIEW LARGE CHARGER	
PHOTOGRAPH 5:	CONDUCTED BACK VIEW LARGE CHARGER	43
PHOTOGRAPH 6:	CONDUCTED FRONT VIEW SMALL CHARGER	
PHOTOGRAPH 7:	CONDUCTED BACK VIEW SMALL CHARGER	
PHOTOGRAPH 8:	FRONT VIEW	
PHOTOGRAPH 9:	BACK VIEW	
PHOTOGRAPH 10:	LEFT SIDE VIEW	
PHOTOGRAPH 11:	RIGHT SIDE VIEW	
PHOTOGRAPH 12:	TOP VIEW	
PHOTOGRAPH 13:	EUT OPENED	
PHOTOGRAPH 14:	ANTENNA EXTENDED	
PHOTOGRAPH 15:	ADAPTER AND CHARGER	
PHOTOGRAPH 16:	CHARGER FRONT VIEW	
PHOTOGRAPH 17:	CHARGER BACK VIEW	55
PHOTOGRAPH 18:	ADAPTER FRONT VIEW	
PHOTOGRAPH 19:	ADAPTER BACK VIEW	
PHOTOGRAPH 20:	SMALL BATTERY CHARGER TOP VIEW	58
PHOTOGRAPH 21:	SMALL BATTERY CHARGER BOTTOM VIEW	
PHOTOGRAPH 22:	SMALL BATTERY CHARGER AC/DC UNIT TOP VIEW	
PHOTOGRAPH 23:	SMALL BATTERY CHARGER AC/DC UNIT BACK VIEW	
PHOTOGRAPH 24:	INSIDE FRONT COMPARTMENT	
PHOTOGRAPH 25:	INSIDE OF FRONT BEZEL	
PHOTOGRAPH 26:	INSIDE BACK BEZEL	
PHOTOGRAPH 27:	INSIDE LCD BEZEL	
PHOTOGRAPH 28:	INSIDE KEYPAD BEZEL	
PHOTOGRAPH 29:	KEYPAD FRONT VIEW	
PHOTOGRAPH 30:	KEYPAD BACK VIEW	
PHOTOGRAPH 31:	BACK OF PCB INSIDE CASE	
PHOTOGRAPH 32:	FRONT OF PCB	
PHOTOGRAPH 33:	BACK OF PCB	
PHOTOGRAPH 34:	FRONT OF LCD WITH SHIELD	
PHOTOGRAPH 35:	BACK OF LCD WITH SHIELD	73
PHOTOGRAPH 36:	BOTTOM OF LCD	
PHOTOGRAPH 37:	FRONT OF LCD ASSEMBLY	
PHOTOGRAPH 38:	BACK OF LCD ASSEMBLY	
PHOTOGRAPH 39:	TOP VIEW OF LCD PCB	
PHOTOGRAPH 40:	BTTOM VIEW OF LCD PCB.	78
PHOTOGRAPH 41:	INSIDE BATTERY COMPARTMENT	
PHOTOGRAPH 42:	BATTERY	
PHOTOGRAPH 43:	ADAPTER PCB FRONT	
PHOTOGRAPH 44:	ADAPTER PCB REAR	82
PHOTOGRAPH 45:	CHARGER PCB FRONT VIEW	
PHOTOGRAPH 46:	CHARGER PCB REAR VIEW	
PHOTOGRAPH 47:	INSIDE SMALL BATTERY CHARGER CASE	
PHOTOGRAPH 48:	SMALL BATTERY CHARGER WITH PCB'S	
PHOTOGRAPH 49:	SMALL BATTERY CHARGER PCB'S FRONT VIEW	87
PHOTOGRAPH 50:	SMALL BATTERY CHARGER PCB'S BACK VIEW	
PHOTOGRAPH 51:	SMALL BATTERY CHARGER AC/DC PCB IN CASE	
PHOTOGRAPH 52:	SMALL BATTERY CHARGER AC/DC PCB BOTTOM	90

Client: UTStarcom Model: UTS718 FCC ID: O6YUTS-718 FCC: Part 24 Date: July 1, 2003

1 GENERAL INFORMATION

1.1 SCOPE

FCC Rules Part 24 (E) Personal Communications Services – Broadband PCS

All measurements contained in this application were conducted in accordance with the FCC Rules and Regulations CFR47 and ANSI/TIA/EIA603-1992/-1-1998 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.2 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report, and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

1.3 RELATED SUBMITTAL(S)/GRANT(S)

This is a new application. The Digital Interface and Receiver were investigated and found compliant. The IF, LO and up to the 2nd LO were investigated.

2 EQUIPMENT INFORMATION

2.1 TEST JUSTIFICATION

To complete the test configuration required by the FCC, the transmitter was software-controlled by the manufacturer to operate in a continuous mode. The final data was taken as a substitution measurement. The device is provided with an external antenna connector. EIRP measurement is provided to support the RF exposure requirements for the antenna listed in this application filing.

2.2 EXERCISING THE EUT

The UTS718 is a portable phone transmitter designed to link to a PHS phone network which transmits at a frequency within the range 1890 MHz – 1910 MHz. Three channels were investigated, 1893.65 MHz, 1902.35 MHz, and 1909.85 MHz, in three orthogonal planes, with the receiving antenna in both horizontal and vertical polarities, from 1 meter to 4 meters in height.

2.3 TEST RESULT SUMMARY

TABLE 2-1: TEST RESULT SUMMARY FOR FCC RULES AND REGULATIONS

STANDARD	TEST	PASS/FAIL OR N/A
FCC §2.1033(c)(8)	DC Voltages and Currents	Pass
FCC §2.1046	RF Power Output	Pass
FCC §24.238 (B)	Emission Bandwidth	Pass
FCC §1.1051	Conducted Spurious and Harmonic Emissions	Pass
FCC §2.1053	Radiated Spurious and Harmonic Emissions	Pass
FCC §24.238	Band Edge	Pass
FCC §2.1055	Frequency Stability / Temperature Variation	Pass

2.4 TEST SYSTEM DETAILS

The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system, are:

TABLE 2-2: EQUIPMENT UNDER TEST (EUT)

PART	MANUFACTURER	MODEL SERIAL NUMBER		FCC ID	CABLE DESCRIPTION	RTL BAR CODE
PORTABLE PHONE	UTSTARCOM, INC.	UTS718	C3440667D85B	O6YUTS-718	1 METER UNSHIELDED AUDIO TERMINATION	15159
BATTERY CHARGER	UTSTARCOM, INC.	PHSJ95	0102	N/A	N/A	15221
CHARGER AC ADAPTER	UTSTARCOM, INC.	PV-07540T	1001	N/A	1.9 meter Unshielded Power	15222
BATTERY CHARGER	UTSTARCOM, INC.	WSP0520321	CT200302	N/A	1.9 METER UNSHIELDED POWER	15161

2.5 CONFIGURATION OF TESTED SYSTEM

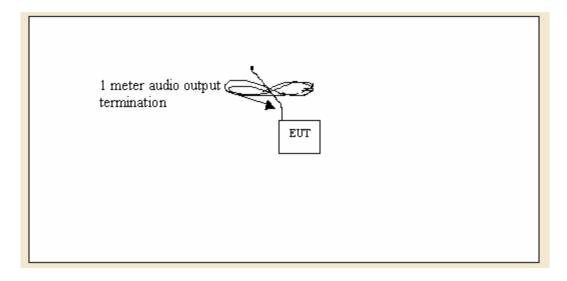


FIGURE 1: CONFIGURATION OF TESTED SYSTEM

TEST PERSONNEL:

Client: UTStarcom Model: UTS718 FCC ID: O6YUTS-718 FCC: Part 24 Date: July 1, 2003

3 DC VOLTAGES AND CURRENTS - PART §2.1033(C)(8)

The dc voltages applied to, and dc currents into, the several elements of the final radio frequency amplifying device for normal operation over the power range was measured.

3.1 DC VOLTAGES AND CURRENTS TEST EQUIPMENT

TABLE 3-1: DC VOLTAGES AND CURRENTS TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901247	Wavetek	DM25XT	Multimeter	40804098	2/14/04

3.2 DC VOLTAGES AND CURRENTS TEST DATA

TABLE 3-2: DC VOLTAGES AND CURRENTS DATA

	Minimum	Typical	Maximum
Voltage (DC)	2.7	3.6	4.2
Current (Amps)	0.023	0.031	.036

Signature: Test Date: May 27, 2003

Typed/Printed Name: Daniel Baltzell Position: Test Engineer

4 RF POWER OUTPUT - §2.1046

The transmitter antenna terminal is connected with the 50 Ω impedance input to the spectrum analyzer.

4.1 RF POWER OUTPUT TEST EQUIPMENT

TABLE 4-1: RF POWER OUTPUT TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901184	Agilent Technologies	E4416A	EPM-P Power Meter, single channel	GB41050573	7/19/03
901186	Agilent Technologies	E9323A (50 MHz-6 GHz)	Peak & Average Power Sensor	US40410380	7/19/03

4.2 RF POWER OUTPUT TEST DATA

TEST PERSONNEL:

TABLE 4-2: POWER OUTPUT AT THE ANTENNA PORT DATA - §2.1046

Channel	Channel Frequency (MHz) Peak Meter (dE		Peak Power Meter Level (mW)
251	1893.65	19.38	86.7
25	1902.35	19.98	99.5
50	1909.85	19.99	99.8

Signature: Test Date: May 22, 2003

Typed/Printed
Name: Daniel Baltzell Position: Test Engineer

4.3 ANSI/TIA/EIA-603-1992, SECTION 2.2.1 TEST PROCEDURE

Substitution method.

4.4 EFFECTIVE ISOTROPIC RADIATED POWER LIMITS - §24.232 (B) TEST PROCEDURE

Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

4.5 RF POWER TEST EQUIPMENT

TABLE 4-3: RF POWER TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz-2 GHz)	2648	6/17/03
900932	Hewlett Packard	8449B OPT H02	Preamplifier (1-26.5 GHz)	3008A00505	7/15/03
901020	Hewlett Packard	8564E	Portable Spectrum 8564E Analyzer (9 kHz-40 GHz)		7/2/03
900928	Hewlett Packard	83752A	83752A Synthesized Sweeper, (0.01-20 GHz)		6/19/03
900814	Electro-Metrics	EM-6961 (RGA-60)	Double Ridged Guide Antenna (1-18 GHz)	2310	2/17/04
901184	Agilent Technologies	E4416A	EPM-P Power Meter, single channel		7/19/03
901186	Agilent Technologies	E9323A (50MHz-6GHz)	Peak & Average Power Sensor	US40410380	7/19/03

4.6 EFFECTIVE ISOTROPIC RADIATED POWER TEST DATA- §2.1046

Channel	Test Detector	Frequency (MHz)	Spectrum Analyzer (dBuV)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (mW)
251	Pk	1893.65	87.8	18.16	3.12	5.08	20.2	104.7
25	Pk	1902.35	88.2	18.06	3.14	5.08	20.0	100.0
50	Pk	1909.85	87.9	17.73	3.18	5.09	19.64	92.0

EIRP Measurements by Substitution Method.

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer using a 1 MHz resolution bandwidth for each channel being tested, and adjusted to an average level using a power meter attached at the end of the receive antenna. A double ridge horn antenna was substituted in place of the EUT. The horn antenna was fed by a signal generator and adjusted until the previous level was attained. This level was recorded and was further corrected by subtracting the cable loss from the signal generator to the transmit antenna and adding the horn gain.

i.e., Sg - CL + Gn = EIRP (dBm)

Sg = Signal Generator Level (dBm)

CL= Cable Loss (dB)

Gn= Transmitting horn antenna gain (dBi)

TEST PERSONNEL:

Vaniel W. Bolget		
<i>O</i>	Test Date:	May 21, 2003
Daniel Baltzell	Position:	Test Engineer
	Daniel Baltzell	Test Date:

5 OCCUPIED BANDWIDTH - §2.1049; NECESSARY BANDWIDTH §2.202 (OCCUPIED BANDWIDTH) – PART 24.238 (B) (EMISSION BANDWIDTH)

Type of Emission: DXW

Necessary bandwidth designator derived from measurement of emission bandwidth (-26 dB) (263 kHz): 263KDXW

OCCUPIED BANDWIDTH (99% POWER BANDWIDTH) - COMPLIANCE WITH THE EMISSION MASKS

5.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.11

Device with digital modulation: operation to its maximum extent

Note: Reference level is peak conducted power measurement not corrected for duty cycle.

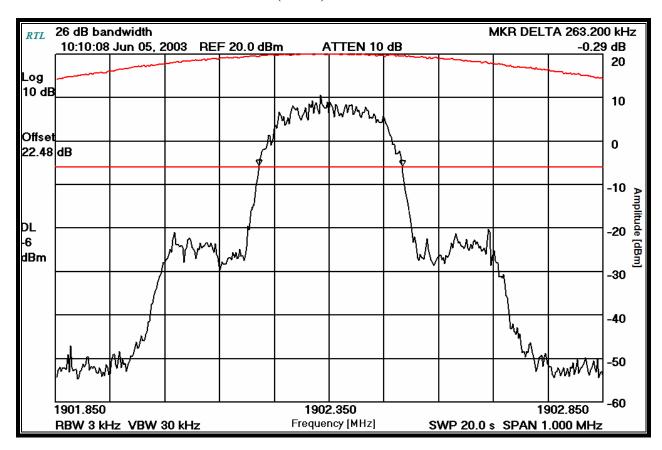

5.2 OCCUPIED BANDWIDTH TEST EQUIPMENT

TABLE 5-1: OCCUPIED BANDWIDTH TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz-40 GHz)	3943A01719	7/2/03

5.3 TEST DATA (CHANNEL 25: EMISSION BANDWIDTH = 263 KHZ)

PLOT 5-1: EMISSION BANDWIDTH (-26 DB)

TEST PERSONNEL:

Signature:	aniel W. Boly	Test Date:	June 5, 2003
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

6 CONDUCTED SPURIOUS AND HARMONIC EMISSIONS - §2.1051

6.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, Section 2.2.13

The transmitter antenna terminal is connected with the 50Ω impedance input to the spectrum analyzer. The worst case peak channel test data is provided. Overloading of the input to the spectrum analyzer was checked and found it was not necessary to use a notch filter for this purpose during measurements.

6.2 CONDUCTED SPURIOUS AND HARMONIC TEST EQUIPMENT

TABLE 6-1: CONDUCTED SPURIOUS AND HARMONIC TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz-40 GHz)	3943A01719	7/2/03

6.3 CONDUCTED SPURIOUS AND HARMONIC TEST DATA - §2.1051

Operating Frequency (MHz): 1893.65

Channel: 251

Measured Power at the Antenna Port (dBm): 19.38

Modulation: DXW Limit (dBc): 32.38

TABLE 6-2: CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051

Frequency (MHz)	Measured Level (dBc)	Margin (dB)
3787.300	77.3	-44.9
5680.950	63.1	-30.7
7574.600	83.4	-51.0
9468.250	89.9	-57.5
11361.900	93.8	-61.4
13255.550	92.3	-59.9
15149.200	90.8	-58.4
17042.850	91.8	-59.4
18936.500	91.9	-59.5

Client: UTStarcom Model: UTS718
FCC ID: O6YUTS-718
FCC: Part 24
Date: July 1, 2003

Operating Frequency (MHz): 1902.35 Channel: 25

Measured Power at the Antenna Port (dBm): 19.98

Modulation: DXW Limit (dBc): 32.98

CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051 **TABLE 6-3:**

Frequency (MHz)	Measured Level (dBc)	Margin (dB)
3804.700	60.0	-27.0
5707.050	61.4	-28.4
7609.400	82.5	-49.5
9511.750	92.2	-59.2
11414.100	91.7	-58.7
13316.450	93.9	-60.9
15218.800	94.0	-61.0
17121.150	93.9	-60.9
19023.500	95.0	-62.0

Client: UTStarcom Model: UTS718
FCC ID: O6YUTS-718
FCC: Part 24
Date: July 1, 2003

Operating Frequency (MHz): 1909.85 Channel: 50

Measured Power at the Antenna Port (dBm): 19.99

Modulation: DXW Limit (dBc): 32.99

TABLE 6-4: CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051

Frequency (MHz)	Measured Level (dBc)	Margin (dB)
3819.700	76.2	-43.2
5729.550	65.9	-32.9
7639.400	81.4	-48.4
9549.250	91.0	-58.0
11459.100	94.2	-61.2
13368.950	92.0	-59.0
15278.800	92.5	-59.5
17188.650	92.5	-59.5
19098.500	94.0	-61.0

TEST PERSONNE	EL:			
Signat	ture:	aniel W. Bolgs	Test Date:	May 22, 2003
Typed Name	/Printed	Daniel Baltzell	Position:	Test Engineer

7 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

7.1 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

Substitution method. The EUT was terminated with a 50 ohm termination and placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by moving the EUT through three orthogonal planes while rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A double ridge horn antenna was substituted in place of the EUT. The horn antenna was fed by a signal generator and adjusted until the previous level was attained. The signal generator level was recorded. It was further corrected by subtracting the cable loss from the signal generator to the dipole, and adding the horn gain (dBi). The worst case average channel test data is provided.

7.2 RADIATED SPURIOUS TEST EQUIPMENT

TABLE 7-1: RADIATED SPURIOUS TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz-2 GHz)	2648	6/17/03
900932	Hewlett Packard	8449B OPT H02	Preamplifier (1-26.5 GHz)	3008A00505	7/15/03
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz-40 GHz)	3943A01719	7/2/03
900928	Hewlett Packard	83752A	Synthesized Sweeper, (0.01-20 GHz)	3610A00866	6/19/03
900814	Electro-Metrics	EM-6961 (RGA-60)	Double Ridged Guide Antenna (1-18 GHz)	2310	2/17/04

TEST PERSONNEL:

Client: UTStarcom Model: UTS718 FCC ID: O6YUTS-718 FCC: Part 24 Date: July 1, 2003

7.3 FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA - §2.1053

Operating Frequency (MHz): 1902.35

Channel: 25

Measured EIRP (dBm): 20.0

Modulation: DXW Distance (m): 3

Limit (dBc): 33.0

TABLE 7-2: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Corrected Level (dBc)	Margin (dB)
3804.700	-43.20	0.80	8.04	55.96	-22.96
5707.050	-34.70	1.20	8.68	47.22	-14.22
7609.400	-27.00	6.53	9.90	43.63	-10.63
9511.750	-38.66	7.30	10.60	55.36	-22.36
11414.100	-39.00	8.20	10.72	56.48	-23.48
13316.450	-32.83	8.84	12.74	48.93	-15.93
15218.800	-31.97	9.20	10.96	50.21	-17.21
17121.150	-31.03	9.66	12.54	48.15	-15.15
19023.500	-28.73	9.97	16.80	41.90	-8.90

Signature:	Maniel W. Bolger	_ Test Date:	May 17, 2003	
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer	

8 BLOCK/BAND-EDGE COMPLIANCE - PART 24.238

8.1 TEST PROCEDURE:

The resolution of the spectrum analyzer is adjusted to 1% of the emission bandwidth after the reference level is adjusted to the maximized EIRP level using a resolution and video bandwidth of 1 MHz. The frequency is centered on the band edge of interest with a span capable of showing the peak, the display line set at –13 dBm (43+10LogP).

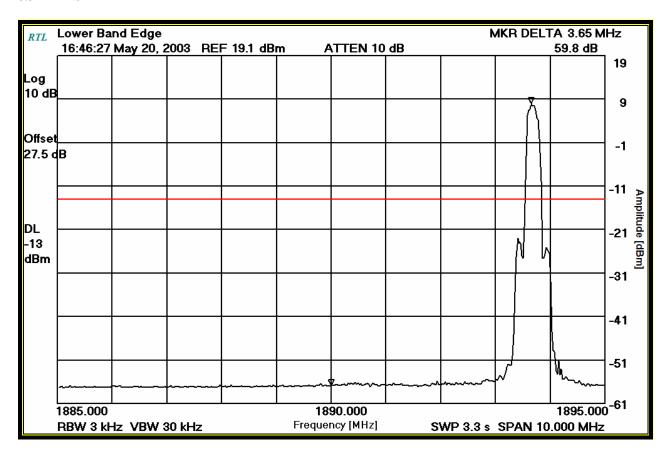
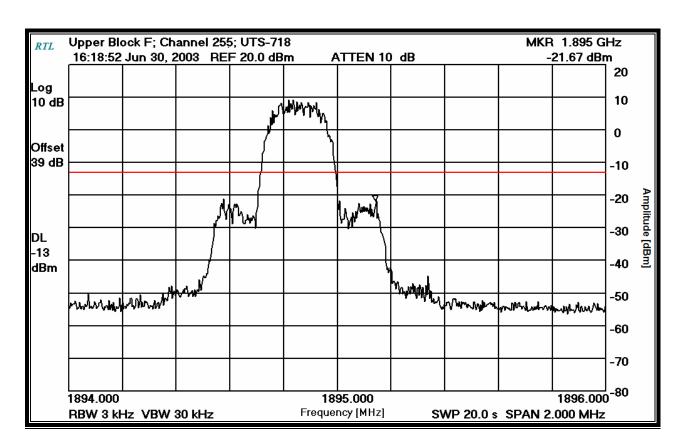

8.2 BAND-EDGE TEST EQUIPMENT

TABLE 8-1: BAND-EDGE TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz - 2 GHz)	2648	6/17/04
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz - 40 GHz)	3943A01719	7/2/03
900931	Hewlett Packard	8566B	Spectrum Analyzer (100 Hz - 22 GHz)	3138A07771	5/12/04

8.3 TEST DATA

TEST PERSONNEL:

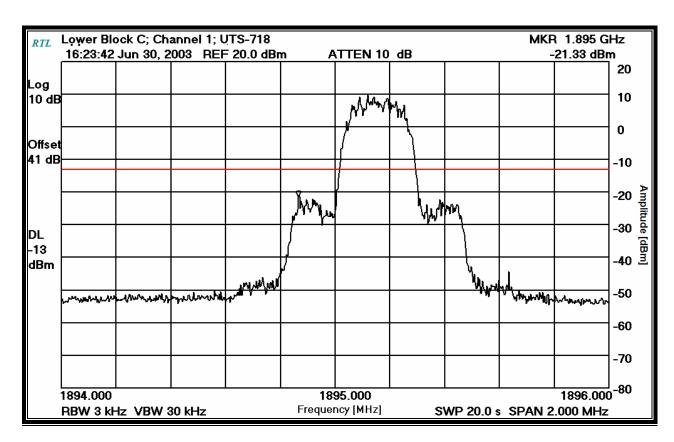


PLOT 8-1: LOWER BAND EDGE (LOWER BLOCK F)

Signature: Test Date: May 20, 2003

Typed/Printed
Name: Daniel Baltzell Position: Test Engineer




PLOT 8-2: UPPER BLOCK EDGE F

TEST PERSONNEL:

Signature: Test Date: June 30, 2003

Typed/Printed Name: Daniel Baltzell Position: Test Engineer



PLOT 8-3: LOWER BLOCK EDGE C

TEST PERSONNEL:

Signature:	Daniel W. Bolgel	Test Date:	June 30, 2003	
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer	

PLOT 8-4: UPPER BAND EDGE (UPPER BLOCK C)

TEST PERSONNEL:

Signature:	anif W. Bolget	Test Date:	June 30, 2003
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

9 FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055

The frequency stability and RF power, measured at the antenna connector using a communications test set as the specified load, are plotted against supply voltage variations and temperature variations at the highest power levels for each modulation type. All measurements are made at the center of the frequency band.

9.1 MEASUREMENT METHOD:

The frequency stability of the transmitter was measured by:

- 1. Temperature: The temperature was varied from -30°C to +50°C at intervals no more than 10°C throughout the temperature range using an environmental chamber. A period of time sufficient to stabilize all of the components in the equipment shall be allowed prior to each frequency measurement.
- 2. Primary Supply Voltage: The primary supply voltage was varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied. The EUT was tested down to the battery endpoint.

9.2 FREQUENCY STABILITY TEST EQUIPMENT

TABLE 9-1: FREQUENCY STABILITY TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
900946	Tenney Engineering, Inc	TH65	Temperature Chamber	11380	2/4/04
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz-40 GHz)	3943A01719	7/2/03

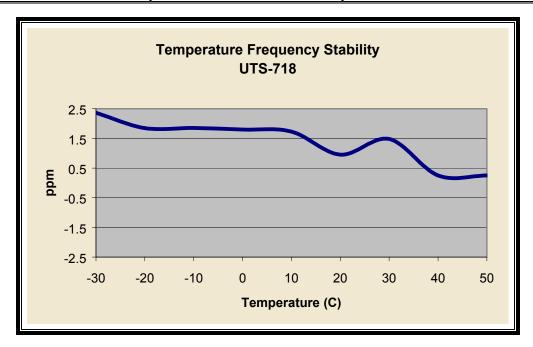
9.3 TIME PERIOD AND PROCEDURE:

- 1. The carrier frequency of the transmitter was measured at room temperature (25°C to provide a reference).
- 2. The equipment was subjected to a "soak" at -30°C without any power applied.
- 3. After the "soak" at -30°C, the measurement of the carrier frequency of the transmitter was made within a three-minute interval after applying power to the transmitter.
- 4. Frequency measurements were made at 10°C intervals up to +50°C, then back to room temperature. A minimum period of one hour was provided to allow stabilization of the equipment at each temperature level.

9.4 FREQUENCY STABILITY § 24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

9.5 FREQUENCY STABILITY TEST DATA - §2.1055

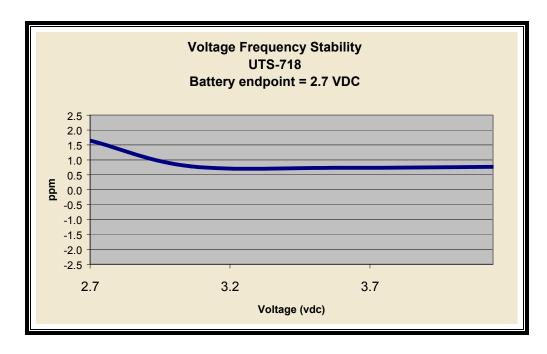

Operating Frequency MHz): 1902.35

Channel: 25

Reference Voltage (VDC): 3.6 Deviation Limit (ppm): 2.5

TABLE 9-2: TEMPERATURE FREQUENCY STABILITY DATA - §2.1055

Temperature	Frequency Measured (MHz)	ppm
-30	1902.354500	2.4
-20	1902.353513	1.8
-10	1902.353525	1.9
0	1902.353425	1.8
10	1902.353288	1.7
20	1902.351813	1.0
30	1902.352813	1.5
40	1902.350476	0.3
50	1902.350476	0.3



PLOT 9-1: TEMPERATURE FREQUENCY STABILITY - §2.1055

TABLE 9-3: VOLTAGE FREQUENCY STABILITY DATA - §2.1055

Battery endpoint = 2.7 VDC

Voltage	Frequency Measured (MHz)	ppm
2.7	1902.390130	1.6
3.06	1902.388491	0.8
3.6	1902.388399	0.7
4.14	1902.388458	0.8

PLOT 9-2: VOLTAGE FREQUENCY STABLITY

TEST PERSONNEL:

Signature: Test Date: May 19, 2003

Typed/Printed
Name: Daniel Baltzell Position: Test Engineer

Client: UTStarcom Model: UTS718 FCC ID: O6YUTS-718 FCC: Part 24 Date: July 1, 2003

10 CONCLUSION

The data in this measurement report shows that the UTStarcom Model # UTS718, FCC ID: O6YUTS-718, complies with all the requirements of Parts 2 and 24 of the FCC Rules.