

CERTIFICATE OF COMPLIANCE FCC PART 24 CERTIFICATION & INDUSTRY CANADA CERTIFICATION

Test Lab:

Applicant Information

Rhein Tech Laboratories, Inc. 360 Herndon Parkway

Phone: 703-689-0368 Fax: 703-689-2056

0.380

UTStarcom, Inc.

Suite 1400 Herndon, VA 20170 Web Site: www.rheintech.com

33 Wood Avenue South

3rd Floor Iselin, NJ 08830

732-767-5263 (Scott Black)

FCC ID: O6YUTS-600FSU 0005823877 **GRANTEE FRN NUMBER:** RTL WORK ORDER NUMBER: 2002018 **PLAT FORM:** N/A MODEL(S): UTS-600FSU RTL QUOTE NUMBER: ORTL02-241 March 15, 2002 DATE OF TEST REPORT: **American National Standard** ANSI/TIA/EIA603 and ANSI/TIA/EIA 603-1 **Institute: FCC Classification:** PCB - Licensed Base Station for Part 24 PART 24: PERSONAL COMMUNICATIONS SERVICES FCC Rule Part(s): Subpart E - Broadband PCS RSS-133: 2 GHz Personal Communications Services **Industry Canada Standard: Digital Interface Information** Digital Interface was found to be compliant **Receiver Information** Receiver was found to be compliant EIRP Frequency Range Freq. Tolerance **Emission Designator** (MHz) (W)

2.5 ppm

289KDXW

1896.65-1909.95

TABLE OF CONTENTS

1	G	GENERAL INFORMATION	5
	1.1		
	1.2		
	1.3	RELATED SUBMITAL(S)/GRANT(S)	5
2	E	EQUIPMENT INFORMATION	
	2.1	APPLICANT AND EQUIPMENT INFORMATION	6
	2.2	JUSTIFICATION	6
	2.3	EXERCISING THE EUT	6
	2.4		
	2.5	***************************************	
3	D	OC VOLTAGES AND CURRENTS - PART §2.1033(C)(8)	8
4	R	RF POWER OUTPUT - §2.1046	8
	4.1	DUTY CYCLE MEASUREMENT	
	4.2		
	4.3		
	4.4		
	4.5		
5		OCCUPIED BANDWIDTH - §2.1049; NECESSARY BANDWIDTH §2.202 (OCCUPIED BANDWIDTH) -	
24	4.238	B (B) (EMISSION BANDWIDTH)	
	5.1		
	5.2		14
	5.3		
		CHANNEL 25: EMISSION BANDWIDTH = 289 KHZ	
6		CONDUCTED SPURIOUS AND HARMONIC EMISSIONS - §2.1051	
	6.1		
	6.2		
	6.3	· · · · · · · · · · · · · · · ·	
7		RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053	
	7.1	3	
	7.2		
_	7.3	3-1-1	
8		BAND-EDGE COMPLIANCE - PART 24.238	
	8.1		
	8.2		
9		FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055	
	9.1	MEASUREMENT METHOD:	
	9.2	(
	9.3	TIME PERIOD AND PROCEDURE:	
	9.4		
	9.5	FREQUENCY STABILITY TEST DATA - §2.1055	
		CLUNCLUSION	77

TABLE INDEX

TABLE 2-1:	EQUIPMENT UNDER TEST (EUT)	7			
TABLE 4-1:	POWER OUTPUT AT THE ANTENNA PORT DATA - §2.1046				
TABLE 4-2: RF POWER TEST EQUIPMENT					
TABLE 4-3:	RADIATED POWER DATA - \$2.1046 (WHIP ANTENNA (2DBI)	12			
TABLE 4-4:	RADIATED POWER DATA - §2.1046 (PATCH ANTENNA (10DBI) WITH 5 METER CABLE) OCCUPIED BANDWIDTH TEST EQUIPMENT				
TABLE 5-1: TABLE 6-1:	RF POWER TEST EQUIPMENT				
TABLE 6-1:	CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051				
TABLE 0-2.	RADIATED SPURIOUS TEST EQUIPMENT				
TABLE 7-1.	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053	10 10			
TABLE 9-1:	FREQUENCY STABILITY TEST EQUIPMENT				
TABLE 9-1:	TEMPERATURE FREQUENCY STABILITY DATA - §2.1055	24			
TABLE 9-3:	VOLTAGE FREQUENCY STABILITY DATA - §2.1055				
	APPENDIX INDEX				
APPENDIX A:	RF EXPOSURE	28			
APPENDIX B:	AGENCY AUTHORIZATION LETTER	30			
APPENDIX C:	CONFIDENTIALITY REQUEST LETTER	31			
APPENDIX D:	ATTESTATION LETTER(S)	32			
APPENDIX E:	PRODUCT DESCRIPTION				
APPENDIX F:	LABEL AND LABEL LOCATION				
APPENDIX G:	BILL OF MATERIAL (PARTS LIST)				
APPENDIX H:	SCHEMATIC				
APPENDIX I:	MANUAL				
APPENDIX J:	TEST PHOTOGRAPHS				
APPENDIX K:	EXTERNAL PHOTOGRAPHS				
APPENDIX L: APPENDIX M:	INTERNAL PHOTOGRAPHSADDITIONAL INDUSTRY CANADA INFORMATION				
APPENDIX MI	ADDITIONAL INDUSTRY CANADA INFORMATION	84			
	PLOT INDEX				
PLOT 4-1: F	PULSE MEASUREMENT FOR DUTY CYCLE	9			
	PULSE WIDTH MEASUREMENT FOR DUTY CYCLE				
	OCCUPIED BANDWIDTH (-20 DB)				
PLOT 5-2: E	EMISSION BANDWIDTH (-26 DB)	16			
	OWER BAND EDGE				
PLOT 8-2: U	JPPER BAND EDGE	22			
PLOT 9-1: T	EMPERATURE FREQUENCY STABILITY DATA - §2.1055	25			
PLOT 9-2: V	OLTAGE FREQUENCY STABLITY	26			

PHOTOGRAPH INDEX

PHOTOGRAPH 1:	RADIATED BACK VIEW WITH WHIP ANTENNA	40
PHOTOGRAPH 2:	RADIATED BACK VIEW WITH WHIP ANTENNA	41
PHOTOGRAPH 3:	RADIATED BACK VIEW WITH PATCH ANTENNA	
PHOTOGRAPH 4:	RADIATED FRONT VIEW WITH PATCH ANTENNA	43
PHOTOGRAPH 5:	SUBSTITUTION TRANSMITTING HORN ANTENNA (1 GHZ-18 GHZ)	44
PHOTOGRAPH 6:	CONDUCTED VIEW WITH WHIP ANTENNA	45
PHOTOGRAPH 7:	TOP VIEW	46
PHOTOGRAPH 8:	BACK VIEW	47
PHOTOGRAPH 9:	BOTTOM VIEW	48
PHOTOGRAPH 10:	BATTERY COMPARTMENT	49
PHOTOGRAPH 11:	REAR ANTENNA CONNECTOR	
PHOTOGRAPH 12:	4VDC POWER SUPPLY	
PHOTOGRAPH 13:	BOTTOM OF HANDSET	
PHOTOGRAPH 14:	TOP OF HANDSET	53
PHOTOGRAPH 15:	INSIDE TOP CASE WITH KEYPAD PCB ATTACHED	54
PHOTOGRAPH 16:	INSIDE TOP CASE WITH BOTTOM OF KEYPAD	55
PHOTOGRAPH 17:	INSIDE TOP CASE	
PHOTOGRAPH 18:	INSIDE BOTTOM OF CASE WITH RF, POWER PCB'S, AND CONNECTOR	
PHOTOGRAPH 19:	RF PCB IN BOTTOM CASE	58
PHOTOGRAPH 20:	CONNECTOR PCB IN CASE	
PHOTOGRAPH 21:	TOP OF KEYPAD PCB	
PHOTOGRAPH 22:	TOP OF DC POWER PCB	
PHOTOGRAPH 23:	BOTTOM OF DC POWER PCB	
PHOTOGRAPH 24:	INSIDE BOTTOM OF CASE	
PHOTOGRAPH 25:	CONNECTIONS ON MID RF PCB	64
PHOTOGRAPH 26:	TAPED CONNECTIONS ON BOTTOM OF RF PCB	65
PHOTOGRAPH 27:	KEYPAD SIDE OF RF PCB	
PHOTOGRAPH 28:	CONNECTIONS AT LOWER SIDE OF RF PCB	67
PHOTOGRAPH 29:	CONNECTIONS AT LOWER END OF RF PCB	68
PHOTOGRAPH 30:	RF PCB SHOWING CONNECTIONS TO KEYPAD PCB	
PHOTOGRAPH 31:	INSIDE BOTTOM OF HANDSET WITH COMPONENTS	69
PHOTOGRAPH 32:	INSIDE TOP CASE OF HANDSET	70
PHOTOGRAPH 33:	INSIDE HANDSET SHOWING BRACE HOLDING COMPONENTS	
PHOTOGRAPH 34:	EARPIECE SPEAKER OF HANDSET	72
PHOTOGRAPH 35:	MICROPHONE AND CONNECTOR TO HANDSET	
PHOTOGRAPH 36:	10DBI ANTENNA	
PHOTOGRAPH 37:	2 DBI ANTENNA CONNECTOR	
PHOTOGRAPH 38:	2 DBI ANTENNA	
PHOTOGRAPH 39:	LABEL OF 10DBI ANTENNA	
PHOTOGRAPH 40:	INSIDE VIEW OF 10 DBI ANTENNA	78
PHOTOGRAPH 41:	COMPONENT SIDE OF RF PCB	79
PHOTOGRAPH 42:	LCD/KEYPAD SIDE OF RF PCB	
PHOTOGRAPH 43:	KEYPAD SIDE OF RF PCB WITHOUT LCD	
PHOTOGRAPH 44:	COMPONENT SIDE OF RF PCB WITH COVER REMOVED	
PHOTOGRAPH 45.	COMPONENT SIDE OF REPCR WITH SHIFT DS REMOVED	83

1 GENERAL INFORMATION

1.1 SCOPE

FCC Rules Part 24 (E) PERSONAL COMMUNICATIONS SERVICES - BROADBAND PCS

All measurements contained in this application were conducted in accordance with the FCC Rules and Regulations CFR47 and ANSI/TIA/EIA603-1992/-1-1998 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.2 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

1.3 RELATED SUBMITAL(S)/GRANT(S)

This is a new application submittal. The Digital Interface and Receiver were investigated and found compliant. A DoC report can be provided upon request. The IF, LO and up to the 2^{nd} LO were investigated.

2 EQUIPMENT INFORMATION

2.1 APPLICANT AND EQUIPMENT INFORMATION

Tes	Applicant Informa	tion				
Test Lab: Rhein Tech Laboratories, Inc. Phone: 703-689-0368 360 Herndon Parkway Fax: 703-689-2056 Suite 1400 Web Site: www.rheintech.com Herndon, VA 20170			Applicant Information UTStarcom, Inc. 33 Wood Avenue South 3 rd Floor Iselin, NJ 08830 732-767-5263 (Scott Black) USA			
FCC ID:	O6YUTS-600FSU	GRA	ANTEE FRN NUMB	BER:	0005823877	
PLAT FORM:	N/A	RTI	WORK ORDER N	UMBER:	2002018	
MODEL(S):	UTS-600FSU	RTI	L QUOTE NUMBER	:	QRTL02-241	
DATE OF TEST REPORT: March 15, 2002						
	l e					
American National Standard Institute:	ANSI/TIA/EIA603 and	ANSI/TIA/EIA603 and ANSI/TIA/EIA 603-1				
FCC Classification:	PCB - Licensed Base S	ase Station for Part 24				
FCC Rule Part(s):		PART 24: PERSONAL COMMUNICATIONS SERVICES Subpart E - Broadband PCS				
Industry Canada Standard:	RSS-133: 2 GHz Perso	RSS-133: 2 GHz Personal Communications Services				
Digital Interface Information	Digital Interface was fo	Digital Interface was found to be compliant				
Receiver Information	Receiver was found to	Receiver was found to be compliant				
Frequency Range (MHz)	EIRP (W)	Fre	eq. Tolerance		Emission Designator	
1896.65-1909.95	0.380		2.5 ppm		289KDXW	

2.2 JUSTIFICATION

To complete the test configuration required by the FCC, the transmitter was software controlled by the manufacturer to operate in a continuous mode. The final data was taken as a substitution measurement. The device is provided with an external antenna connector. EIRP measurement is provided to support the RF exposure requirements for the antenna listed in this application filing.

2.3 EXERCISING THE EUT

The UTS-600FSU is a desk phone transmitter designed to link to a PHS phone network which transmits at a frequency within the range (1893.65 MHz – 1909.95 MHz). Three channels were investigated, 1893.65 MHz, 1902.35 MHz, and 1909.95 MHz, in three orthogonal planes, with the receiving antenna in both horizontal and vertical polarities, from 1 meter to 4 meters in height.

2.4 TEST SYSTEM DETAILS

The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system are:

The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system are:

TABLE 2-1: EQUIPMENT UNDER TEST (EUT)

PART	MANUFACTURER	Model	SERIAL Number	FCC ID	CABLE DESCRIPTION	RTL Bar Code
PHONE	UTSTARCOM	UTS-600FSU	053806	O6YUTS-600FSU	Unshielded	014123
PHONE	UTSTARCOM	UTS-600FSU	053806	O6YUTS-600FSU	Unshielded	014123
PATCH ANTENNA	UTSTARCOM	QXX0318900 (10DBI GAIN)	B03888	SAMPLE	N/A	014120
WHIP ANTENNA	UTSTARCOM	2 dBi gain	N/A	N/A	N/A	N/A
POWER SUPPLY	UTSTARCOM	H-7EPBN008	MB102-040030	N/A	Unshielded Power	014121
POWER SUPPLY	UTSTARCOM	H-7EPBN008	MB102-040030	N/A	Unshielded Power	014122

2.5 CONFIGURATION OF TESTED SYSTEM

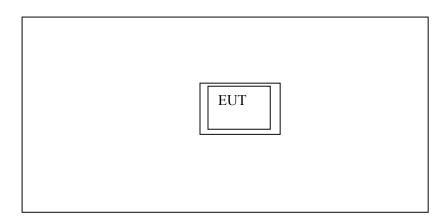


FIGURE 1: CONFIGURATION OF TESTED SYSTEM

3 DC VOLTAGES AND CURRENTS - PART §2.1033(C)(8)

The dc voltages applied to and dc currents into the several elements of the final radio frequency amplifying device for normal operation over the power range.

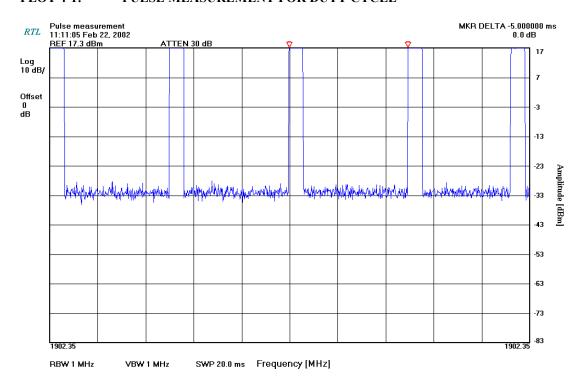
	Minimum	Typical	Maximum
Voltage (DC)	2.9	4	4.6
Current (Amps)	0.22	0.3	.35

	~ ~ ~ P TE		
$\mathbf{P}\mathbf{F}\mathbf{R}$	SONNE	LINFOR	MATION

	anil W. Boly		
Signature:		Test Date:	February 12, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

4 RF POWER OUTPUT - §2.1046

TABLE 4-1: POWER OUTPUT AT THE ANTENNA PORT DATA - §2.1046


M . N. D. 1 1

Channel	Frequency (MHz)	Burst Peak Power Meter Level (dBm)	Burst Average Power Meter Level (dBm)	Duty Factor (dB)	Modulation Average Power Level (dBm)	Modulation Average Power Level (mW)
251	1893.65	18.54	17.38	8.9	8.48	7.0
25	1902.35	18.46	17.29	8.9	8.39	6.9
50	1909.85	18.30	17.14	8.9	8.24	6.7

Signature:	Manuf W. Dottoff	Test Date:	February 12, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

4.1 DUTY CYCLE MEASUREMENT

PLOT 4-1: PULSE MEASUREMENT FOR DUTY CYCLE

Duty cycle calculation from above plots:

0.64 ms / 5 ms = 0.128 or 12.8 % duty cycle crest factor = 1/.128 = 7.810 LOG 0.128 = -8.9 dB correction.

	anil W. Boly		
Signature:	8	Test Date:	February 22, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

PLOT 4-2: PULSE WIDTH MEASUREMENT FOR DUTY CYCLE

Duty cycle calculation from above plots:

0.64 ms / 5 ms = 0.128 or 12.8 % duty cycle crest factor = 1/.128 = 7.810 LOG 0.128 = -8.9 dB correction.

PERSONNEL INFORMATION:

Signature:	Wanuf W. Dottoff	Test Date:	February 22, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

A. MuRIA

4.2 ANSI/TIA/EIA-603-1992, SECTION 2.2.1 TEST PROCEDURE

Substitution method.

4.3 EFFECTIVE ISOTROPIC RADIATED POWER LIMITS - §24.232 TEST PROCEDURE

(a) Base stations are limited to 1640 watts peak equivalent isotropically radiated power (e.i.r.p.) with an antenna height up to 300 meters HAAT.

4.4 RF POWER TEST EQUIPMENT

TABLE 4-2: RF POWER TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz – 2 GHz)	2648	5/22/02
900932	Hewlett Packard	8449B OPT H02	Preamplifier 1-26.5 GHz	3008A00505	N/A
900931	Hewlett Packard	8566B	Spectrum Analyzer (100 Hz – 22 GHz)	3138A07771	5/16/02
900917	Hewlett Packard	8648C	Signal Generator (100kHz – 3200 MHz)	3537A01741	4/10/02
900928	Hewlett Packard	83752A	Synthesized Sweeper (0.01 GHz – 20 GHz)	3610A00866	5/11/02
900814	Electro-Metrics	EM-6961 (RGA- 60)	Double Ridged Guide Antenna 1-18 GHz	2310	2/26/02
901184	Agilent Technologies	E4416A	EPM-P Power Meter, single channel	GB41050573	7/5/02
901186	Agilent Technologies	E9323A (50MHz-6GHz)	Peak & Avg. Power Sensor	US40410380	6/25/02

4.5 EFFECTIVE RADIATED POWER TEST DATA- §2.1046

TABLE 4-3: RADIATED POWER DATA - §2.1046 (WHIP ANTENNA (2DBI)

Channel	Test Detector	Frequency (MHz)	Spectrum Analyzer (dBuV)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Burst Level EIRP (dBm)	Duty Factor (dB)	Modulation EIRP (dBm)	Modulation EIRP (mW)
251	Pk	1893.65	81.0	16.3	1.6	4.8	19.5	8.9	10.6	11.5
251	Av	1893.65	79.8	15.1	1.6	4.8	18.3	8.9	9.4	8.7
25	Pk	1902.35	80.1	18.5	1.7	4.8	21.6	8.9	12.7	18.6
25	Av	1902.35	78.9	17.3	1.7	4.8	20.4	8.9	11.5	14.1
50	Pk	1909.85	79.7	16.2	1.7	4.8	19.3	8.9	10.4	11.0
50	Av	1909.85	78.5	15.0	1.7	4.8	18.1	8.9	9.2	8.3

Notes: Pk = Peak Detector; Av = Average Detector.

EIRP Measurements by Substitution Method.

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer using a 1 MHz resolution bandwidth for each channel being tested, and adjusted to an average level using a power meter attached at the end of the receive antenna. A double ridge horn antenna was substituted in place of the EUT. The horn antenna was fed by a signal generator and adjusted until the previous level was attained. This level was recorded and was further corrected by subtracting the cable loss from the signal generator to the transmit antenna and adding the horn gain.

i.e., Sg - CL + Gn = EIRP (dBm)

Sg = Signal Generator Level (dBm)

CL= Cable Loss (dB)

Gn= Transmitting horn antenna gain (dBi)

PERSONNEL INFORMATION:

Signature:	Wanef W. Dittoff	_ Test Date:	February 1, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

A. NuRIA

TABLE 4-4: RADIATED POWER DATA - §2.1046 (PATCH ANTENNA (10DBI) WITH 5 METER CABLE)

Channel	Test Detector	Frequency (MHz)	Spectrum Analyzer (dBuV)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	Burst Level EIRP (dBm)	Duty Factor (dB)	Modulation EIRP (dBm)	Modulation EIRP (mW)
251	Pk	1893.65	82.3	20.6	1.6	4.8	23.8	8.9	14.9	30.9
251	Av	1893.65	81.1	19.4	1.6	4.8	22.6	8.9	13.7	23.4
25	Pk	1902.35	82.2	20.7	1.7	4.8	25.8	8.9	16.9	49.0
25	Av	1902.35	81.0	19.5	1.7	4.8	22.6	8.9	13.7	23.4
50	Pk	1909.85	81.5	20.8	1.7	4.8	23.9	8.9	15.0	31.6
50	Av	1909.85	80.3	19.6	1.7	4.8	22.7	8.9	13.8	24.0

Notes: Pk = Peak Detector; Av = Average Detector.

EIRP Measurements by Substitution Method.

The EUT was placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer using a 1 MHz resolution bandwidth for each channel being tested, and adjusted to an average level using a power meter attached at the end of the receive antenna. A double ridge horn antenna was substituted in place of the EUT. The horn antenna was fed by a signal generator and adjusted until the previous level was attained. This level was recorded and was further corrected by subtracting the cable loss from the signal generator to the transmit antenna and adding the horn gain.

i.e., Sg - CL + Gn = EIRP (dBm)

Sg = Signal Generator Level (dBm)

CL= Cable Loss (dB)

Gn= Transmitting horn antenna gain (dBi)

	anifw. Boly		
Signature:	, &	Test Date:	February 1, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

5 OCCUPIED BANDWIDTH - §2.1049; NECESSARY BANDWIDTH §2.202 (OCCUPIED BANDWIDTH) – PART 24.238 (B) (EMISSION BANDWIDTH)

Type of Emission: DXW

Necessary bandwidth designator derived from measurement of emission bandwidth (-26 dB) (289 kHz): 289KDXW

OCCUPIED BANDWIDTH (99% POWER BANDWIDTH) - COMPLIANCE WITH THE EMISSION MASKS

5.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.11

Device with digital modulation: operation to its maximum extent

Note: Reference level is average conducted power measurement not corrected for duty cycle.

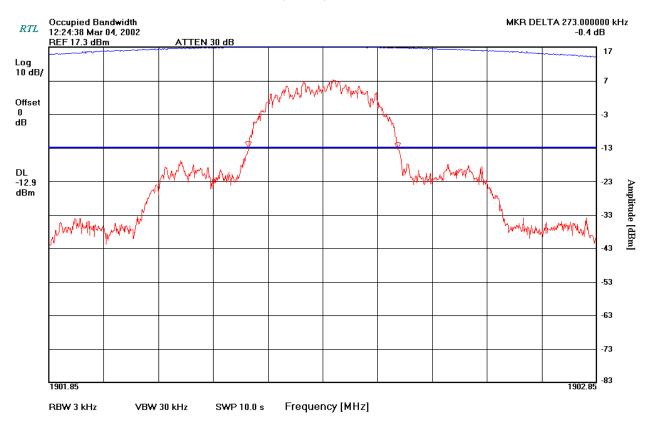
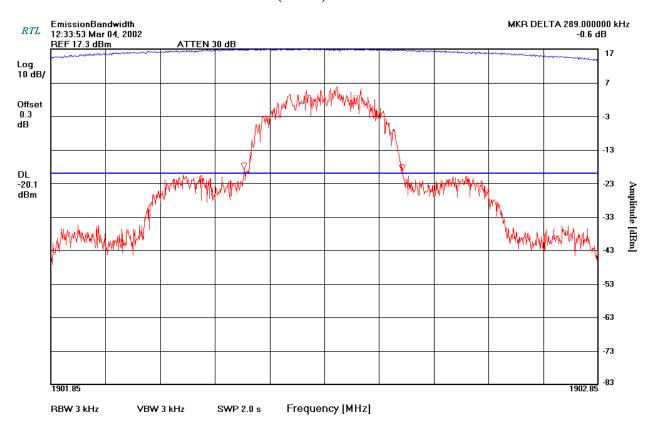

5.2 OCCUPIED BANDWIDTH TEST EQUIPMENT

TABLE 5-1: OCCUPIED BANDWIDTH TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz – 40 GHz)	3943A01719	6/7/02

5.3 TEST DATA (CHANNEL 25: OCCUPIED BANDWIDTH = 273 KHZ)


PLOT 5-1: OCCUPIED BANDWIDTH (-20 DB)

	Daniel W. Bolger		
Signature:	, 80	Test Date:	March 4, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

CHANNEL 25: EMISSION BANDWIDTH = 289 KHZ

PLOT 5-2: EMISSION BANDWIDTH (-26 DB)

	anifw. Boly		
Signature:	. 8	Test Date:	March 4, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

6 CONDUCTED SPURIOUS AND HARMONIC EMISSIONS - §2.1051

6.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, Section 2.2.13

The transmitter antenna terminal is connected with the 50 Ω impedance input to the spectrum analyzer. The worst case average channel test data is provided.

6.2 RF POWER TEST EQUIPMENT

TABLE 6-1: RF POWER TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901137	PAR Electronics	N/A	Notch Filter	N/A	N/A
900931	Hewlett Packard	8566B	Spectrum Analyzer (100 Hz – 22 GHz)	3138A07771	5/16/02

6.3 CONDUCTED SPURIOUS AND HARMONIC TEST DATA - §2.1051

Operating Frequency (MHz): 1902.35

Channel: 25

Measured Power at the Antenna Port (dBm): 17.29

Modulation: DXW Limit (dBc): 30.29

TABLE 6-2: CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051

n. · Nu Rol 1

Frequency (MHz)	Measured Level (dBm)	Notch Filter Insertion Loss (dB)	Corrected Measured Level (dBc)	Margin (dB)
3804.700	-32.8	1.7	48.4	-18.1
5707.050	-66.5	3.3	80.5	-50.2
7609.400	-64.7	3.9	78.1	-47.8
9511.750				<-50.0
11414.100				<-50.0
13316.450				<-50.0
15218.800				<-50.0
17121.150				<-50.0
19023.500				<-50.0

Signature:	miniq w. Barry	Test Date:	March 4, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

7 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

7.1 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

Substitution method. The EUT was terminated with a 50 ohm termination and placed on a turntable 3-meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A double ridge horn antenna was substituted in place of the EUT. The horn antenna was fed by a signal generator and adjusted until the previous level was attained. The signal generator level was recorded. It was further corrected by subtracting the cable loss from the signal generator to the dipole and adding the horn gain The worst case average channel test data is provided.

7.2 RADIATED SPURIOUS TEST EQUIPMENT

TABLE 7-1: RADIATED SPURIOUS TEST EQUIPMENT

RTL Asset	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz – 2 GHz)	2648	5/22/02
900932	Hewlett Packard	8449B OPT H02	Preamplifier 1-26.5 GHz	3008A00505	N/A
900931	Hewlett Packard	8566B	Spectrum Analyzer (100 Hz – 22 GHz)	3138A07771	5/16/02
900917	Hewlett Packard	8648C	Signal Generator (100kHz – 3200 MHz)	3537A01741	4/10/02
900928	Hewlett Packard	83752A	Synthesized Sweeper (0.01 GHz – 20 GHz)	3610A00866	5/11/02
900814	Electro-Metrics	EM-6961 (RGA-60)	Double Ridges Guide Antenna 1-18 GHz	2310	2/26/02

7.3 FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA - §2.1053

Operating Frequency (MHz): 1902.35

Channel: 25

Measured Power at the Antenna Port (dBm): 17.29

Modulation: DXW Distance (m): 3 Limit (dBc): 30.29

TABLE 7-2: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)		Corrected Signal Generator Level (dBm)	Corrected Level (dBc)	Margin (dB)
3804.700	-45.6	1.3	5.9	-41.0	58.3	-28.0
5707.050						<-40.0
7609.400						<-40.0
9511.750						<-40.0
11414.100						<-40.0
13316.450						<-40.0
15218.800						<-40.0
17121.150						<-40.0
19023.500						<-40.0

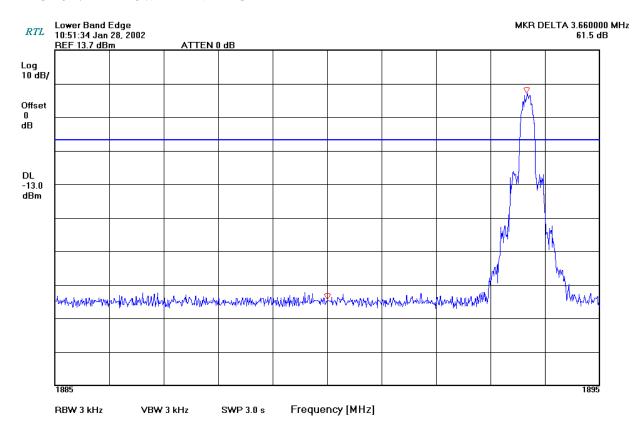
Signature: Test Date: February 1, 2002

Typed/Printed Name: Daniel Baltzell Position: Test Engineer

8 BAND-EDGE COMPLIANCE - PART 24.238

8.1 TEST PROCEDURE:

Delta Marker method: The resolution of the spectrum analyzer is adjusted to 1% of the emission bandwidth after the reference level is adjusted to the EIRP level using a resolution and video bandwidth of 1 MHz. The frequency is centered on the band edge of interest with a span capable of showing the peak, a delta to peak is performed with the display line set at -13 dBm (43+10LogP).



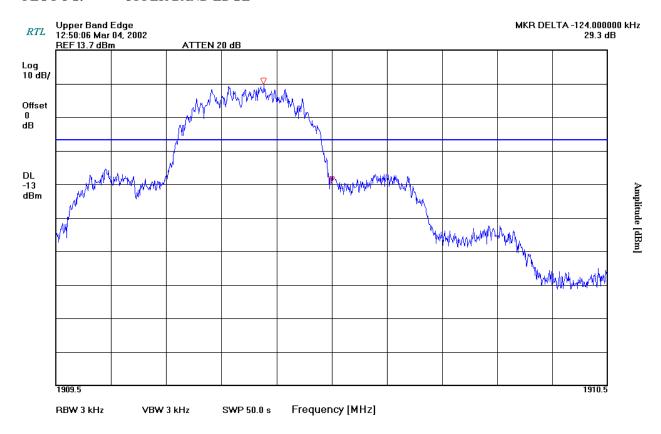
8.2 TEST DATA

Calculation of Lower Band Edge

The reference level 13.7 dBm is the average radiated EIRP level after duty cycle correction, which the delta measurement of 61.5 dB is subtracted (reference plots), which is equivalent to a level of - 47.8 dBm. This level has a margin of 34.8 dB below the limit of 43 + 10 Log P (-13 dBm).

PLOT 8-1: LOWER BAND EDGE

PERSONNEL INFORMATION:


Signature:	hand W. Date of	Test Date:	January 28, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

D . N. D1 1

Calculation of Upper Band Edge

The reference level 13.7 dBm is the average radiated EIRP level after duty cycle correction, which the delta measurement of 29.3 dB is subtracted (reference plots), which is equivalent to a level of - 15.6 dBm. This level has a margin of 2.6 dB below the limit of 43 + 10 Log P (-13 dBm).

PLOT 8-2: UPPER BAND EDGE

	Vaniel W. Bolger		
Signature:		Test Date:	March 4, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

9 FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055

The frequency stability and RF power, measured at the antenna connector using a communications test set as the specified load, are plotted against supply voltage variations and temperature variations at the highest power levels for each modulation type. All measurements are made at the center of the frequency band.

9.1 MEASUREMENT METHOD:

The frequency stability of the transmitter was measured by:

- Temperature: The temperature was varied from -30°C to +50°C at intervals no more than 10°C throughout the temperature range using an environmental chamber. A period of time sufficient to stabilize all of the components in the equipment shall be allowed prior to each frequency measurement.
- 2. Primary Supply Voltage: The primary supply voltage was varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied. The EUT was tested down to the battery endpoint.

9.2 FREQUENCY STABILITY TEST EQUIPMENT

TABLE 9-1: FREQUENCY STABILITY TEST EQUIPMENT

RTL Asset	Manufacturer	Model	Part Type	Serial Number	Calibration Due
900883	Tenney Engineering, Inc	TH65	Temperature Chamber	11380	11/19/02
901055	Hewlett Packard	8901A Opt. 002-003	Modulation Analyzer	2545A04102	7/31/02

9.3 TIME PERIOD AND PROCEDURE:

- 1. The carrier frequency of the transmitter was measured at room temperature (25°C to provide a reference).
- 2. The equipment was subjected to a "soak" at -30°C without any power applied.
- 3. After the "soak" at -30°C, the measurement of the carrier frequency of the transmitter was made within a three-minute interval after applying power to the transmitter.
- 4. Frequency measurements were made at 10°C intervals up to +50°C, then back to room temperature. A minimum period of one hour was provided to allow stabilization of the equipment at each temperature level.

9.4 FREQUENCY STABILITY § 24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

9.5 FREQUENCY STABILITY TEST DATA - §2.1055

Operating Frequency:	1902.35		MHz	
Channel:	251			
Reference Voltage:	4		VDC	
Deviation Limit:	0.00025	% or	2.5	ppm

TABLE 9-2: TEMPERATURE FREQUENCY STABILITY DATA - §2.1055

	Frequency	
Temperature	Measured	ppm
	(MHz)	
-30	1902.347425	-1.35
-25	1902.348275	-0.91
-20	1902.349325	-0.35
-15	1902.349675	-0.17
-10	1902.349865	-0.07
0	1902.350000	0.00
10	1902.348945	-0.55
20	1902.348550	-0.76
30	1902.348520	-0.78
40	1902.347425	-1.35
50	1902.348275	-0.91

PERSONNEL INFORMATION:

Signature:	Wanuf W. Date of	Test Date:	February 8, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

A. MuRIA

PLOT 9-1: TEMPERATURE FREQUENCY STABILITY DATA - §2.1055

Temperature Frequency Stability

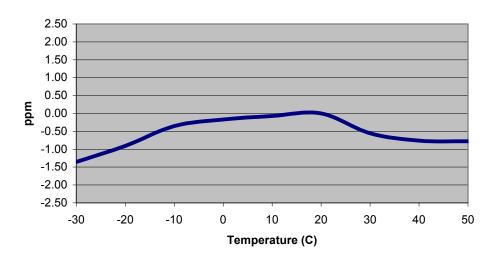
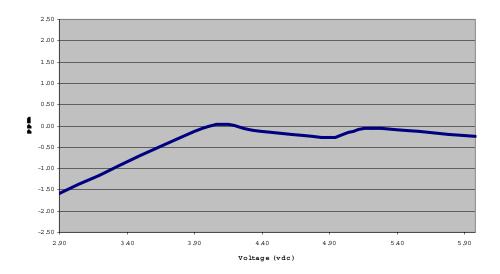


TABLE 9-3: VOLTAGE FREQUENCY STABILITY DATA - §2.1055


Battery endpoint = 2.9 VDC

Voltage	Frequency Measured (MHz)	ppm
2.90	1902.3470060	-1.57
4.00	1902.3500000	0.00
4.34	1902.3497900	-0.11
4.90	1902.3494960	-0.26
5.21	1902.3498820	-0.06
5.98	1902.3495260	-0.25

	Vaniel W. Bolow		
Signature:	<u> </u>	Test Date:	February 8, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

PLOT 9-2: VOLTAGE FREQUENCY STABLITY

Voltage Frequency Stability

	Daniel W. Bolget		
Signature:		Test Date:	February 8, 2002
Typed/Printed Name:	Daniel Baltzell	Position:	Test Engineer

10 CONCLUSION

Receiver Information

Frequency Range

(MHz)

1896.65-1909.95

Test Lab: Applicant Information Rhein Tech Laboratories, Inc. Phone: 703-689-0368 UTStarcom, Inc. 360 Herndon Parkway 33 Wood Avenue South Fax: 703-689-2056 3rd Floor Suite 1400 Web Site: www.rheintech.com Iselin, NJ 08830 Herndon, VA 20170 732-767-5263 (Scott Black) USA FCC ID: O6YUTS-600FSU **GRANTEE FRN NUMBER:** 0005823877 RTL WORK ORDER NUMBER: PLAT FORM: N/A 2002018 MODEL(S): UTS-600FSU RTL QUOTE NUMBER: ORTL02-241 DATE OF TEST REPORT: March 15, 2002 American National Standard ANSI/TIA/EIA603 and ANSI/TIA/EIA 603-1 **Institute: FCC Classification:** PCB - Licensed Base Station for Part 24 PART 24: PERSONAL COMMUNICATIONS SERVICES FCC Rule Part(s): Subpart E - Broadband PCS **Industry Canada Standard:** RSS-133: 2 GHz Personal Communications Services **Digital Interface Information** Digital Interface was found to be compliant

We, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this test report. No modifications were made to the equipment during testing in order to achieve compliance with these standards.

Freq. Tolerance

2.5 ppm

Furthermore, there was no deviation from, additions to or exclusions from the FCC Part 2, FCC Part 15, FCC Part 24, ANSI C63.4, ANSI/TIA/EIA603 and ANSI/TIA/EIA 603-1.

Signature: Date: March 15, 2002

Receiver was found to be compliant

EIRP

(W)

0.380

Typed/Printed Name: Bruno Clavier Position: Vice President of Operations

Signature: Date: March 15, 2002

Typed/Printed Name: Daniel W. Baltzell Position: EMC Test Engineer

Emission Designator

289KDXW

Vaniel W. Baley