

Engineering and Testing for EMC and Safety Compliance

CERTIFICATION APPLICATION REPORT FCC PART 24

Test Lab: Applicant: Rhein Tech Laboratories, Inc. Phone: 703-689-0368 UTStarcom, Inc. Phone: 732-516-7524 33 Wood Avenue South 360 Herndon Parkway Fax: 703-689-2056 Fax: 732-767-5283 Suite 1400 Web: www.rheintech.com 3rd Floor Herndon, VA 20170 Iselin, NJ 08830 USA Contact: ATCBINFO@rheintech.com Contact: Tom Borrelli (borrelli@utstar.com) **GRANTEE FRN NUMBER:** FCC ID: O6Y-FSU810 0005823877 RTL WORK ORDER NUMBER: PLAT FORM: Transmitter 2004227 MODEL: RTL QUOTE NUMBER: FSU810 QRTL04-433 **DATE OF TEST REPORT:** December 20, 2004 **American National Standard** ANSI/TIA-603-B-2002 Institute: **FCC Classification:** PCB - Licensed Base Station for Part 24 Part 24: Personal Communications Services FCC Rule Part(s): Subpart E - Broadband PCS **Digital Interface Information** Digital Interface was found to be compliant **Emission** Frequency Range (MHz) Power (W) **Frequency Tolerance** Designator 1880.15-1909.85 0.085 0.61 ppm 262KDXW

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this test report. No modifications were made to the equipment during testing in order to achieve compliance with these standards. Furthermore, there was no deviation from, additions to, or exclusions from, the FCC Part 2, FCC Part 15, FCC Part 24, ANSI C63.4 and ANSI/TIA-603-B-2002.

Signature: _____ Date: December 20, 2004

Typed/Printed Name: Desmond Fraser Position: President

Day OA. hu

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc.

TABLE OF CONTENTS

1	CE!	NEDAL INFORMATION	-
1		NERAL INFORMATION	
	1.1 1.2	SCOPE	
		TEST FACILITY	
2	1.3	RELATED SUBMITTAL(S)/GRANT(S)	
2		UIPMENT INFORMATION	
	2.1	JUSTIFICATION	
	2.2	EXERCISING THE EUT	
	2.3	MODIFICATIONS	
	2.4	TEST SYSTEM DETAILS	
_	2.5	CONFIGURATION OF TESTED SYSTEM	
3		VOLTAGES AND CURRENTS - PART §2.1033(C)(8)	9
	3.1	DC VOLTAGES AND CURRENTS TEST EQUIPMENT	
4		POWER OUTPUT - §2.1046	10
	4.1	ANSI/TIA-603-B-2002, SECTION 2.2.17 TEST PROCEDURE	10
	4.2	EFFECTIVE ISOTROPIC RADIATED POWER LIMITS - §24.232(B) TEST PROCEDURE	
	4.3	RF POWER TEST EQUIPMENT	10
_	4.4	EFFECTIVE ISOTROPIC RADIATED POWER TEST DATA- §2.1046	11
5	000	CUPIED BANDWIDTH - §2.1049; NECESSARY BANDWIDTH §2.202 (OCCUPIED BANDWIDTH) - PART	
24	•	B) (EMISSION BANDWIDTH)	13
	5.1	TEST PROCEDURE	
	5.2	OCCUPIED BANDWIDTH TEST EQUIPMENT	
_	5.3	TEST DATA (CHANNEL 1: OCCUPIED BANDWIDTH = 262 KHZ)	
6		NDUCTED SPURIOUS AND HARMONIC EMISSIONS - §2.1051	
	6.1	TEST PROCEDURE	
	6.2	CONDUCTED SPURIOUS AND HARMONIC EMISSIONS TEST EQUIPMENT	
	6.3	CONDUCTED SPURIOUS AND HARMONIC TEST DATA - §2.1051	
7		DIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053	
	7.1	RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053	
	7.2	RADIATED SPURIOUS TEST EQUIPMENT	
	7.3	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA - §2.1053	
8		ND-EDGE COMPLIANCE - PART 24.238	
	8.1	TEST PROCEDURE:	
	8.2	TEST DATA	30
9		EQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055	49
	9.1	MEASUREMENT METHOD:	
	9.2	FREQUENCY STABILITY TEST EQUIPMENT	
	9.3	TIME PERIOD AND PROCEDURE:	
	9.4	FREQUENCY STABILITY § 24.235	
	9.5	FREQUENCY STABILITY TEST DATA - §2.1055	
10	0 (CONCLUSION	53

TABLE INDEX

TABLE 2-1:	EQUIPMENT UNDER TEST (EUT)	7
TABLE 2-1.	EQUIPMENT USED TO SET UP EUT	7
TABLE 3-1:	DC VOLTAGES AND CURRENTS TEST EQUIPMENT	،
TABLE 3-1.	DC VOLTAGES AND CURRENTS DATA	و۵
TABLE 4-1:	POWER OUTPUT AT THE ANTENNA PORT DATA - §2.1046	
TABLE 4-1:	RF POWER TEST EQUIPMENT	
TABLE 4-3:	RADIATED POWER DATA - §2.1046 – WHIP ANTENNA	11
TABLE 4-4:	RADIATED POWER DATA - \$2.1046 – PATCH ANTENNA	
TABLE 4-4:	RADIATED POWER DATA - \$2.1046 – ROD ANTENNA	11
TABLE 5-1:	OCCUPIED BANDWIDTH TEST EQUIPMENT	13
TABLE 6-1:	CONDUCTED SPURIOUS AND HARMONIC EMISSIONS TEST EQUIPMENT	15
TABLE 6-2:	CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051	
TABLE 6-3:	CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051	17
TABLE 6-4:	CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051	18
TABLE 7-1:	RADIATED SPURIOUS TEST EQUIPMENT	
TABLE 7-2:	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; WHIP ANTENNA	20
TABLE 7-3:	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; PATCH ANTENNA	
TABLE 7-4:	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; ROD ANTENNA	
TABLE 7-5:	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; WHIP ANTENNA	
TABLE 7-6:	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; PATCH ANTENNA	
TABLE 7-7 :	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; ROD ANTENNA	
TABLE 7-8 :	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; WHIP ANTENNA	
TABLE 7-9:	FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; PATCH ANTENNA	
TABLE 7-10		28
TABLE 8-1:	BAND-EDGE TEST EQUIPMENT	29
TABLE 8-2:	BAND EDGE COMPLIANCE - WHIP ANTENNA	30
TABLE 8-3:	BAND EDGE COMPLIANCE – PATCH ANTENNA	
TABLE 8-4:	BAND EDGE COMPLIANCE – ROD ANTENNA	30
TABLE 9-1:	FREQUENCY STABILITY TEST EQUIPMENT	
TABLE 9-2:	TEMPERATURE FREQUENCY STABILITY DATA - §2.1055	50
TABLE 9-3:	VOLTAGE FREQUENCY STABILITY DATA - §2.1055	51
	PLOT INDEX	
DLOT 5.4.	OCCUPIED BANDWIDTH (2C DB)	4.4
PLOT 5-1: PLOT 8-1:	OCCUPIED BANDWIDTH (-26 DB)LOWER BAND EDGE BLOCK B - WHIP ANTENNA	14
PLOT 8-1. PLOT 8-2:	UPPER BAND EDGE BLOCK B - WHIP ANTENNA	
PLOT 8-2:	LOWER BAND EDGE BLOCK F - WHIP ANTENNA	
PLOT 8-4:	UPPER BAND EDGE BLOCK F - WHIP ANTENNA	
PLOT 8-5:	LOWER BAND EDGE BLOCK C - WHIP ANTENNA	35
PLOT 8-6:	UPPER BAND EDGE BLOCK C - WHIP ANTENNA	
PLOT 8-7:	LOWER BAND EDGE BLOCK B - PATCH ANTENNA	
PLOT 8-8:	UPPER BAND EDGE BLOCK B - PATCH ANTENNA	38
PLOT 8-9:	LOWER BAND EDGE BLOCK F - PATCH ANTENNA	
PLOT 8-10:	UPPER BAND EDGE BLOCK F - PATCH ANTENNA	
PLOT 8-11:	LOWER BAND EDGE BLOCK C - PATCH ANTENNA	
PLOT 8-12:	UPPER BAND EDGE BLOCK C - PATCH ANTENNA	
PLOT 8-13:	LOWER BAND EDGE BLOCK B - ROD ANTENNA	
PLOT 8-14:	UPPER BAND EDGE BLOCK B - ROD ANTENNA	
PLOT 8-15:	LOWER BAND EDGE BLOCK F - ROD ANTENNA	
PLOT 8-16:	UPPER BAND EDGE BLOCK F - ROD ANTENNA	46
PLOT 8-17:	LOWER BAND EDGE BLOCK C - ROD ANTENNA	
PLOT 8-18:	UPPER BAND EDGE BLOCK C - ROD ANTENNA	48
PLOT 9-1:	TEMPERATURE FREQUENCY STABILITY DATA - §2.1055	
PI OT 9-2:	VOLTAGE FREQUENCY STABILITY	52

APPENDIX INDEX

APPENDIX A:	RF EXPOSURE COMPLIANCE	54
APPENDIX B:	AGENCY AUTHORIZATION LETTER	
APPENDIX C:	CONFIDENTIALITY REQUEST LETTER	
APPENDIX D:	PRODUCT DESCRIPTION	
APPENDIX E:	LABEL AND LABEL LOCATION	
APPENDIX F:	ANTENNA SPECIFICATIONS	
APPENDIX G:	BILL OF MATERIAL (PARTS LIST)	63
APPENDIX H:	SCHEMATIC	64
APPENDIX I:	TEST/TUNE PROCEDURE	65
APPENDIX J:	MANUAL	66
APPENDIX K:	TEST PHOTOGRAPHS	67
APPENDIX L:	EXTERNAL PHOTOGRAPHS	73
APPENDIX M:	INTERNAL PHOTOGRAPHS	81
	PHOTOGRAPH INDEX	
PHOTOGRAPH 1:		
PHOTOGRAPH 2:		
PHOTOGRAPH 3:		
PHOTOGRAPH 4:		
PHOTOGRAPH 5:		
PHOTOGRAPH 6:		
PHOTOGRAPH 7:		
PHOTOGRAPH 8: PHOTOGRAPH 9:		
PHOTOGRAPH 10		
PHOTOGRAPH 1		
PHOTOGRAPH 12	,	
PHOTOGRAPH 13		
PHOTOGRAPH 14		
PHOTOGRAPH 15		
PHOTOGRAPH 16	S: TOP OF POWER SWITCH/LED PCB	81
PHOTOGRAPH 17		82
PHOTOGRAPH 18		
PHOTOGRAPH 19		
PHOTOGRAPH 20): TOP OF PCB WITH SHIELDS REMOVED	85

PHOTOGRAPH 21: BOTTOM OF PCB86

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com

Client: UTStarcom
Model: FSU810
FCC ID: O6Y-FSU810
FCC: Part 24
Report #: 2004227

1 GENERAL INFORMATION

1.1 SCOPE

FCC Rules Part 24 (E) Personal Communications Services - Broadband PCS

All measurements contained in this application were conducted in accordance with the FCC Rules and Regulations CFR47 and ANSI/TIA-603-B-2002 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

1.2 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 2003).

1.3 RELATED SUBMITTAL(S)/GRANT(S)

This is a new application submittal. The digital interface and receiver were investigated and found compliant. A DoC report can be provided upon request.

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com

Client: UTStarcom
Model: FSU810
FCC ID: O6Y-FSU810
FCC: Part 24
Report #: 2004227

2 EQUIPMENT INFORMATION

2.1 JUSTIFICATION

To complete the test configuration required by the FCC, the transmitter was software-controlled by the manufacturer to operate in a continuous mode. The final data was taken as a substitution measurement. The device is provided with an external antenna connector. EIRP measurement is provided to support the RF exposure requirements for the antennas listed in this application filing.

2.2 EXERCISING THE EUT

The FSU810 is a desk phone transmitter designed to link to a PHS phone network which transmits at a frequency within the range 1880.15 MHz – 1909.85 MHz. Three channels were investigated: 1880.15 MHz, 1895.15 MHz, and 1909.85 MHz, in three orthogonal planes, with the receiving antenna in both horizontal and vertical polarities, from 1 meter to 4 meters in height.

2.3 MODIFICATIONS

No modifications were necessary for compliance. There were no deviations from the test standards(s) and/or methods.

2.4 TEST SYSTEM DETAILS

The test sample was received on December 3, 2004. The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system, are:

TABLE 2-1: EQUIPMENT UNDER TEST (EUT)

Part	Manufacturer	Model	Serial Number	FCC ID	Cable Description	RTL Bar Code
Radio	UTStarcom	FSU810	136516936	O6Y-FSU810	1 m RJ-11	16357
4.8V Ni-MH Battery	UTStarcom	HZSN1600AA	BY0013EF	N/A	10 cm unshielded	16399
Radio	UTStarcom	FSU810	136516934	O6Y-FSU810	1 m RJ-11	16356
4.8V Ni-MH Battery	UTStarcom	HZSN1600AA	BY0007D4	N/A	10 cm unshielded	16396
10 dBi Antenna	UTStarcom	QXX0318900	B03721	N/A	5 m shielded I/O	16358
4.5 dBi Omni Antenna	UTStarcom	QTA0000500	00009	N/A	1.6 m Shielded	16359
2.5 dBi Whip Antenna	UTStarcom	N/A	N/A	N/A	N/A	16397
2.5 dBi Whip Antenna	UTStarcom	N/A	N/A	N/A	N/A	16398
AC Adapter	UTStarcom	S686502A	CY150445	N/A	1.7 m unshielded DC power; 1.8 m unshielded AC power	16360
AC Adapter	UTStarcom	S686502A	CB200409	N/A	1.7 m unshielded DC power; 1.8 m unshielded AC power	16361

TABLE 2-2: EQUIPMENT USED TO SET UP EUT

Part	Manufacturer	Model	Serial Number	FCC ID	Cable Description	RTL Bar Code
Interface Box	UTStarcom	SO-Writer	91003913100	NA	1.8m shielded serial cable; 0.5m shielded I/O cable	16378
AC Adapter	UTStarcom	UT618/UT618+	CB200308	N/A	1.7m shielded power	16381

2.5 CONFIGURATION OF TESTED SYSTEM

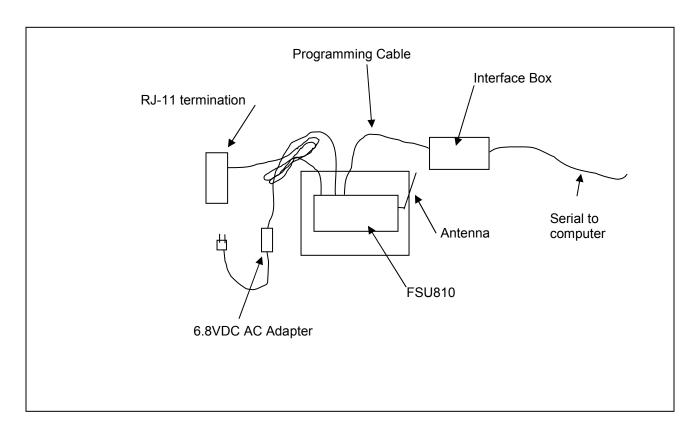


FIGURE 2-1: CONFIGURATION OF TESTED SYSTEM

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com

Client: UTStarcom
Model: FSU810
FCC ID: O6Y-FSU810
FCC: Part 24
Report #: 2004227

3 DC VOLTAGES AND CURRENTS - PART §2.1033(C)(8)

The DC voltages applied to, and DC currents into, the several elements of the final radio frequency amplifying device for normal operation over the power range.

3.1 DC VOLTAGES AND CURRENTS TEST EQUIPMENT

TABLE 3-1: DC VOLTAGES AND CURRENTS TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due	
901350	Meterman	33XR	Multimeter	N/A	7/21/05	

TABLE 3-2: DC VOLTAGES AND CURRENTS DATA

	Typical
Voltage (DC)	6.8
Current (mA)	41.6

TEST PERSONNEL:

4 RF POWER OUTPUT - §2.1046

TABLE 4-1: POWER OUTPUT AT THE ANTENNA PORT DATA - §2.1046

Channel	Frequency (MHz)	Peak Power Meter Level (dBm)
206	1880.15	19.1
1	1895.15	19.2
50	1909.85	19.3

TEST PERSONNEL:

Daniel W. Baltzell

EMC Test Engineer

Signature

December 17, 2004

Date Of Test

4.1 ANSI/TIA-603-B-2002, SECTION 2.2.17 TEST PROCEDURE

Substitution method.

4.2 EFFECTIVE ISOTROPIC RADIATED POWER LIMITS - §24.232(B) TEST PROCEDURE

Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

4.3 RF POWER TEST EQUIPMENT

TABLE 4-2: RF POWER TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz - 2 GHz)	2648	9/20/05
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer 3943A01719 (9 kHz - 40 GHz)		8/11/05
900928	Hewlett Packard	83752A	Synthesized Sweeper (0.01 - 20 GHz)	3610A00866	9/5/05
900814	Electro-Metrics	EM-6961 (RGA-60)	Double Ridged Guide Antenna (1 - 18 GHz)	2310	2/17/06
901184	Agilent Technologies	E4416A	EPM-P Power Meter, single channel	1 (aB410505/3	
901186	Agilent Technologies	E9323A (50MHz-6GHz)	Peak & Average Power Sensor	US40410380	8/2/05

4.4 EFFECTIVE ISOTROPIC RADIATED POWER TEST DATA- §2.1046

TABLE 4-3: RADIATED POWER DATA - §2.1046 – WHIP ANTENNA

Channel	Test Detector	Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)
206	Pk	1880.15	84.3	9.6	4.1	7.0	12.5	0.018
1	Pk	1895.15	83.7	9.1	4.1	7.0	12.0	0.016
50	Pk	1909.85	87.0	12.6	4.1	7.0	15.5	0.035

TABLE 4-4: RADIATED POWER DATA - §2.1046 – PATCH ANTENNA

Channel	Test Detector	Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)
206	Pk	1880.15	86.0	11.3	4.1	7.0	14.2	0.026
251	Pk	1895.15	87.5	12.9	4.1	7.0	15.8	0.038
50	Pk	1909.85	87.3	12.9	4.1	7.0	15.8	0.038

TABLE 4-5: RADIATED POWER DATA - §2.1046 – ROD ANTENNA

Channel	Test Detector	Frequency (MHz)	Spectrum Analyzer Level (dBuV)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)
206	Pk	1880.15	87.5	12.8	4.1	7.0	15.7	0.037
251	Pk	1895.15	88.7	14.1	4.1	7.0	17.0	0.050
50	Pk	1909.85	88.5	14.1	4.1	7.0	17.0	0.050

Notes: Pk = Peak Detector

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com

Client: UTStarcom
Model: FSU810
FCC ID: 06Y-FSU810
FCC: Part 24
Report #: 2004227

EIRP Measurements by Substitution Method.

The EUT was placed on a turntable 3 meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was maximized using a calibrated spectrum analyzer using a 1 MHz resolution bandwidth for each channel being tested, and adjusted to a peak and average level using a power meter attached at the end of the receive antenna. A double ridge horn antenna was substituted in place of the EUT. The horn antenna was fed by a signal generator and adjusted until the previous level was attained. This level was recorded and was further corrected by subtracting the cable loss from the signal generator to the transmit antenna and adding the horn gain.

i.e., Sg - CL + Gn = EIRP (dBm)

Sg = Signal Generator Level (dBm)

CL = Cable Loss (dB)

Gn = Transmitting horn antenna gain (dBi)

TEST PERSONNEL:

Daniel W. Baltzell December 20, 2004

EMC Test Engineer Signature Date Of Test

5 OCCUPIED BANDWIDTH - §2.1049; NECESSARY BANDWIDTH §2.202 (OCCUPIED BANDWIDTH) - PART 24.238(B) (EMISSION BANDWIDTH)

Channel 50 was found to be the worst case and is shown below.

Type of Emission: DXW

Necessary bandwidth designator derived from measurement of emission bandwidth (-26 dB) (263 kHz): 263KDXW

OCCUPIED BANDWIDTH (99% POWER BANDWIDTH) - COMPLIANCE WITH THE EMISSION MASKS

5.1 TEST PROCEDURE

ANSI/TIA-603-B-2002, section 2.2.11

Device with digital modulation: operation to its maximum extent.

Note: Reference level is average conducted power measurement.

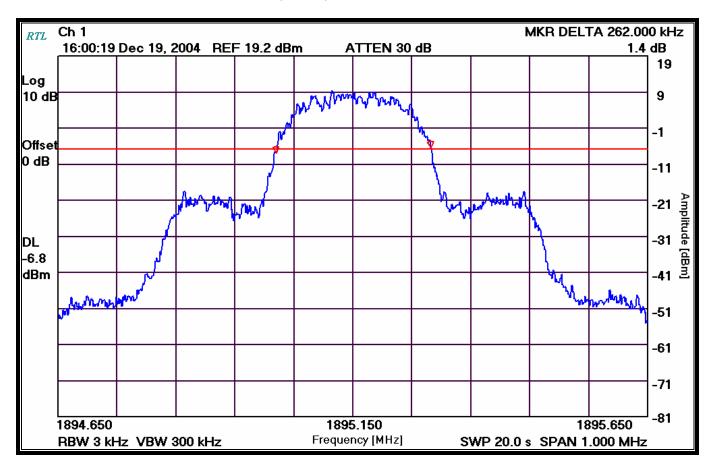

5.2 OCCUPIED BANDWIDTH TEST EQUIPMENT

TABLE 5-1: OCCUPIED BANDWIDTH TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
900931	Hewlett Packard	8566B	Spectrum Analyzer (100 Hz – 22 GHz)	3138A07771	6/23/05

5.3 TEST DATA (CHANNEL 1: OCCUPIED BANDWIDTH = 262 KHZ)

PLOT 5-1: OCCUPIED BANDWIDTH (-26 DB)

TEST PERSONNEL:

6 CONDUCTED SPURIOUS AND HARMONIC EMISSIONS - §2.1051

6.1 TEST PROCEDURE

ANSI/TIA-603-B-2002, Section 2.2.13

The transmitter antenna terminal is connected with the 50 Ω impedance input to the spectrum analyzer. The worst case average channel test data is provided.

6.2 CONDUCTED SPURIOUS AND HARMONIC EMISSIONS TEST EQUIPMENT

TABLE 6-1: CONDUCTED SPURIOUS AND HARMONIC EMISSIONS TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
900931	Hewlett Packard	8566B	Spectrum Analyzer (100 Hz – 22 GHz)	3138A07771	6/23/05

December 17, 2004

6.3 CONDUCTED SPURIOUS AND HARMONIC TEST DATA - §2.1051

Operating Frequency (MHz): 1880.15

Channel: 206

Measured Power at the Antenna Port (dBm): 19.1

Modulation: DXW Limit (dBc): 32.1

TABLE 6-2: CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051

Frequency (MHz)	Measured Level (dBc)	Margin (dB)
1880.150	69.7	-37.6
3760.300	64.0	-31.9
5640.450	76.2	-44.1
7520.600	79.3	-47.2
9400.750	88.9	-56.8
11280.900	85.6	-53.5
13161.050	83.7	-51.6
15041.200	81.6	-49.5
16921.350	80.9	-48.8
18801.500	69.7	-37.6

TEST PERSONNEL:

Daniel W. Baltzell

EMC Test Engineer Signature Date Of Test

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170

Client: UTStarcom Model: FSU810
FCC ID: 06Y-FSU810
FCC: Part 24
Report #: 2004227

Operating Frequency (MHz): 1895.15

Channel: 01

Measured Power at the Antenna Port (dBm): 19.2

Modulation: DXW Limit (dBc): 32.2

TABLE 6-3: CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051

Frequency (MHz)	Measured Level (dBc)	Margin (dB)
3790.300	73.6	-41.4
5685.450	69.6	-37.4
7580.600	81.8	-49.6
9475.750	84.1	-51.9
11370.900	89.7	-57.5
13266.050	85.4	-53.2
15161.200	85.0	-52.8
17056.350	85.5	-53.3
18951.500	81.2	-49.0
3790.300	73.6	-41.4
5685.450	69.6	-37.4

TEST PERSONNEL:

December 17, 2004 Daniel W. Baltzell

Date Of Test **EMC Test Engineer**

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170

Client: UTStarcom Model: FSU810
FCC ID: O6Y-FSU810
FCC: Part 24
Report #: 2004227

Operating Frequency (MHz): 1909.85

Channel: 50

Measured Power at the Antenna Port (dBm): 19.3

Modulation: DXW Limit (dBc): 32.3

TABLE 6-4: CONDUCTED SPURIOUS AND HARMONIC DATA §2.1051

Frequency (MHz)	Measured Level (dBc)	Margin (dB)
3819.700	77.3	-45.0
5729.550	69.0	-36.7
7639.400	81.1	-48.8
9549.250	82.8	-50.5
11459.100	90.3	-58.0
13368.950	86.2	-53.9
15278.800	84.6	-52.3
17188.650	86.3	-54.0
19098.500	81.9	-49.6

TEST PERSONNEL:

Daniel W. Baltzell

December 17, 2004 **EMC Test Engineer** Signature Date Of Test

7 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

7.1 RADIATED SPURIOUS AND HARMONIC EMISSIONS - §2.1053

Substitution method. The EUT was terminated with a 50 ohm termination and placed on a turntable 3 meters from the receive antenna. The field of maximum intensity was found by rotating the EUT approximately 360 degrees and changing the height of the receive antenna from 1 to 4 meters. The field strength was recorded from a calibrated spectrum analyzer for each channel being tested. A double ridge horn antenna was substituted in place of the EUT. The horn antenna was fed by a signal generator and adjusted until the previous level was attained. The signal generator level was recorded. It was further corrected by subtracting the cable loss from the signal generator to the dipole, and adding the horn gain. The worst case average channel test data is provided.

7.2 RADIATED SPURIOUS TEST EQUIPMENT

TABLE 7-1: RADIATED SPURIOUS TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz - 2 GHz)	2648	9/20/05
900932	Hewlett Packard	8449B OPT H02	Preamplifier (1 - 26.5 GHz)	3008A00505	5/5/05
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz - 40 GHz)	3943A01719	8/11/05
900928	Hewlett Packard	83752A	Synthesized Sweeper (0.01 - 20 GHz)	3610A00866	9/5/05
900814	Electro-Metrics	EM-6961 (RGA-60)	Double Ridged Guide Antenna (1 - 18 GHz)	2310	2/17/06
900772	EMCO	3161-02	Horn Antenna (2 - 4 GHz)	9804-1044	5/20/07
900321	EMCO	3161-03	Horn Antennas (4 - 8,2GHz)	9508-1020	5/20/07
900323	EMCO	3160-7	Horn Antennas (8,2 - 12,4 GHz)	9605-1054	5/20/07
900356	EMCO	3160-08	Horn Antenna (12.4 - 18 GHz)	9607-1044	5/20/07
900325	EMCO	3160-9	Horn Antennas (18 - 26.5 GHz)	9605-1051	5/20/07
901231	IW Microwave Products	KPS-1503- 2400-KPS	High frequency RF cables	240"	1/30/05
901232	IW Microwave Products	KPS-1503- 2400-KPS	High frequency RF cables	240"	1/30/05
901235	IW Microwave Products	KPS-1503- 360-KPS	High frequency RF cables	36"	1/30/05
901242	Rhein Tech Labs	WRT-000- 0003	Wood rotating table	N/A	Not Required
900878	Rhein Tech Labs	AM3-1197- 0005	3 meter antenna mast, polarizing	Outdoor Range 1	Not Required

7.3 FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA - §2.1053

Operating Frequency (MHz): 1880.15

Channel: 206

Measured EIRP (dBm): 12.5

Modulation: DXW Distance (m): 3 Limit (dBc): 25.5

TABLE 7-2: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; WHIP ANTENNA

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Corrected Level (dBc)	Margin (dB)
3760.300	-42.4	5.9	8.0	52.8	-27.3
5640.450	-50.4	7.3	8.7	61.5	-36.0
7520.600	-43.4	8.9	9.7	55.1	-29.6
9400.750	-45.9	9.9	10.3	58.0	-32.5
11280.900	-43.3	11.1	10.7	56.2	-30.7
13161.050	-37.7	12.0	12.5	49.7	-24.2
15041.200	-33.9	12.1	10.7	47.8	-22.3
16921.350	-33.7	13.1	13.2	46.1	-20.6
18801.500	-32.5	13.9	6.8	52.1	-26.6

Operating Frequency (MHz): 1880.15

Channel: 206

Measured EIRP (dBm): 14.2

Modulation: DXW Distance (m): 3 Limit (dBc): 27.2

TABLE 7-3: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; PATCH ANTENNA

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Corrected Level (dBc)	Margin (dB)
3760.300	-44.9	5.9	8.0	57.0	-29.8
5640.450	-54.1	7.3	8.7	66.9	-39.7
7520.600	-43.6	8.9	9.7	57.0	-29.8
9400.750	-46.1	9.9	10.3	59.9	-32.7
11280.900	-36.9	11.1	10.7	51.5	-24.3
13161.050	-25.4	12.0	12.5	39.1	-11.9
15041.200	-34.2	12.1	10.7	49.8	-22.6
16921.350	-34.5	13.1	13.2	48.6	-21.4
18801.500	-32.2	13.9	6.8	53.5	-26.3

Operating Frequency (MHz): 1880.15 Channel: 206

Measured EIRP (dBm): 15.7

Modulation: DXW Distance (m): 3 Limit (dBc): 28.7

TABLE 7-4: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; ROD ANTENNA

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Corrected Level (dBc)	Margin (dB)
3760.300	-46.1	5.9	8.0	59.7	-31.0
5640.450	-53.6	7.3	8.7	67.9	-39.2
7520.600	-43.8	8.9	9.7	58.7	-30.0
9400.750	-45.8	9.9	10.3	61.1	-32.4
11280.900	-37.0	11.1	10.7	53.1	-24.4
13161.050	-38.4	12.0	12.5	53.6	-24.9
15041.200	-34.4	12.1	10.7	51.5	-22.8
16921.350	-35.0	13.1	13.2	50.6	-21.9
18801.500	-32.4	13.9	6.8	55.2	-26.5

Operating Frequency (MHz): 1895.15

Channel: 1

Measured EIRP (dBm): 12.0 Modulation: DXW

Modulation: DXW Distance (m): 3 Limit (dBc): 25.0

TABLE 7-5: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; WHIP ANTENNA

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Corrected Level (dBc)	Margin (dB)
3790.300	-44.8	5.9	8.0	54.7	-29.7
5685.450	-50.9	7.3	8.7	61.5	-36.5
7580.600	-46.4	8.9	9.8	57.5	-32.5
9475.750	-45.9	9.9	10.5	57.3	-32.3
11370.900	-42.8	11.3	10.7	55.4	-30.4
13266.050	-35.9	11.7	12.7	46.9	-21.9
15161.200	-34.8	12.1	10.9	48.0	-23.0
17056.350	-34.1	13.3	12.8	46.6	-21.6
18951.500	-32.3	13.7	6.8	51.2	-26.2

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com

Client: UTStarcom
Model: FSU810
FCC ID: 06Y-FSU810
FCC: Part 24
Report #: 2004227

Operating Frequency (MHz): 1895.15

Channel: 1

Measured EIRP (dBm): 15.8 Modulation: DXW

Modulation: DXW Distance (m): 3
Limit (dBc): 28.8

TABLE 7-6: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; PATCH ANTENNA

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Corrected Level (dBc)	Margin (dB)
3790.300	-44.7	5.9	8.0	58.4	-29.6
5685.450	-53.2	7.3	8.7	67.6	-38.8
7580.600	-46.9	8.9	9.8	61.8	-33.0
9475.750	-45.9	9.9	10.5	61.1	-32.3
11370.900	-42.6	11.3	10.7	59.0	-30.2
13266.050	-30.5	11.7	12.7	45.3	-16.5
15161.200	-35.0	12.1	10.9	52.0	-23.2
17056.350	-35.1	13.3	12.8	51.4	-22.6
18951.500	-31.5	13.7	6.8	54.2	-25.4

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com

Client: UTStarcom
Model: FSU810
FCC ID: 06Y-FSU810
FCC: Part 24
Report #: 2004227

Operating Frequency (MHz): 1895.15

Channel: 1

Measured EIRP (dBm): 17.0 Modulation: DXW

Modulation: DXW Distance (m): 3 Limit (dBc): 30.0

TABLE 7-7: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; ROD ANTENNA

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Corrected Level (dBc)	Margin (dB)
3790.300	-45.6	5.9	8.0	60.5	-30.5
5685.450	-53.7	7.3	8.7	69.3	-39.3
7580.600	-46.8	8.9	9.8	62.9	-32.9
9475.750	-45.9	9.9	10.5	62.3	-32.3
11370.900	-41.1	11.3	10.7	58.7	-28.7
13266.050	-35.9	11.7	12.7	51.9	-21.9
15161.200	-35.1	12.1	10.9	53.3	-23.3
17056.350	-34.4	13.3	12.8	51.9	-21.9
18951.500	-32.5	13.7	6.8	56.4	-26.4

Operating Frequency (MHz): 1909.85

Channel: 50

Measured EIRP (dBm): 15.5

Modulation: DXW Distance (m): 3 Limit (dBc): 28.5

TABLE 7-8: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; WHIP ANTENNA

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Corrected Level (dBc)	Margin (dB)
3819.700	-43.8	5.9	8.0	57.2	-28.7
5729.550	-49.3	7.4	8.7	63.5	-35.0
7639.400	-48.6	9.0	10.0	63.1	-34.6
9549.250	-46.7	9.9	10.6	61.5	-33.0
11459.100	-43.6	11.3	10.7	59.7	-31.2
13368.950	-31.3	11.8	12.8	45.8	-17.3
15278.800	-34.1	12.2	11.0	50.8	-22.3
17188.650	-34.7	13.2	12.2	51.2	-22.7
19098.500	-33.1	13.6	6.8	55.4	-26.9

Operating Frequency (MHz): 1909.85

Channel: 50

Measured EIRP (dBm): 15.8

Modulation: DXW Distance (m): 3 Limit (dBc): 28.8

TABLE 7-9: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; PATCH ANTENNA

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Corrected Level (dBc)	Margin (dB)
3819.700	-43.4	5.9	8.0	57.1	-28.3
5729.550	-52.4	7.4	8.7	66.9	-38.1
7639.400	-47.3	9.0	10.0	62.1	-33.3
9549.250	-36.0	9.9	10.6	51.1	-22.3
11459.100	-43.4	11.3	10.7	59.8	-31.0
13368.950	-40.6	11.8	12.8	55.4	-26.6
15278.800	-37.3	12.2	11.0	54.3	-25.5
17188.650	-38.2	13.2	12.2	55.0	-26.2
19098.500	-36.7	13.6	6.8	59.3	-30.5

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com

Client: UTStarcom
Model: FSU810
FCC ID: O6Y-FSU810
FCC: Part 24
Report #: 2004227

Operating Frequency (MHz): 1909.85

Channel: 50

Measured EIRP (dBm): 17.0

Modulation: DXW Distance (m): 3 Limit (dBc): 30.0

TABLE 7-10: FIELD STRENGTH OF SPURIOUS RADIATION TEST DATA §2.1053; ROD ANTENNA

Frequency (MHz)	Signal Generator Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Corrected Level (dBc)	Margin (dB)
3819.700	-44.6	5.9	8.0	59.5	-29.5
5729.550	-53.5	7.4	8.7	69.2	-39.2
7639.400	-48.1	9.0	10.0	64.1	-34.1
9549.250	-37.3	9.9	10.6	53.6	-23.6
11459.100	-39.5	11.3	10.7	57.1	-27.1
13368.950	-35.5	11.8	12.8	51.5	-21.5
15278.800	-34.1	12.2	11.0	52.3	-22.3
17188.650	-34.3	13.2	12.2	52.3	-22.3
19098.500	-32.1	13.6	6.8	55.9	-25.9

TEST PERSONNEL:

Daniel W. Baltzell

EMC Test Engineer

Signature

December 20, 2004 Date Of Test

8 BAND-EDGE COMPLIANCE - PART 24.238

8.1 TEST PROCEDURE:

Delta Marker method: The resolution of the spectrum analyzer is adjusted to 1% of the emission bandwidth after the reference level is adjusted to the EIRP level using a resolution and video bandwidth of 1 MHz. The frequency is centered on the band edge of interest with a span capable of showing the peak; a delta-to-peak is performed with the display line set at –13 dBm (43+10LogP).

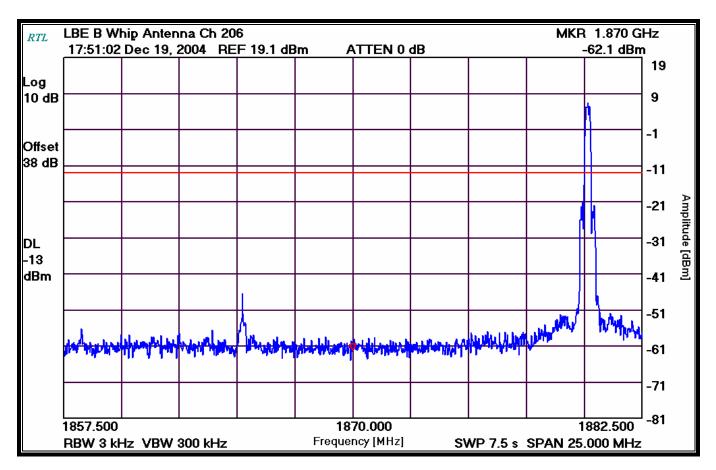
TABLE 8-1: BAND-EDGE TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
901053	Schaffner Chase	CBL6112B	Bi-Log Antenna (20 MHz - 2 GHz)	2648	9/20/05
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz - 40 GHz)	3943A01719	8/11/05

8.2 TEST DATA

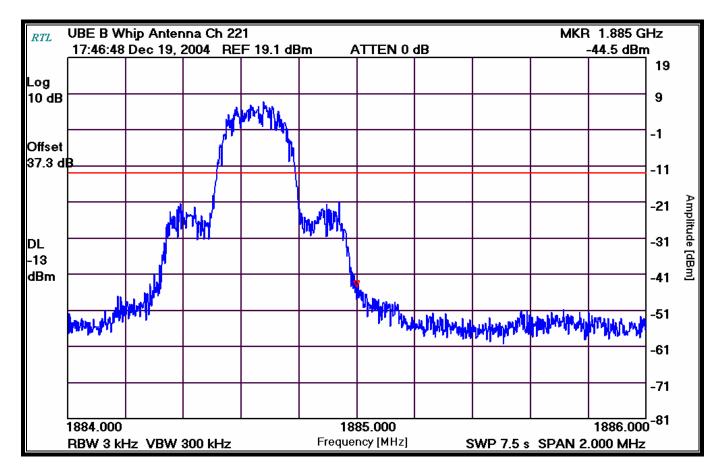
TABLE 8-2: BAND EDGE COMPLIANCE – WHIP ANTENNA

Block applicable	Frequency (MHz)	Spurious at block edge (dBm)	Limit (dBm)	Margin (dB)
В	1865.10	-41.6	-13.0	-28.6
В	1885.00	-44.5	-13.0	-31.5
F	1890.00	-44.9	-13.0	-31.9
F	1895.14	-24.6	-13.0	-11.6
С	1894.86	-23.7	-13.0	-10.7
С	1910.04	-27.5	-13.0	-14.5

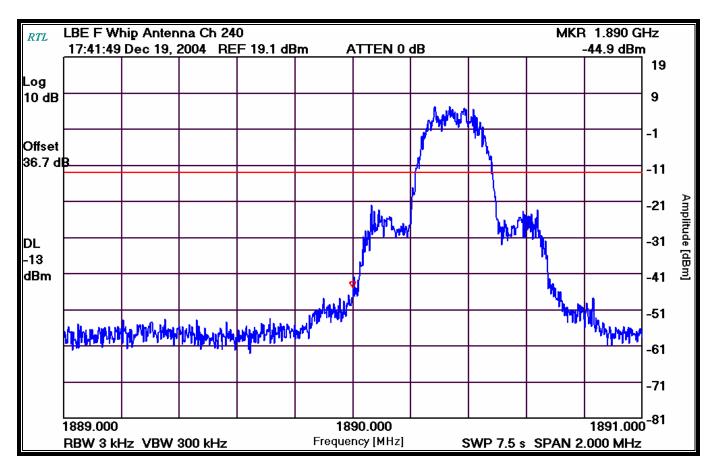

TABLE 8-3: BAND EDGE COMPLIANCE - PATCH ANTENNA

Block applicable	Frequency (MHz)	Spurious at block edge (dBm)	Limit (dBm)	Margin (dB)
В	1865.20	-41.4	-13.0	-28.4
В	1885.00	-45.9	-13.0	-32.9
F	1890.00	-47.3	-13.0	-34.3
F	1895.13	-22.7	-13.0	-9.7
С	1894.86	-21.5	-13.0	-8.5
С	1910.14	-21.0	-13.0	-8.0

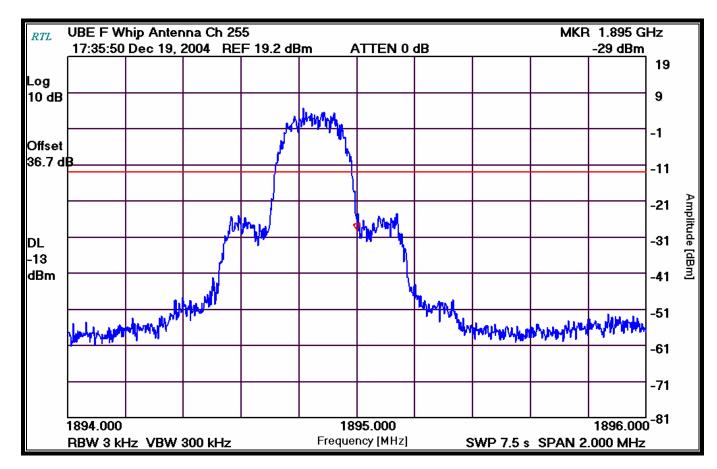
TABLE 8-4: BAND EDGE COMPLIANCE - ROD ANTENNA


Block applicable	Frequency (MHz)	Spurious at block edge (dBm)	Limit (dBm)	Margin (dB)
В	1870.00	-44.2	-13.0	-31.2
В	1885.00	-45.9	-13.0	-32.9
F	1890.00	-44.5	-13.0	-31.5
F	1895.04	-22.4	-13.0	-9.4
С	1894.87	-25.5	-13.0	-12.5
С	1910.03	-26.1	-13.0	-13.1

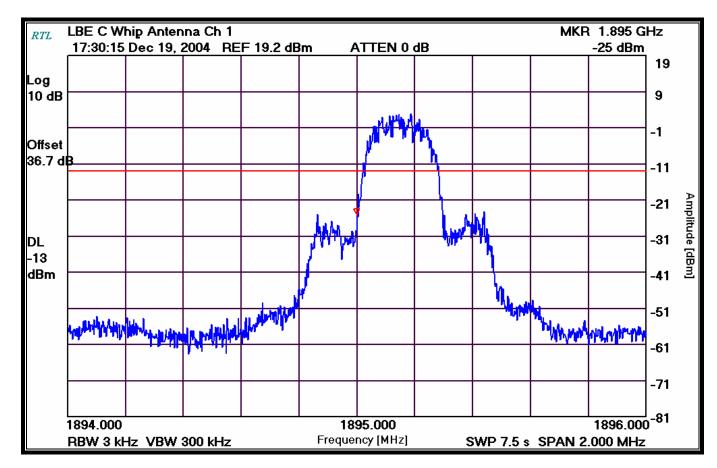
PLOT 8-1: LOWER BAND EDGE BLOCK B - WHIP ANTENNA


TEST PERSONNEL:

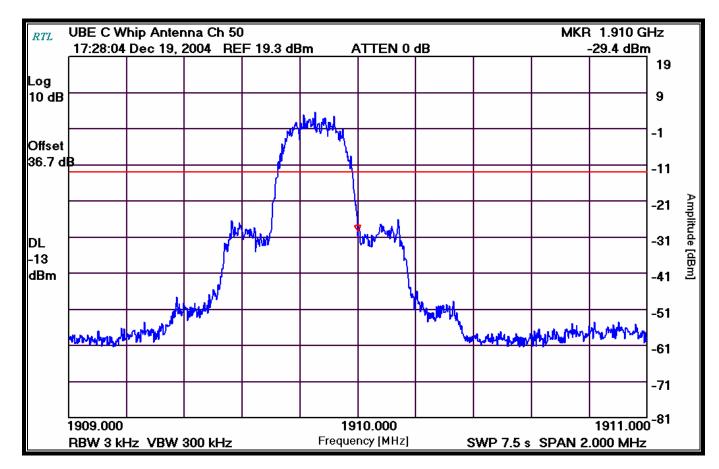
PLOT 8-2: UPPER BAND EDGE BLOCK B - WHIP ANTENNA


TEST PERSONNEL:

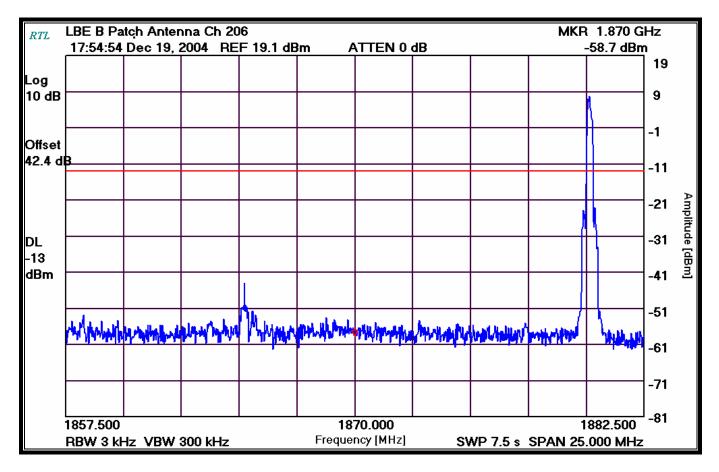
PLOT 8-3: LOWER BAND EDGE BLOCK F - WHIP ANTENNA


TEST PERSONNEL:

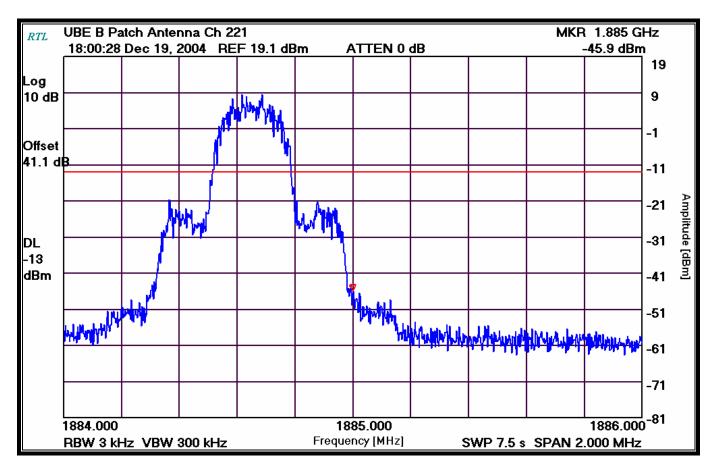
PLOT 8-4: UPPER BAND EDGE BLOCK F - WHIP ANTENNA


TEST PERSONNEL:

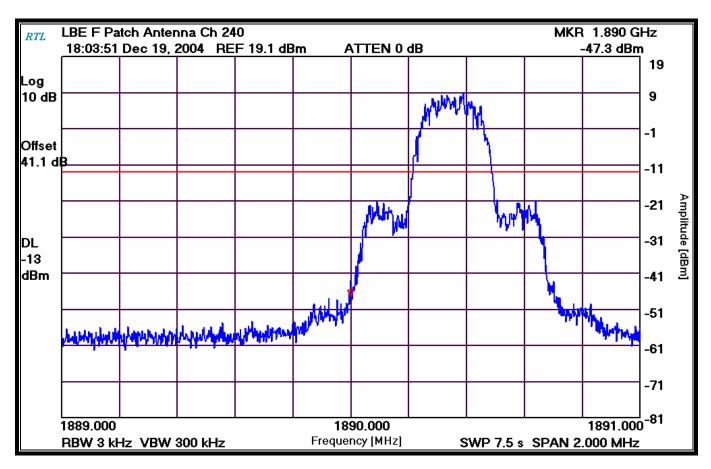
PLOT 8-5: LOWER BAND EDGE BLOCK C - WHIP ANTENNA


TEST PERSONNEL:

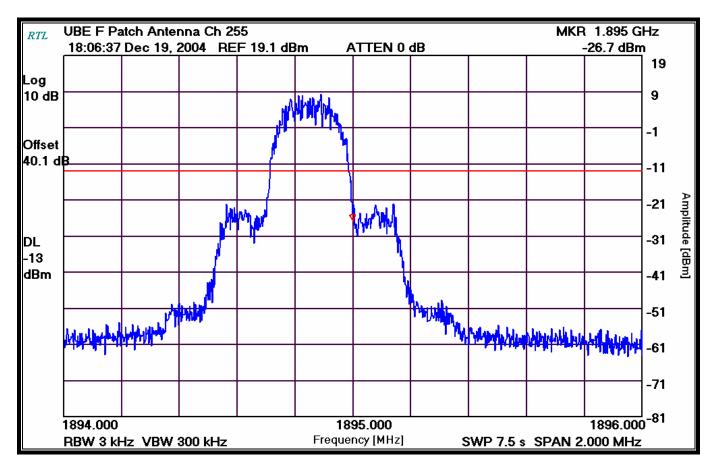
PLOT 8-6: UPPER BAND EDGE BLOCK C - WHIP ANTENNA


TEST PERSONNEL:

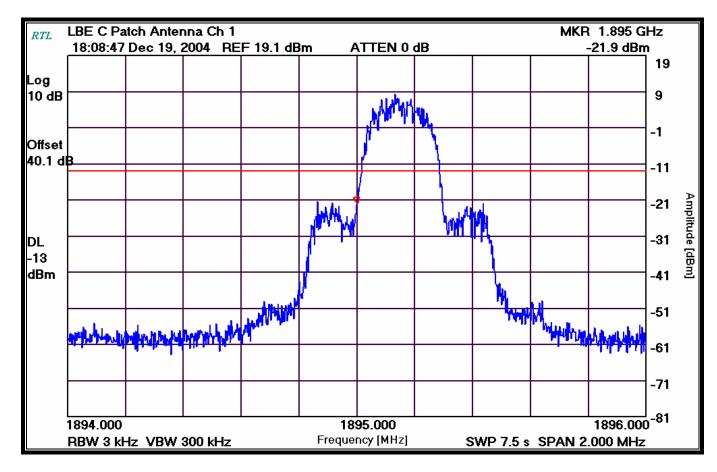
PLOT 8-7: LOWER BAND EDGE BLOCK B - PATCH ANTENNA


TEST PERSONNEL:

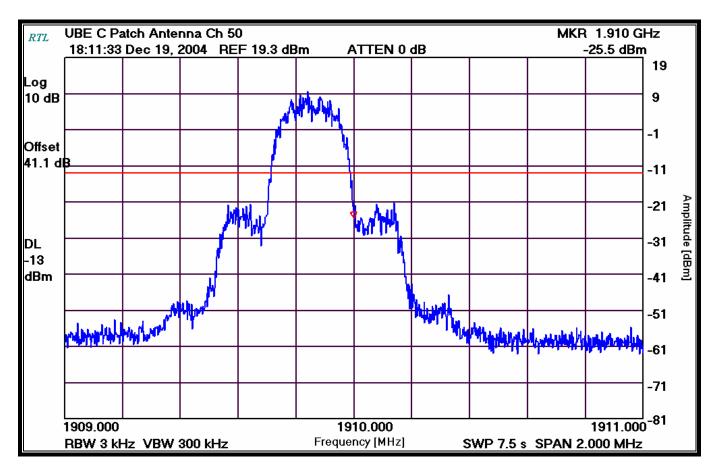
PLOT 8-8: UPPER BAND EDGE BLOCK B - PATCH ANTENNA


TEST PERSONNEL:

PLOT 8-9: LOWER BAND EDGE BLOCK F - PATCH ANTENNA

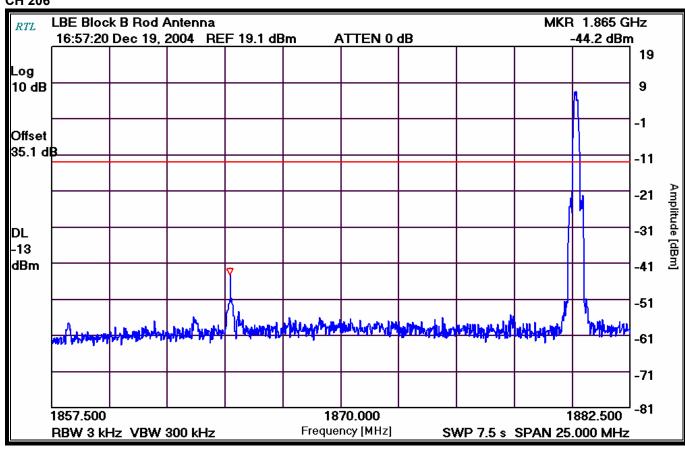

TEST PERSONNEL:

PLOT 8-10: UPPER BAND EDGE BLOCK F - PATCH ANTENNA


TEST PERSONNEL:

PLOT 8-11: LOWER BAND EDGE BLOCK C - PATCH ANTENNA

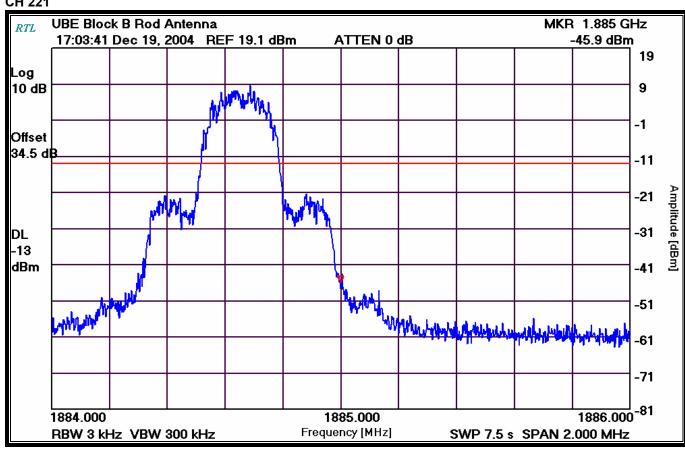
TEST PERSONNEL:


PLOT 8-12: UPPER BAND EDGE BLOCK C - PATCH ANTENNA

TEST PERSONNEL:

PLOT 8-13: LOWER BAND EDGE BLOCK B - ROD ANTENNA

CH 206



TEST PERSONNEL:

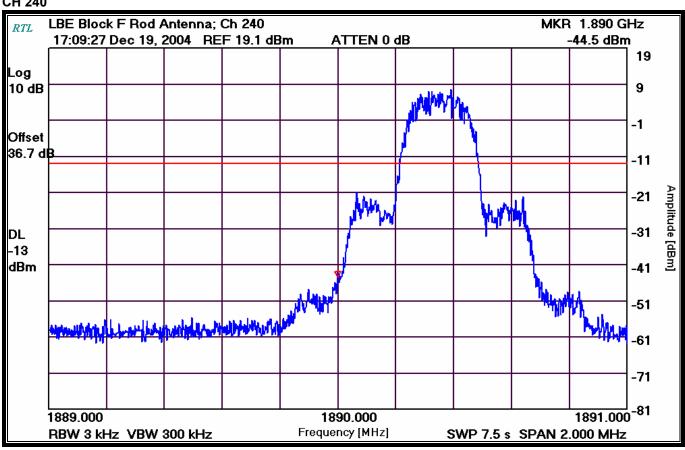
Model: FSU810 FCC ID: O6Y-FSU810 FCC: Part 24 Report #: 2004227

PLOT 8-14: UPPER BAND EDGE BLOCK B - ROD ANTENNA

CH 221

TEST PERSONNEL:

Daniel W. Baltzell

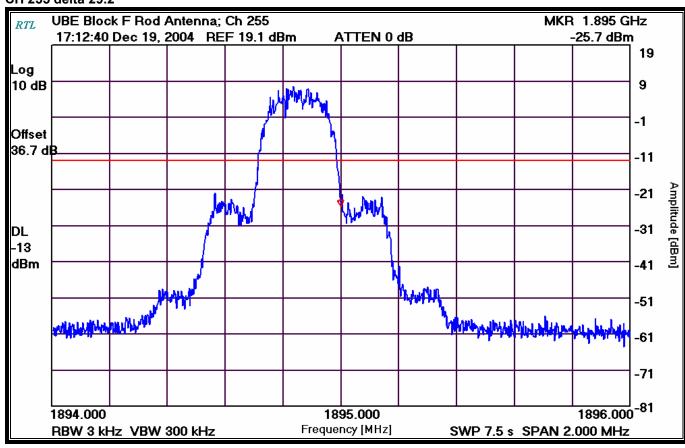

EMC Test Engineer

December 19, 2004 Date Of Test

Model: FSU810
FCC ID: 06Y-FSU810
FCC: Part 24
Report #: 2004227

PLOT 8-15: LOWER BAND EDGE BLOCK F - ROD ANTENNA

CH 240

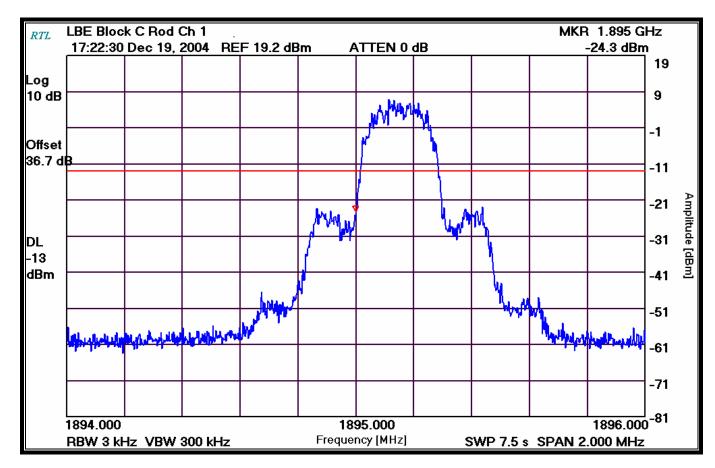

TEST PERSONNEL:

Daniel W. Baltzell **EMC Test Engineer**

December 19, 2004 Date Of Test

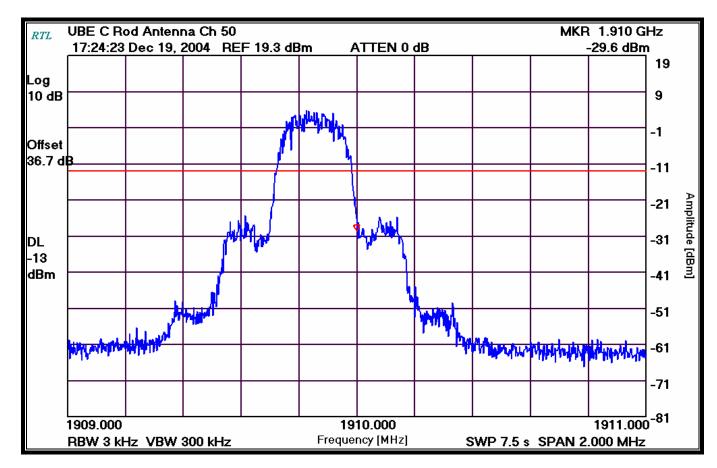
PLOT 8-16: UPPER BAND EDGE BLOCK F - ROD ANTENNA

CH 255 delta 29.2


TEST PERSONNEL:

Daniel W. Baltzell

EMC Test Engineer Signa


December 19, 2004
Date Of Test

PLOT 8-17: LOWER BAND EDGE BLOCK C - ROD ANTENNA

TEST PERSONNEL:

PLOT 8-18: UPPER BAND EDGE BLOCK C - ROD ANTENNA

TEST PERSONNEL:

9 FREQUENCY STABILITY / TEMPERATURE VARIATION - §2.1055

The frequency stability and RF power, measured at the antenna connector, are plotted against supply voltage variations and temperature variations at the highest power levels for each modulation type. All measurements are made at the center of the frequency band.

9.1 MEASUREMENT METHOD:

The frequency stability of the transmitter was measured by:

- 1. Temperature: The temperature was varied from -30°C to +50°C at intervals no more than 10°C throughout the temperature range using an environmental chamber. A period of time sufficient to stabilize all of the components in the equipment shall be allowed prior to each frequency measurement.
- 2. Primary Supply Voltage: The primary supply voltage was varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied. The EUT was tested down to the battery endpoint.

9.2 FREQUENCY STABILITY TEST EQUIPMENT

TABLE 9-1: FREQUENCY STABILITY TEST EQUIPMENT

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due
900946	Tenney Engineering, Inc	TH65	Temperature Chamber	11380	2/3/05
901020	Hewlett Packard	8564E	Portable Spectrum Analyzer (9 kHz - 40 GHz)	3943A01719	8/11/05
901350	Meterman	33XR	DMM	N/A	7/21/05

9.3 TIME PERIOD AND PROCEDURE:

- 1. The carrier frequency of the transmitter was measured at room temperature (25°C to provide a reference).
- 2. The equipment was subjected to a "soak" at -30°C without any power applied.
- 3. After the "soak" at -30°C, the measurement of the carrier frequency of the transmitter was accomplished after applying power to the transmitter.
- 4. Frequency measurements were made at 10°C intervals up to +50°C, then back to room temperature. A minimum period of 30 minutes was provided to allow stabilization of the equipment at each temperature level.

Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: UTStarcom
Model: FSU810
FCC ID: O6Y-FSU810
FCC: Part 24
Report #: 2004227

9.4 FREQUENCY STABILITY § 24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

9.5 FREQUENCY STABILITY TEST DATA - §2.1055

Operating Frequency (MHz): 1895.15

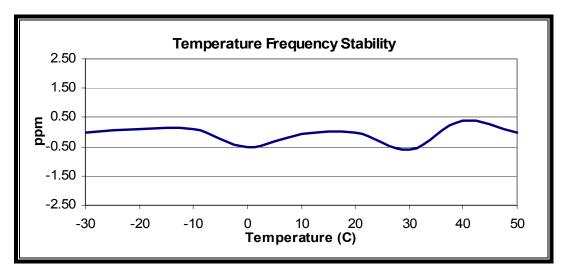
Channel: 1
Reference Voltage (VDC): 6.8
Deviation Limit (ppm): 2.5

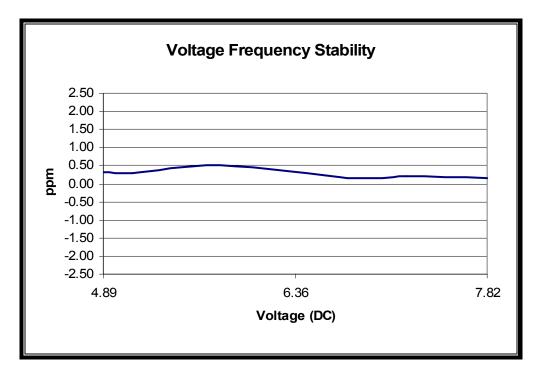
TABLE 9-2: TEMPERATURE FREQUENCY STABILITY DATA - §2.1055

Temperature	Frequency Measured (MHz)	Ppm
-30	1895.150000	0.00
-20	1895.150217	0.11
-10	1895.150158	0.08
0	1895.149050	-0.50
10	1895.149867	-0.07
20	1895.150000	0.00
30	1895.148842	-0.61
40	1895.150775	0.41
50	1895.150000	0.00

TEST PERSONNEL:

PLOT 9-1: TEMPERATURE FREQUENCY STABILITY DATA - §2.1055




TABLE 9-3: VOLTAGE FREQUENCY STABILITY DATA - §2.1055

Battery endpoint = 4.89 VDC

Voltage	Frequency Measured (MHz)	Ppm
4.89	1895.1506080	0.32
5.11	1895.1505500	0.29
5.78	1895.1509860	0.52
6.80	1895.1502920	0.15
7.20	1895.1503830	0.20
7.82	1895.1503000	0.16

TEST PERSONNEL:

PLOT 9-2: VOLTAGE FREQUENCY STABILITY

TEST PERSONNEL:

Daniel W. Baltzell

EMC Test Engineer

Signature

December 21, 2004 Date Of Test Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: UTStarcom
Model: FSU810
FCC ID: 06Y-FSU810
FCC: Part 24
Report #: 2004227

10 CONCLUSION

The data in this measurement report shows that the UTStarcom, Inc. Model FSU810, FCC ID: O6Y-FSU810, complies with all the requirements of Parts 2 and 24 of the FCC Rules.