Test Report Prepared By:

Electronics Test Centre MPB Technologies Inc. Unit 100 302 Legget Drive Kanata Ontario K2K 1Y5

TEST REPORT ON

Dynastream Speed Sensor Model: sdm-triax100 Foot Piece (Transmitter)

IN ACCORDANCE WITH FCC Pt 15 Subpart C 1996 And IC RSS-210 1998

MPBT Report No.: M36R2334 Customer No.: 1176

Test Personnel: D. Zanette

Prepared for:	
	Client Acceptance
	Authorized Signatory

Murandi Communications Ltd 240, 6715 – 8 Street NE Calgary, Alberta Canada T2E 7H7

- _ _

Dan Zanette Lab Supervisor Electromagnetic Services Electromagnetics

Authorized Signatory

IC . 3201-1 Division

Sept-14-2000 M36r2334 MPB Technologies Inc.

Test Sample: DynaStream Speed Sensor Model: sdm- triax100	Report No.: M36R2334
	- Reviewed By

TABLE OF CONTENTS

1.0 INTRODUCTION

- 1.1 SCOPE
- 1.2 APPLICANT
- 1.3 APPLICABILITY
- 1.4 TEST SAMPLE DESCRIPTION
- 1.5 GENERAL TEST CONDITIONS AND ASSUMPTIONS
- 1.6 SCOPE OF TESTING
 - 1.6.1 VARIATIONS IN TEST METHODS
 - 1.6.2 TEST SAMPLE MODIFICATIONS

2.0 TEST CONCLUSION

2.1 CONDUCTED EMISSIONS NOT APPLICABLE

- 2.1.1 CONDUCTED EMISSIONS DATA
- 2.1.2 CONDUCTED EMISSIONS PHOTO

2.2 RADIATED EMISSIONS

- 2.2.1 RADIATED EMISSIONS DATA
- 2.2.2 RADIATED EMISSIONS PHOTO

3.0 TEST FACILITY

- 3.1 LOCATION
- 3.2 GROUNDING PLAN
- 3.3 POWER
- 3.4 EMISSIONS PROFILE
- 3.5 TEST CONFIGURATION
 - 3.5.1 TYPICAL TEST SETUP

4.0 TEST EQUIPMENT

- 4.1 RADIATED EMISSIONS
- 4.2 CONDUCTED EMISSIONS (NOT APPLICABLE)
- 4.3 EMI SPECTRUM ANALYZER AND RECEIVER
 - 4.3.1 SPECTRUM ANALYZER
 - 4.3.2 RECEIVER

Model: sdm- triax100

1.0 INTRODUCTION

1.1 SCOPE

The purpose of this report is to present the findings and results of compliance testing performed, against FCC Part Subpart C, 15.249 1996 and IC RSS-210, 1998.

1.2 APPLICANT

This test report has been prepared for Murandi Communications Ltd.

1.3 APPLICABILITY

All test procedures, limits, and results defined in this document apply to the Murandi Communications Ltd: Dynastream Speed Sensor Model: sdm-triax100 unit, which shall be referred to herein as the Equipment Under Test (EUT).

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by NVLAP or the Canadian or US governments.

1.4 TEST SAMPLE DESCRIPTION

The test sample, provided for testing was a **Dynastream Speed Sensor Model: sdm-triax100**.

Pre-production Unit....

Prototype.....

Product Type: Low power transmitter

Frequency: 916.5 MHz

Frequency Stability: 120 PPM

Serial Number: NA

Output Power: 25 mV/m Nominal (0.00042W) Modulation: ASK 100% Modulation Depth (00K)

Model Number: sdm-triax100

Cables: None

Power Requirements: 2 AAA Duracell Batteries

Peripheral Equipment: NA

The EUT is designated as the "foot piece" which can be mounted on the laces of a shoe. The foot piece is an rf transmitter that computes the user's speed and distance traveled by means of integrating the foot path, and passes the information to a watch display also carried by the user. This report is only applicable to the foot piece.

Model: sdm- triax100

24.0- GENERAL TEST CONDITIONS AND ASSUMPTIONS

The EUT was setup and exercised using the configurations, modes of operation and arrangements defined in this report only. All inputs and outputs to and from other equipment associated with the EUT were adequately simulated.

Where relevant, the EUT was only tested using the monitoring methods and test criteria defined in this report.

All testing, unless otherwise noted, was performed under the following environmental conditions:

Temperature: 17 to 23 °C Humidity: 45 to 75 %

Barometric Pressure: 68 to 106 kPa

24.0- . SCOPE OF TESTING

Tests were performed in accordance with ANSI 63.4 1992

24.0-24. VARIATIONS IN TEST METHODS

There were no variations from the test procedures outlined above.

24.0-24. TEST SAMPLE MODIFICATIONS

There were no equipment modifications during test performance.

Model: sdm- triax100

24.0- . **TEST CONCLUSION**

The EUT was subjected to the following tests. Compliance is designated by a **PASS** or **FAIL**.

The following table summarizes the test results and details the tests performed in terms of the specification and class or level applied, the unique test sample identification, and the EUT modification state, the mode of operation, configuration and cable arrangement (if applicable).

Test Case	Test Type	Specification	Class/ Level	Sample Test	Mod State	ENG. / QUAL.	Criteria	Result
2.1	Conducted Emissions	FCC Part 15 Subpart C 1996 IC RSS-210 Issue 2, Rev 1, 1998	NA	NA	NA	NA	N/A	Not Applicable
2.2	Radiated Emissions	FCC Part 15 Subpart C 1996 IC RSS-210 Issue 2, Rev 1, 1998	A/B	DynaStream Speed Sensor Model: sdm- triax100	None	Qual	Sec.	Pass

STATEMENT OF COMPLIANCE

The client equipment referred to in this report was found to comply with the requirements as stated above.

Model: sdm- triax100

ABBREVIATIONS

CE - Conducted Emissions H-Field - Magnetic Field

 $CS\text{-}Conducted \ Susceptibility(Immunity) \\ \hspace{1cm} N/T-Not \ Tested$

ESD – Electrostatic Discharge N/A – Not Applicable

EFT – Electrical Fast Transient Burst RE – Radiated Emissions

E-Field – Electric Field RS – Radiated Susceptibility(Immunity)

MEASUREMENT UNCERTAINTY

The following measurement uncertainty with 95% confidence level was calculated using the methods defined in NAMAS document NIS81: May 1994.

For Radiated E-Field Emissions

Frequency = $\pm 1 \times 10^{-3} \text{ MHz}$

Amplitude = $\pm 4.01 \text{ dB}$

For Conducted Emissions

Frequency = $\pm 1 \text{x} 10^{-3} \text{ MHz}$

Amplitude = $\pm 3.25 \text{ dB}$

Model: sdm- triax100

24.0- . CONDUCTED EMISSIONS

Test Summary		
Test Personnel: Not Applicable		Test Date: Not Applicable

Test Description				
Objectives/Criteria	Specifications			
The Conducted E-Field emissions proliferated by a system or sub-system shall not exceed the limits for the specifications as stated. Emission levels should meet the requirements with a margin of 6dB.	FCC SubPart C Sec.15 249 IC RSS-210 Sec. 6.2.2 (m) Frequency Class A Class B NA			
Worst case Emissions: NA	*All limits are in Quasi-peak.			
Test Result Class: Not Applicable				

Top Six Emissions: Not Applicable				
Line 1:		Line 2:		
Freq	dBuV	Freq	dBuV	
NA	NA	NA	NA	

24.0-24. CONDUCTED EMISSIONS DATA

NOT APPLICABLE

24.0-24. CONDUCTED EMISSIONS SETP PHOTOGRAPH(S)

NOT APPLICABLE

24.0- . RADIATED EMISSIONS

Test Summary	у
Test Personnel: D. Zanette	Test Date: Sept 12 2000

Test Description				
Objectives/Criteria	Specifications			
The Radiated E-Field emissions	Intentional Radiators			
proliferated by a system or sub-system, measured at a distance of 3m/10m from the	FCC SubPart C Sec.15 249			
EUT, shall not exceed the limits for the specifications as stated.	IC RSS-210 Frequency	Sec. 6.2.2 (F _o	(m) F _{HARMONIC}	
Emission levels should meet the		@3m	@3m	
requirements with a margin of 6dB.	902-928 MHz	50 mV/m	$500 \mu V/m$	
Worst case emissions	2400-2483.5 MHz	50 mV/m	$500 \mu V/m$	
	5725-5875 MHz	50 mV/m	$500 \mu V/m$	
Worst case was dBuV/m @ Freq this is xx dB below limit	24.0-24.25 GHz 2500μV/m	250mV/m		
	N Limits converted to dI	ote: BμV/m for m	easurements	
Test Result Class @ 3 meters	P	ASS		

WORST CASE EMISSION: 88.26 dBμV/m

SIX TOP PEAK EMISSIONS

UNIT 1 in CW mode for maximization

Vertical: Polarization Horizontal: Polarization Freq dBuV/m Freq dBuV/m $F_0 = 0.9165$ $F_0 = 0.9165$ 79.07 85.97 $F_{1st} = 1.832967$ $F_{1st} = 1.832967 \quad 52.70.$ 60.90 $F_{2nd} = 2.748435$ 70.30 $F_{2nd} = 2.748435 \quad 64.60$

Note: Fundamental Limit: $= 50 \text{mV/m} = 94 \text{dB}\mu\text{V/m}$ Note: Harmonics Limit $= 500 \mu\text{V/m} = 54 \text{dB}\mu\text{V/m}$

TOP MEASURED EMISSIONS

UNIT 1 in normal Pulsed operating mode

Vertical: Polarization Horizontal: Polarization Frea (GHz) dBuV/mFrea(GHz) dBuV/m Quasi Peak $F_0 = 0.9165$ 85.19 $F_0 = 0.9165$ $F_{1st} = 1.832967.$ 33.77 $F_{1st} = 1.832967$ Average $F_{2nd} = 2.749435$ Ayerage 33.14 $F_{2nd} = 2.749435$

Note: Fundamental Limit: $= 50 \text{mV/m} = 94 \text{dB}\mu\text{V/m}$ Note: Harmonics Limit $= 500 \mu\text{V/m} = 54 \text{dB}\mu\text{V/m}$

UNIT 1 in normal PULSED operating mode

Vertical: Polarization Horizontal: Polarization dBuV/m Freq (GHz) dBuV/m Freq (GHz) Q_{ASI} Peak $F_0 = 0.9165$ NA $F_0 = 0.9165$ Againge $F_{1st} = 1.832967$. 23.80 $F_{1st} = 1.832967$

Average $F_{2nd} = 2.749435$ 33.22 $F_{2nd} = 2.749435$

Note: Fundamental Limit: = $50\text{mV/m} = 94\text{dB}\mu\text{V/m}$ Note: Harmonics Limit = $500\mu\text{V/m} = 54\text{dB}\mu\text{V/m}$

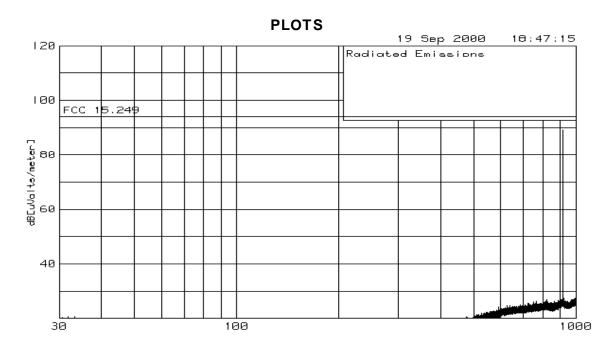
SAMPLE CALCULATION:

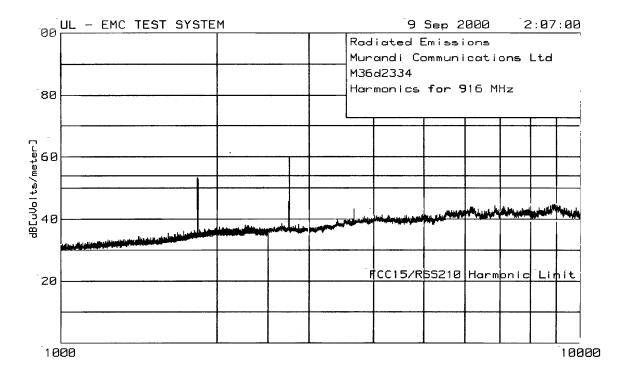
Duty Cycle: 50 bits sent once per second at 2400 baud is equivalent to a 2.08 %

transmission time or 20.8 milliseconds

Data is DC balanced to result in a 50 % Duty Cycle over the transmission of 50

bits resulting in an over all Duty Cycle of 1.04 %.


Average Amplitude = (Peak Amplitude) x (Duty Cycle)


Average Amplitude = $60.9 dB \mu V/m \times 1.04 \%$

 $= 60.9 dB \mu V/m \times 0.014$

= 23.89dB μ V/m average for 1.832967 GHz

2.2.1 RADIATED EMISSIONS DATA

Numeric Data

Murandi M36D2334 UNIT 1, FOOT PIECE Transmitter

3 Meter Gain/Loss Transducer Level Limit:1 2 4 Frequency Reading Factor Factor dB[uVolts/meter] [dB(uV)] [dB] [dB uV/m]

916.5 **85.19** 94 85.39 qp -26 25.8 N/AN/AAzimuth: 0 Height:103 Vert Margin [dB] -8.81 N/AN/A

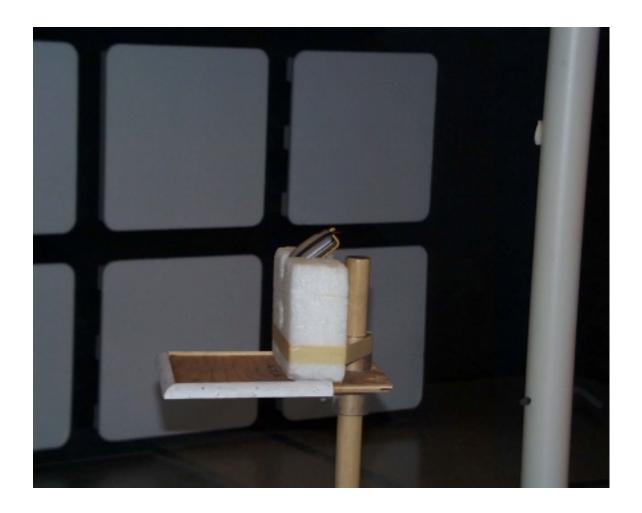
916.5 88.46 qp -26 25.8 **88.26** 94 N/AN/A Azimuth: 127 Height:123 Horz Margin [dB] -5.74 N/A N/A

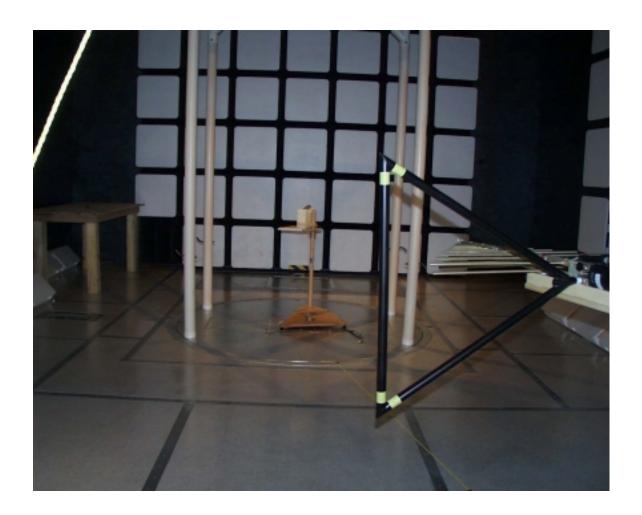
LIMIT 1: FCC 15.249 qp - Quasi-Peak detector

Murandi M36D2334 UNIT 1, FOOT PIECE Transmitter

Meter Gain/Loss Transducer Level Limit:1 Frequency Reading Factor Factor dB[uVolts/meter] [dB(uV)] [dB] [MHz] [dB] **1832.967** 47.87 av -43 28.9 **33.77** 54 N/A N/A N/A Margin [dB] -20.23 Azimuth: 87 Height:113 Vert N/A N/AN/A1832.97 40.28 av -43 28.9 26.18 N/AN/A

N/A Azimuth: 87 Height: 260 Horz Margin [dB] -27.82 N/A N/A N/A


LIMIT 1: FCC15/RSS210 av - Average detector


Numeric Data

Frequency Reading Factor Fa	nsducer Level Limit:1 actor dB[uVolts/meter [dB]	2	3 4
== 2749.435 45.34 av -43	30.8 <u>33.14</u> 54	N/A	N/A
Azimuth: 236 Height:151 Vert	Margin [dB] <u>-20.86</u>	N/A	N/A
2749.435 45.06 av -43	30.8 <u>32.86</u> 54	N/A	N/A
Azimuth: 236 Height:151 Horz N/A	Margin [dB] <u>-21.14</u>	N/A	N/A

LIMIT 1: FCC15/RSS210 av - Average detector

2.2.2 RADIATED EMISSIONS SETUP PHOTOGRAPH(S)

EUT DETAIL PHOTOGRAPHS

FRONT VIEW

SIDE VIEW

REAR VIEW

BATERY COMPARTMENT

REAR VIEW (disassembled)

BATTERY COMPARTMENT

(Batteries removed)

EXPOSED PRINTED CIRCUIT BOARD (Center)

PRINTED CIRCUIT BOARD REMOVED (Front View)

PRINTED CIRCUIT BOARD REMOVED (Rear View)

PRINTED CIRCUIT BOARD REMOVED

FRONT DETAILED VIEW

PRINTED CIRCUIT BOARD REMOVED

REAR DETAILED VIEW

Model: sdm- triax100

3.0 TEST FACILITY

3.1 LOCATION

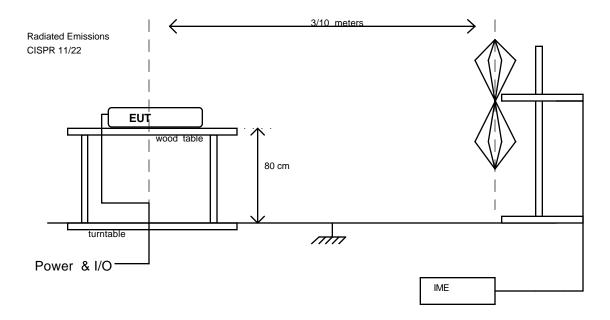
The EUT was tested for Electromagnetic Compatibility at the Electronics Test Centre, located in Kanata, Ontario, Canada.

3.2 GROUNDING PLAN

The EUT was located on a wooden Stand 80 cm above the ground plane.

3.3 POWER

The EUT was powered by two new AAA MN2400, LR03 1.5 volt Duracell alkaline batteries.


3.4 EMISSIONS PROFILE

Ambient conducted and radiated electromagnetic emission profiles were generated throughout the tests and are included in the Test Report Data sheets.

3.5 TEST CONFIGURATION

3.5.1 TYPICAL SETUP

The following diagrams illustrate the configuration of the EUT test and measurement equipment used for CISPR Radiated and Conducted Emissions Testing.

4.0 TEST EQUIPMENT

The following equipment was utilized for this procedure. All measurement devices are calibrated annually, traceable to NIST. Please refer to Appendix C for calibration data.

4.1 RADIATED EMISSIONS

- a) Spectrum Analyzer
- b) Receiver with CISPR Quasi-peak Adapter
- c) Power Isolation Transformers
- d) Antennas (25 MHz to 10 GHz)
- e) Antenna mast positioner, and controller
- f) Flush-mounted turntable, and controller

4.2 CONDUCTED EMISSIONS NOT APPLICABLE

- a) Spectrum Analyzer
- b) Line Impedance Stabilization Network, 50 µH
- c) CISPR Quasi-peak Adapter
- d) Power Isolation Transformer
- e) Personal Computer and EMI/EMC Software

4.3 EMI SPECTRUM ANALYZER AND RECEIVER

4.3.1 SPECTRUM ANALYZER

Range 1 of 2

Start Frequency	30 MHz
Stop Frequency	1 GHz

Transducer Biconilog Antenna

Quasi-Peak Bandwidth120 kHzSpectrum Analyzer BW1MHzVideo Bandwidth1MHzReference Level120 dBμV

SPECTRUM ANALYZER

Range 2 of 2

Start Frequency	1 GHz
Stop Frequency	10 GHz
Transducer	DRG Horn
Spectrum Analyzer BW	1 MHz
Video Bandwidth	1 MHz
Reference Level	100 dBμV

4.3.2 RECEIVER NOT APPLICABLE

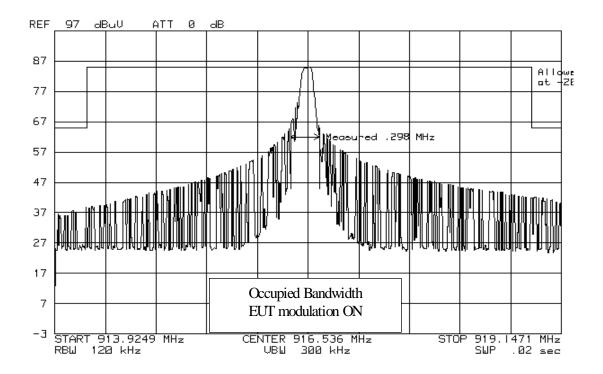
Transducer	Biconilog Antenna
------------	-------------------

Quasi-Peak Bandwidth120 kHzMeasurement Window20 dBμV

Appendix A

Dynastream Speed Sensor Model: sdm-triax100

EUT


Description to be provided by

The CLIENT

Appendix B

TEST REPORT SUPPLEMENTARY DATA

OCCUPIED BANDWIDTH

Appendix C

TEST EQUIPMENT REPORT

September 11, 2000 - 05:33:25 PM

Equipment used in test FCC Part15 - Section 247 (SEP1100)

Ass	et #	De	Characteristi	Manufacturer	Model #	Serial #	Cal Date	Cal Due
2319	antenna		DRG Horn	Electrometrics	RGA60	2966	Jan 03, 1999	Dec 30, 2000
2366	pre- amplifier		1 GHz - 20 GHz	Miteq	AFS44-01-00220045- 8P44	327221	Jul 26, 2000	Jul 26, 2001
2432	antenna		Biconilog Antenna	Antenna Research	LPB-2520	1021	Dec 28, 1999	Dec 28, 2000
2436	adapter		Quasi Peak Adapter	Hewlett Packard	85650A	A208596	Jul 24, 2000	Jul 24, 2001
4269	network		LISN (FCC)	Solar	8012-50-R-24BNC	829038	Dec 31, 1999	Dec 31, 2000
4281	anteni	na	Biconilog Antenna	Antenna Research	LPB-2520/A	1048	Dec 28, 1999	Dec 28, 2000
4297	analyz	zer	Spectrum Analyzer	Hewlett Packard	HP8566B	2747A05484	Jul 23, 2000	Jul 23, 2001
4552	amplif	fier	10 KHz-1 GHz	Electrometrics	BPA-1000	900710B	Jul 26, 2000	Jul 26, 2001
5076	EMC Softwa	are	0	Underwriters Laboratories	V3.02	MC106399N K07147	Monitored	Monitored

C:\Equipment Lists\SEP1100\FCC Part15\FCC Part15 - Section 247 (Sep 11, 2000 - 05-33-25 PM).doc