

Juli 15, 2010

Prüfbericht / Test Report

Nr. / No. 20029-01719-1 (Edition 2)

Applicant: VEGA Grieshaber KG

Type of equipment: Microwave Sensor

Type designation: VEGAMIP 60 MP60T.-02
Order No.: Order of February 5, 2010

Test standards: FCC Code of Federal Regulations,

CFR 47, Part 15,

Sections 15.205, 15.207, 15.215 and 15.245

Industry Canada Radio Standards Specifications

RSS-Gen Issue 2, Section 7.2.2 and

RSS-210 Issue 7, Sections 2.2, A7 (Category I Equipment)

Note:

The test data of this report is related only to the individual item which has been tested. This report shall not be reproduced except in full extent without the written approval of the testing laboratory.

Table of Contents

1	1 Description of the Equipment Under Test (EUT)					
2	2 Administrative Data					
3	lo	dentification of the Test Laboratory	6			
4	S	Summary	7			
5	С	Operation Mode and Configuration of EUT	8			
6	M	Measurement Procedures	9			
	6.1	Conducted Output Power	9			
	6.2	Bandwidth Measurements	11			
	6.3	Conducted AC Powerline Emission	13			
	6.4	Radiated Emission Measurement 9 kHz to 30 MHz	15			
	6.5	Radiated Emission in Fully or Semi Anechoic Room	17			
	6.6	Radiated Emission at Alternative Test Site	19			
7	Р	Photographs Taken During Testing	21			
8	Т	est Results	27			
	8.1	Conducted Output Power	29			
	8.2	Occupied Bandwidth	30			
	8.3	Bandwidth of the Emission	34			
	8.4	Designation of Emissions	36			
	8.5	Conducted Powerline Emission Measurement 150 kHz to 30 MHz	37			
	8.6	Radiated Emission Measurement 9 kHz to 30 MHz	40			
	8.7	Radiated Emission Measurement 30 MHz to 100 GHz	41			
	8.8	Exposure of Humans to RF Fields	43			
9	R	Referenced Regulations	45			
1(R	Revision History	46			
1	1 C	Charts taken during testing	47			

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

1 Description of the Equipment Under Test (EUT)

General data of EUT

Type designation¹: VEGAMIP 60 MP60T.-02

Parts²:

Serial number(s): HW Ver. 1.0.1

Manufacturer: VEGA Grieshaber KG
Type of equipment: Microwave Sensor

Version: As received

FCC ID:

Additional parts/accessories:

¹ Type designation of the system if EUT consists of more than one part.

² Type designations of the parts of the system, if applicable.

Technical data of EUT				
Application frequency range:	24075 - 24175 MHz			
Frequency range:	24.1 GHz			
Operating frequency:	24.1 GHz			
Type of modulation:				
Pulse train:				
Pulse width:				
Number of RF-channels:	1			
Channel spacing:				
Designation of emissions ³ :	NON			
Type of antenna:	Horn antenna DN80, antenna gain: 22 dBi			
Size/length of antenna:	75 mm			
Connection of antenna:	□ detachable	not detachable		
Type of power supply:	AC supply and DC supply			
Specifications for AC power supply:	nominal voltage: minimum voltage: maximum voltage:	110 V 20 V 253 V		
	nominal frequency:	60 Hz		
Specifications for DC power supply:	nominal voltage: minimum voltage: maximum voltage:	24 V 20 V 72 V		

³ Also known as "Class of Emission".

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

2 Administrative Data

Application details

Applicant (full address):

VEGA Grieshaber KG
Füllstand- und Druckmeßtechnik

Am Hohenstein 113
77761 Schiltach
Deutschland

Contact person:

Order number:

Order of February 5, 2010

Receipt of EUT:

February 25, 2010

Receipt of EUT: February 25, 2010
Date(s) of test: March – April 2010

Note(s):

Report details

Report number: 20029-01719-1

Edition: 2

Issue date: July 15, 2010

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

3 Identification of the Test Laboratory

Details of the Test Laboratory

Company name: TÜV SÜD SENTON GmbH

Address: Aeussere Fruehlingstrasse 45

D-94315 Straubing

Germany

Laboratory accreditation: DAR-Registration No. DAT-PL-171/94-03

Contact person: Mr. Johann Roidt

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

4 Summary

Summary of test results

The tested sample complies with the requirements set forth in the

Code of Federal Regulations CFR 47, Part 15, Sections 15.205, 15.207, 15.215 and 15.245

of the Federal Communication Commission (FCC) and the

Radio Standards Specifications RSS-Gen Issue 2, Section 7.2.2 and RSS-210 Issue 7, Sections 2.2, A7 (Category I Equipment)

of Industry Canada (IC).

Personnel involved in this report				
Laboratory Manager:				
	He Col			
	Mr. Johann Roidt			
Responsible for testing:				
	Skinell Martin			
	Mr. Martin Steindl			
Responsible for test report:	Mr. Martin Steindl			

Operation Mode and Configuration of EUT

Operation Mode(s)

Transmitting continuously

Configuration(s) of EUT

The EUT was configured as stand alone device.

List	List of ports and cables					
Port	Description	Classification ⁴	Cable type	Cable length		
1	AC supply	ac power	Unshielded	1 m		

List	List of devices connected to EUT				
Item	Description	Type Designation	Serial no. or ID	Manufacturer	
1	Horn antenna	DN80		Vega	

List o	of support devices			
Item	Description	Type Designation	Serial no. or ID	Manufacturer

⁴ Ports shall be classified as ac power, dc power or signal/control port


6 Measurement Procedures

6.1 Conducted Output Power

Measurement Procedure:	Measurement Procedure:			
Rules and specifications:	CFR 47 Part 2, section 2.1046(a) IC RSS-Gen Issue 2, section 4.8			
Guide:	CFR 47 Part 2, section 2.1046 / IC RSS-Gen Issue 2			

Conducted output power is measured at the RF output terminals (e.g. antenna connector if antenna is detachable) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The RF output terminals are connected to a spectrum analyzer and/or a power meter with appropriate sensor. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

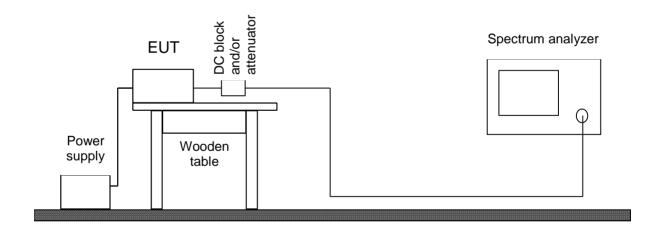
If a spectrum analyzer is used and no other settings are specified resolution bandwidth shall be selected according to the carrier frequency f_c and set to 10 kHz (150 kHz \leq f_c < 30 MHz), 100 kHz (30 MHz \leq f_c < 1 GHz) or 1 MHz ($f_c \geq$ 1 GHz). The video bandwidth shall be at least three times greater than the resolution bandwidth. The settings used have to be indicated within the appropriate test record(s).

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99

Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

Test instruments used:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	Spectrum analyzer	FSP30	1666	100036	Rohde & Schwarz
	EMI test receiver	ESPI7	1711	836914/0002	Rohde & Schwarz
	EMI test receiver	ESMI	1569	839379/013 839587/006	Rohde & Schwarz
	Power meter	NRVS	1264	836856/015	Rohde & Schwarz
	Peak power sensor	NRV-Z31	1701	8579604.03	Rohde & Schwarz
	Power sensor	NRV-Z52	1499	837901/030	Rohde & Schwarz
	Power sensor	NRV-Z4	1034	863828/015	Rohde & Schwarz
\boxtimes	DC-block	7006	1636	A2798	Weinschel
	Attenuator	4776-10	1638	9412	Narda
	Attenuator	4776-20	1639	9503	Narda


6.2 Bandwidth Measurements

Measurement Procedure:	Measurement Procedure:					
Rules and specifications:	CFR 47 Part 2, section 2.202(a) CFR 47 Part 15, section 15.215(c) IC RSS-Gen Issue 2, sections 4.6.1 and 4.6.2 IC RSS-210 Issue 7, section A1.1.3 ANSI C63.4, annex H.6					
Guide:	ANSI C63.4 / IC RSS-Gen Issue 2, sections 4.6.1 and 4.6.2					
Measurement setup:	☐ Conducted: See below☐ Radiated: Radiated Emission in Fully or Semi Anechoic Room (6.5)					

If antenna is detachable bandwidth measurements shall be performed at the antenna connector (conducted measurement) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The RF output terminals are connected to a spectrum analyzer. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

If radiated measurements are performed the same test setups and instruments are used as with radiated emission measurements for the appropriate frequency range.

The analyzer settings are specified by the test description of the appropriate test record(s).

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: eMail:

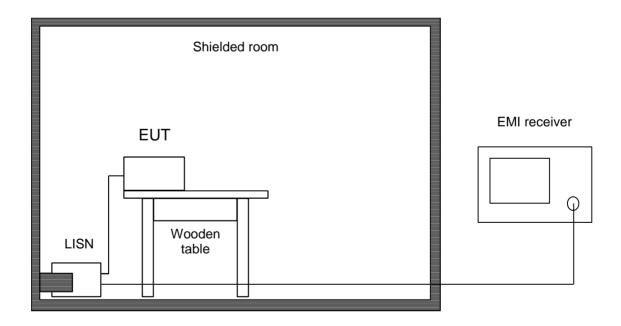
www.tuev-sued.com/senton senton@tuev-sued.de

Test instruments used for conducted measurements:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	Spectrum analyzer	FSP30	1666	100036	Rohde & Schwarz
	EMI test receiver	ESPI7	1711	836914/0002	Rohde & Schwarz
	EMI test receiver	ESMI	1569	839379/013 839587/006	Rohde & Schwarz
	Power meter	NRVS	1264	836856/015	Rohde & Schwarz
	Peak power sensor	NRV-Z31	1701	8579604.03	Rohde & Schwarz
	Power sensor	NRV-Z52	1499	837901/030	Rohde & Schwarz
	Power sensor	NRV-Z4	1034	863828/015	Rohde & Schwarz
\boxtimes	DC-block	7006	1636	A2798	Weinschel
	Attenuator	4776-10	1638	9412	Narda
	Attenuator	4776-20	1639	9503	Narda

6.3 Conducted AC Powerline Emission

Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, section 15.207 IC RSS-Gen Issue 2, section 7.2.2	
Guide:	ANSI C63.4 / CISPR 22	


Conducted emission tests in the frequency range 150 kHz to 30 MHz are performed using Line Impedance Stabilization Networks (LISNs). To simplify testing with quasi-peak and average detector the following procedure is used:

First the whole spectrum of emission caused by the equipment under test (EUT) is recorded with detector set to peak using CISPR bandwidth of 10 kHz. After that all emission levels having less margin than 10 dB to or exceeding the average limit are retested with detector set to quasi-peak.

If average limit is kept with quasi-peak levels no additional scan with average detector is necessary. In cases of emission levels between quasi-peak and average limit an additional scan with detector set to average is performed.

According to ANSI C63.4, section 13.1.3.1, testing of intentional radiators with detachable antenna shall be performed using a suitable dummy load connected to the antenna output terminals. Otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended.

Testing with dummy load may be necessary to distinguish (unintentional) conducted emissions on the supply lines from (intentional) emissions radiated by the antenna and coupling directly to supply lines and/or LISN. Usage of dummy load has to be stated in the appropriate test record(s) and notes should be added to clarify the test setup.

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99

Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

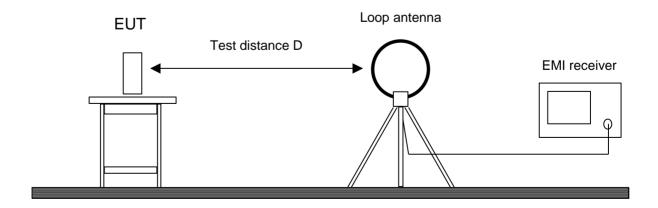
Test instruments used:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	Test receiver	ESHS 10	1028	860043/016	Rohde & Schwarz
\boxtimes	V-network	ESH 3-Z5	1059	894785/005	Rohde & Schwarz
	V-network	ESH 3-Z5	1218	830952/025	Rohde & Schwarz
	Artificial mains network	ESH 2-Z5	1536	842966/004	Rohde & Schwarz
	Shielded room	No. 1	1451		Albatross
\boxtimes	Shielded room	No. 4	1454	3FD 100 544	Euroshield

6.4 Radiated Emission Measurement 9 kHz to 30 MHz

Measurement Procedure:				
Rules and specifications:	CFR 47 Part 15, sections 15.215(b) and 15.245(b)(3) IC RSS-210 Issue 7, section A7.3			
Guide:	ANSI C63.4			

Radiated emission in the frequency range 9 kHz to 30 MHz is measured using an active loop antenna. First the whole spectrum of emission caused by the equipment is recorded at a distance of 3 meters in a fully or semi anechoic room with the detector of the spectrum analyzer or EMI receiver set to peak. This configuration is also used for recording the spectrum of intentional radiators.


Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

If worst case emission of the EUT cannot be recorded with EUT in standard position and loop antenna in vertical polarization the EUT (or the radiating part of the EUT) is rotated by 90 degrees instead of changing the loop antenna to horizontal polarization. This procedure is selected to minimize the influence of the environment (e.g. effects caused by the floor especially with longer distances).

Final measurement is performed at a test distance D of 30 meters using an open field test site. In case the regulation requires testing at other distances, the result is extrapolated by either making measurements at an additional distance D of 10 meters to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). In cases of very low emissions measurements are performed at shorter distances and results are extrapolated to the required distance. The provisions of CFR 47 Part 15 sections 15.31(d) and (f)(2) apply. According to CFR 47 Part 15 section 15.209(d) final measurement is performed with detector function set to quasi-peak except for the frequency bands 9 to 90 kHz and 110 to 490 kHz where, for non-pulsed operation, average detector is employed.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99

Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

Test instruments used:

	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	Spectrum analyzer	FSP30	1666	100036	Rohde & Schwarz
	EMI test receiver	ESMI	1569	839379/013 839587/006	Rohde & Schwarz
	Test receiver	ESHS 10	1028	860043/016	Rohde & Schwarz
	Preamplifier Cabin no. 2	CPA9231A	1651	3393	Schaffner
\boxtimes	Loop antenna	HFH2-Z2	1016	882964/1	Rohde & Schwarz
\boxtimes	Fully anechoic room	No. 2	1452		Albatross
	Semi anechoic room	No. 3	1453		Siemens
	Semi anechoic room	No. 8	2057		Albatross

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

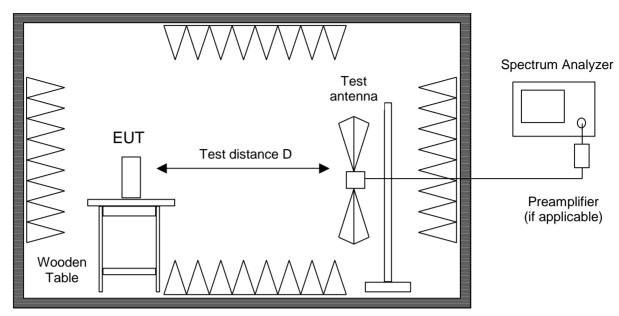
6.5 Radiated Emission in Fully or Semi Anechoic Room

Measurement Procedure:				
Rules and specifications:	CFR 47 Part 15, sections 15.215(b) and 15.245 IC RSS-210 Issue 7, section A7			
Guide:	ANSI C63.4			

Radiated emission in fully or semi anechoic room is measured in the frequency range from 30 MHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33.

Measurements are made in both the horizontal and vertical planes of polarization using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 100 kHz (below 1 GHz) or 1 MHz (above 1 GHz).

Testing up to 1 GHz is performed with a linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna"). For testing above 1 GHz horn antennas are used.


All tests below 8.2 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance may be reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing. During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For final testing below 1 GHz a semi anechoic room complying with the NSA requirements of ANSI C63.4 for alternative test sites is used (see 6.6). If prescans are recorded in fully anechoic room they are indicated appropriately.

Fully or semi anechoic room

Test instruments used:

	Туре	- Designation	Invno.	Serial No. or ID	- Manufacturer
	Spectrum analyzer	FSP30	1666	100036	Rohde & Schwarz
	EMI test receiver Cabin no. 3	ESPI7	2010	101018	Rohde & Schwarz
	EMI test receiver	ESU8	2044	100232	Rohde & Schwarz
	EMI test receiver	ESMI	1569	839379/013 839587/006	Rohde & Schwarz
\boxtimes	Preamplifier Cabin no. 2	CPA9231A	1651	3393	Schaffner
	Preamplifier	R14601	1142	13120026	Advantest
	Preamplifier (1 - 8 GHz)	AFS3-00100800-32-LN	1684	847743	Miteq
\boxtimes	Preamplifier (0.5 - 8 GHz)	AMF-4D-005080-25-13P	1685	860149	Miteq
\boxtimes	Preamplifier (8 - 18 GHz)	ACO/180-3530	1484	32641	CTT
\boxtimes	External Mixer	WM782A	1576	845881/005	Tektronix
\boxtimes	Harmonic Mixer Accessories	FS-Z30	1577	624413/003	Rohde & Schwarz
\boxtimes	Trilog antenna Cabin no. 2	VULB 9163	2058	9163-408	Schwarzbeck
\boxtimes	Horn antenna	3115	1516	9508-4553	EMCO
	Horn antenna	3160-03	1010	9112-1003	EMCO
	Horn antenna	3160-04	1011	9112-1001	EMCO
	Horn antenna	3160-05	1012	9112-1001	EMCO
\boxtimes	Horn antenna	3160-06	1013	9112-1001	EMCO
\boxtimes	Horn antenna	3160-07	1014	9112-1008	EMCO
\boxtimes	Horn antenna	3160-08	1015	9112-1002	EMCO
\boxtimes	Horn antenna	3160-09	1265	9403-1025	EMCO
	Horn antenna	3160-10	1575	399185	EMCO
	Fully anechoic room	No. 2	1452		Albatross
	Semi anechoic room	No. 3	1453		Siemens
	Semi anechoic room	No. 8	2057		Albatross

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

6.6 Radiated Emission at Alternative Test Site

Measurement Procedure:				
Rules and specifications:	CFR 47 Part 15, sections 15.215(b) and 15.245 IC RSS-210 Issue 7, section A7			
Guide:	ANSI C63.4			

Radiated emission in the frequency range 30 MHz to 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4 for alternative test sites. A linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used. The measurement bandwidth of the test receiver is set to 120 kHz with quasi-peak detector selected.

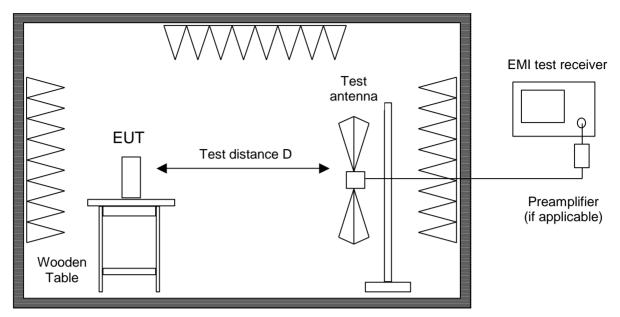
If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in fully anechoic room.

If no prescan in a fully anechoic room is used first a peak scan is performed in four positions to get the whole spectrum of emission caused by EUT with the measuring antenna raised and lowered from 1 to 4 m to find table position, antenna height and antenna polarization for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB to or exceeding the limit using subranges and limited number of maximums. Further maximization is following.

With detector of the test receiver set to quasi-peak final measurements are performed immediately after frequency zoom (for drifting disturbances) and maximum adjustment.


Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

In cases where prescans in a fully anechoic room are taken (e. g. if EUT is operating for a short time only or battery is dircharged quickly) final measurements with quasi-peak detector are performed manually at frequencies indicated by prescan with EUT rotating all around and receiving antenna raising and lowering within 1 meter to 4 meters to find the maximum levels of emission.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade.

Alternate test site (semi anechoic room)

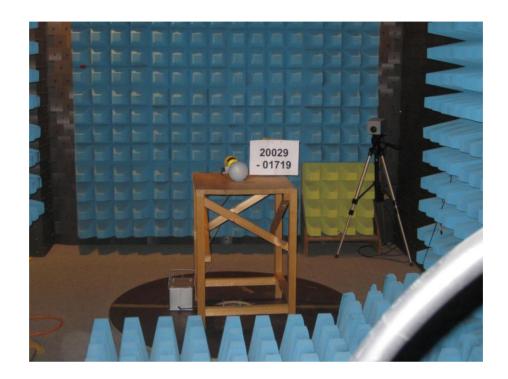
Test instruments used:

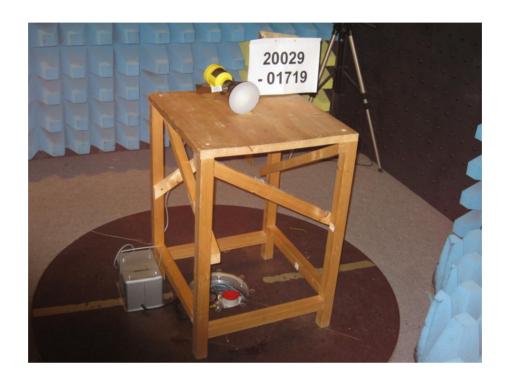
	Туре	Designation	Invno.	Serial No. or ID	Manufacturer
\boxtimes	EMI test receiver	ESU8	2044	100232	Rohde & Schwarz
\boxtimes	Trilog antenna Cabin no. 8	VULB 9163	1802	9163-214	Schwarzbeck
\boxtimes	Semi anechoic room	No. 8	2057		Albatross

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

SENTON

7 Photographs Taken During Testing

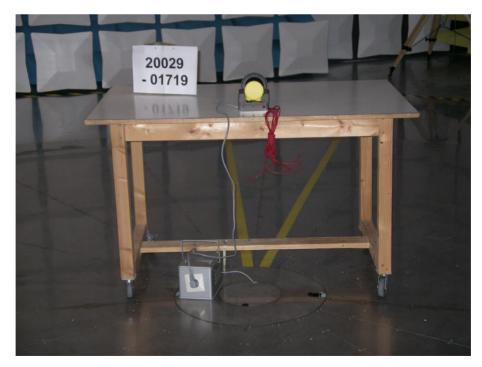

Test setup for conducted AC powerline emission measurement



Test setup for radiated emission measurement 9 kHz - 30 MHz

Test setup for radiated emission measurement (fully anechoic room)

Test setup for radiated emission measurement (alternate test site)



Test setup for radiated emission measurement (alternate test site) - continued -

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

8 Test Results

FCC CFR 47 Parts 2 and 15				
Section(s)	Test	Page	Result	
2.1046(a)	Conducted output power	29	Recorded	
2.202(a)	Occupied bandwidth	30	Recorded	
15.215(c)	Bandwidth of the emission	34	Test passed	
2.201, 2.202	Class of emission	36	Calculated	
15.35(c)	Pulse train measurement for pulsed operation		Not applicable	
15.205(a)	Restricted bands of operation	5	Test passed	
15.207	Conducted AC powerline emission 150 kHz to 30 MHz	37	Test passed	
15.205(b) 15.245	Radiated emission 9 kHz to 30 MHz	40	Test passed	
15.205(b) 15.215(b) 15.245	Radiated emission 30 MHz to 100 GHz	41	Test passed	

⁵ See "Radiated emissions" for details

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

IC RSS-Gen Iss	IC RSS-Gen Issue 2					
Section(s)	Test	Page	Result			
4.8	Transmitter output power (conducted)	29	Recorded			
4.6.1	Occupied Bandwidth	30	Recorded			
3.2(h), 8	Designation of emissions	36	Calculated			
4.5	Pulsed operation		Not applicable			
7.2.2	Transmitter AC power lines conducted emissions 150 kHz to 30 MHz	37	Test passed			
5.5	Exposure of Humans to RF Fields	43	Exempted from SAR and RF evaluation			

IC RSS-210 Issue 7					
Section(s)	Test	Page	Result		
2.2(a)	Restricted bands and unwanted emission frequencies	6	Test passed		
2.2(b)(c), 2.6 A7.3	Unwanted emissions 9 kHz to 30 MHz		Test passed		
2.2(b)(c), 2.6 A7	Unwanted emissions 30 MHz to 100 GHz	41	Test passed		

⁶ See "Unwanted emissions" for details

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

8.1 Conducted Output Power

Rules and specifications:	CFR 47 Part 2, section 2.1046(a) IC RSS-Gen Issue 2, section 4.8
Guide:	CFR 47 Part 2, section 2.1046 / IC RSS-Gen Issue 2
Description:	Conducted output power shall be measured at the RF output terminals (e.g. antenna connector if antenna is detachable) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.
Measurement procedure:	Conducted Output Power (6.1)

Comment:	
Date of test:	April 29, 2010
Test site:	Unshielded room

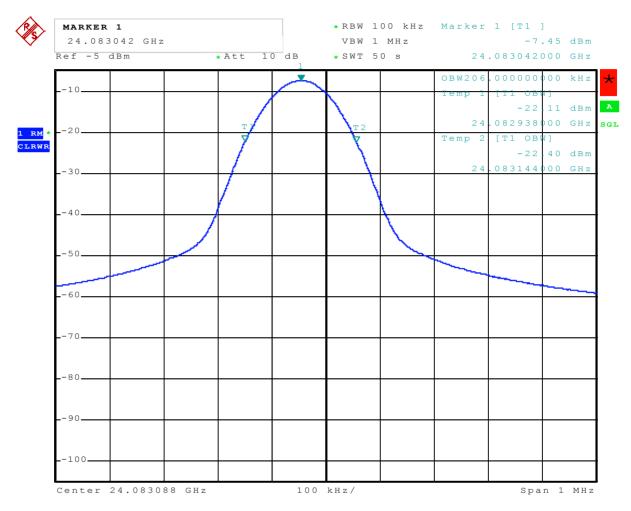
Antenna gain:	22 dBi						
Mode	Frequency	Power Type	Reading	Correction	Output Power	Limit	Margin
	(GHz)		(dBm)	(dB)	(dBm)	(dBm)	(dB)
CW	24,1	Peak	-5,9	0,0	-5,9		

- Note 1: If applicable, PEP (peak envelope power) and RMS values are measured using a power meter with appropriate sensor.
- Note 2: If applicable, peak or average values are measured using a spectrum analyzer with resolution and video bandwidth set to: RBW = 10 MHz VBW = 10 MHz
- Note 3: If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power limit is reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

8.2 Occupied Bandwidth

Rules and specifications:	CFR 47 Part 2, section 2.202(a) ANSI C63.4, annex H.6		
Guide:	ANSI C63.4	ANSI C63.4	
Description:	The occupied bandwidth according to CFR 47 Part 2, section 2.202(a), is measured as the 99% emission bandwidth, i.e. below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5% of the total mean power radiated by a given emission. The occupied bandwidth according to ANSI C63.4, annex H.6; is measured as the frequency range defined by the points that are 26 dB down relative to the maximum level of the modulated carrier. The resolution bandwidth of the spectrum analyzer shall be set to a value greater than 5.0% of the allowed bandwidth. If no bandwidth specifications are given, the following guidelines are used:		
	Fundamental frequency	Minimum resolution bandwidth	
	9 kHz to 30 MHz	1 kHz	
	30 MHz to 1000 MHz	10 kHz	
	1000 MHz to 40 GHz	100 kHz	
	The video bandwidth shall be at least the bandwidth.	hree times greater than the resolution	
Measurement procedure:	Bandwidth Measurements (6.2)		


Comment:	
Date of test:	March 22, 2010
Test site:	Fully anechoic room, cabin no. 2

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99

Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

Occupied Bandwidth (99 %):

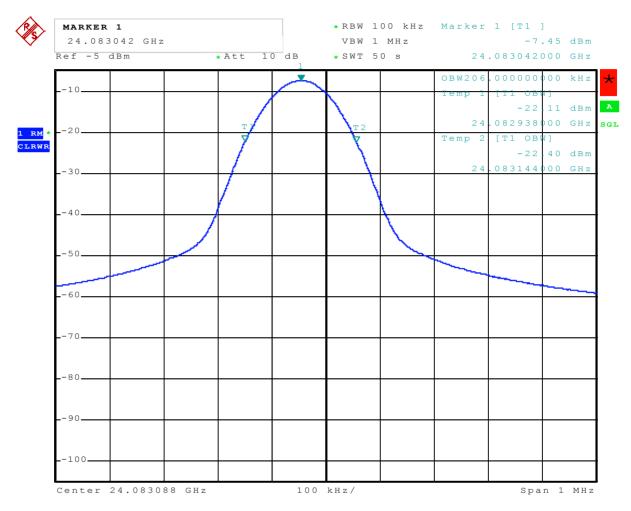
Date: 22.MAR.2010 16:54:22

Occupied Bandwidth (99 %): 206 kHz

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

Occupied Bandwidth (continued)

Rules and specifications:	IC RSS-Gen Issue 2, section 4.6.1
Guide:	IC RSS-Gen Issue 2, section 4.6.1
Description:	If not specified in the applicable RSS the occupied bandwidth is measured the 99% emission bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is also recorded. The span between the two recorded frequencies is the occupied bandwidth.
Measurement procedure:	Bandwidth Measurements (6.2)


Comment:	
Date of test:	March 22, 2010
Test site:	Fully anechoic room, cabin no. 2

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuey-sued.com/ser

Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

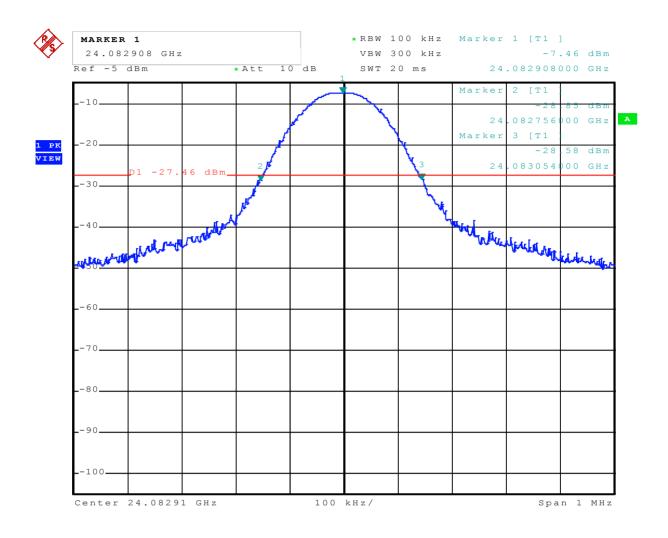
Occupied Bandwidth (99 %):

Date: 22.MAR.2010 16:54:22

Occupied Bandwidth (99 %): 206 kHz

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

8.3 Bandwidth of the Emission


Rules and specifications:	CFR 47 Part 15, section 15.215(c)	
Guide:	ANSI C63.4	
Description:	The 20 dB bandwidth of the emission is measured as the frequency range defined by the points that are 20 dB down relative to the maximum level of the modulated carrier. For intentional radiators operating under the alternative provisions to the general emission limits the requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation. The resolution bandwidth of the spectrum analyzer shall be set to a value greater than 5.0% of the allowed bandwidth. If no bandwidth specifications are given, the following guidelines are used:	
	Fundamental frequency	Minimum resolution bandwidth
	9 kHz to 30 MHz	1 kHz
	30 MHz to 1000 MHz	10 kHz
	1000 MHz to 40 GHz	100 kHz
	The video bandwidth shall be at least tion bandwidth.	three times greater than the resolu-
Measurement procedure:	Bandwidth Measurements (6.2)	

Comment:	
Date of test:	March 22, 2010
Test site:	Fully anechoic room, cabin no. 2

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99

Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

Date: 22.MAR.2010 16:56:49

Permitted frequency band:	24075 - 24175 MHz	
20 dB bandwidth:	298 kHz	
Carrier frequency stability: Maximum frequency tolerances:	specified	⊠ not specified
Bandwidth of the emission:	298 kHz	within permitted frequency band ⁷ : ⊠ yes □ no
Test Result:	Test passed	

⁷ If a frequency stability is not specified, it is recommended that the fundamental emission is kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

8.4 Designation of Emissions

Rules and specifications:	CFR 47 Part 2, sections 2.201 and 2.202 IC RSS-Gen Issue 2, sections 3.2(h) and 8
Guide:	ANSI C63.4 / TRC-43

Designation of Emissions:	NON
---------------------------	-----

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

8.5 Conducted Powerline Emission Measurement 150 kHz to 30 MHz

Rules and specifications:		CFR 47 Part 15, section 15.207 C RSS-Gen Issue 2, section 7.2.2				
Guide:	ANSI C63.4 / CISPR 22					
Limit:	Frequency of Emission Conducted Limit		ed Limit			
	(MHz)	(dB	μV)			
		Quasi-peak	Average			
	0.15 - 0.5	66 to 56	56 to 46			
	0.5 - 5	56	46			
	5 - 30	60	50			
Measurement procedure:	Conducted AC Powerline Emission (6.3)					

Comment:	
Date of test:	March 10, 2010
Test site:	Shielded room, cabin no. 4

Tool passed	Test Result:	Test passed
-------------	--------------	-------------

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

Tested on: L1

Frequency	Detector	Reading	Correction	Final	Limit	Margin
		Value	Factor	Value		
(MHz)		(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)
0.175	Quasi-Peak	48.3	0.0	48.3	64.7	16.4
0.215	Quasi-Peak	46.4	0.0	46.4	63.0	16.6
0.240	Quasi-Peak	45.2	0.0	45.2	62.1	16.9
0.325	Quasi-Peak	43.3	0.0	43.3	59.6	16.3
0.390	Quasi-Peak	38.4	0.0	38.4	58.1	19.7
0.510	Quasi-Peak	36.7	0.0	36.7	56.0	19.3
0.550	Quasi-Peak	34.4	0.0	34.4	56.0	21.6
0.685	Quasi-Peak	32.7	0.0	32.7	56.0	23.3
0.830	Quasi-Peak	31.8	0.0	31.8	56.0	24.2
1.095	Quasi-Peak	29.8	0.0	29.8	56.0	26.2
1.505	Quasi-Peak	32.4	0.0	32.4	56.0	23.6
1.830	Quasi-Peak	31.2	0.0	31.2	56.0	24.8
2.025	Quasi-Peak	32.1	0.0	32.1	56.0	23.9
2.375	Quasi-Peak	31.8	0.0	31.8	56.0	24.2
3.435	Quasi-Peak	31.1	0.0	31.1	56.0	24.9
3.605	Quasi-Peak	30.7	0.0	30.7	56.0	25.3
4.795	Quasi-Peak	27.2	0.0	27.2	56.0	28.8
6.550	Quasi-Peak	38.8	0.0	38.8	60.0	21.2
6.885	Quasi-Peak	33.7	0.0	33.7	60.0	26.3
8.635	Quasi-Peak	29.2	0.0	29.2	60.0	30.8

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

Tested on: N

Frequency	Detector	Reading	Correction	Final	Limit	Margin
		Value	Factor	Value		
(MHz)		(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)
0.150	Quasi-Peak	49.2	0.0	49.2	66.0	16.8
0.190	Quasi-Peak	46.8	0.0	46.8	64.0	17.2
0.240	Quasi-Peak	44.9	0.0	44.9	62.1	17.2
0.320	Quasi-Peak	42.1	0.0	42.1	59.7	17.6
0.360	Quasi-Peak	40.7	0.0	40.7	58.7	18.0
0.445	Quasi-Peak	37.9	0.0	37.9	57.0	19.1
0.610	Quasi-Peak	35.8	0.0	35.8	56.0	20.2
0.675	Quasi-Peak	33.5	0.0	33.5	56.0	22.5
0.955	Quasi-Peak	31.7	0.0	31.7	56.0	24.3
1.135	Quasi-Peak	32.6	0.0	32.6	56.0	23.4
1.305	Quasi-Peak	31.1	0.0	31.1	56.0	24.9
1.840	Quasi-Peak	30.3	0.0	30.3	56.0	25.7
2.040	Quasi-Peak	31.1	0.0	31.1	56.0	24.9
2.700	Quasi-Peak	28.8	0.0	28.8	56.0	27.2
3.105	Quasi-Peak	30.8	0.0	30.8	56.0	25.2
4.270	Quasi-Peak	25.7	0.0	25.7	56.0	30.3
4.695	Quasi-Peak	30.7	0.0	30.7	56.0	25.3
6.460	Quasi-Peak	42.6	0.0	42.6	60.0	17.4
6.885	Quasi-Peak	35.9	0.0	35.9	60.0	24.1

Sample calculation of final values:

Final Value ($dB\mu V$) = Reading Value ($dB\mu V$) + Correction Factor (dB)

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

8.6 Radiated Emission Measurement 9 kHz to 30 MHz

Rules and specifications:	CFR 47 Part 15, sections 15.215(b) and 15.245(b)(3) IC RSS-210 Issue 7, section A7.3					
Guide:	ANSI C63.4					
Limit:	Frequency of Field Measurement Strength Distance d					
	(MHz) (μV/m) (dBμV/m)					
	0.009 - 0.490					
	0.490 - 1.705					
	1.705 - 30.000	1.705 - 30.000 30 29.5				
	Additionally, the level of any unwanted emissions shall not exceed the the fundamental emission.					
Measurement procedure:	Radiated Emission Measurement 9 kHz to 30 MHz (6.4)					

Comment:	
Date of test:	March 4, 2010
Test site:	Open field test site

Test Result:	Test passed
--------------	-------------

No emissions above noise level detected.

Sample calculation of final values:

Extrapolation Factor (dB) = $(Log(d) - Log(d_1)) \cdot Extrapolation Factor (dB/decade)$ Final Value (dB μ V/m) = Reading Value d₁ (dB μ V) + Correction Factor (dB/m) + Extrapolation Factor (dB) + Pulse Train Correction (dB)

Note: Extrapolation factor (dB) and final value (dBµV/m) are relating to distance d.

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

8.7 Radiated Emission Measurement 30 MHz to 100 GHz

Rules and specifications:		CFR 47 Part 15, sections 15.215(b) and 15.245 IC RSS-210 Issue 7, section A7					
Guide:	ANSI C63.4						
Limit according to 15.245:	Fundamental Frequency				Strength of armonics		
	(MHz)	(mV/m)	(dBµV/m)	(mV/m)	(dBµV/m)		
	902 – 928	500	114.0	1.6	64.1		
	2435 – 2465	500	114.0	1.6	64.1		
	5785 – 5815	500	114.0	1.6	64.1		
	10500 – 10550	2500	128.0	25	88.0		
	24075 – 24175	2500	128.0	25	88.0		
	restricted bands the field strength	Regardless of the limits shown in the above table, harmonic emission in the restricted bands below 17.7 GHz, as specified in §15.205, shall not exceed the field strength limits shown in §15.209. Harmonic emission in the restricted bands at and above 17.7 GHz shall not exceed the following field strength limits:					
	(i) For the second and third harmonics of field disturbance sensors operating in the 24075 – 24175 MHz band and for other field disturbance sensors designed for use only within a building or to open building doors, 25.0 mV/m.						
	(ii) For all other field disturbance sensors, 7.5 mV/m.						
	(iii) Field disturbance sensors designed to be used in motor vehicles or aircraft must include features to prevent continuous operation unless their emissions in the restricted bands, other than the second and third harmonics from devices operating in the 24075 – 24175 MHz band, fully comply with the limits given in §15.209. Continuous operation of field disturbance sensors designed to be used in farm equipment, vehicles such as fork lifts that are intended primarily for use indoors or for very specialized operations, or railroad locomotives, railroad cars and other equipment which travels on fixed tracks is permitted. A field disturbance sensor will be considered not to be operating in a continuous mode if its operation is limited to specific activities of limited duration (e.g. putting a vehicle into reverse gear, activating a turn signal etc.)						
	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general limits in §15.209, whichever is the lesser attenuation.						
	The emission lim tion employing ar peak emission ap	n average dete					

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

Limit according to 15.209:	Frequency of Emission Field Strength				
	(MHz)	$(\mu V/m)$	(dBµV/m)		
	30 – 88	100	40.0		
	88 – 216	150	43.5		
	216 – 960	200	46.0		
	above 960	500	54.0		
	Additionally, the level of any unwanted emissions shall not exceed the level of the fundamental emission.				
Measurement procedures:	Radiated Emission in Fully or Semi Anechoic Room (6.5) Radiated Emission at Alternative Test Site (6.6)				

Comment:	Final measurements in the frequency range from 30 MHz to 1 GHz were taken with type R of the EUT which has the same RF part and showed maximum emissions at prescans.			
Date of test:	March 2, 2010; March 4, 2010; March 11,	2010; April 8, 2010		
Test site:	Frequencies ≤ 1 GHz: Open field test site Frequencies > 1 GHz: Fully anechoic roof Frequencies > 40 GHz: External test side			
Test distance:	Frequencies \leq 8.2 GHz: Frequencies > 8.2 GHz to \leq 26.5 GHz: Frequencies > 26.5 GHz to \leq 40 GHz: Frequencies > 40 GHz to \leq 75 GHz: Frequencies > 75 GHz:	3 meters 1 meters 0.5 meters 0.375 meters 0.1 meters		

Test Result: Test passed	
--------------------------	--

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
36.300	vertical	Quasi-Peak	24.8	14.4		39.2	40.0	8.0
40.350	vertical	Quasi-Peak	15.9	14.4		30.3	40.0	9.7
182.340	horizontal	Quasi-Peak	18.3	11.3		29.6	43.5	13.9
24082.220	vertical	Average	74.6	43.0		117.6	137.5	20.0
24091.667	vertical	Peak	75.4	43.0		118.4	137.5	19.2

Sample calculation of final values:

Final Value (dB μ V/m) = Reading Value (dB μ V) + Correction Factor (dB/m) + Pulse Train Correction (dB)

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

8.8 Exposure of Humans to RF Fields

Rules and specifications:	IC RSS-Gen Issue 2, section 5.5						
Guide:	IC RSS-102 Issue 4, section 2.5						
				Declared by applicant	Measured		
Exposure of Humans to RF Fields						Exemption	
The antenna is							
□ detachable							
The conducted ou nector:	tput power (CP in wat	ts) is measured at the antenna con-					
nector.	<i>CP</i> = 25	57 μW			\boxtimes		
The effective isotr	opic radiated power (E	EIRP in watts) is calculated using					
	I antenna gain: $EIRP = G \cdot CP$	$G=$ 158.5 \Rightarrow $EIRP=$ 40.74 mW					
	igth ⁸ in V/m:	FS = 831.76 mV/m			\boxtimes		
	$EIRP = \frac{(FS \cdot D)^2}{30} =$	$\Rightarrow EIRP = 23.06 \text{ mW}$					
with:					_		
Distance bety	veen the antennas in I	m: $D = 1 \text{ m}$					
not detachable							
	easurement is used to IRP in watts) given by	determine the effective isotropic 8:					
	$EIRP = \frac{(FS \cdot D)^2}{30} =$	$\Rightarrow EIRP = \dots $ W					

TP = 40.74 mW

The output power TP is the higher of the conducted or effective isotropic radiated

 $FS = \dots V/m$

D = m

with:

Selection of output power

power (e.i.r.p.):

Field strength in V/m:

Distance between the two antennas in m:

⁸ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

Exposure of Humans to RF Fields (continued)	Applicable	Declared by applicant	Measured	Exemption			
Separation distance between the user and the transmitting device is							
☐ less than or equal to 20 cm ☐ greater than 20 cm		\boxtimes					
Transmitting device is							
☐ in the vicinity of the human head ☐ body-worn		\boxtimes					
SAR evaluation							
SAR evaluation is required if the separation distance between the user and the device is less than or equal to 20 cm.							
The device operates from 3 kHz up to 1 GHz inclusively and with output power (i.e. the higher of the conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 200 mW for general public use and 1000 mW for controlled use.							
 □; □ The device operates above 1 GHz and up to 2.2 GHz inclusively and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 100 W for general public use and 500 W for controlled use. 							
☐ The device operates above 2.2 GHz and up to 3 GHz inclusively and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 20 mW for general public use and 100 mW for controlled use.							
The device operates above 3 GHz and up to 6 GHz inclusively and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 10 mW for general public use and 50 mW for controlled use. SAR evaluation is documented in test report no							
RF exposure evaluation	I						
RF exposure evaluation is required if the separation distance between the user and the device is greater than 20 cm.							
☐ The device operates below 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 2.5 W.							
The device operates at or above 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 5 W.				\boxtimes			
RF exposure evaluation is documented in test report no							

Phone: +49 9421 5522-0
Fax: +49 9421 5522-99
Web: www.tuev-sued.com/senton
eMail: senton@tuev-sued.de

9 Referenced Regulations

All tests were performed with reference to the following regulations and standards:

CFR 47 Part 2	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)	October 1, 2008
CFR 47 Part 15	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)	October 1, 2008
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	December 11, 2003 (published on January 30, 2004)
RSS-Gen	Radio Standards Specification RSS-Gen Issue 2 containing General Requirements and Information for the Certification of Radiocommunication Equimpment, published by Industry Canada	June 2007
RSS-210	Radio Standards Specification RSS-210 Issue 7 for Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equip- ment, published by Industry Canada	June 2007
RSS-310	Radio Standards Specification RSS-310 Issue 2 for Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category II Equipment, published by Industry Canada	June 2007
RSS-102	Radio Standards Specification RSS-102 Issue 4: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), published by Industry Canada	March 2010
ICES-003	Interference-Causing Equipment Standard ICES-003 Issue 4 for Digital Apparatus, published by Industry Canada	February 7, 2004
CISPR 22	Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment – Radio Disturbance Characteristics – Limits and Methods of Measurement"	1997
CAN/CSA- CEI/IEC CISPR 22	Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment	2002
TRC-43	Notes Regarding Designation of Emission (Including Necessary Bandwidth and Classification), Class of Station and Nature of Service, published by Industry Canada	October 9, 1982

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: www.tuev-sued.com/senton eMail: senton@tuev-sued.de

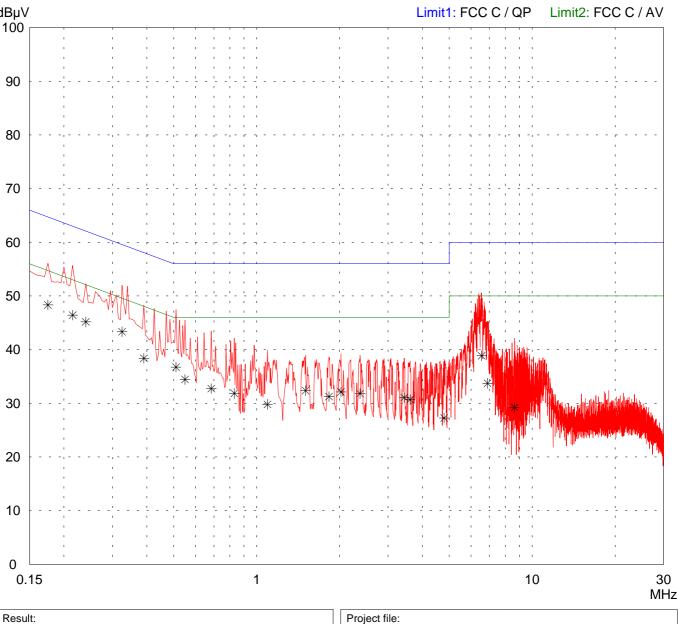
10 Revision History

Revision History						
Edition	Date	Issued by	Modifications			
1	18.05.2010	M. Steindl	First Edition			
2	15.07.2010	C. Jäger	Edition 2 Modification required for FCC-IC-Certification Antenna gain informationen included			

Phone: +49 9421 5522-0 Fax: +49 9421 5522-99 Web: eMail: www.tuev-sued.com/senton

senton@tuev-sued.de

11 Charts taken during testing


Conducted Emission Test 150 kHz - 30 MHz according to FCC Part 15 Subpart C

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Test site: Shielded room, cabin no. 4 Tested on: Linecord AC 115 V Phase L1 Date of test: Operator: 03/10/2010 M. Steindl Test performed: File name: semi automatically

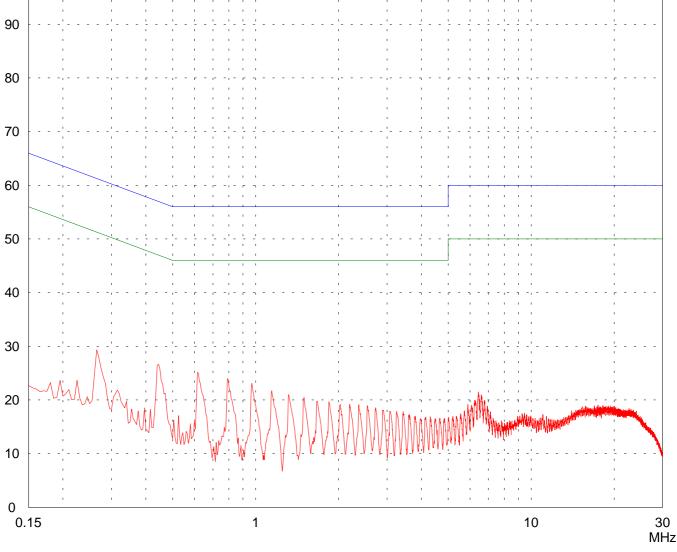
Mode:

- AC 115 V power supply
- Transmitting continuously

Detector: Final results: Peak / Final Results: QP 20 dB Margin 25 Subranges dBµV Limit1: FCC C / QP Limit2: FCC C / AV

20029-01719-1

Page


of

Pages

Limit kept

Conducted Emission Test 150 kHz - 30 MHz according to FCC Part 15 Subpart C

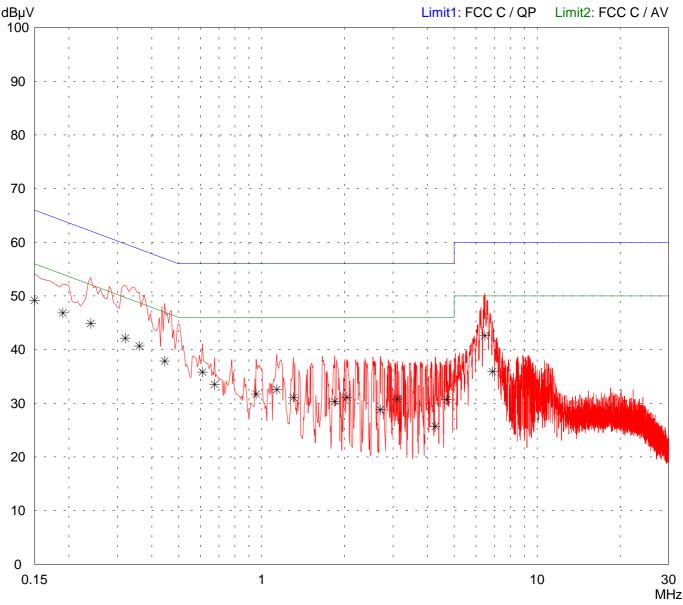
Model: Mode: VEGAMIP MP60T.-02 - AC 115 V power supply Serial no.: - Transmitting continuously HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Test site: Shielded room, cabin no. 4 Tested on: Linecord AC 115 V Phase L1 Date of test: Operator: 03/10/2010 M. Steindl Test performed: File name: automatically Detector: Final results: Average / Final Results: AV 20 dB Margin 25 Subranges dBµV Limit1: FCC C / QP Limit2: FCC C / AV 100 90 80 70

Project file:

20029-01719-1

Page

of


Pages

Result:

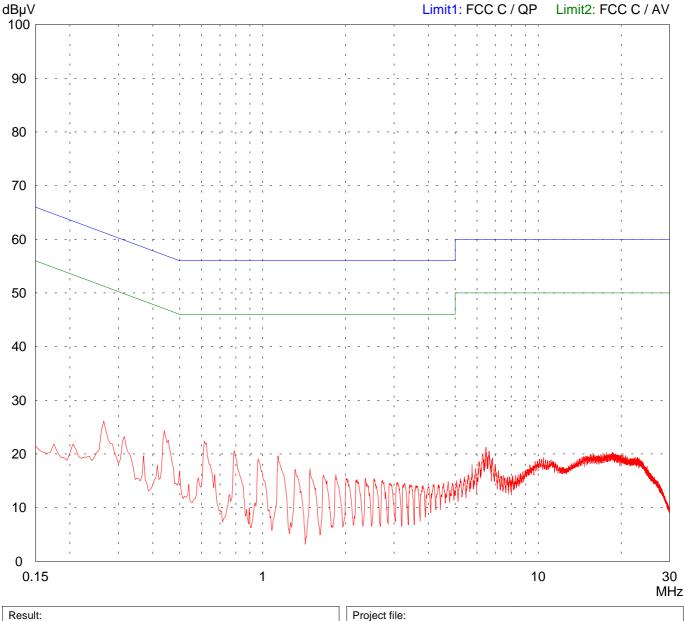
Limit kept

Conducted Emission Test 150 kHz - 30 MHz according to FCC Part 15 Subpart C

Model: Mode: VEGAMIP MP60T.-02 - AC 115 V power supply Serial no.: - Transmitting continuously HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Test site: Shielded room, cabin no. 4 Tested on: Linecord AC 115 V Phase N Date of test: Operator: 03/10/2010 M. Steindl Test performed: File name: semi automatically Detector: Final results: Peak / Final Results: QP 20 dB Margin 25 Subranges

Result: Limit kept Project file:

20029-01719-1


Page

of

Pages

Conducted Emission Test 150 kHz - 30 MHz according to FCC Part 15 Subpart C

Model: Mode: VEGAMIP MP60T.-02 - AC 115 V power supply Serial no.: - Transmitting continuously HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Test site: Shielded room, cabin no. 4 Tested on: Linecord AC 115 V Phase N Date of test: Operator: 03/10/2010 M. Steindl Test performed: File name: automatically Detector: Final results: Average / Final Results: AV 20 dB Margin 25 Subranges

20029-01719-1

Page

of

Pages

Limit kept

Radiated Emission Test 9 kHz - 30 MHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Date of test: Operator: 03/04/2010 M. Steindl Test performed: File name: by hand default.emi

Result:

Prescan

Comment:


- 115 V AC supply
- Transmitting continuously

Detector:

Peak

List of values:
10 dB Margin

50 Subranges

Project file: 20029-01719-1

Page

Pages

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)

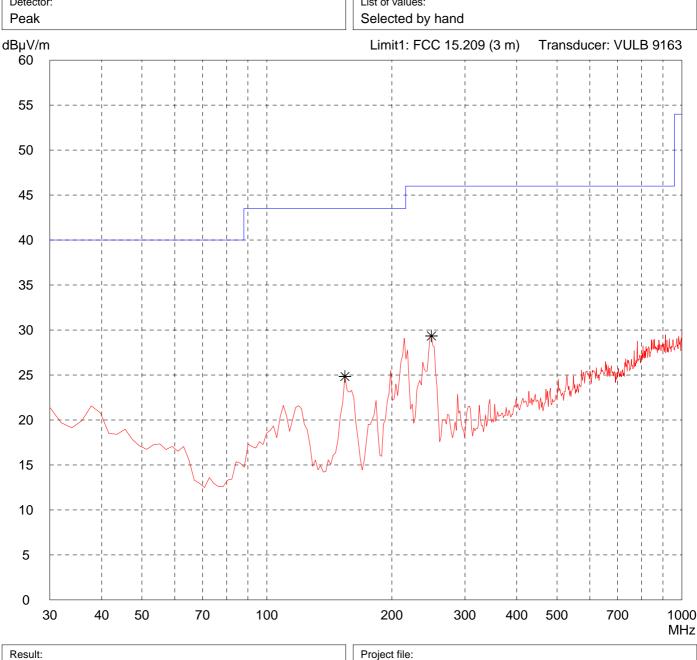
Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization Date of test: Operator: 03/04/2010 M. Steindl Test performed: File name: automatically default.emi

Comment:

- 115 V AC supply
- Transmitting continuously

Detector: List of values: Peak Selected by hand dBµV/m Limit1: FCC 15.209 (3 m) Transducer: VULB 9163 60 55 50 45 40 35 VIVA 30 25 20 15 10 5 0 30 40 50 70 100 200 300 400 500 700 1000 MHz

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)


Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Vertical Polarization Date of test: Operator: 03/04/2010 M. Steindl Test performed: File name: automatically default.emi

Comment:

- 115 V AC supply
- Transmitting continuously

Detector: List of values: Peak

Prescan

20029-01719-1

Page

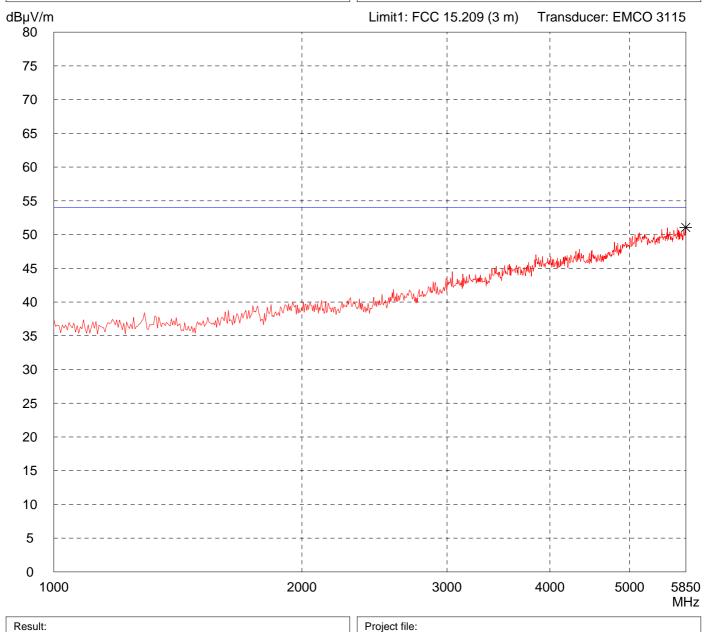
of

Pages

Radiated Emission Test 1 GHz - 5,85 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization Date of test: Operator: 03/02/2010 M. Steindl Test performed: File name: automatically default.emi

Comment:


- 115 V AC supply
- Transmitting continuously

Detector:

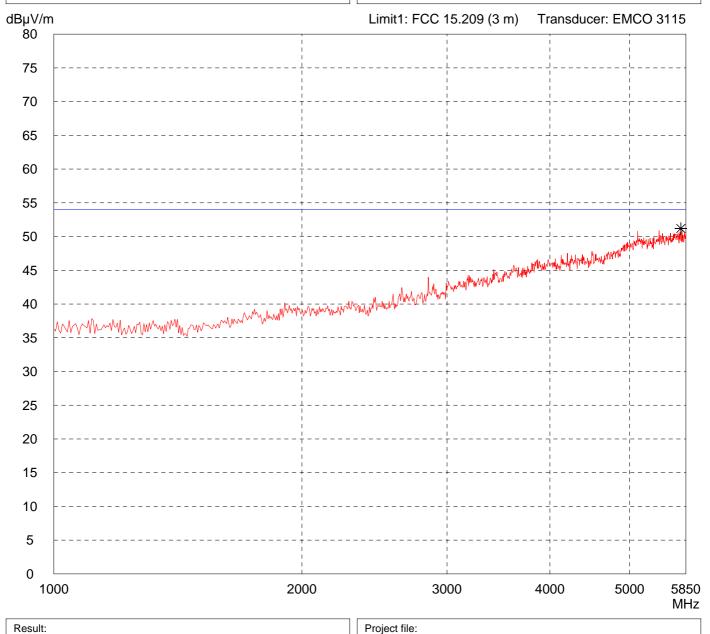
Peak

List of values:

Selected by hand

Radiated Emission Test 1 GHz - 5,85 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Vertical Polarization Date of test: Operator: 03/02/2010 M. Steindl Test performed: File name: automatically default.emi


Comment:

- 115 V AC supply
- Transmitting continuously

Detector:

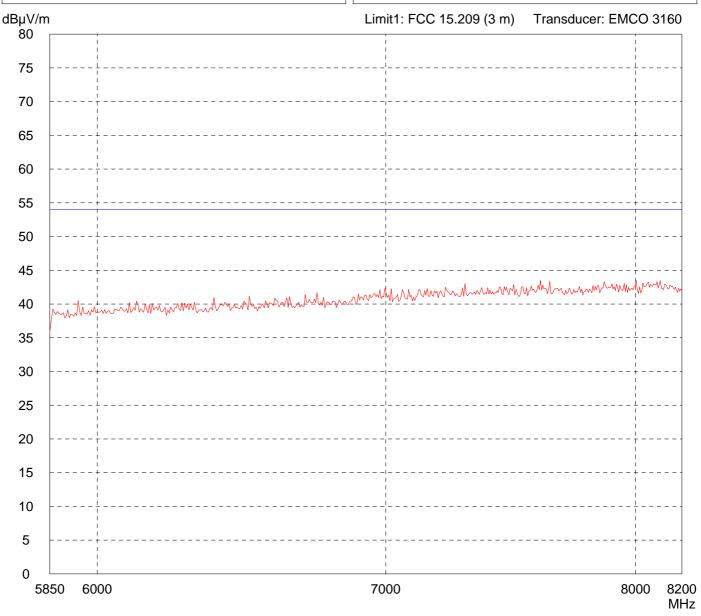
Peak

List of values:
Selected by hand

Radiated Emission Test 5,85 GHz - 8,2 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization Date of test: Operator: 03/02/2010 M. Steindl Test performed: File name: automatically default.emi

Comment:


- 115 V AC supply
- Transmitting continuously

Detector:

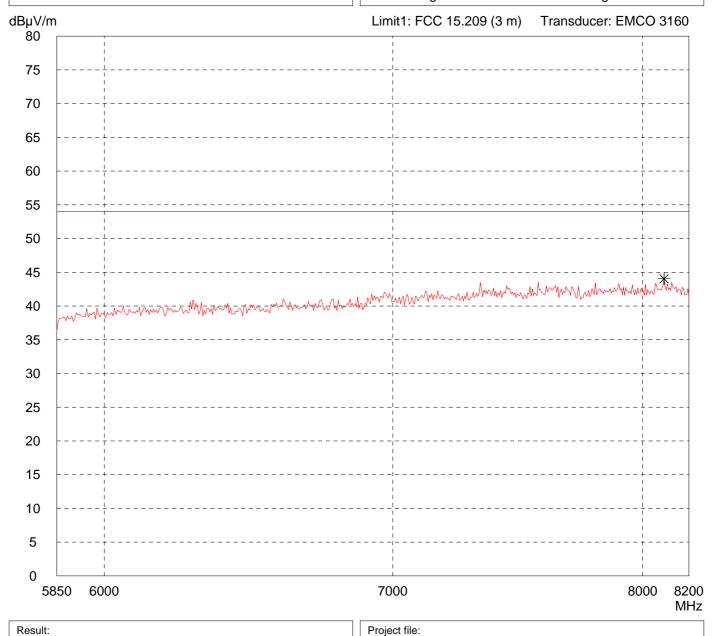
Peak

List of values:
10 dB Margin

50 Subranges

Radiated Emission Test 5,85 GHz - 8,2 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Vertical Polarization Date of test: Operator: 03/02/2010 M. Steindl Test performed: File name: automatically default.emi


Comment:

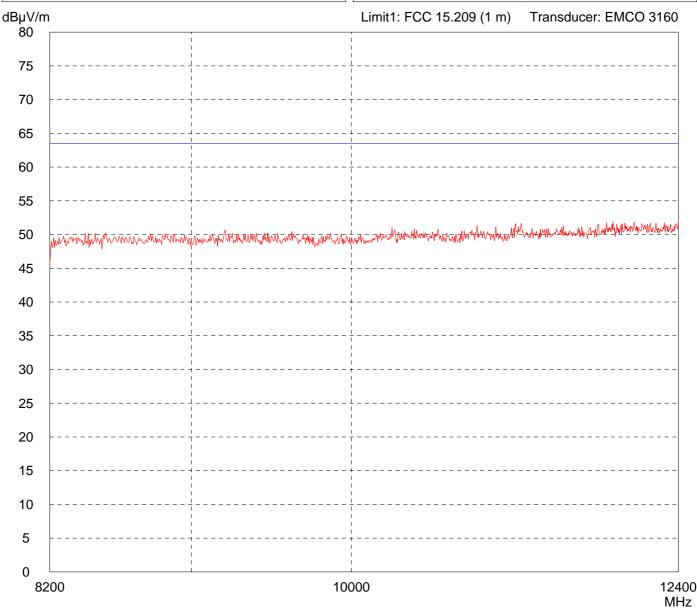
- 115 V AC supply
- Transmitting continuously

Detector:

Peak

List of values:
10 dB Margin
50 Subranges

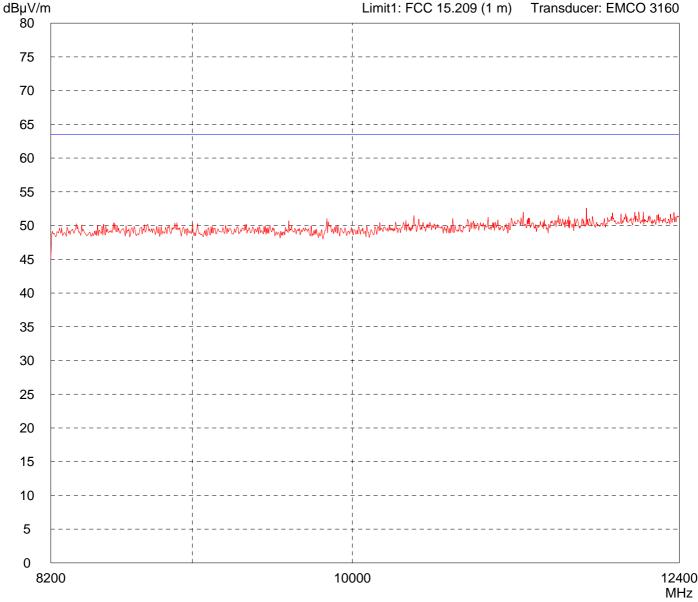
Prescan 20029-01719-1 Page of Pages


Radiated Emission Test 8,2 GHz - 12,4 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 1 meter Horizontal Polarization Date of test: Operator: 03/02/2010 M. Steindl Test performed: File name: automatically default.emi

Comment:

- 115 V AC supply
- Transmitting continuously


Radiated Emission Test 8,2 GHz - 12,4 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 1 meter Vertical Polarization Date of test: Operator: 03/02/2010 M. Steindl Test performed: File name: automatically default.emi

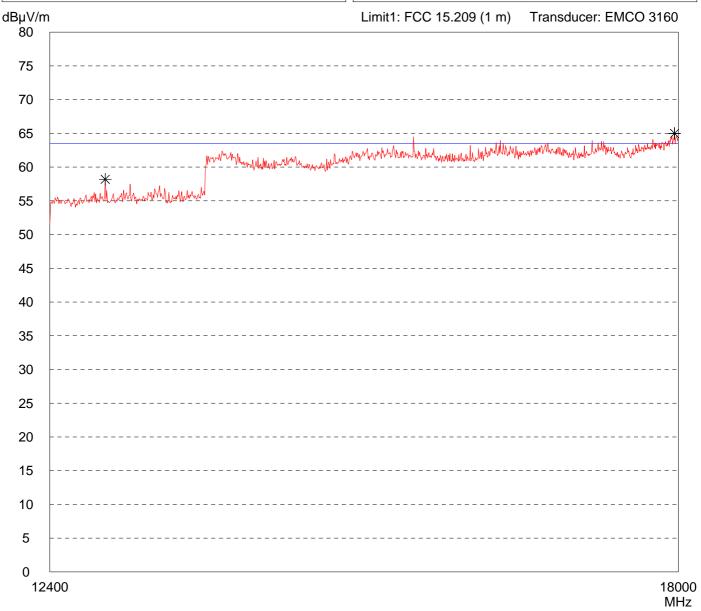
Comment:

- 115 V AC supply
- Transmitting continuously

Radiated Emission Test 12,4 GHz - 18 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 1 meter Horizontal Polarization Date of test: Operator: 03/02/2010 M. Steindl Test performed: File name: automatically default.emi

Comment:


- 115 V AC supply
- Transmitting continuously

Detector:

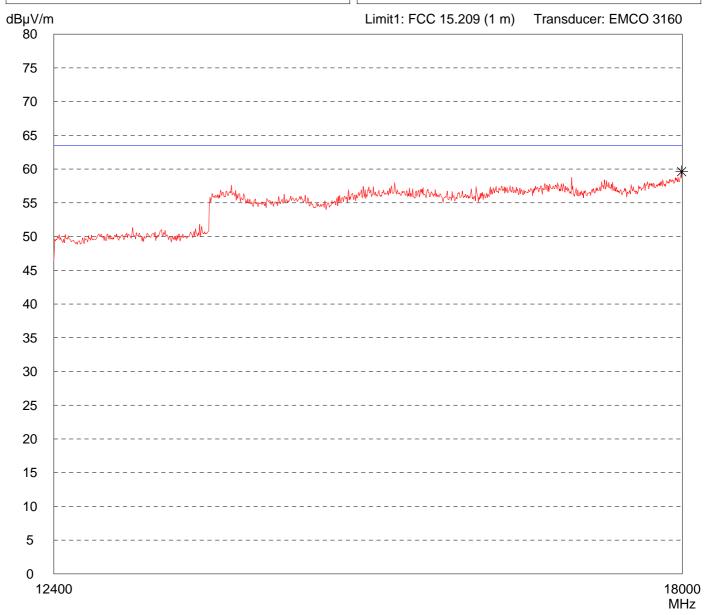
Peak

List of values:

Selected by hand

Radiated Emission Test 12,4 GHz - 18 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 1 meter Horizontal Polarization Date of test: Operator: 03/02/2010 M. Steindl Test performed: File name: automatically default.emi Detector:


Comment:

- 115 V AC supply
- Transmitting continuously

Detector:

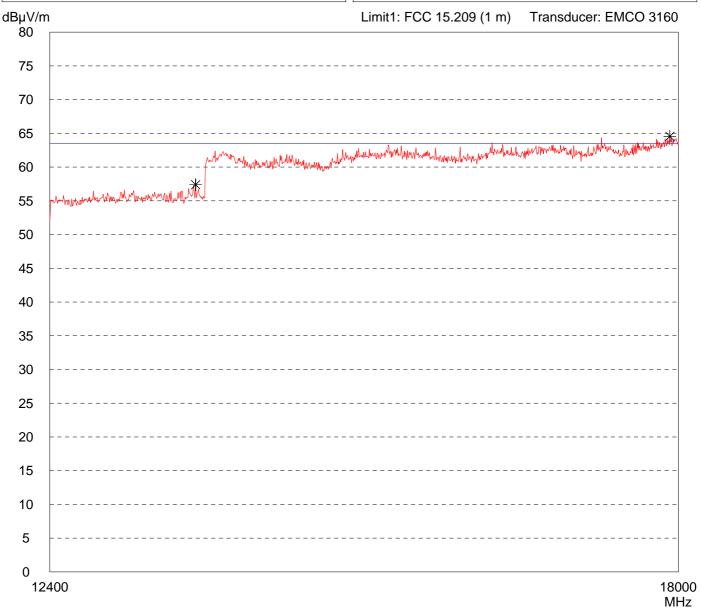
Peak

List of values:
Selected by hand

Radiated Emission Test 12,4 GHz - 18 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 1 meter Vertical Polarization Date of test: Operator: 03/02/2010 M. Steindl Test performed: File name: automatically default.emi Detector:

Comment:

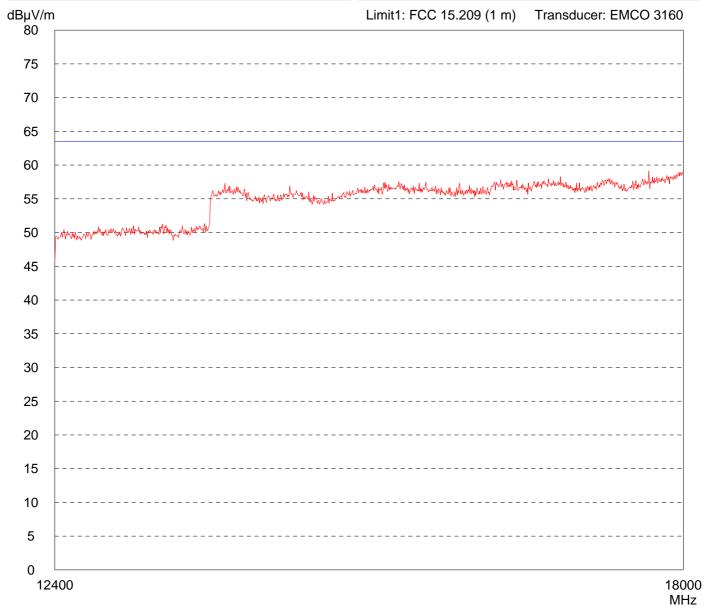

- 115 V AC supply
- Transmitting continuously

Detector:

Peak

List of values:

Selected by hand


Radiated Emission Test 12,4 GHz - 18 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: VEGAMIP MP60T.-02 Serial no.: HW Ver. 1.0.1 Applicant: VEGA Grieshaber KG Fully anechoic room, cabin no. 2 Tested on: Test distance 1 meter Vertical Polarization Date of test: Operator: 03/02/2010 M. Steindl Test performed: File name: automatically default.emi Detector: Peak

Comment:

- 115 V AC supply
- Transmitting continuously

List of values: Selected by hand

Result: Project file: 20029-01719-1 Prescan Page **Pages**

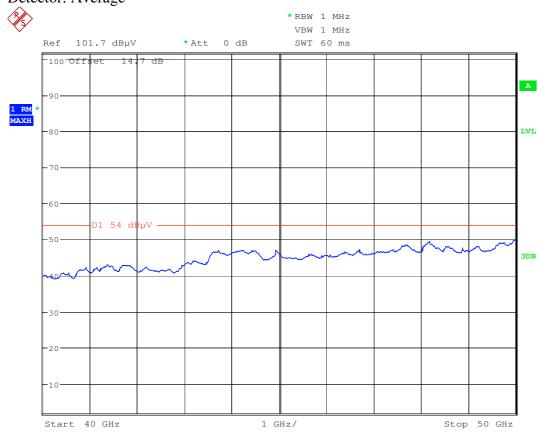
Model: VEGAMIP MP60T02					Mode: - AC 115 V power supply					
Serial No.: HW Ver. 1.0.1					- Transmitting continuously Polarisation: horizontal Distance: 1 m					
Applicant: VEGA Griesha	her KG									
VEGA Glieslia	bei NG				Distance.	. 1 111				
Ref.Level 120 d 10 dB/Div.	lΒμV			ATT	0 dB			Ref. C	Offset 43 dB	
	 	 	,					 	 	
May	 		 		1	+			+ 	
Manney May May May and the	~ 	, jt p4(p4(p4(p4(p4(p4(p4(p4(p4(p4(p4(p4(p4(p	endllar aver-valvalleri	The Northern Super	NGA ZOVINIZA (MININI) NIZA ZOVINI	WANTER TO THE PROPERTY OF THE	\frac{\dagger}{4}	haman haman	haman markan	
		+ ! !	 - -	 					+ 	
	 	 	 - - -	 		 	; 		<u> </u>	
			 - 			 	L	 	1 	
Start 18.000 GH RBW 1 MHz	Z	i		VBW [*]	1 M⊔z		İ	Stop 2	26.500 GHz SWP 40 ms	
TOW TIVITIZ				Multi Ma					3771 40 1113	
		No. 1		23889 GHz	72.	.42 dBµV				
		No. 2	24.0	91667 GHz	109.	.97 dBµV				
Tested by: M. Steindl					Project-No. 20029-01					
Date: 2010-03-11							Page	e of	pages	

Model: VEGAMIP MP60T02	Mode: - AC 115 V power supply
Serial No.: HW Ver. 1.0.1	- Transmitting continuously
Applicant: VEGA Grieshaber KG	Polarisation: horizontal Distance: 1 m
VEGA Gliesilabel KG	
Ref.Level 120 dBµV 10 dB/Div.	ATT 0 dB Ref. Offset 43 dB
	2,
	1
Start 18.000 GHz RBW 1 MHz	Stop 26.500 GHz VBW 10 kHz SWP 2.60 s
	Multi Marker List
No. 1 22.39166	
No. 2 24.08222	22 GHz 110.38 dBµV
Tested by: M. Steindl	Project-No.: 20029-01719-1
Date: 2010-03-11	Page of pages

Model: VEGAMIP MP60T02					Mode: - AC 115 V power supply					
Serial No.: HW Ver. 1.	.0.1				- Transmitting continuously Polarisation: vertical Distance: 1 m					
Applicant: VEGA Grie	eshaber KG									
720/10110					Distarioc					
Ref.Level 12 10 dB/Div.	20 dBµV			ATT	0 dB		2	Ref.	Offset 43 dB	
	 		 			 	+	 	 	
	 	· — — — — — 				 		- 	 	
		· — — — — — - 	+ 			+ 	-		+	
	' 	· – – – – – ; ! !		'		<u> </u>	;_		i 	
	 	· = = = = = = + 	+ 		1	+	-	 	+ 	
manhamman		MININAMA	mphy mytultura	the water the control of the control	NTMHWZMYMTWNT~VII~_	Athlianamphon.	tyt Mhamhum	Ammul Mullim	Mummumm	
	+ ! !	· 	-			+				
	' 	' — — — — — - 	-	'_		†	¦_		 	
	 		 			†			† 	
		. – – – – – ,		 		†	 		 	
Start 18.000 RBW 1 MHz		i		VBW 1		i	İ	Stop	26.500 GHz SWP 40 ms	
NDW I WITZ	-			Multi Ma					3007 40 1115	
		No. 1		10556 GHz		2.37 dBµV				
		No. 2	24.0	91667 GHz	118	3.38 dBµV				
Tested by: M. Steindl					Project-No. 20029-01					
Date: 2010-03-11						Pag	e of	pages		

Model: VEGAMIP MP60T02	Mode: - AC 115 V power supply - Transmitting continuously					
Serial No.: HW Ver. 1.0.1						
Applicant: VEGA Grieshaber KG	Polarisation: vertical Distance: 1 m					
VEGA Gliesilabel NG	Distance. 1 m					
Ref.Level 120 $dB\mu V$ A ⁻¹ 10 dB/Div .	TT 0 dB Ref. Offset 43 dB					
	2+					
	-					
1 manual						
Start 18.000 GHz	Stop 26.500 GH					
	/ 10 kHz SWP 2.60 s					
No. 1 22.382222 G	GHz 59.21 dBμV					
No. 2 24.082222 G	GHz 117.57 dBμV					
Tested by: M. Steindl	Project-No.: 20029-01719-1					
Date: 2010-03-11	Page of pages					

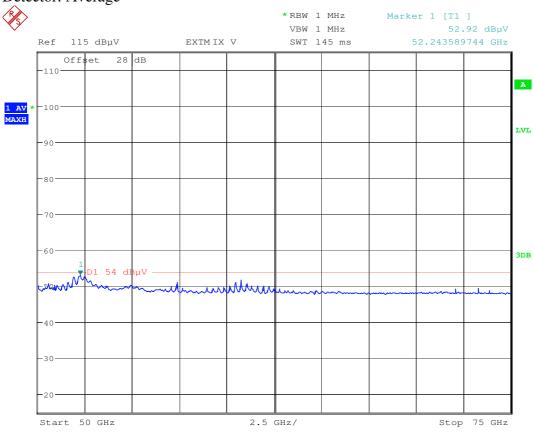
Model: VEGAMIP MP60T02		Mode: - AC 115 V power supply - Transmitting continuously Polarisation: horizontal Distance: 0.5 m				
Serial No.: HW Ver. 1.0.1						
Applicant: VEGA Grieshaber KG						
V 20/1 GIRBORIADO I 110				without cor	rection fact	ors
Defit and 40 dDnV) -ID				
Ref.Level 42 dBμV 5 dB/Div.	ATT C) aB				
	! !	 				
		 	 -	 		
	 	 	 	Marke	er	
		 		37.96	0000 GHz dBµV	
	 -	· 	 	19.54 	υωμν	
		+ · · · · · · · · · · · ·	 - - - -		+,	†
┸╲╅┸┸ [┸] ┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸		/4/14/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	1al II.a., Mandanda		^{₦₳} ₱₦₩₩₩	
	"	' '	Halbahrahra/Lahla, dahan d		'	'
		+ + 	 - 	 - - -		+
		 +				; ; ; +
	 	 				1 1 1
		· 		 - - -		
Start 26.500 GHz						40.000 GHz
RBW 1 MHz Tested by:	VBW 1	MHz Project-No.:			;	SWP 60 ms
M. Steindl Date:		20029-01719-1				
2010-03-11				Page	e of	pages


Model: VEGAMIP MP60T02	Mode: - AC 115 V power supply					
Serial No.: HW Ver. 1.0.1	- Transmitting continuously Polarisation: vertical					
Applicant:						
VÉGA Grieshaber KG	Distance: 0.5 m Noise-measurement without correction factors					
	-					
Ref.Level 68 dBµV ATT 5 dB/Div.	Γ 0 dB Ref. Offset 26 dB					
	Marker					
	28.510000 GHz 45.54 dBµV					
╤┍┍┇╌╫╾╌┈┈┈┈┈┈┈┉┸┉┸ <mark>┦</mark> ┩╟ <mark>╬</mark> ┍┎┉┪┩╱╾┷┪┦ [╏] ╟╾┷┸┈╫┯╌ [╇] ╇╇╌┷┪╇┷┪┸╲╅╇╧┶┩┡┩┪╓┤ _{╏╇╇} ╈┯	╙ ╒╣┡┍ ╫╫╫╫╫┸╫┸┸╫┸┸╫┸┸╫┸┸┸┸╫┸┸┸┸╫┸┸┸╇╇╇╇╇╇╇╇╇╇					
	1 . H. Mill V Mill V Mill V Mill V V Mill V V V V V V V V V V V V V V V V V V					
Start 26.500 GHz RBW 1 MHz VBW	Stop 40.000 GHz / 1 MHz SWP 60 ms					
Tested by:	Project-No.:					
M. Steindl Date:	20029-01719-1					
2010-03-11	Page of pages					

Prüfmuster: MP60T.-02

14. Plot: Übersicht 40-50 GHz

Messung mit Korrekturfaktor für 45 GHz (Messabstand 37.5 cm) Messwerte umgerechnet auf Messung in 3m Entfernung Detector: Average

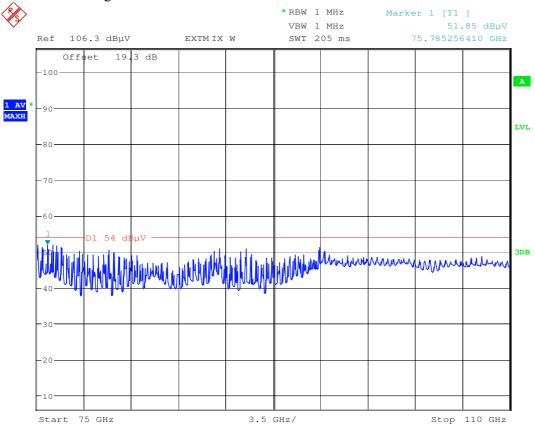

Date: 8.APR.2010 13:54:05

Es wurde keine Oberwelle bei 48 GHz gefunden, daher keine Detailmessung

15. Plot: Übersicht 50-75 GHz

Messung mit Korrekturfaktor für 62.5 GHz (Messabstand 37.5 cm) Messwerte umgerechnet auf Messung in 3m Entfernung Detector: Average

Date: 8.APR.2010 10:50:41



16. Plot: Übersicht 75-110 GHz

Messung mit Korrekturfaktor für 92.5 GHz (Messabstand $10~\mathrm{cm}$)

Messwerte umgerechnet auf Messung in 3m Entfernung

Detector: Average

Date: 8.APR.2010 11:16:10