

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.10:2013 TEST REPORT

For

iSmart CAM ; Can Cam

Model: TTD-VMi120S, TTD-VMi120S-xxx ("xxx"=001-999 or blank for indicate different customer serial number)

Data Applies To: HC-8301, HC-8301A, HC-8301B, HC-8301C, HC-8301D

Trade Name: Tranwo ; Smart Bridge

Issued for

Tranwo Technology Corp

No.236, Sec. 3, Huanbei Rd., Jubei City, Hsinchu County, 30265 Taiwan

Issued by

Compliance Certification Services Inc. Hsinchu Lab. NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Township, Hsinchu County 30741, Taiwan (R.O.C.) TEL: +886-3-5921698 FAX: +886-3-5921108

http://www.ccsrf.com E-Mail: service@ccsrf.com

Issued Date: November 19, 2015

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results of this report relate only to the tested sample identified in this report.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	11/19/2015	Initial Issue	All Page 33	Vera Hsu

TABLE OF CONTENTS

TITLE PAGE N	0.
1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
3. DESCRIPTION OF TEST MODES	6
4. TEST METHODOLOGY	6
5. FACILITIES AND ACCREDITATION	7
5.1 FACILITIES	7
5.2 ACCREDITATIONS	7
5.3 MEASUREMENT UNCERTAINTY	8
6. SETUP OF EQUIPMENT UNDER TEST	9
7. FCC PART 15.249 REQUIREMENTS	10
7.1 DUTY CYCLE CORRECTION FACTOR	10
7.2 RADIATED EMISSION	12
7.3 CONDUCTED EMISSION	26
8. APPENDIX SETUP PHOTOS	31

1. TEST REPORT CERTIFICATION

Applicant	:	Tranwo Technology Corp
Address	:	No.236, Sec. 3, Huanbei Rd., Jubei City, Hsinchu County, 30265 Taiwan
Equipment Under Tes	st :	iSmart CAM ; Can Cam
Model	:	TTD-VMi120S, TTD-VMi120S-xxx
		("xxx"=001-999 or blank for indicate different customer serial number)
Data Applies To	:	HC-8301, HC-8301A, HC-8301B, HC-8301C, HC-8301D
Trade Name	:	Tranwo ; Smart Bridge
Tested Date	:	September 10 ~ November 19, 2015

APPLICABLE STANDARD		
Standard	Test Result	
FCC Part 15 Subpart C AND	PASS	
ANSI C63.10:2013	PASS	

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

. In

Sb. Lu Sr. Engineer

Reviewed by:

In L.

Gundarn Lin Sr. Engineer

2. EUT DESCRIPTION

Product Name	iSmart CAM ; Can Cam	
Model Number	TTD-VMi120S, TTD-VMi120S-xxx ("xxx"=001-999 or blank for indicate different customer serial number)	
Data Applies To	HC-8301, HC-8301A, HC-8301B, HC-8301C, HC-8301D	
Identify Number	T150910S01	
Received Date	September 10, 2015	
Frequency Range	2407MHz to 2477MHz	
Transmit Power 85.18 dBµV/m @ 3m		
Channel Number 8 Channels		
Type of Modulation	GFSK	
Antenna Type	FPC Antenna, Antenna Gain: 2 dBi	
Power Rating 5.9Vdc		
Test Voltage	120Vac, 60Hz	
DC Power Cable Type Non-shielded cable, 2m (Non-detachable)		
I/O Port	Micro SD Port × 1, Power Port × 1	

Power Adapter:

No.	Manufacturer	Model No.	Power Input	Power Output
1	Zzu	ZZU1001-197059-2A	100-240Vac, 0.5A Max, 47-63Hz	5.9Vdc, 1.97A

The difference of the series model

Product Name	Trade Name	Model Name	Difference
		TTD-VMi120S	
iSmart CAM	Tranwo	TTD-VMi120S-xxx ("xxx"=001-999 or blank for indicate different customer serial number)	All these models are
	Smart Bridge	HC-8301	similar except for model identification and market segmentation.
		HC-8301A	
Can Cam		HC-8301B	
		HC-8301C	
		HC-8301D	

Remark:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

- 2. For more details, please refer to the User's manual of the EUT.
- 3. This submittal(s) (test report) is intended for FCC ID: O6LIPCAM120S filing to comply with Section 15.207, 15.209 and 15.249 of the FCC Part 15, Subpart C Rules.
- 4. The model TTD-VMi120S was considered the main model for testing.

3. DESCRIPTION OF TEST MODES

The EUT had been tested under operating condition.

Conducted Emission / Radiated Emission Test (Below 1 GHz)

1. The following test modes were scanned during the preliminary test:

No.	Pre-Test mode
1	Normal Mode

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test mode			
Emission	Radiated Emission	Mode 1	
LIIII33IOII	Conducted Emission		

Remark: Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Channel	Frequency (MHz)
Low	2407
Middle	2435
High	2477

Bandedge Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Channel	Frequency (MHz)
Low	2407
High	2477

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10:2013, FCC CFR 47, 15.207, 15.209 and 15.249.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.989-1, Wenshan Rd., Shangshan Village, Qionglin Township, Hsinchu County 30741, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.10:2013 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	INDUSTRY CANADA
Japan	VCCI
Taiwan	BSMI
USA	FCC MRA

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

Remark: FCC Designation Number TW1027.

5.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 30 to 1000 MHz	+/- 3.97
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 1 to 18GHz	+/- 3.58
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 18 to 26 GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_C) / Radiated Emission, 26 to 40 GHz	+/- 3.81
Conducted Emission (Mains Terminals), 9kHz to 30MHz	+/- 2.48

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Product Manufacturer Model No.		Serial No.
1	Notebook PC	HP	ProBook 4421s	CNF03242PJ
2	Mobile Phones	APPLE	iPHONE 6S+	C39QGVDJGRWF
3	Door Open Sensor for IP Cam	TRANWO	DWM-001	
4	Temp & Humidity sensor for IP Cam	TRANWO	THS-001	
5	PIR Sensor for IP Cam	TRANWO	PIR-001	
6	Micro SD	Transcend	MMAGR02GUECA-MB	

No. Signal Cable Description

1 Shielded USB cable, 1.8m × 1

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

RF Mode:

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. Power on all equipments.
- 3. TX Mode:
 - ⇒ Channel select:

Frequency: 2407, 2435, 2477

- 4. All of the functions are under run.
- 5. Start test.

Normal Mode:

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. Turn on the power of all equipments.
- 3. Mobile phones, Door open sensor for IP Cam, Temp & Humidity sensor for IP Cam, PIR sensor for IP Cam, link EUT.
- 4. Phone control EUT use APP iSmart-CAM.
- 5. All of the functions are under run.
- 6. Start test.

7. FCC PART 15.249 REQUIREMENTS

7.1 DUTY CYCLE CORRECTION FACTOR

LIMITS

Limit: N/A

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EXA Signal Analyzer	Agilent	N9010A	MY52220817	03/19/2016

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. Set center frequency of spectrum analyzer = operating frequency.
- 2. Set the spectrum analyzer as RBW, VBW= 1MHz, Span = 0Hz.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

Tp = 7.975 (ms) Ton = 0.696 (ms) Duty Cycle Correction Factor = $20 \times \log (Ton / Tp)$ = $20 \times \log (0.696 / 7.975) = -21.18 < -20$

Because -21.18 less than -20, so the Duty Cycle Correction Factor = -20

Agile	nt Spe	ectru	m An	alyzer - Swept S	A								
LXI R		-	RF				SENSE:INT	A	ALIGNAUTO		02:28:	35 PM Oct 23	3, 2015
Mar	ker	31	Δ7.	.97500 ms				_	Avg Type:	RMS			3456
					Р		Trig: Free #Atten: 20					DET A N N	
					IF	FGain:Low	#Atten: 20	JGR					
			Pef	Offset 13.5 d	10						∆Mkr3		
10 d	IB/div			f 23.50 dBn								-0.01	dB
Log					·					1	T		_
13.5	,												
3.50				L	∧1∆2			3∆4	4				
				X	י 🔨			Τ 🛀	1				
-6.50							-					1	
-16.5				+	+							++	$-\mathbf{P}$
-26.5					الــــــــــــــــــــــــــــــــــــ	L							I
-36.5					1				1				
					1					-			
-46.5	\vdash	1.00	- (Ja.,	the second state	the tree with a trai	-	haliset as to the second at the tax and a			والمعادية أرادر معاليه بتأنف	out succette	to and	
-56.5	distant.				The second se	A A A A A A A A A A A A A A A A A A A	Addition of the state	Induktion States	di santi din buja shiy	elitical desired distances	A dilla di la di la di la di	A MARINE	` [
-66.5													
-60.0	101-10	I M	(mail)		Anna Thionadhle		AND REAL PROPERTY.		TRANSPORT	a far here biller	A DEPARTMENT	ALC: NO.	
Cer	ter :	2.4	350	00000 GHz	,			11 .			1	Span	0 Hz
	BW					#V	BW 1.0 MH:	Z*		Sweep	20.00 ms		
										· ·			
	MODE				×	Y (A)		INCTION FUNC	CTION WIDTH		UNCTION VALUE		
1	<u>Δ2</u> F	1	t	(Δ)	696.0 μs 3.170 ms		0.80 dB 17 dBm						
3	∆4	1		(Δ)	7.975 ms	(Δ) -0	0.01 dB						
4	F	1	t		3.170 ms	-4.1	17 dBm						
5													
7													
5 6 7 8 9													
9													
10													
12													
150		2	duster.	Png> saved					STATUS				
MSG	.	'e Zo	JULY.	Phg> Saveu					STATUS				

7.2 RADIATED EMISSION

LIMITS

(1) According to § 15.205 (a) except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

· · · · · · · · · · · · · · · · · · ·		. ,	
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

1. ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

2. ² Above 38.6

(2) According to § 15.205 (b) except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. (3) According to § 15.209 (a) except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 - 1.705	24000/F(KHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

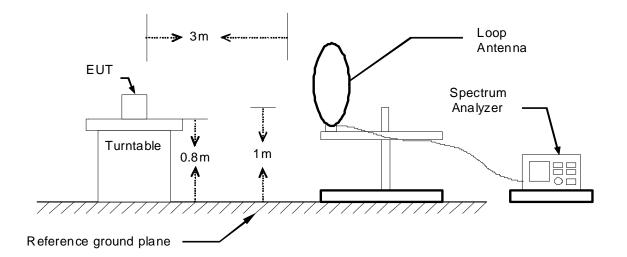
Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

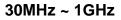
- (4) According to § 15.209 (b) in the emission table above, the tighter limit applies at the band edges.
- (5) According to § 15.249 (a) Except as provided in paragraph (b) of this section, the field strength of emission from intentional radiators operated within these frequency bands shall comply with the following:

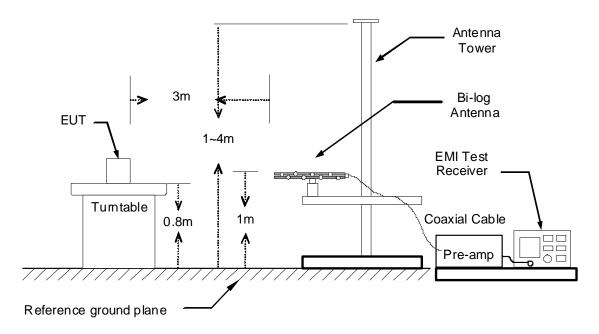
Fundamental Frequency (MHz)	Field Strength of Fundamental (millivolts/meter)	Measurement Distance of Harmonics (microvolts/meter)
902 - 928	50	500
2400 - 2483.5	50	500
5725 - 5875	50	500
24000 - 24250	250	2500

TEST EQUIPMENT

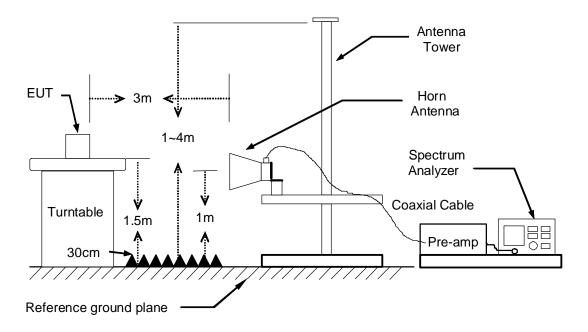
Radiated Emission / 966Chamber_C


Name of Equipment	Manufacture	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY45280064	03/26/2016
EMI Test Receiver	Rohde & Schwarz	ESCI	101387	10/06/2016
Bi-log Antenna	TESEQ	CBL6112D	35404	08/04/2016
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078732	07/14/2016
Horn Antenna	COM-POWER	AH-840	03077	12/17/2015
Pre-Amplifier	EMCI	EMC001625	980243	04/12/2016
Pre-Amplifier	COM-POWER	PAM-118A	551043	04/12/2016
LOOP Antenna	COM-POWER	AL-130	121060	05/24/2016


Remark: Each piece of equipment is scheduled for calibration once a year.


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.


9kHz ~ 30MHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 and 1.5 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Remark :

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name	iSmart CAM	Test By	Waternil Guan
Test Model	TTD-VMi120S	Test Date	2015/10/14
Test Mode	Mode 1	Temp. & Humidity	25°C, 57%

966Chamber_C at 3Meter / Horizontal

Remark	Height cm	Azimuth deg	Margin dB	Limit dBuV/m	Result dBuV/m	C.F. dB/m	Reading dBuV	Freq. MHz
Peak	200	153	-11.02	46.00	34.98	-18.37	53.35	240.49
Peak	200	40	-13.40	46.00	32.60	-16.51	49.11	263.77
Peak	100	360	-2.76	46.00	43.24	-12.21	55.45	480.08
Peak	100	147	-4.10	46.00	41.90	-11.40	53.30	527.61
Peak	100	156	-5.13	46.00	40.87	-10.74	51.61	576.11
Peak	200	185	-10.41	46.00	35.59	-9.86	45.45	660.50
Peak	100	176	-10.54	46.00	35.46	-8.66	44.12	792.42
Peak	100	89	-2.89	54.00	51.11	-7.08	58.19	960.23

966Chamber_C at 3Meter / Vertical

Remark	Height cm	Azimuth deg	Margin dB	Limit dBuV/m	Result dBuV/m	C.F. dB/m	Reading dBuV	Freq. MHz
Peak	100	222	-11.19	46.00	34.81	-18.37	53.18	240.49
Peak	100	175	-10.98	46.00	35.02	-15.41	50.43	329.73
Peak	100	230	-7.37	46.00	38.63	-13.42	52.05	402.48
Peak	200	256	-2.09	46.00	43.91	-12.49	56.40	461.65
Peak	200	68	-2.45	46.00	43.55	-12.21	55.76	480.08
Peak	200	109	-2.96	46.00	43.04	-11.40	54.44	527.61
Peak	100	135	-5.66	46.00	40.34	-8.66	49.00	792.42
Peak	200	191	-16.11	54.00	37.89	-7.08	44.97	960.23

Remark:

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) – PreAmp.Gain (dB)

3. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)

4. Margin (dB) = Remark result (dBuV/m) - Quasi-peak limit (dBuV/m).

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

Above 1 GHz

Product Name	iSmart CAM	Test By	Waternil Guan
Test Model	TTD-VMi120S	Test Date	2015/10/12
Test Mode	TX Mode / CH Low	Temp. & Humidity	25°C, 57%

966Chamber_C at 3Meter / Horizontal

Freq. MHz	Reading dBuV	C.F. dB/m	duty cycle dB	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1320.00	49.18	-1.13		48.05	74.00	-25.95	112	100	Peak
1386.00	44.90	-1.15		43.75	74.00	-30.25	327	100	Peak
1848.00	42.88	2.04		44.92	74.00	-29.08	105	150	Peak
2407.00	59.08	4.32	20	63.40	94.00	-30.60	52	150	Average
2407.00	79.08	4.32		83.40	114.00	-30.60	52	150	Peak
4815.00	43.91	-0.27	20	43.64	54.00	-10.36	42	100	Average
4815.00	63.91	-0.27		63.64	74.00	-10.36	42	100	Peak
7005.00	44.33	2.59		46.92	74.00	-27.08	7	100	Peak
7740.00	46.27	2.95		49.22	74.00	-24.78	182	150	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	duty cycle dB	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1310.00	43.25	-1.12		42.13	74.00	-31.87	162	150	Peak
1418.00	42.02	-1.16		40.86	74.00	-33.14	155	200	Peak
1848.00	41.04	2.04		43.08	74.00	-30.92	45	150	Peak
2407.00	58.90	4.32	20	63.22	94.00	-30.78	275	100	Average
2407.00	78.90	4.32		83.22	114.00	-30.78	275	100	Peak
4815.00	43.42	-0.27	20	43.15	54.00	-10.85	346	200	Average
4815.00	63.42	-0.27		63.15	74.00	-10.85	346	200	Peak
6270.00	43.38	2.32		45.70	74.00	-28.30	331	200	Peak
7635.00	44.36	2.89		47.25	74.00	-26.75	176	100	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Average test would be performed if the peak result were greater than the average limit.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

 Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)

5. "*" For Fundamental & Harmonics: Result-AV = Result(PK) + Duty Cycle Correction Factor.

Product Name	iSmart CAM	Test By	Waternil Guan
Test Model	TTD-VMi120S	Test Date	2015/10/12
Test Mode	TX Mode / CH Middle	Temp. & Humidity	25°C, 57%

966Chamber_C at 3Meter / Horizontal

Remark	Height cm	Azimuth deg	Margin dB	Limit dBuV/m	Result dBuV/m	duty cycle dB	C.F. dB/m	Reading dBuV	Freq. MHz
		_							
Peak	150	7	-31.11	74.00	42.89		-1.08	43.97	1188.00
Peak	150	93	-26.46	74.00	47.54		-1.12	48.66	1310.00
Peak	150	241	-29.23	74.00	44.77		2.04	42.73	1848.00
Average	150	196	-31.41	94.00	62.59	20	4.38	58.21	2435.00
Peak	150	196	-31.41	114.00	82.59		4.38	78.21	2435.00
Average	200	17	-11.78	54.00	42.22	20	-0.06	42.28	4875.00
Peak	200	17	-11.78	74.00	62.22		-0.06	62.28	4875.00
Peak	100	239	-28.40	74.00	45.60		2.54	43.06	6390.00
Peak	100	14	-27.84	74.00	46.16		2.63	43.53	6885.00
Peak	200	ø	-27.07	74.00	46.93		2.97	43.96	7785.00

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	duty cycle dB	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1320.00	45.52	-1.13		44.39	74.00	-29.61	121	100	Peak
1914.00	40.52	2.65		43.17	74.00	-30.83	66	100	Peak
2112.00	40.73	3.69		44.42	74.00	-29.58	206	150	Peak
2435.00	59.93	4.38	20	64.31	94.00	-29.69	138	100	Average
2435.00	79.93	4.38		84.31	114.00	-29.69	138	100	Peak
4875.00	40.61	-0.06	20	40.55	54.00	-13.45	358	200	Average
4875.00	60.61	-0.06		60.55	74.00	-13.45	358	200	Peak
7740.00	44.05	2.95		47.00	74.00	-27.00	23	100	Peak
0110.00	43.36	5.13		48.49	74.00	-25.51	129	200	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)
- 5. "*" For Fundamental & Harmonics: Result-AV = Result(PK) + Duty Cycle Correction Factor.

This report shall not be reproduced, except in full, without the written approval of Compliance Certification Services Inc.

Product Name	iSmart CAM	Test By	Waternil Guan
Test Model	TTD-VMi120S	Test Date	2015/10/12
Test Mode	TX Mode / CH High	Temp. & Humidity	25°C, 57%

966Chamber_C at 3Meter / Horizontal

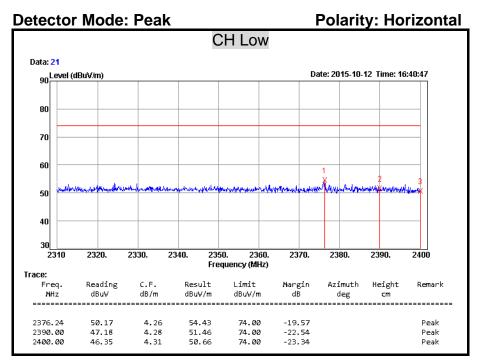
Freq. MHz	Reading dBuV	C.F. dB/m	duty cycle dB	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1000 00	40.50	1 1 2		48 20	74.00	05 61	1.05	000	
1320.00	49.52	-1.13		48.39	74.00	-25.61	105	200	Peak
1452.00	44.36	-1.17		43.19	74.00	-30.81	95	200	Peak
1848.00	42.56	2.04		44.60	74.00	-29.40	119	150	Peak
2477.00	58.52	4.47	20	62.99	94.00	-31.01	280	150	Average
2477.00	78.52	4.47		82.99	114.00	-31.01	280	150	Peak
4950.00	40.29	0.20	20	40.49	54.00	-13.51	31	200	Average
4950.00	60.29	0.20		60.49	74.00	-13.51	31	200	Peak -
6510.00	43.40	2.75		46.15	74.00	-27.85	206	200	Peak
7590.00	44.56	2.87		47.43	74.00	-26.57	214	100	Peak

966Chamber_C at 3Meter / Vertical

Freq. MHz	Reading dBuV	C.F. dB/m	duty cycle dB	Result dBuV/m	Limit dBuV/m	Margin dB	Azimuth deg	Height cm	Remark
1320.00	45.99	-1.13		44.86	74.00	-29.14	126	100	Peak
1848.00	40.72	2.04		42.76	74.00	-31.24	247	100	Peak
2477.00	60.71	4.47	20	65.18	94.00	-28.82	141	100	Average
2477.00	80.71	4.47		85.18	114.00	-28.82	141	100	Peak -
2808.00	40.50	5.12		45.62	74.00	-28.38	340	100	Peak
4950.00	39.45	0.20	20	39.65	54.00	-14.35	1	100	Average
4950.00	59.45	0.20		59.65	74.00	-14.35	1	100	Peak -
7020.00	43.96	2.60		46.56	74.00	-27.44	10	200	Peak
8445.00	43.62	3.62		47.24	74.00	-26.76	33	200	Peak

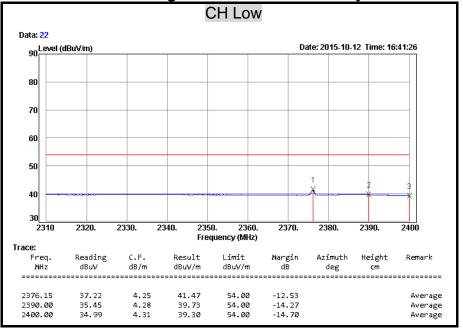
Remark:

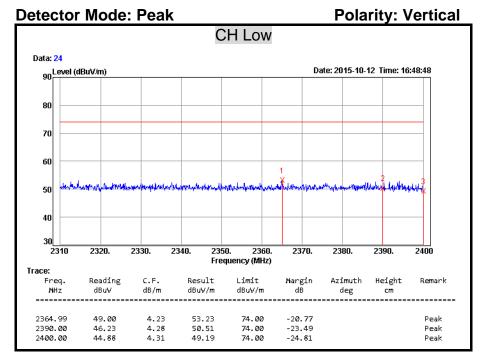
1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.


2. Average test would be performed if the peak result were greater than the average limit.

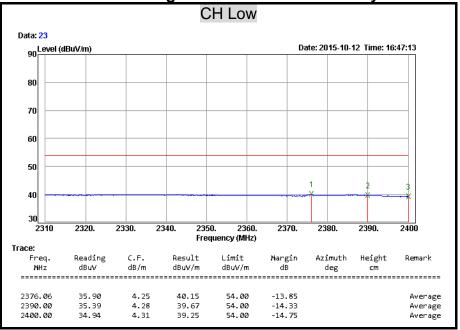
3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

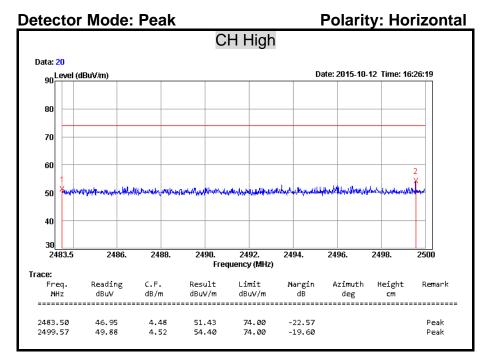
 Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(PK) Remark AVG = Result(AV) – Limit(AV)


5. "*" For Fundamental & Harmonics: Result-AV = Result(PK) + Duty Cycle Correction Factor.


Restricted Band Edges

Detector Mode: Average

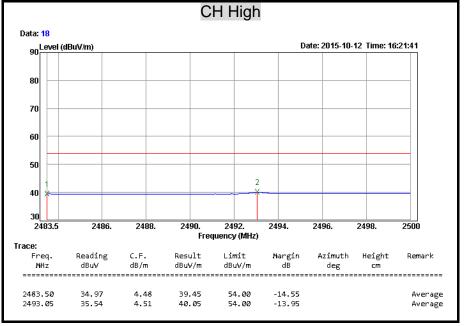

Polarity: Horizontal



Detector Mode: Average


Polarity: Vertical

Detector Mode: Average


Polarity: Horizontal

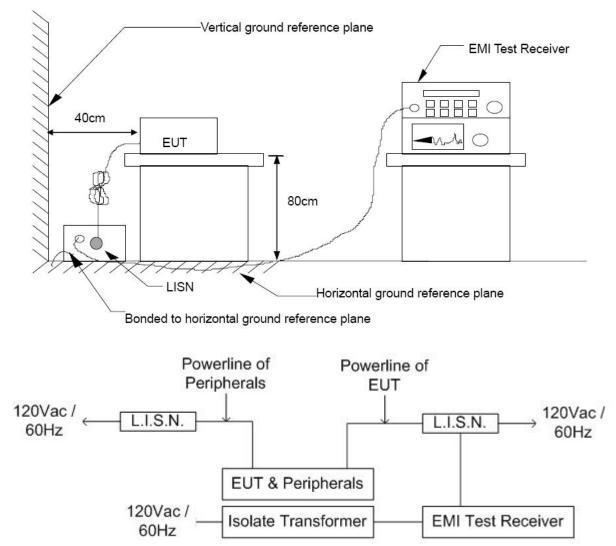
Detector Mode: Average

Polarity: Vertical

7.3 CONDUCTED EMISSION

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.


Frequency Range	Conducted Limit (dBµv)					
(MHz)	Quasi-peak	Average				
0.15 - 0.50	66 to 56	56 to 46				
0.50 - 5.00	56	46				
5.00 - 30.0	60	50				

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	Schwarzbeck	NSLK 8127	8127465	08/05/2016
L.I.S.N	Schwarzbeck	NSLK 8127	8127473	03/09/2016
EMI Test Receiver	Rohde & Schwarz	ESHS 30	838550/003	10/31/2016
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100111	06/28/2016

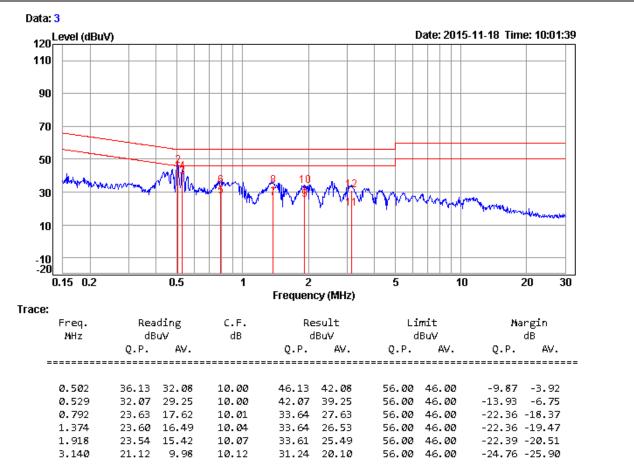
Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.10:2013.

The test procedure is performed in a $4m \times 3m \times 2.4m$ (L×W×H) shielded room. The EUT along with its peripherals were placed on a 1.0m (W) × 1.5m (L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

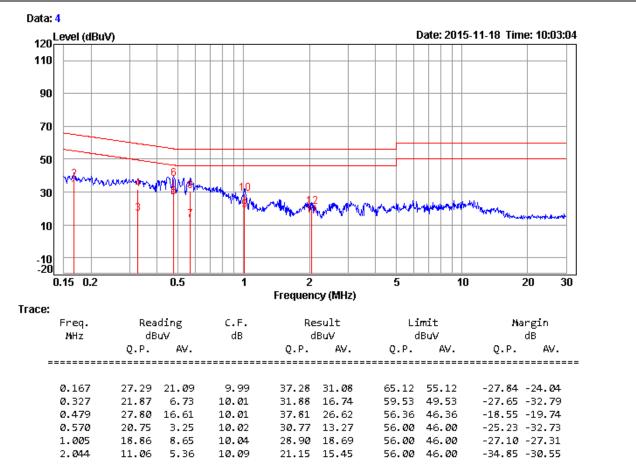

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

TEST RESULTS

Product Name	iSmart CAM	Test By	Ted Wu
Test Model	TTD-VMi120S	Test Date	2015/11/18
Test mode	Mode 1	Temp. & Humidity	22°C, 52%

LINE



Remark:

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Result level = Reading Value + Correction factor
- 3. Margin value = Result level Limit value

Product Name	iSmart CAM	Test By	Ted Wu
Test Model	TTD-VMi120S	Test Date	2015/11/18
Test Mode	Mode 1	Temp. & Humidity	22°C, 52%

NEUTRAL

Remark:

1. Correction Factor = Insertion loss + Cable loss

2. Result level = Reading Value + Correction factor

3. Margin value = Result level – Limit value