LIONDA TECHNOLOGY COMPANY LIMITED ENGINEERING DEPARTMENT

CIRCUIT DESCRIPTION

Model: GH9407/GH9408

1 Base

a. RF Transmitter Section - RF Board

Compressed audio signal is frequency modulated through the varactor diode D3, D4. Di D4 choke coil L5 and the external components formed the voltage controlled oscillator ci the transmitter part. This circuit generates the TX VCO frequency. A portion of this sign back to the PLL IC's pin1 (FIN1) for phase comparison. Once the phase of oscillation st the PLL circuit generates the error voltage necessary for the VCO to oscillate at the transmitter's RF frequency. The VCO circuit impedance is matched with the succeedin through the transistor Q5 that also acts as the buffer amplifier. RF pre-amplifier Q2 and α Q7 boosts the signal for transmission. This amplified RF signal is trimmed to the frequency band by BPF2403 so as not to interfere with the receiver circuit. The transmisgnal is then propagated through the antenna.

b. RF Receiver Section - RF Board

The Base Unit antenna receives RF signal. Band Pass Filter BPF2475 trims the signa desirable frequency band. Transistor Q6 & Q3 is a low noise amplifier that boosts the R to a specific level for mixing. PLL IC1 (KB8825) is used as a Universal Phase Lock Loop The frequency from the Voltage Controlled Oscillator (VCO) D1, is fed back to the PLL IC pin 16 (FIN2) for phase comparison. During channel scanning or turning the unit on, c phase of oscillation stabilized (locked), the PLL circuit generates the first local oscillator from down-converting the received RF signal into the first IF frequency 10.7MHz. This proaccomplished through the IF mixer circuit Q3. Q1 is used for matching the impedance mixer circuit with the succeeding circuits. The resulting IF signal is kept constant by the FL1 to 10.7MHz which is then mixed with the second local oscillator frequency 11. (derived from X1 & C47) to produced a much lower IF frequency. This lower IF frequenter filtered by IF Filter FL4 to produce a more stable signal of 450KHz. Quadratur detection is accomplished internally by the Narrow-band Detector IC2 (KA3361) with the L7. The recovered audio frequency can be taken from IC2 audio output pin9. Double corof received signal is utilized to improve the image frequency rejection of the unit.

c. Transmitter Audio Section - Main Board

Audio Frequency signal from the telephone line is compressed through the compressor IC4 to minimize the transmission noise. The degree of compression depends on the extecombinations. AGC is also utilized by IC4 to avoid shock noise caused by abrupt change levels. The compressed audio is filtered and amplified for better acoustical performance.

MH9002 desc Page 1 21-Feb-02

LIONDA TECHNOLOGY COMPANY LIMITED ENGINEERING DEPARTMENT

d. Receiver Audio Section - Main Board

The compressed Audio Frequency signal is passed through passive RC filters for compliance. The filtered audio is then fed to the Compander IC4 for expansion thus re the original Audio signal with noise filtered out. Q1 are used as buffer circuit. Transi (A94) isolates the high-voltage telephone line to the rest of the circuit. Q2 (A94) is also a hybrid transformer to create a two-way path for audio transmission to and reception f telephone line.

2 Handset

a. RF Transmitter Section - RF Board

Refer to portion 1.a for this section. All circuit performance is the same except that Ba Filter BPF2403 be changed to BPF2475 for the handset transmission.

b. RF Receiver Section - RF Board

Refer to portion 1.b for this section. All circuit performance is the same except that Ba Filter BPF2475 be changed to BPF2403 for the handset reception.

c. Transmitter Audio Section - Main Board

Audio Frequency signal from the handset or from the headset microphone is compressed the compressor part of IC2 to minimize the transmission noise. The degree of completends on the external RC combinations. AGC is also utilized by IC2 to avoid show caused by abrupt change of audio levels. The compressed audio is filtered and amplebetter acoustical performance. Q5 is a switching transistor that controls the power supply TX RF part.

d. Receiver Audio Section - Main Board

The compressed Audio Frequency signal is passed through passive RC filters for compliance. The filtered audio is then fed to the Compander IC2 for expansion thus re the original Audio signal with noise filtered out. Q3 act as audio amplifier to sufficiently d handset speaker. Q1, Q6 and Q8 are switching transistors that control the power supply RF part, the Compander part and the AF amplifier respectively. An earphone jack is prov an optional headset unit for handsfree conversation on the handset.

3 OTHERS (Handset)

a. Charging and Reset Controls

Recharging the handset battery is accomplished by putting the handset on the cradle detects this action and sends a command to the CPU for proper exchange of securil Switching SW4 to the RING OFF mode can extend Battery life.

MH9002 desc Page 2 21-Feb-02

LIONDA TECHNOLOGY COMPANY LIMITED ENGINEERING DEPARTMENT

b. Ring Detection

When the handset receives the ring command from the base unit, the CPU will send buzze to the ringer amplifier Q201 that drives the Buzzer.

4 OTHERS (Base):

a. Hook Switching and Dialing

Hook switching and pulse dialing is accomplished by the Transistor Q3 (A44) which is cc by the CPU. DTMF signal from the ladder circuit R65-R70 to the CPU is filtered and amp U1-D.

b. Over-voltage Protection

Fuse F1 and varistor Z1 act as high current and high voltage protectors for the teleph interface. In case of presence of voltage surge across the telephone line, Z1 decre resistance and dumps the line voltage to a safe level. Fuse F1 opens when excessive cu present on the line thus protecting both the user and the line interface.

c. Battery Charging & Code Setting

Battery charging commences when IC2 PIN14 detects the presence of the handset on D25 & C29 form the reset circuit in conjunction with the charge detect circuit to comm CPU to change the security code. When the reset circuit is activated, the CPU will sent security code to the handset selecting among 65536 combinations.

d. Ring Detection

Incoming ring signal is detected by the U1-A. Diode D3-D6 and R8 set the level c detection. The CPU checks the frequency of the ring signal, and when valid, sends the command to the speaker or to the Handset.

e. Power Supplies

Diode D11 ensures uniform polarity for the entire circuit. IC1 regulates the voltage to +! the rest of the circuit. Transistor Q8 controls the power supplied to the TX part of the RF

f. Squelch Detection

In conjunction with the 3361 IC (IC2 of the Base RF), fixed resistor sets the level c detection and U1-B acts as the comparator circuit whose composite output is the RSSI si the CPU.

g. RX Data

Commands from the Handset is filtered and re-constructed by the Schmitt trigger circle composite output is the RX Data that is input to the CPU for validation and processing

- END -

MH9002 desc Page 3 21-Feb-02

2.4GHz FREQUENCY CHART

GH9407/GH9408

BASE			HANDSET		BASE			HANDSET	
СН	TX	RX	TX	RX	СН	TX	RX	TX	RX
1	2400.570	2472.230	2472.230	2400.570	26	2402.978	2474.643	2474.643	2402.978
2	2400.666	2472.327	2472.327	2400.666	27	2403.074	2474.740	2474.740	2403.074
3	2400.763	2472.423	2472.423	2400.763	28	2403.171	2474.836	2474.836	2403.171
4	2400.859	2472.520	2472.520	2400.859	29	2403.267	2474.933	2474.933	2403.267
5	2400.955	2472.616	2472.616	2400.955	30	2403.363	2475.029	2475.029	2403.363
6	2401.052	2472.713	2472.713	2401.052	31	2403.460	2475.126	2475.126	2403.460
7	2401.148	2472.809	2472.809	2401.148	32	2403.556	2475.222	2475.222	2403.556
8	2401.244	2472.906	2472.906	2401.244	33	2403.652	2475.319	2475.319	2403.652
9	2401.341	2473.002	2473.002	2401.341	34	2403.749	2475.416	2475.416	2403.749
10	2401.437	2473.099	2473.099	2401.437	35	2403.845	2475.512	2475.512	2403.845
11	2401.533	2473.195	2473.195	2401.533	36	2403.941	2475.609	2475.609	2403.941
12	2401.630	2473.292	2473.292	2401.630	37	2404.038	2475.705	2475.705	2404.038
13	2401.726	2473.388	2473.388	2401.726	38	2404.134	2475.802	2475.802	2404.134
14	2401.822	2473.485	2473.485	2401.822	39	2404.230	2475.898	2475.898	2404.230
15	2401.919	2473.581	2473.581	2401.919	40	2404.327	2475.995	2475.995	2404.327
16	2402.015	2473.678	2473.678	2402.015	41	2404.423	2476.091	2476.091	2404.423
17	2402.111	2473.774	2473.774	2402.111	42	2404.519	2476.188	2476.188	2404.519
18	2402.208	2473.871	2473.871	2402.208	43	2404.616	2476.284	2476.284	2404.616
19	2402.304	2473.968	2473.968	2402.304	44	2404.712	2476.381	2476.381	2404.712
20	2402.400	2474.064	2474.064	2402.400	45	2404.808	2476.477	2476.477	2404.808
21	2402.497	2474.161	2474.161	2402.497	46	2404.905	2476.574	2476.574	2404.905
22	2402.593	2474.257	2474.257	2402.593	47	2405.001	2476.670	2476.670	2405.001
23	2402.689	2474.354	2474.354	2402.689	48	2405.097	2476.767	2476.767	2405.097
24	2402.786	2474.450	2474.450	2402.786	49	2405.194	2476.863	2476.863	2405.194
25	2402.882	2474.547	2474.547	2402.882	50	2405.290	2476.960	2476.960	2405.290

SECURITY CODE INFORMATION

The GH9407/GH9408 50 channel cordless telephone uses a digital coding security system to prevent unauthorized use of telephone line by other cordless phones nearby. It has 65,536 possible security code combinations. Each combination of the code is randomly generated every time the handset is picked up.

Communication between Handset and the Base unit may not be possible in any of the following situations:

- 1. After a power failure.
- 2. After relocating the Base unit by disconnecting the AC adaptor.
- 3. After replacing the Handset battery.
- 4. The Handset goes out of range from the Base unit.

To reset, place the Handset on the Base unit for 2 to 3 seconds.

FCC ID: 063GH9407LD02