

TEST REPORT

Access Control Reader Product

N/A Trade mark

FT9361-R Model/Type reference

N/A **Serial Number**

EED320812610 **Report Number**

FCC ID O5P-FT9361-R Sep. 14, 2022 Date of Issue

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

VIVOTEK Inc.

6F., No.192, Lien-Cheng Rd., Chung-Ho, New Taipei City, 235, Taiwan, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

mark. che

Reviewed by:

Tom Chen

Mark Chen

Date:

Sep. 14, 2022

Check No.: 8728150822

Aaron Ma

Report No.: EED32O812610

Version

Page 2 of 32

Version No.	Date	e arres	Description	
00 Sep. 14	Sep. 14, 2022		Original	(3)
				6

Report No.: EED32O812610

Page 3 of 32

1 VERS	SION			Page
2 CON	TENTS			3
3 TEST	SUMMARY			4
	ERAL INFORMATION			
4.2 (4.3 5 4.4 1 4.5 5 4.6 1 4.7 4 4.8 (4.9 1 4.10 5 TES1 5.1 4 5.2 1	CLIENT INFORMATION	DDE	2)	5
5.4 I	FREQUENCY STABILITY 20DB OCCUPIED BANDWIDTH			19
	IDIX 1 PHOTOGRAPHS OF			
APPEN	IDIX 2 PHOTOGRAPHS OF	EUT		24

3 Test Summary

Test Item FCC Test Requirement		Test Method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 2013	Pass
Conducted Emission (150KHz to 30MHz)	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	N/A
Electric Field Strength of Fundamental and Outside the Allocated bands	47 CFR Part 15, Subpart C Section 15.225(a)/(b)/(c)	ANSI C63.10 2013	Pass
Radiated Emission 47 CFR Part 15, Subpart C Section 15.225(d)/15.209		ANSI C63.10 2013	Pass
Frequency Tolerance 47 CFR Part 15, Subpart C Section 15.225(e)		ANSI C63.10 2013	Pass
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.215	ANSI C63.10 2013	Pass

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

4 General Information

4.1 Client Information

Applicant:	VIVOTEK Inc.
Address of Applicant:	6F., No.192, Lien-Cheng Rd., Chung-Ho, New Taipei City, 235, Taiwan, China
Manufacturer:	VIVOTEK Inc.
Address of Manufacturer:	6F., No.192, Lien-Cheng Rd., Chung-Ho, New Taipei City, 235, Taiwan, China
Factory:	VIVOTEK Inc.
Address of Factory:	6F., No.192, Lien-Cheng Rd., Chung-Ho, New Taipei City, 235, Taiwan, China

4.2 General Description of EUT

Product Name:	Access Control Reader	(3
Test Mode No.:	FT9361-R	(6)
Trade mark:	N/A	6
Product Type:	☐ Mobile ☐ Portable ☒ Fix Location	
Operation Frequency:	13.56MHz	-05
Modulation Type:	ASK	(-41)
Antenna Type:	PCB antenna	
Power Supply:	DC 12V	
Test Voltage:	DC 12V	
Sample Received Date:	Aug. 16, 2022	(2)
Sample tested Date:	Aug. 16, 2022 to Aug. 24, 2022	(0)

Report No. : EED32O812610 Page 6 of 32

4.3 Test Environment & Test Mode

Operating Environment			
Radiated Emissions:			
Temperature:	22~25.0 °C	(67.)	(6)
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
Conducted Emissions:			
Temperature:	22~25.0 °C		(247)
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
Test Mode:	-		
Mode a:	Keep EUT working in contil cycle.	nuous transmitting mod	de with 100% duty

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
		1	1	

4.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.6 Deviation from Standards

None.

4.7 Abnormalities from Standard Conditions

None.

4.8 Other Information Requested by the Customer

None.

Report No.: EED32O812610 Page 7 of 32

Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
0		4.5dB (1GHz-12.75GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

4.10 Equipment List

Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/21/2022	05/20/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024
Multi device Controller	maturo	NCD/070/10711112	(2		-
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021 06/21/2022	06/22/2022 06/20/2023
high-low temperature test	Dong Guang Qin Zhuo	LK-80GA	QZ20150611 879	12-28-2020 12-24-2021	12-27-2021 12-23-2022
Spectrum Analyzer	R&S	FSV40	101200	08-26-2021	08-25-2022

Report No.: EED32O812610 Page 9 of 32

Test results and Measurement Data 5

5.1 Antenna Requirement

47 CFR Part15 C Section 15.203
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
enr

5.2 Electric Field Strength of Fundamental and Outside the Allocated bands

bands					
Test Requirement:	47 CFR Part 15, Subpart 0	C Section 15.225	i(a)/(b)/(c)		
Test Method:	ANSI C63.10: 2013				
Test Site:	3m (Semi-Anechoic Chamber)		(24)		(1)
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
Limit:	Frequency Range(MHz)	E-field Strengtl @ 30 m (μ\			Strength Limit m (dBµV/m)
	13.560 ± 0.007	15848			124
	13.410 to 13.553 13.567 to 13.710	334		-0-	90
	13.110 to 13.410 13.710 to 14.010	106		81	
Test Setup:	EUT	3 m —	→	RX Antenna	<u></u>
	0.8 m	Ground Plane		<u> </u>	<u>; </u>
			L	Receiver _	
		Figure 1. Belo			
Test Procedure:	1. The EUT was placed of	on the top of a ro	tating table		
	ground at a 3 meter set degrees to determine at 2. The EUT was set 3 meters which was mounted or 3. The antenna height is ground to determine the	emi-anechoic car the position of th eters away from n the top of a var varied from one	e highest r the interfer iable-heigh meter to fo	adiation. ence-recei nt antenna our meters	rotated 360 ving antenna, tower. above the

Report No.: EED32O812610	Page 11 of 32

(opon 110)					. ago	
	tes an the 5. The Bar 6. If the spe we we as 7. The	et frequency of the rotatable maximum re e test-received administration less than the emission less than the could be reported by the serified and e radiation me	of below 30MH e table was turn adding. It is a system was waximum Hold evel of the EU esting could be seed. Otherwise ted one by one of then reported easurements as positioning was to the system and t	z, the antenrenced from 0 of set to Peak In Mode. If in peak mode stopped and the emission e using peak In a data share performed which it is woo	Detect Function de was 10dB lo d the peak value ns that did not h , quasi-peak or neet. d in X, Y, Z axis	heights 1 meter) degrees to find and Specified ower than the limit
Test Mode:	Transr	mitting with AS	SK modulation			
			salation	- ()	183	
Test Result:	Pass	(C)		le.		(C)

Measurement Data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	13.1900	-3.49	20.35	16.86	81.00	-64.14	peak	100	356	
2	13.4839	-4.86	20.35	15.49	90.00	-74.51	peak	100	356	
3	13.5617	12.39	20.35	32.74	124.00	-91.26	peak	100	356	
4	13.6920	-4.92	20.35	15.43	90.00	-74.57	peak	100	356	
5 *	13.9640	-3.04	20.35	17.31	81.00	-63.69	peak	100	119	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier.

The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Report No.: EED32O812610 Page 13 of 32

5.3 Radiated Emissions

.3 Radiated Emis	sions	(67)		(6.74)					
Test Requirement	: 47 CFR Part 15C Section	on 15.209 and 15.2	25(d),						
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013							
Test Site:	3m (Semi-Anechoic Cha	3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	z Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	z Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	z Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MHz	z Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	z Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Peak	100 kHz	300kHz	Peak				
Limit:	Frequency	Field strength (microvolt/mete	1000	nit (dBuV/m) @ 3 m	Remark				
	0.009MHz-0.490MHz	2400/F(kHz) @30	00m 1	28.5-93.8	Quasi-peak				
	0.490MHz-1.705MHz	24000/F(kHz) @3	30m	73.8-63	Quasi-peak				
	1.705MHz-30MHz	30 @30m		70	Quasi-peak				
	30MHz-88MHz	100 @3m		40.0	Quasi-peak				
	88MHz-216MHz	150 @3m		43.5	Quasi-peak				
	216MHz-960MHz	200 @3m		46.0	Quasi-peak				
	960MHz-1GHz	960MHz-1GHz 500 @3m							
	Note: Where the limits have been defined at one distance, and a signal lever measured at another, the limits have been extrapolated using the following formula: Extrapolation(dB)=40log ₁₀ (Measurement Distance/Specification Distance)								
Test Setup:	0.8 m	0.8 m							
	(6%)	Receiver Figure 1. Below 30MHz							

Report No.: EED32O812610 Page 14 of 32

Test Procedure:

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 6. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 8. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

Test Mode:	Transmitting with ASK modulati
	1 60.71

Test Result: Pass

X axis positioning

9kHz - 150KHz:

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Page 16 of 32 Report No.: EED32O812610

150KHz-30MHz:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.1815	2.17	20.55	22.72	102.42	-79.70	peak	100	356	
2 *	0.6372	7.83	20.44	28.27	72.73	-44.46	peak	100	261	3
3	1.2756	-4.83	20.40	15.57	67.26	-51.69	peak	100	261	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

30MHz-1GHz

Horizontal

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	96.7749	5.09	13.60	18.69	43.50	-24.81	peak	200	1	
	183.8440	9.70	11.46	21.16	43.50	-22.34	peak	200	356	
	223.7333	7.48	14.60	22.08	46.00	-23.92	peak	100	250	
	375.9385	9.30	18.88	28.18	46.00	-17.82	peak	100	130	
	475.4991	7.92	21.02	28.94	46.00	-17.06	peak	200	281	
*	851.0353	11.26	27.42	38.68	46.00	-7.32	peak	100	60	
		MHz 96.7749 183.8440 223.7333 375.9385 475.4991	Mk. Freq. Level MHz dBuV 96.7749 5.09 183.8440 9.70 223.7333 7.48 375.9385 9.30 475.4991 7.92	Mk. Freq. Level Factor MHz dBuV dB 96.7749 5.09 13.60 183.8440 9.70 11.46 223.7333 7.48 14.60 375.9385 9.30 18.88 475.4991 7.92 21.02	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 96.7749 5.09 13.60 18.69 183.8440 9.70 11.46 21.16 223.7333 7.48 14.60 22.08 375.9385 9.30 18.88 28.18 475.4991 7.92 21.02 28.94	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m 43.50 18.69 43.50 43.50 11.46 21.16 43.50 43.50 223.7333 7.48 14.60 22.08 46.00 46.00 375.9385 9.30 18.88 28.18 46.00 475.4991 7.92 21.02 28.94 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB 96.7749 5.09 13.60 18.69 43.50 -24.81 183.8440 9.70 11.46 21.16 43.50 -22.34 223.7333 7.48 14.60 22.08 46.00 -23.92 375.9385 9.30 18.88 28.18 46.00 -17.82 475.4991 7.92 21.02 28.94 46.00 -17.06	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector 96.7749 5.09 13.60 18.69 43.50 -24.81 peak 183.8440 9.70 11.46 21.16 43.50 -22.34 peak 223.7333 7.48 14.60 22.08 46.00 -23.92 peak 375.9385 9.30 18.88 28.18 46.00 -17.82 peak 475.4991 7.92 21.02 28.94 46.00 -17.06 peak	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 96.7749 5.09 13.60 18.69 43.50 -24.81 peak 200 183.8440 9.70 11.46 21.16 43.50 -22.34 peak 200 223.7333 7.48 14.60 22.08 46.00 -23.92 peak 100 375.9385 9.30 18.88 28.18 46.00 -17.82 peak 100 475.4991 7.92 21.02 28.94 46.00 -17.06 peak 200	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 96.7749 5.09 13.60 18.69 43.50 -24.81 peak 200 1 183.8440 9.70 11.46 21.16 43.50 -22.34 peak 200 356 223.7333 7.48 14.60 22.08 46.00 -23.92 peak 100 250 375.9385 9.30 18.88 28.18 46.00 -17.82 peak 100 130 475.4991 7.92 21.02 28.94 46.00 -17.06 peak 200 281

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor, Over Limit=Level-Limit Line.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		49.7068	7.07	14.28	21.35	40.00	-18.65	peak	100	69	
2		57.3923	6.03	13.75	19.78	40.00	-20.22	peak	100	200	
3		105.2718	5.13	13.30	18.43	43.50	-25.07	peak	200	360	
4	-	224.5193	7.05	14.63	21.68	46.00	-24.32	peak	100	356	
5		396.2415	5.51	19.31	24.82	46.00	-21.18	peak	200	109	
6	*	744.8661	8.25	25.48	33.73	46.00	-12.27	peak	200	49	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor, Over Limit=Level-Limit Line.

Report No. : EED32O812610 Page 19 of 32

5.4 Frequency Stability

Test Requirement:	47 CFR Part 15 C Section 15.225(e)
Test Method:	ANSI C63.10: 2013
Test Setup:	Coil Antenna
	EUT Spectrum Analyzer
Frequency Range:	Operation within the band 13.110-14.010 MHz
Requirements:	The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of –20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.
Method of Measuremen	The EUT was placed in an environmental test chamber and powered such that control element received normal voltage and the transmitter provided maximum RF output.
Test Result:	The unit does meet the FCC Part 15 C Section 15.225(e) requirements.

Report No.: EED32O812610 Page 20 of 32

est Frequency: 13.5	56MHz		Tempera	ature:23°C
Supply Voltage (V) DC	Test Result (MHz)	Deviation (kHz)	Limit ±0.01% (kHz)	Result
12	13.55971	-0.29	1.3560	Pass
12.5	13.55973	-0.27	1.3560	Pass
11.5	13.55965	-0.35	1.3560	Pass

Test Frequency: 13.	56MHz	(8	Normal Voltage:12Vdc		
Temperature (℃)	Test Result Deviation (MHz) (kHz)		Limit ±0.01% (kHz)	Result	
-20	13.55976	-0.24	1.3560		
-10	13.55971	-0.29	1.3560		
0	13.55974	-0.26	1.3560		
10	13.55970	-0.30	1.3560	Pass	
20	13.55976	-0.24	1.3560	1 433	
30	13.55973	-0.27	1.3560	(65)	
40	13.55975	-0.25	1.3560		
50	13.55972	-0.28	1.3560		

Note: Deviation (KHz) = (Test Result-13.56MHz)*1000

5.5 20dB Occupied Bandwidth

Old Zoub Goodpica Bail							
Test Requirement:	47 CFR Part 15 C Section 15.215 (C)						
Test Method:	ANSI C63.10: 2013						
Test Setup:	Coil Antenna EUT Spectrum Analyzer						
Frequency Range:	Operation within the band 13.110 – 14.010 MHz						
Requirements:	Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §15.217 through §15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.						
Limit:	For 13.56 MHz the permitted frequency band is 14kHz, so the limit is 11.2 kHz.						

Test Data:

20dB bandwidth (kHz)	FL (MHz)	FH (MHz)	Limit(MHz)	Result
1.462	13.559899	13.561361	13.110 – 14.010	Pass

Page 22 of 32

Report No.: EED32O812610

Test plot as follows:

Date: 22.AUG.2022 23:10:43

