

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-9947/15-01-05-C

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the

Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Scheidt & Bachmann GmbH

Breite Str. 132

41238 Mönchengladbach / GERMANY

Phone: +49 216 626-60 Fax: +49 216 626-6699

Contact: Binia Kurth

e-mail: kurth.binia@scheidt-bachmann.de

Phone: +49 2166 266-236

Manufacturer

Scheidt & Bachmann GmbH

Breite Str. 132

41238 Mönchengladbach / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Multifunctional Ticketing Handheld (Inspection device)

Model name: FareGo Move MT60

FCC ID: O5KMT60 **IC**: 8312A-MT60

Frequency: ISM band 2400 MHz to 2483.5 MHz

(lowest channel 01 – 2412 MHz, highest channel 11 – 2462 MHz)

Technology tested: WLAN

Antenna: Integrated antenna

Power supply: 7.2 V DC by battery

Temperature range: -10 °C to +40 °C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Testing Manager

Radio Communications & EMC

Test report authorized:	Test performed:
p.o.	
Marco Bertolino	Christoph Schneider

Radio Communications & EMC

Lab Manager

Table of contents

1	Table of contents					
2	Gene	ral information				
	2.1	Notes and disclaimer	5			
	2.2	Application details				
3	Test	standard/s				
	3.1	Measurement guidance				
4	•	environment				
5		item				
5						
	5.1 5.2	General descriptionAdditional information				
6	Test I	aboratories sub-contracted				
7	Desc	ription of the test setup				
	7.1	Shielded semi anechoic chamber	6			
	7.2	Shielded fully anechoic chamber				
	7.3	Radiated measurements > 18 GHz	8			
	7.4	Conducted measurements	9			
8	Meas	urement uncertainty	10			
9	Sequ	ence of testing	11			
	9.1	Sequence of testing radiated spurious 9 kHz to 30 MHz				
	9.2	Sequence of testing radiated spurious 30 MHz to 1 GHz				
	9.3	Sequence of testing radiated spurious 1 GHz to 18 GHz				
	9.4	Sequence of testing radiated spurious above 18 GHz				
10	Sui	mmary of measurement results	15			
11	Add	ditional comments	16			
12	Ме	asurement results	17			
	12.1	Identify worst case data rate	17			
	12.2	Module verification				
	12.3	Occupied bandwidth - 99% emission bandwidth				
	12.4	Band edge compliance radiated				
	12.5	Spurious emissions radiated below 30 MHz				
	12.6	Spurious emissions radiated 30 MHz to 1 GHz				
	12.7	Spurious emissions radiated above 1 GHz				
Anr	nex A	Document history				
Anr	nex B	Further information	79			
Anr	nex C	Accreditation Certificate	80			

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-9947/15-01-05-B and dated 2016-07-04

2.2 Application details

Date of receipt of order: 2015-08-06
Date of receipt of test item: 2015-09-01
Start of test: 2015-09-09
End of test: 2015-11-27
Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices

3.1 Measurement guidance

Guidance	Version	Description
DTS: KDB 558074 D01	v03r03	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 American national standard for methods of measurement of
ANSI C63.4-2014	-/-	radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz

Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests -/- °C during high temperature tests -/- °C during low temperature tests		
Relative humidity content	:		55 %		
Barometric pressure	:		not relevant for this kind of testing		
Power supply	:	V _{nom} V _{max} V _{min}	7.2 V DC by Battery -/- V -/- V		

Test item

5.1 **General description**

Kind of test item :	Multifunctional Ticketing Handheld (Inspection device)
Type identification :	FareGo Move MT60
PMN :	FareGo Move MT60
HVIN :	00330600
FVIN :	07335350
HMN :	-/-
S/N serial number :	-/-
HW hardware status :	00320600
SW software status :	SW-storage MT60
Frequency band :	ISM band 2400 MHz to 2483.5 MHz (lowest channel 01 – 2412 MHz, highest channel 11 – 2462 MHz)
Type of radio transmission: Use of frequency spectrum:	DSSS, OFDM
Type of modulation :	BPSK, QPSK, 16 – QAM, 64 – QAM
Number of channels :	11
Antenna :	Integrated antenna
Power supply :	7.2 V DC by battery
Temperature range :	-10 °C to +40 °C

Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-9947/15-01-01_AnnexA

1-9947/15-01-01_AnnexB

1-9947/15-01-01_AnnexD

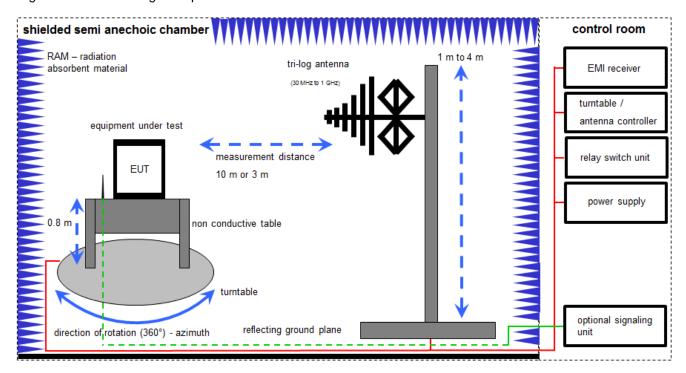
Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

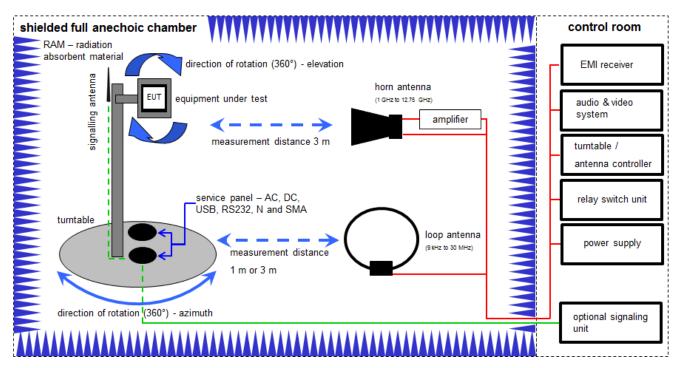
k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Used equipment:

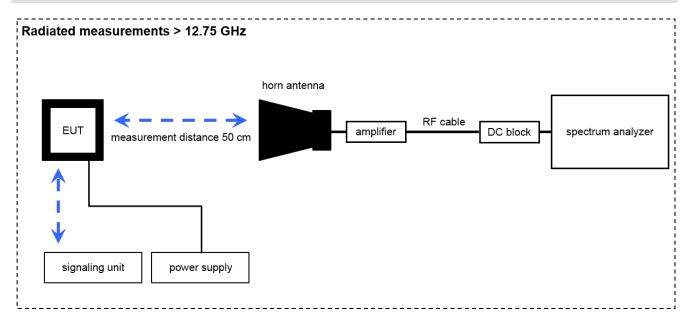
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev		
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	30.01.2014	30.01.2016
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	29.01.2015	29.01.2017
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	26.08.2014	26.08.2016
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016
7	А	Bluetooth Tester	CBT35	R&S	100635	300003907	ne signalling only	-/-	-/-

7.2 Shielded fully anechoic chamber

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


 $\overline{FS} [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \text{ }\text{$\mu}V/m)$

Used equipment:

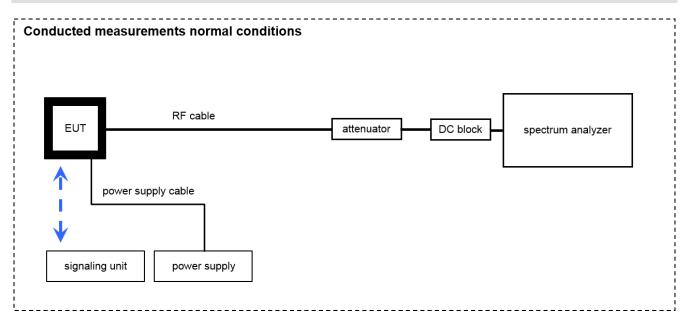
No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A,C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	k	23.07.2015	23.07.2017
2	A,B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	22.01.2015	22.01.2016
3	A,C	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	22.04.2014	22.04.2017
4	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne		
5	Α	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne		
6	A,C	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22050	300004482	ev		
7	Α	Broadband Amplifier	CBLU5135235	CERNEX	22011	300004492	ev		
8	A,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne		
9	A,B,C	Messrechner und Monitor	Intel Core i3 3220/3,3 GHz, Prozessor	Agilent Technologies	2V2403033A54 21	300004591	ne		
10	A,B,C	NEXIO EMV- Software	BAT EMC	EMCO	2V2403033A54 21	300004682	ne		
11	В	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	24.06.2015	24.06.2017
12	A,B,C	Bluetooth Tester	CBT35	R&S	100635	300003907	ne signalling only	-/-	-/-

7.3 Radiated measurements > 18 GHz

 $SS = U_R + CA + AF$

(SS-signal strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:


 $\overline{SS[dB\mu V/m]} = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB\mu V/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

Used equipment:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	22.07.2015	22.07.2017
2	Α	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-022	300001748	k	22.05.2015	22.05.2018
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	22.01.2015	22.01.2016
4	Α	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev		
5	Α	Bluetooth Tester	CBT35	R&S	100635	300003907	ne signalling only	-/-	-/-
6	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
7	А	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
8	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-

7.4 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2016	21.01.2017
2	А	PC-WLAN Tester	Intel Core i3 3220/3,3 GHz, Prozessor	R&S	2V2403033A45 23	300004589	ne	-/-	-/-
3	Α	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
4	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 606844	400001185	ev	-/-	-/-
5	Α	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	Batch no. 606844	400001186	ev	-/-	-/-
6	А	NRP Power meter Display and control unit AC sup	NRP	R&S	100212	300003780	vIKI!	28.01.2016	28.01.2018
7	А	Wideband Power Sensor, 50 MHz to 18 GHz	NRP-Z81	R&S	102585	300004863	k	25.01.2016	25.01.2017

8 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Carrier frequency separation	± 21.5 kHz				
Number of hopping channels	-/-				
Time of occupancy	-/-				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Detailed conducted spurious emissions @ the band edge	± 1 dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

9 Sequence of testing

9.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

9.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

10 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 1	See table!	2016-07-25	Radiated measurements only according customer specification

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4)	Antenna gain	-/-	Nominal	Nominal	DSSS				\boxtimes	-/-
§15.247(e) RSS - 247 / 5.2 (2)	Power spectral density	KDB 558074 DTS clause: 10.6	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.247(a)(2) RSS - 247 / 5.2 (1)	DTS bandwidth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(b)(3) RSS - 247 / 5.4 (4)	Maximum output power	KDB 558074 DTS clause: 9.2.2.5	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	-/-	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	KDB 558074 DTS clause: 13.3.2	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated below 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.109 RSS-Gen	RX spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	RX / idle				\boxtimes	-/-
§15.109 RSS-Gen	RX spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	RX / idle				\boxtimes	-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	Nominal	DSSS OFDM				\boxtimes	-/-

 $\underline{\text{Note:}}\ C = \text{Complies;}\ NC = \text{Not complies;}\ NA = \text{Not applicable;}\ NP = \text{Not performed}$

11 Additional comments

Reference documents:	Test F	Report MDE_UBLOX_1624_FCCc (DF1)
Special test descriptions:	None	
Configuration descriptions:	None	
Test mode:		No test mode available. Iperf was used to ping another device with the largest support packet size
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

12 Measurement results

12.1 Identify worst case data rate

Measurement:

All modes of the module will be measured with an average power meter or spectrum analyzer to identify the maximum transmission power.

In further tests only the identified worst case modulation scheme or bandwidth will be measured and this mode is used as representative mode for all other modulation schemes.

Additional the band edge compliance test will be performed in the lowest and highest modulation scheme.

Measurement parameters:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	3 MHz			
Video bandwidth:	3 MHz			
Trace mode:	Max hold			
Test setup:	See sub clause 7.4 A			
Measurement uncertainty	-/-			

Results:

Modulation	Modulation scheme / bandwidth
DSSS / b – mode	1 Mbit/s
OFDM / g – mode	6 Mbit/s
OFDM / n HT20 – mode	MCS0
OFDM / n HT40 – mode	MCS0

12.2 Module verification

Description:

Measurement of the maximum conducted output power. To verify the testability of the used EUT compared to reference test report MDE_LESSW_1302_FCCa.

Measurement:

Measurement parameter				
According to DTS clause: 9.2.2.5				
Peak power meter				
Test setup: See sub clause 7.4 – A				
Measurement uncertainty See sub clause 8				

Limits:

FCC	IC
Conducted: 1.0 W – Ante	enna gain with max. 6 dBi

Results:

Modulation	Channel	Reference report	Actual measured EUT
DSSS / b – mode	6	24.0	23.8
OFDM / g – mode	6	24.5	24.1
OFDM / n HT20 – mode	6	24.6	24.7
OFDM / n HT40 – mode	6	25.4	24.9

12.3 Occupied bandwidth - 99% emission bandwidth

Description:

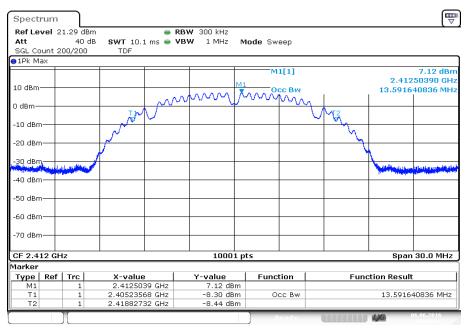
Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement:

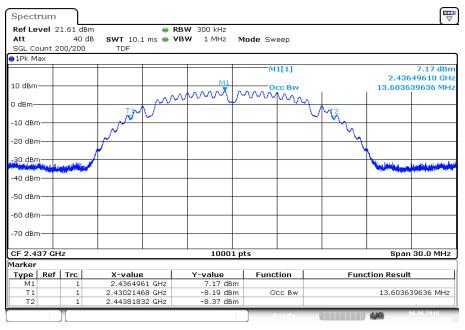
Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	300 kHz			
Video bandwidth:	1 MHz			
Span:	30 MHz / 50 MHz			
Measurement procedure:	Measurement of the 99% bandwidth using the integration function of the analyzer			
Trace mode:	Single count with 200 counts			
Test setup:	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 8			

<u>Usage:</u>

-/-	IC
OBW is necessary fo	r Emission Designator

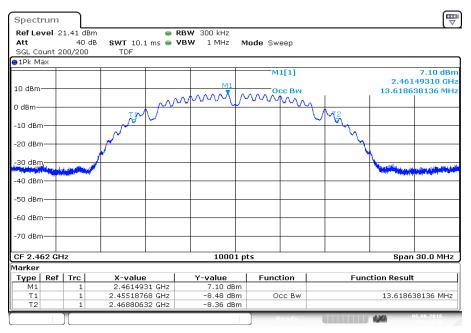

Results:

Modulation	99% bandwidth [kHz]		
Frequency	2412 MHz	2437 MHz	2462 MHz
DSSS / b – mode	13592	13604	13619
OFDM / g – mode	16723	16714	16720
OFDM / n HT20 – mode	17845	16774	17836
Frequency	2422 MHz	2437 MHz	2452 MHz
OFDM / n HT40 – mode	36740	36728	36746


Plots: DSSS / b - mode

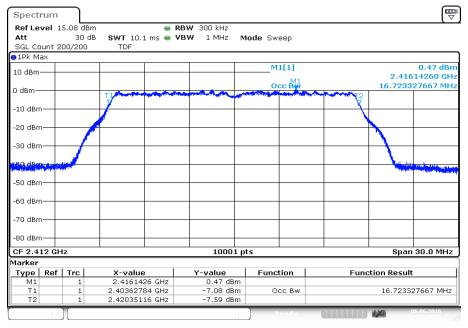
Plot 1: Lowest channel

Date: 6.JUN.2016 08:25:13

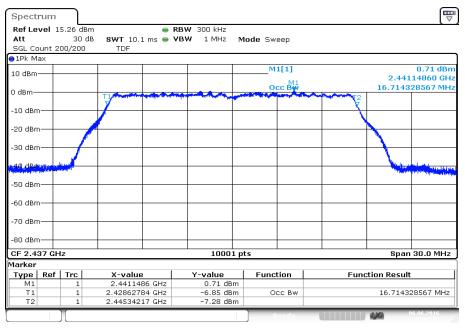

Plot 2: Middle channel

Date: 6.JUN.2016 08:43:07

Plot 3: Highest channel

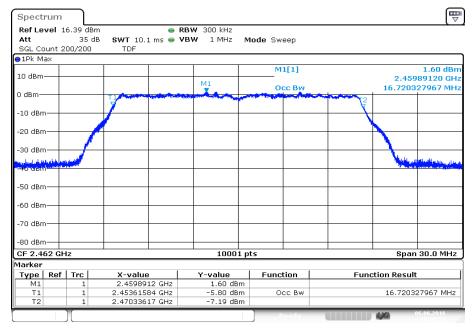


Date: 6.JUN.2016 09:18:40


Plots: OFDM / g - mode

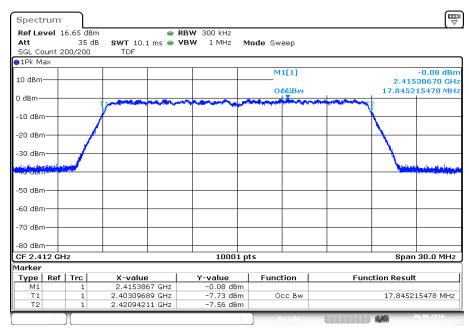
Plot 1: Lowest channel

Date: 6.JUN.2016 09:37:17

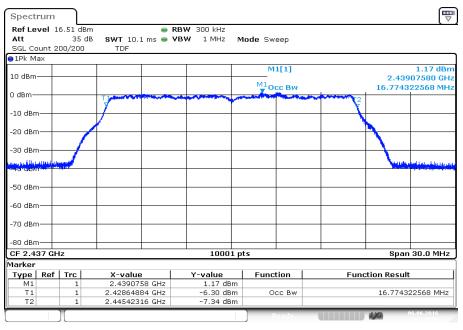

Plot 2: Middle channel

Date: 6.JUN.2016 10:07:43

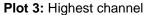
Plot 3: Highest channel

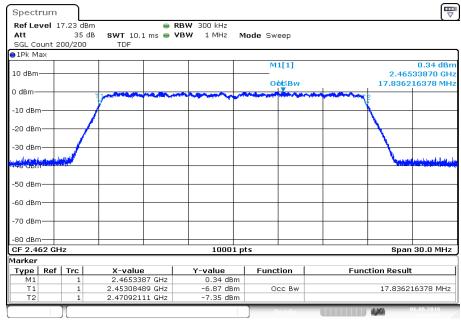


Date: 6.JUN.2016 10:36:50

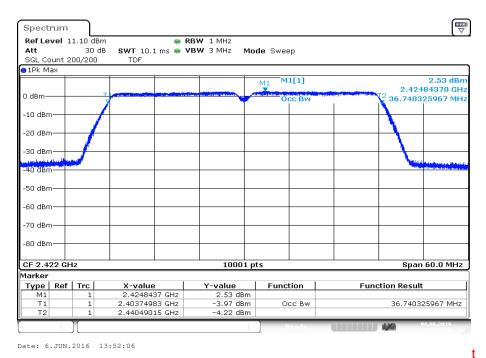

Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel

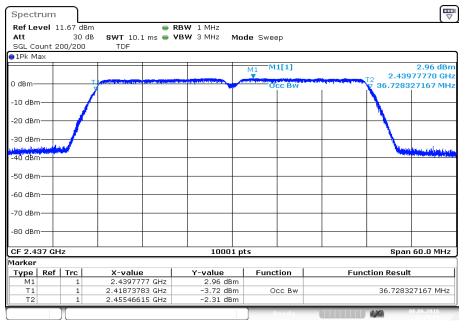

Date: 6.JUN.2016 11:01:03


Plot 2: Middle channel

Date: 6.JUN.2016 11:38:26

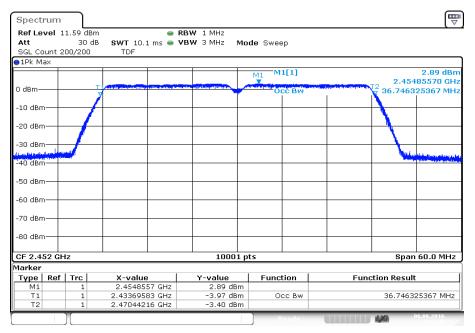


Date: 6.JUN.2016 12:51:07



Plots: OFDM / n HT40 - mode

Plot 1: Lowest channel


Plot 2: Middle channel

Date: 6.JUN.2016 13:38:04

Plot 3: Highest channel

Date: 6.JUN.2016 14:02:39

12.4 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to channel 1 for the lower restricted band and to channel 11 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3 m.

Measurement:

Measurement parameter for peak measurements		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	1 MHz	
Span:	See plot!	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.2 A	
Measurement uncertainty	See sub clause 8	

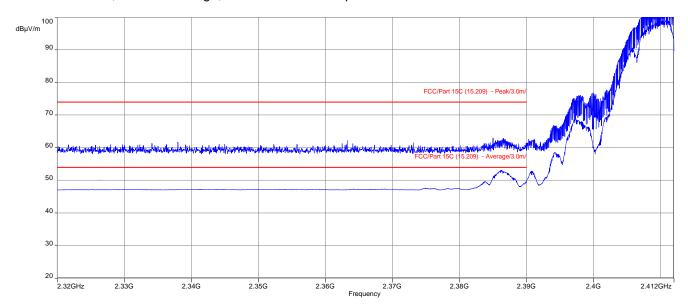
Measurement parameter for average measurements		
According to DTS clause: 13.3.2		
Detector:	RMS	
Sweep time:	Auto	
Resolution bandwidth:	100 kHz	
Video bandwidth:	300 kHz	
Span:	2 MHz	
Trace mode:	RMS Average over 101 sweeps	
Test setup:	See sub clause 7.2 A	
Measurement uncertainty	See sub clause 8	

Limits:

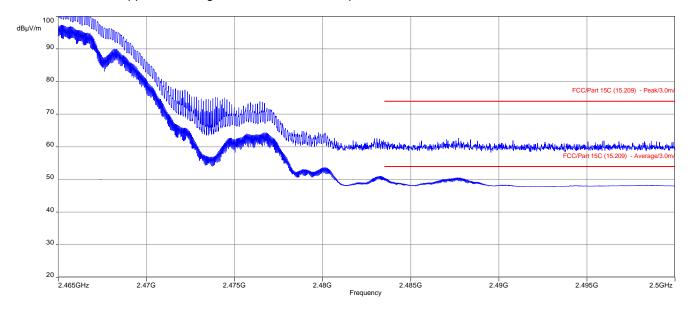
FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

74 dBµV/m Peak 54 dBµV/m AVG

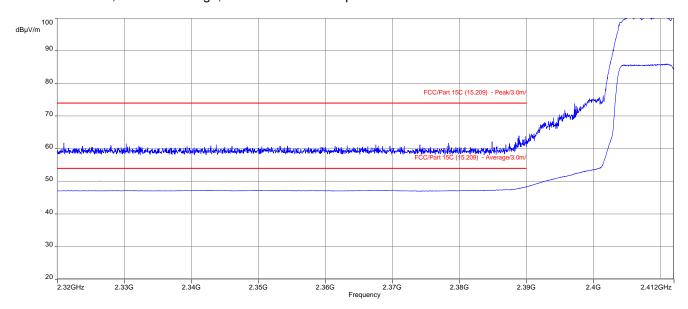

Results:

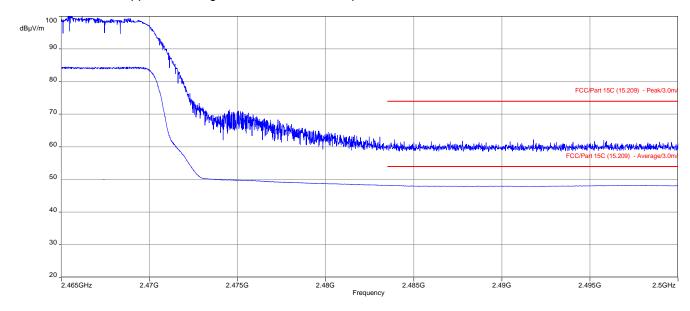
Scenario	Band edge compliance radiated [dB]			
Modulation	DSSS /	OFDM /	OFDM /	OFDM /
	b – mode	g – mode	n HT20 – mode	n HT40 – mode
Lower band edge	> 20 dB (Peak)	> 20 dB (Peak)	> 20 dB (Peak)	> 20 dB (Peak)
	> 20 dB (AVG)	> 20 dB (AVG)	> 20 dB (AVG)	> 20 dB (AVG)
Upper band edge	> 20 dB (Peak)	> 20 dB (Peak)	> 20 dB (Peak)	> 20 dB (Peak)
	> 20 dB (AVG)	> 20 dB (AVG)	> 20 dB (AVG)	> 20 dB (AVG)



Plots: DSSS/ b - mode peak / average

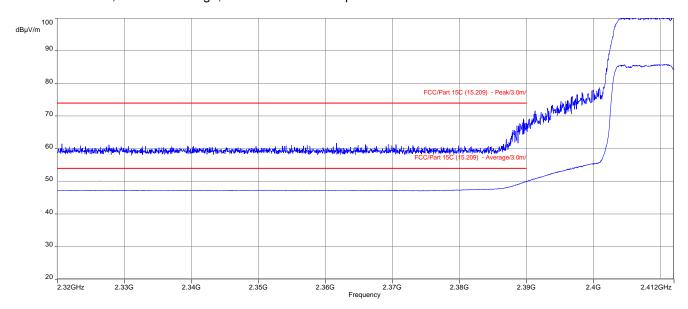
Plot 1: TX mode, lower band edge, vertical & horizontal polarization

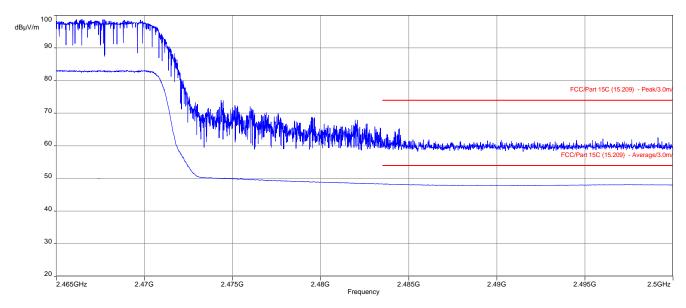

Plot 2: TX mode, upper band edge, vertical & horizontal polarization



Plots: OFDM / g - mode peak / average

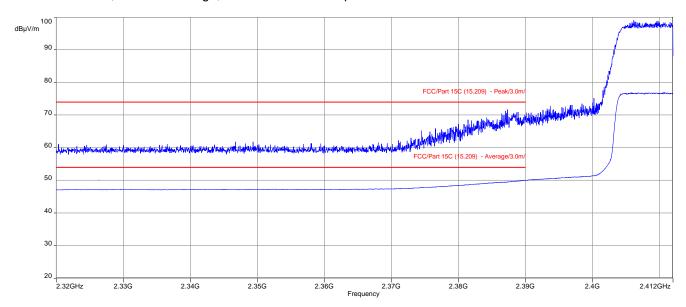
Plot 1: TX mode, lower band edge, vertical & horizontal polarization

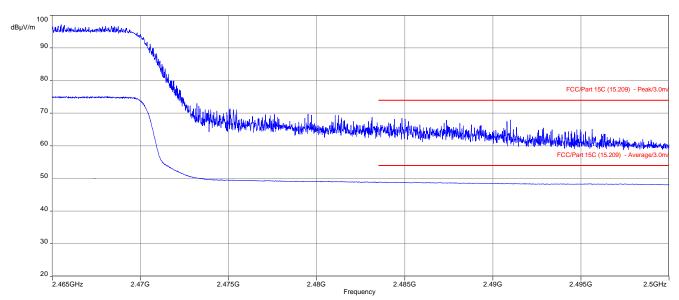

Plot 2: TX mode, upper band edge, vertical & horizontal polarization



Plots: OFDM / n HT20 - mode peak / average

Plot 1: TX mode, lower band edge, vertical & horizontal polarization


Plot 2: TX mode, upper band edge, vertical & horizontal polarization



Plots: OFDM / n HT40 - mode peak / average

Plot 1: TX mode, lower band edge, vertical & horizontal polarization

Plot 2: TX mode, upper band edge, vertical & horizontal polarization

12.5 Spurious emissions radiated below 30 MHz

Description:

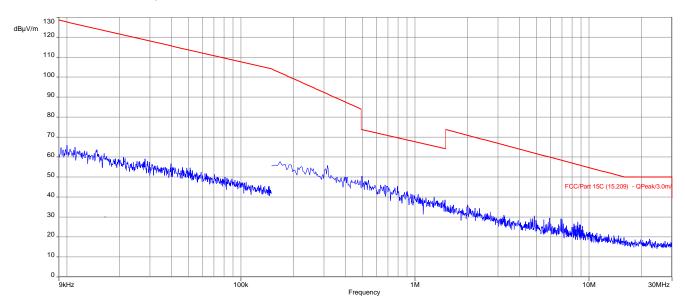
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to channel 6. This measurement is representative for all channels and modes. If peaks are found channel 1 and channel 11 will be measured too. The measurement is performed with the data rate producing the highest output power. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

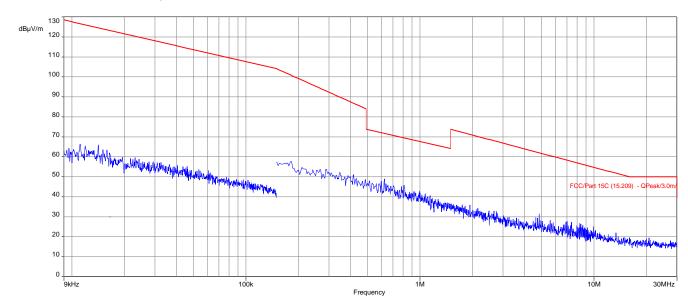
Measurement parameter		
Detector:	Peak / Quasi Peak	
Sweep time:	Auto	
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz	
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz	
Span:	9 kHz to 30 MHz	
Trace mode:	Max Hold	
Measured modulation	 ✓ DSSS b – mode ✓ OFDM g – mode ✓ OFDM n HT20 – mode ✓ OFDM n HT40 – mode 	
Test setup:	See sub clause 7.2 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC			IC
Frequency (MHz)	Field Streng	th (dBµV/m)	Measurement distance
0.009 – 0.490	2400/F(kHz)		300
0.490 – 1.705	24000/F(kHz)		30
1.705 – 30.0	3	0	30

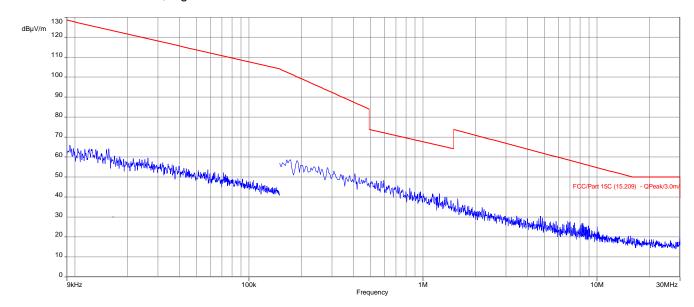

Results:

TX Spurious Emissions Radiated < 30 MHz [dBμV/m]		
F [MHz]	Detector	Level [dBµV/m]
All detected peaks are more than 20 dB below the limit.		

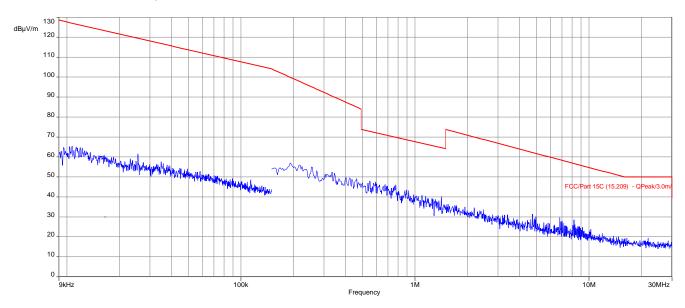


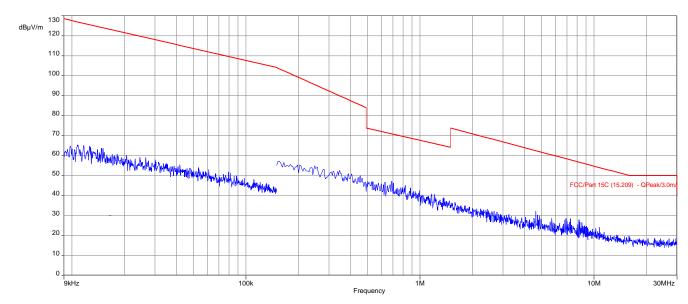
Plots: DSSS, b-mode

Plot 1: 9 kHz to 30 MHz, low channel



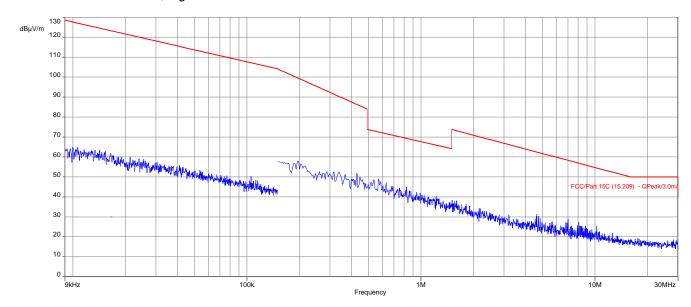
Plot 2: 9 kHz to 30 MHz, mid channel


Plot 3: 9 kHz to 30 MHz, high channel

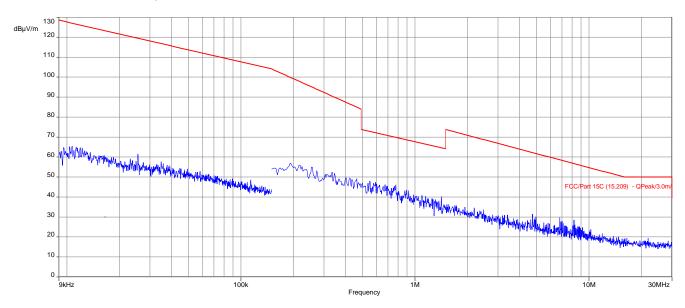


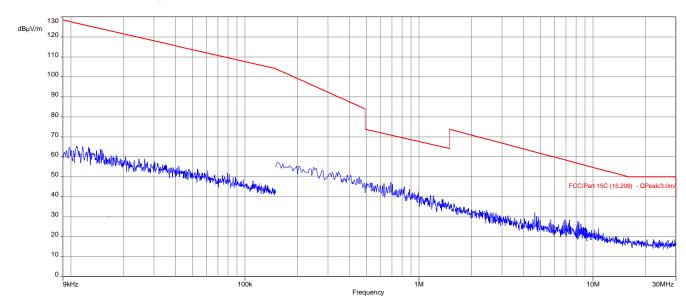
Plots: OFDM, g-mode

Plot 1: 9 kHz to 30 MHz, low channel



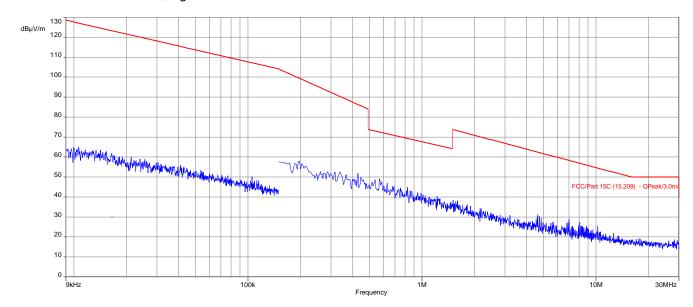
Plot 2: 9 kHz to 30 MHz, mid channel


Plot 3: 9 kHz to 30 MHz, high channel



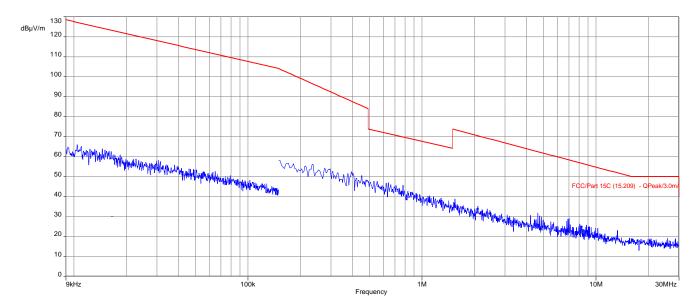
Plots: OFDM, n HT20 - mode

Plot 1: 9 kHz to 30 MHz, low channel



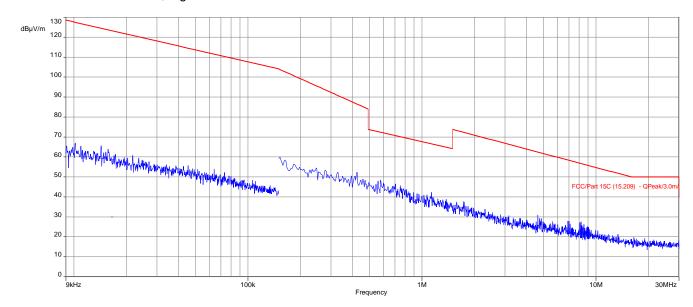
Plot 2: 9 kHz to 30 MHz, mid channel

Plot 3: 9 kHz to 30 MHz, high channel



Plots: OFDM, n HT40 - mode

Plot 1: 9 kHz to 30 MHz, low channel



Plot 2: 9 kHz to 30 MHz, mid channel

Plot 3: 9 kHz to 30 MHz, high channel

12.6 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

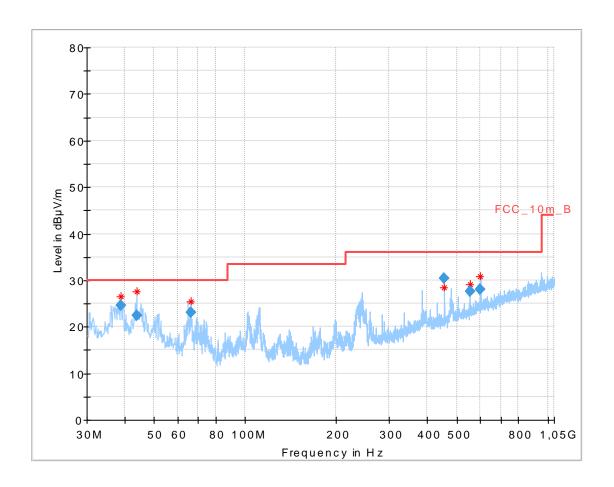
Measurement:

Measureme	nt parameter				
Detector:	Peak / Quasi Peak				
Sweep time:	Auto				
Resolution bandwidth:	F < 1 GHz: 120 kHz				
Video bandwidth:	3 x RBW				
Span:	30 MHz to 1 GHz				
Trace mode:	Max Hold				
	☐ DSSS b – mode				
Measured modulation	☐ OFDM g – mode				
Measured modulation	☑ OFDM n HT20 – mode				
	☐ OFDM n HT40 – mode				
Test setup:	See sub clause 7.1 A				
Measurement uncertainty	See sub clause 8				

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

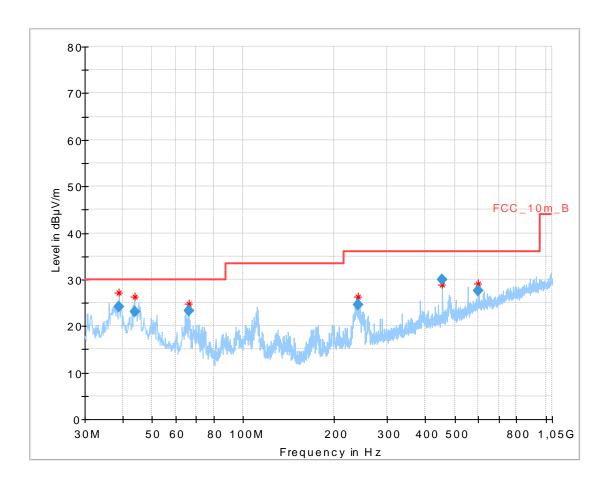
Limits:

FCC	IC

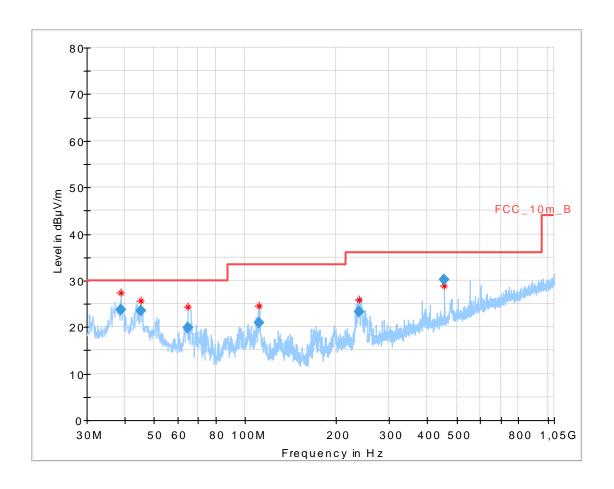

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10

Plot: DSSS, b-mode

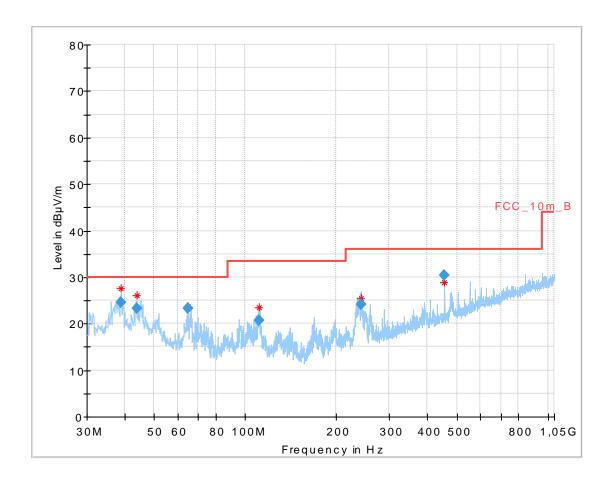

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.950650	24.65	30.00	5.35	1000.0	120.000	98.0	٧	358	14.0
43.802100	22.51	30.00	7.49	1000.0	120.000	98.0	٧	31	13.9
66.289350	23.04	30.00	6.96	1000.0	120.000	170.0	٧	251	9.2
456.019050	30.45	36.00	5.55	1000.0	120.000	170.0	Н	48	17.7
551.993700	27.53	36.00	8.47	1000.0	120.000	101.0	Н	336	19.4
600.004800	28.02	36.00	7.98	1000.0	120.000	170.0	Н	11	20.7


Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel

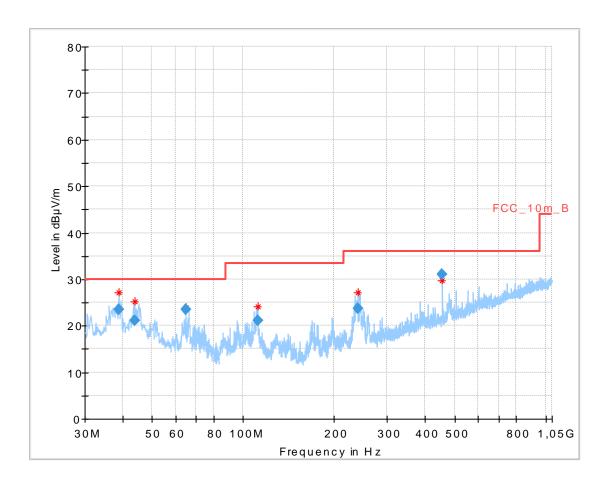
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.975550	24.16	30.00	5.84	1000.0	120.000	101.0	٧	349	14.0
43.787100	23.17	30.00	6.83	1000.0	120.000	98.0	٧	13	13.9
66.270150	23.25	30.00	6.75	1000.0	120.000	170.0	٧	315	9.2
239.599200	24.64	36.00	11.36	1000.0	120.000	98.0	٧	114	13.0
456.018450	29.92	36.00	6.08	1000.0	120.000	170.0	Н	57	17.7
600.010650	27.70	36.00	8.30	1000.0	120.000	170.0	Н	272	20.7

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, high channel

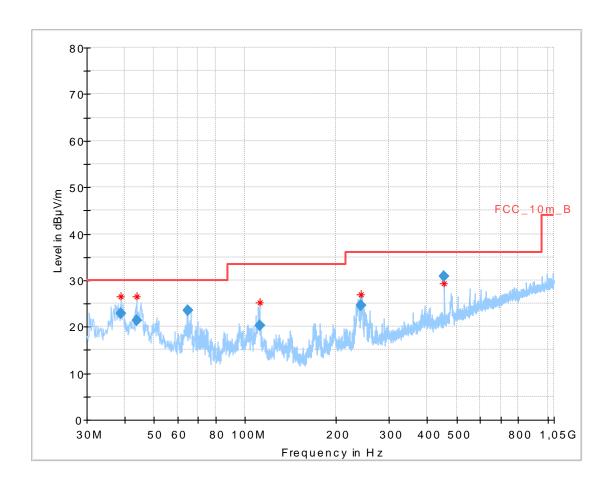


i iiiai_i\csait	•								
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
				(ms)					
38.937450	23.67	30.00	6.33	1000.0	120.000	98.0	٧	103	14.0
45.265950	23.41	30.00	6.59	1000.0	120.000	98.0	٧	359	13.8
64.770450	19.90	30.00	10.10	1000.0	120.000	170.0	٧	21	9.5
110.795700	20.92	33.50	12.58	1000.0	120.000	101.0	V	103	11.0
238.018350	23.36	36.00	12.64	1000.0	120.000	98.0	٧	52	13.0
456.012300	30.27	36.00	5.73	1000.0	120.000	170.0	Н	52	17.7

Plot: OFDM, g - mode

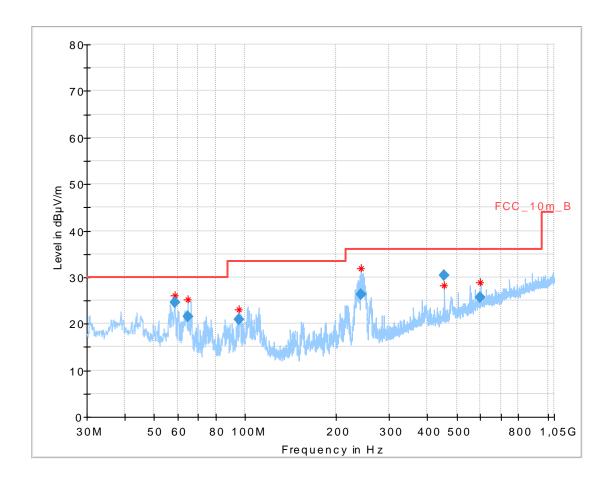

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.948100	24.69	30.00	5.31	1000.0	120.000	98.0	٧	296	14.0
43.775250	23.19	30.00	6.81	1000.0	120.000	101.0	٧	2	13.9
64.798650	23.31	30.00	6.69	1000.0	120.000	170.0	٧	307	9.5
110.782200	20.67	33.50	12.83	1000.0	120.000	101.0	٧	81	11.0
241.998000	24.25	36.00	11.75	1000.0	120.000	98.0	٧	64	13.1
456.000300	30.47	36.00	5.53	1000.0	120.000	170.0	Н	48	17.7


Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel

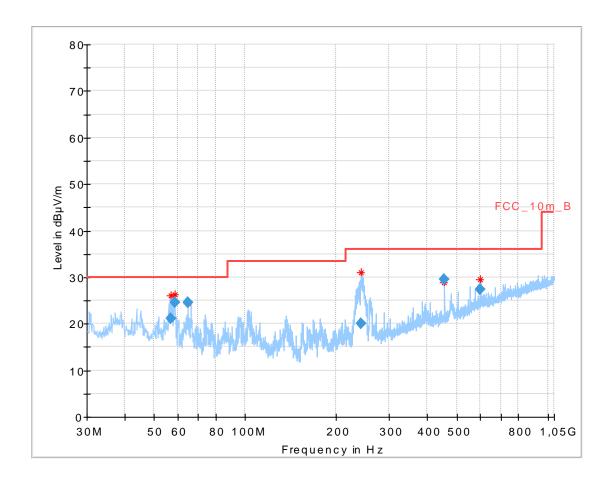
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.976750	23.52	30.00	6.48	1000.0	120.000	98.0	٧	221	14.0
43.783950	21.05	30.00	8.95	1000.0	120.000	170.0	٧	27	13.9
64.783800	23.46	30.00	6.54	1000.0	120.000	170.0	٧	292	9.5
111.601350	21.08	33.50	12.42	1000.0	120.000	98.0	٧	78	11.0
239.628600	23.74	36.00	12.26	1000.0	120.000	170.0	٧	70	13.0
456.008700	31.03	36.00	4.97	1000.0	120.000	170.0	Н	40	17.7

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, high channel

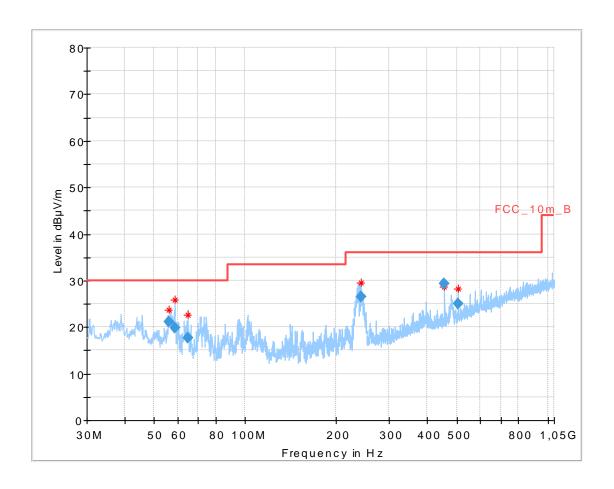


	i iiiai_i\csaii	•								
	Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
					(ms)					
Ī	38.862600	22.91	30.00	7.09	1000.0	120.000	98.0	٧	210	14.0
	43.790250	21.27	30.00	8.73	1000.0	120.000	170.0	٧	359	13.9
	64.784100	23.44	30.00	6.56	1000.0	120.000	170.0	٧	328	9.5
	111.606450	20.17	33.50	13.33	1000.0	120.000	101.0	٧	85	11.0
	242.016000	24.61	36.00	11.39	1000.0	120.000	98.0	٧	96	13.1
	456.014550	30.93	36.00	5.07	1000.0	120.000	170.0	Н	34	17.7

Plot: OFDM, n HT20 - mode

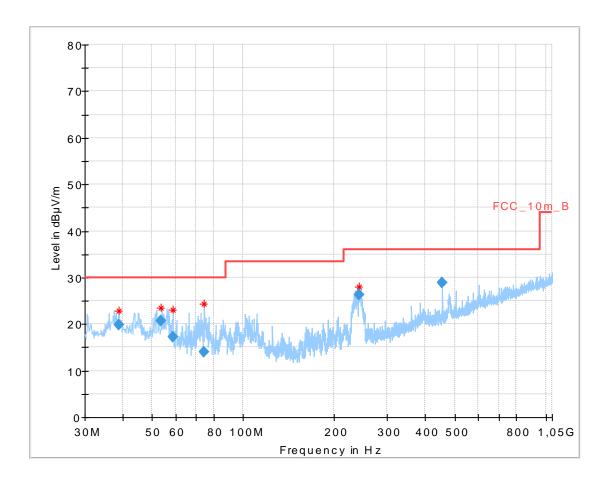

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
58.732200	24.57	30.00	5.43	1000.0	120.000	101.0	٧	4	10.9
64.795950	21.64	30.00	8.36	1000.0	120.000	101.0	٧	4	9.5
95.772000	20.98	33.50	12.52	1000.0	120.000	170.0	٧	351	11.5
241.570050	26.28	36.00	9.72	1000.0	120.000	98.0	٧	70	13.1
456.003600	30.33	36.00	5.67	1000.0	120.000	170.0	Н	24	17.7
599.986200	25.56	36.00	10.44	1000.0	120.000	101.0	Н	304	20.7


Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel

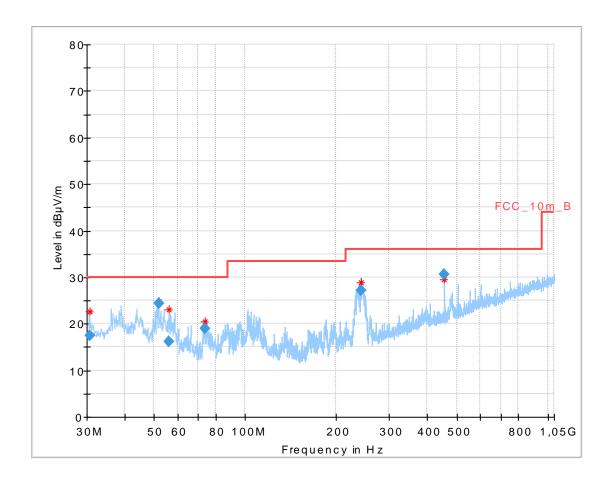
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
56.762550	21.14	30.00	8.86	1000.0	120.000	170.0	٧	79	11.4
58.719000	24.54	30.00	5.46	1000.0	120.000	170.0	٧	0	10.9
64.782900	24.67	30.00	5.33	1000.0	120.000	170.0	٧	278	9.5
241.986600	20.12	36.00	15.88	1000.0	120.000	98.0	٧	60	13.1
456.018300	29.50	36.00	6.50	1000.0	120.000	170.0	Н	67	17.7
600.014700	27.30	36.00	8.70	1000.0	120.000	170.0	Н	338	20.7

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, high channel

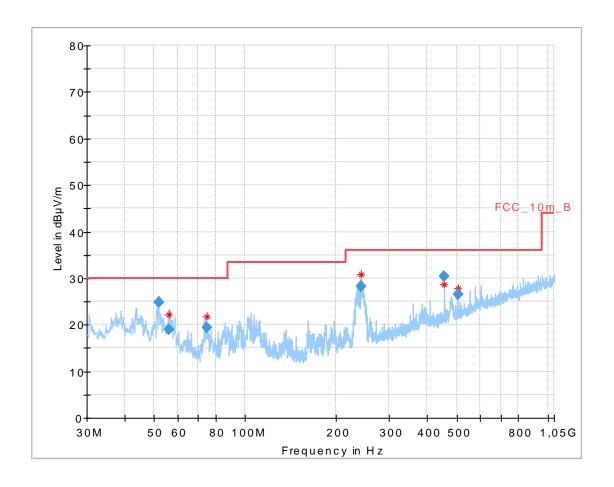


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
55.960050	21.18	30.00	8.82	1000.0	120.000	170.0	٧	26	11.6
58.710750	19.79	30.00	10.21	1000.0	120.000	101.0	٧	1	10.9
64.773600	17.66	30.00	12.34	1000.0	120.000	100.0	٧	138	9.5
241.998600	26.54	36.00	9.46	1000.0	120.000	98.0	٧	218	13.1
456.018000	29.32	36.00	6.68	1000.0	120.000	170.0	Н	204	17.7
504.015900	25.10	36.00	10.90	1000.0	120.000	101.0	Н	15	18.8

Plot: OFDM, n HT40 - mode


Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel

Fre	quency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(1	MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
					(ms)					
;	38.929950	19.93	30.00	10.07	1000.0	120.000	101.0	٧	285	14.0
	53.572650	20.68	30.00	9.32	1000.0	120.000	98.0	٧	2	12.1
	58.728000	17.30	30.00	12.70	1000.0	120.000	170.0	٧	211	10.9
	73.978800	14.11	30.00	15.89	1000.0	120.000	101.0	٧	169	8.3
2	40.790650	26.21	36.00	9.79	1000.0	120.000	98.0	٧	340	13.1
4:	56.013050	28.93	36.00	7.07	1000.0	120.000	170.0	Н	205	17.7


Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.647546	17.44	30.00	12.56	1000.0	120.000	170.0	٧	255	13.4
51.819150	24.37	30.00	5.63	1000.0	120.000	98.0	٧	11	12.3
55.971750	16.12	30.00	13.88	1000.0	120.000	101.0	٧	50	11.6
73.936500	19.02	30.00	10.98	1000.0	120.000	170.0	٧	263	8.3
240.800250	27.18	36.00	8.82	1000.0	120.000	98.0	٧	40	13.1
456.009600	30.54	36.00	5.46	1000.0	120.000	170.0	Н	50	17.7

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, high channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
51.804000	24.84	30.00	5.16	1000.0	120.000	98.0	٧	2	12.3
56.030550	18.98	30.00	11.02	1000.0	120.000	170.0	٧	212	11.6
74.587650	19.32	30.00	10.68	1000.0	120.000	170.0	٧	236	8.3
240.828150	28.25	36.00	7.75	1000.0	120.000	98.0	٧	296	13.1
455.998050	30.35	36.00	5.65	1000.0	120.000	170.0	Н	44	17.7
504.004950	26.49	36.00	9.51	1000.0	120.000	170.0	Н	33	18.8

12.7 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

Measureme	nt parameter
Detector:	Peak / RMS
Sweep time:	Auto
Resolution bandwidth:	F > 1 GHz: 1 MHz
Video bandwidth:	3 x RBW
Span:	1 GHz to 26 GHz
Trace mode:	Max Hold
	□ DSSS b – mode
Measured modulation	☐ OFDM g – mode
Measured modulation	☐ OFDM n HT20 – mode
	☐ OFDM n HT40 – mode
Test setup:	See sub clause 7.2 / 7.3
Measurement uncertainty	See sub clause 8

Limits:

FCC	IC
	-

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
Above 960	54.0	3

Results: DSSS

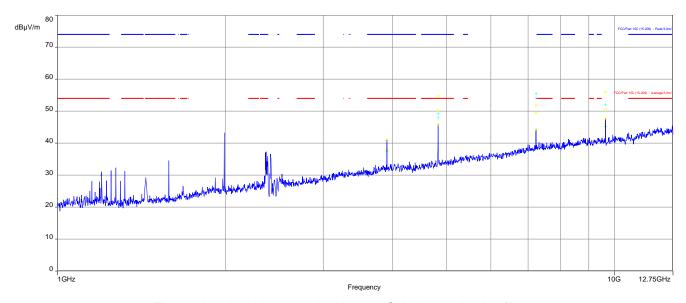
	TX Spurious Emissions Radiated [dBµV/m]								
	2412 MHz		2437 MHz			2462 MHz			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector		
4824	Peak	54.69	4874	Peak	59.82	4924	Peak	61.65	
4024	AVG	49.43	4074	AVG	46.96	4924	AVG	51.97	
,	Peak		7313	Peak	56.67	7388	Peak	55.78	
-/-	AVG		1313	AVG	46.95	1300	AVG	51.44	

Results: OFDM g - mode

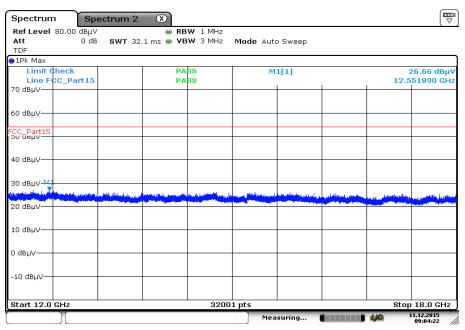
TX Spurious Emissions Radiated [dBμV/m]								
	2412 MHz			2437 MHz		2462 MHz		
FINHT Detector FINHT Detector FINHT Detector					Level [dBµV/m]			
	All detected emissions are more than 20 dB below the limit.			All detected emissions are more than 20 dB below the limit.			l emissions ardB below the l	
	Peak			Peak			Peak	
AVG				AVG			AVG	

Results: OFDM HT20

		7	X Spurious Fi	missions Radi	ated [dBu\//m	1		
TX Spurious Emissions Radiated [dBµV/m] 2412 MHz 2462 MHz 2462 MHz								
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
	d emissions ar		All detected emissions are more than 20 dB below the limit.				l emissions ard B below the l	
	Peak			Peak			Peak	
	AVG			AVG			AVG	

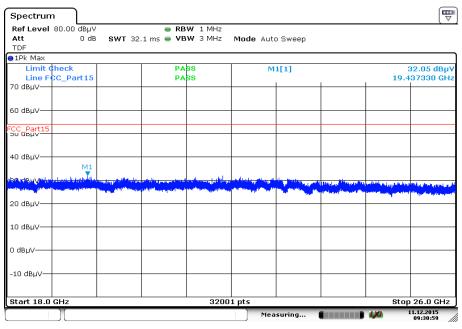

Results: OFDM HT40

	TX Spurious Emissions Radiated [dBμV/m]							
	2422 MHz		2437 MHz			2452 MHz		
F [MHz] Detector Level [dBµV/m]			F [MHz]	Detector	Level [dBµV/m]	F [MHz] Detector Lev		
	All detected emissions are more than 20 dB below the limit.			All detected emissions are more than 20 dB below the limit.			l emissions ardB below the	
	Peak			Peak			Peak	
AVG			AVG			AVG		

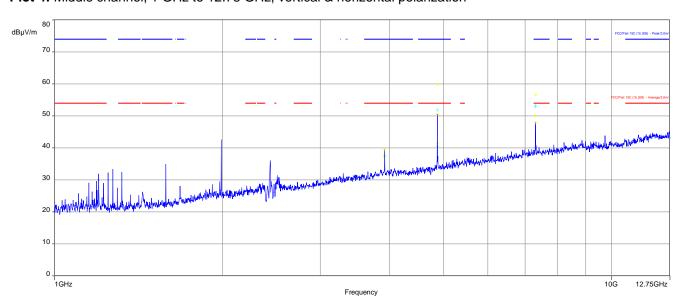

Plots: DSSS

Plot 1: Lowest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

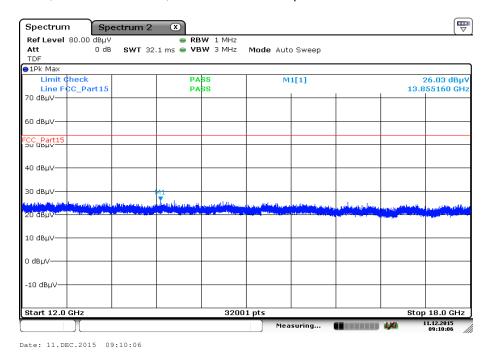

Plot 2: Lowest channel, 12 GHz to 18 GHz, vertical & horizontal polarization

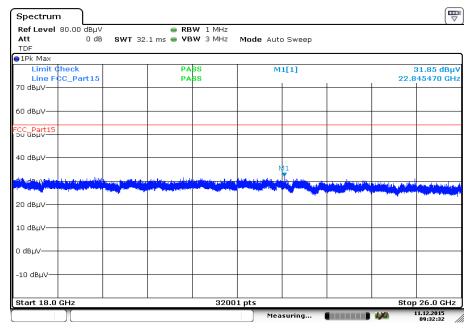
Date: 11.DEC.2015 09:04:22



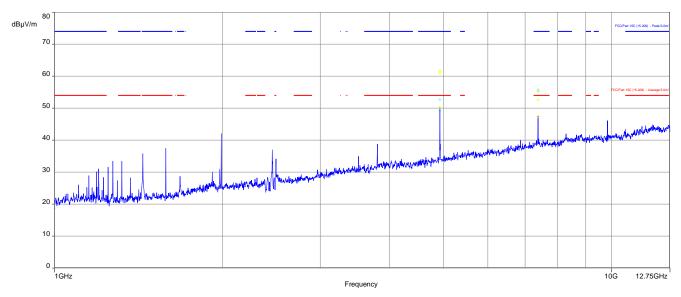
Plot 3: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:30:59

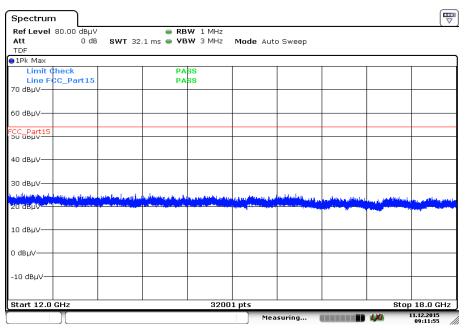

Plot 4: Middle channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 5: Middle channel, 12 GHz to 18 GHz, vertical & horizontal polarization

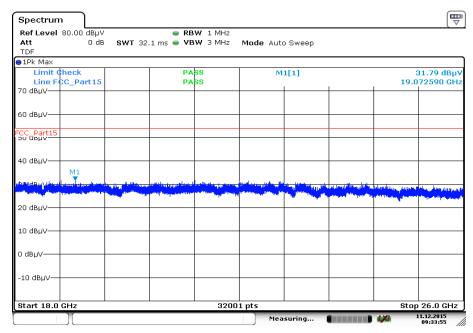

Plot 6: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:32:33



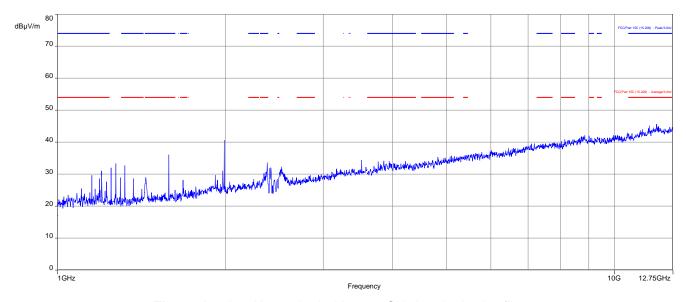
Plot 7: Highest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

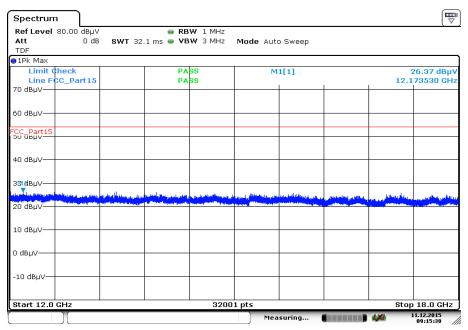

Plot 8: Highest channel, 12 GHz to 18 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:11:55

Plot 9: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

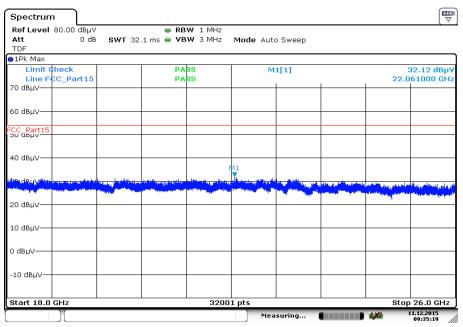


Date: 11.DEC.2015 09:33:55

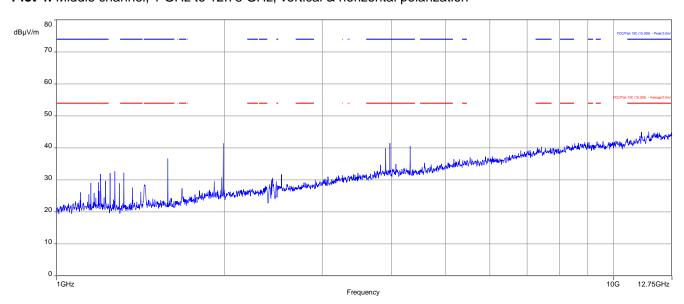

Plots: OFDM g - mode

Plot 1: Lowest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

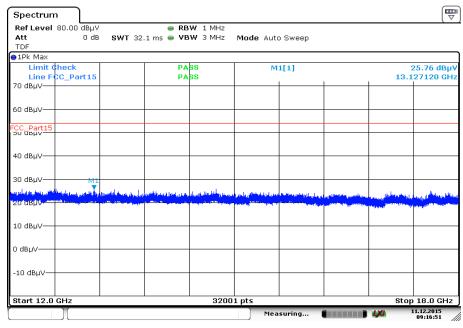

Plot 2: Lowest channel, 12 GHz to 18 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:15:38

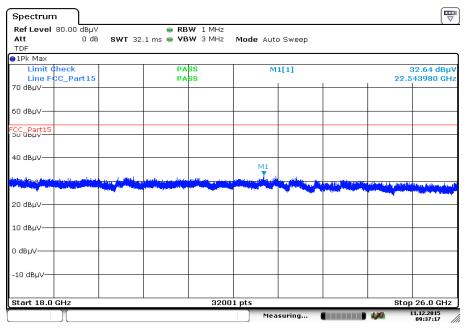


Plot 3: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:35:19

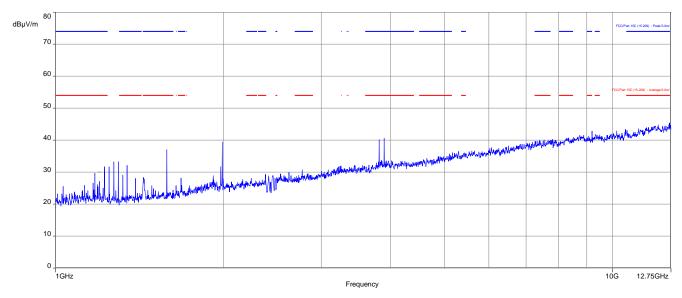

Plot 4: Middle channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

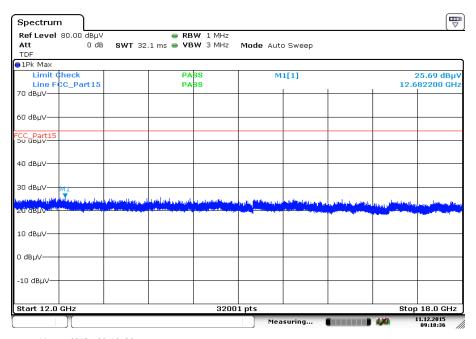


Plot 5: Middle channel, 12 GHz to 18 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:16:51

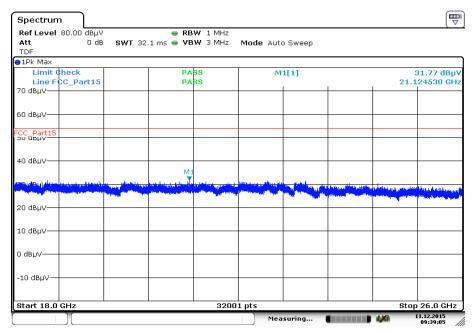

Plot 6: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:37:17



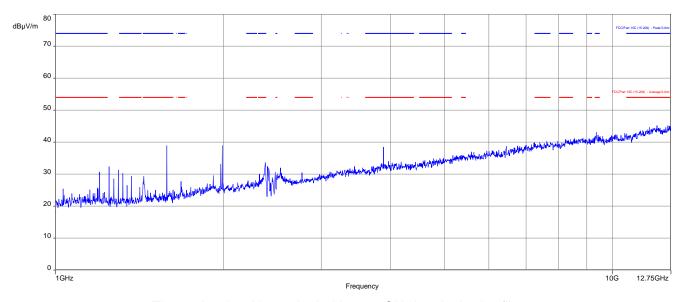
Plot 7: Highest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

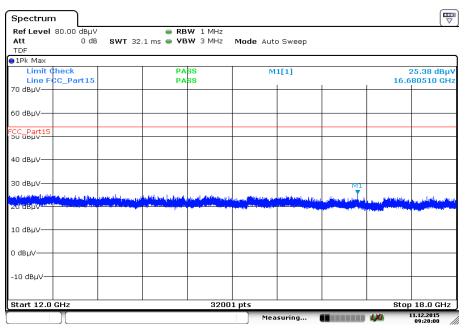

Plot 8: Highest channel, 12 GHz to 18 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:18:36

Plot 9: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

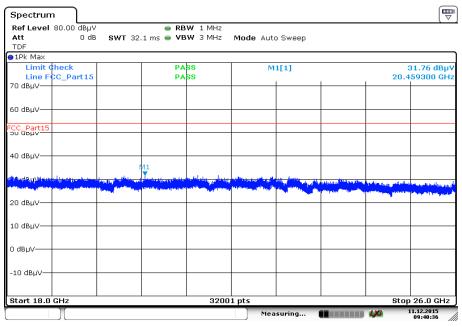


Date: 11.DEC.2015 09:39:05

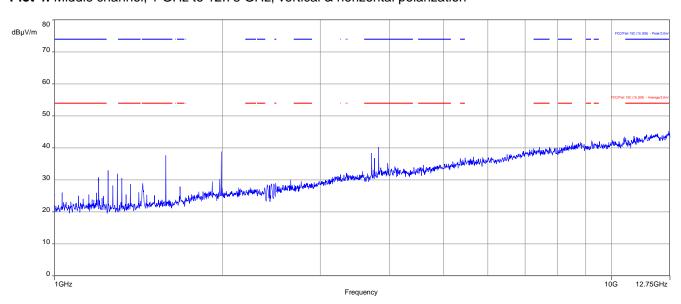

Plots: OFDM n HT20 - mode

Plot 1: Lowest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

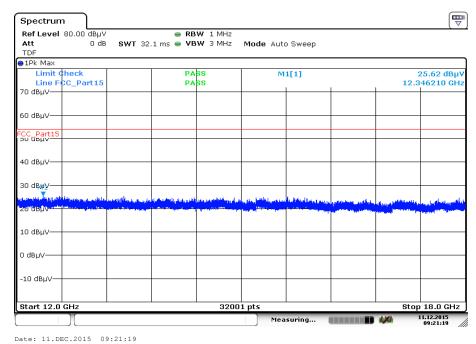

Plot 2: Lowest channel, 12 GHz to 18 GHz, vertical & horizontal polarization

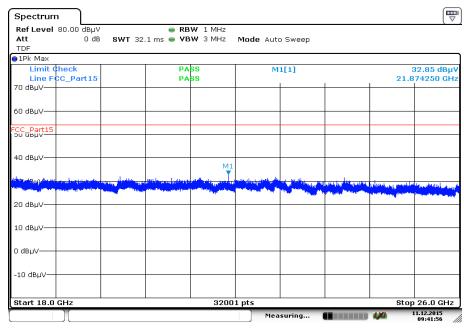
Date: 11.DEC.2015 09:20:00



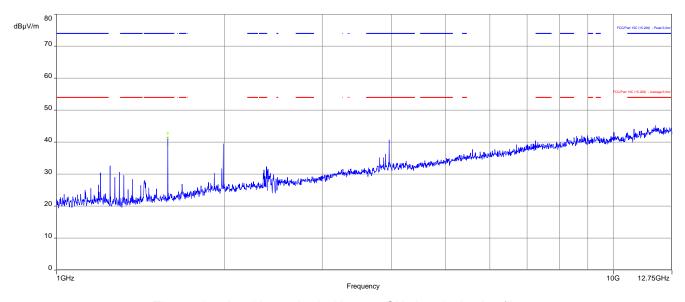
Plot 3: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:40:35

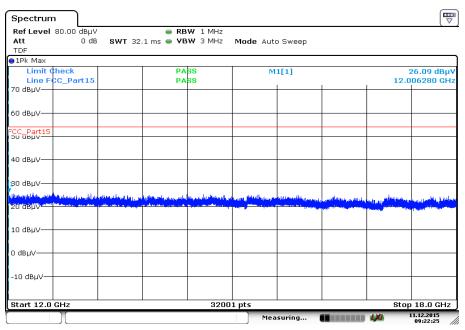

Plot 4: Middle channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 5: Middle channel, 12 GHz to 18 GHz, vertical & horizontal polarization

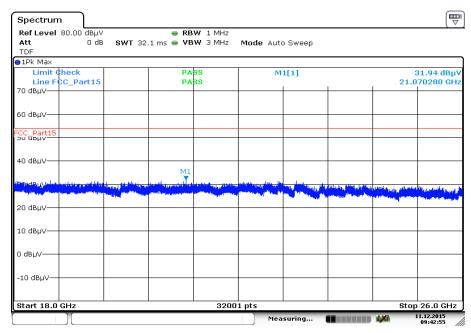

Plot 6: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:41:56



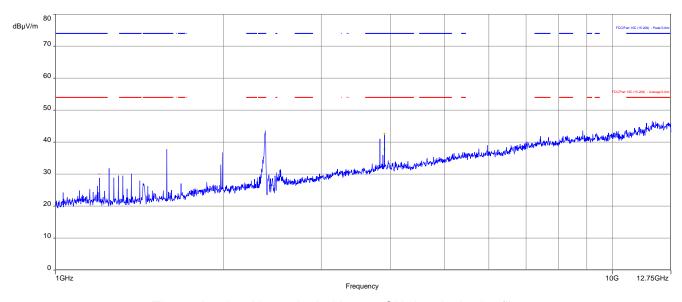
Plot 7: Highest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

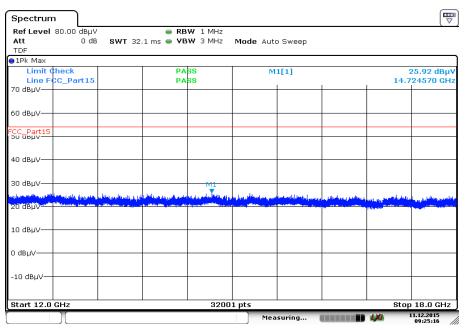

Plot 8: Highest channel, 12 GHz to 18 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:22:25

Plot 9: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

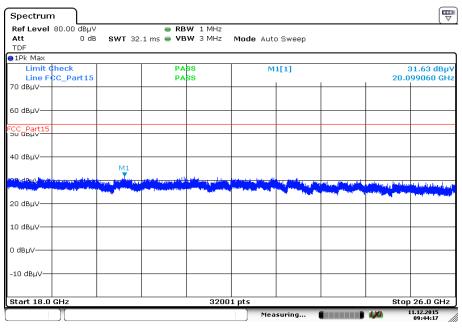


Date: 11.DEC.2015 09:42:55

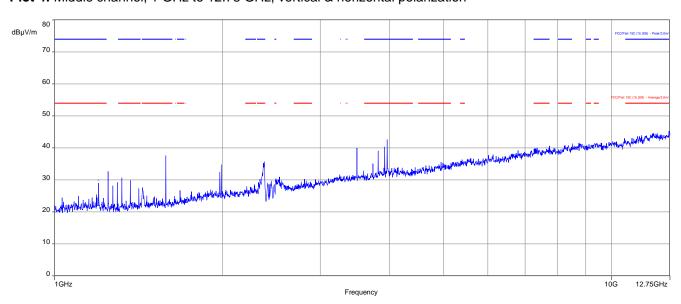

Plots: OFDM n HT40 - mode

Plot 1: Lowest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

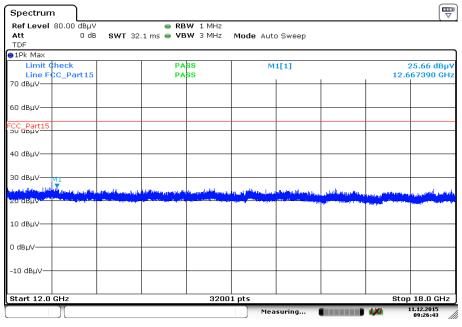

Plot 2: Lowest channel, 12 GHz to 18 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:25:16

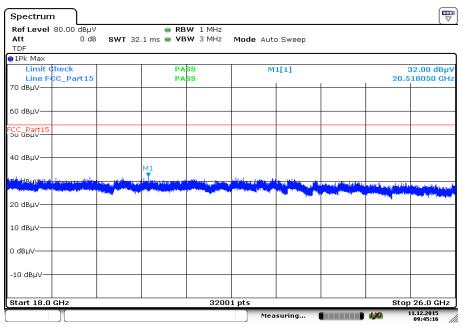


Plot 3: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:44:17

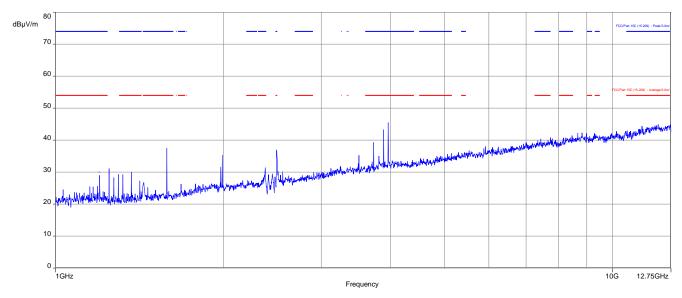

Plot 4: Middle channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

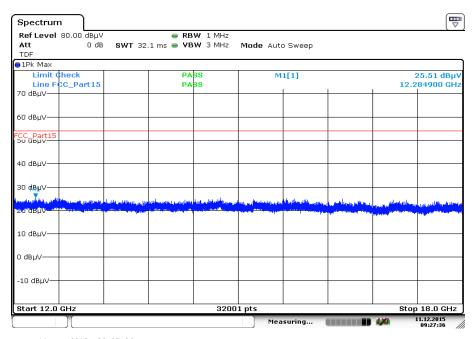


Plot 5: Middle channel, 12 GHz to 18 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:26:43

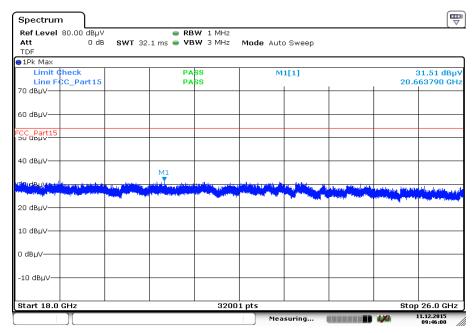

Plot 6: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:45:16



Plot 7: Highest channel, 1 GHz to 12.75 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 8: Highest channel, 12 GHz to 18 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:27:36

Plot 9: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 11.DEC.2015 09:46:00

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2016-03-14
А	OBW measurements added	2016-06-21
В	Chapter 12.2 added	2016-07-04
С	Reference documents updated (chapter 11)	2016-07-25

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number

SW - Software

PMN Product marketing name HMN Host marketing name

HVIN Hardware version identification number FVIN Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate

DAkkS

Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung Akkreditierung Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Generation (Funk Mebilions (GSM / DCS) + OTA
Hebilions (GSM / GSM Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 04.05.2016 mit der Akkreditierungsnummer D-PL-12076-01 und ist giltig bis 17.01.2018, 61e besteht aus diesem Deckblatt, der Rückselte des Deckblatts und der folgenden Anlage mit insgesamt 63 Seiten.

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBI. 15. 2625) sowie der Verordnung (FG) Nr. 7657/2008 des Europäischen Parlaments und des Rates vom 5. Juli 2008 (Boerd ein Verorbrinfer für die Akkrediterung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. 2.18 vom 9. Juli 2008, S. 30). Die DAKSs ist Unterzeichnerin der Wultilateralen Akkommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation (Cooperation (ILAC). Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden: EA: www.european-accreditation.org IJAC: www.llac.org IAF: www.lat.org

Frankfurt, 04.05.2016

The current certificate including annex can be received from CETECOM ICT Services GmbH on request.