

InterLab FCC Measurement/Technical Report on

WLAN transceiver WiBear11n-DF2

FCC ID PV7-WIBEAR11N-DF2 IC: 7738A-WB11NDF2

Report Reference: MDE_LESSW_1302_FCCc

Test Laboratory: Borsigstrasse 11 Germany 7Layers AG 40880 Ratingen

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H.-J. Meckelburg Dr. H. Ansorge Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

0	Sun	nmary	3
).1).2	Technical Report Summary Measurement Summary	3 4
1	Adr	ninistrative Data	5
-	L.1 L.2 L.3 L.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2	Tes	t object Data	6
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Product labelling	6 7 8 8 9 9
3	Tes	t Results	10
2	3.1 3.2 3.3 Tes	Peak power output Spurious RF conducted emissions Spurious radiated emissions t Equipment	10 15 17 20
5	Pho	to Report	20
6	Set	up Drawings	29
7	FCC	and IC Correlation of measurement requirements	30
8	Anr	ex measurement plots	31
8	3.1 3.2 3.3	Peak power output Spurious RF conducted emissions. Spurious radiated emissions	31 38 39

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-13 Edition) and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC measurement guide line "Measurement of Digital Transmission Systems Operating under Section 15.247 March 23, 2005" Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC	Part	15,	Sub	part	C
FUU	Part	13,	SUD	part	C

Peak power output						
The measurement was performed according to FCC § 15.31 10-1-13 Edition						
OP-Mode	Setup	Port	Final Result			
op-mode 1b	Setup_02	Antenna connector	passed			
op-mode 1g	Setup_02	Antenna connector	passed			
op-mode 1n	Setup_02	Antenna connector	passed			
op-mode 2b	Setup_02	Antenna connector	passed			
op-mode 2g	Setup_02	Antenna connector	passed			
op-mode 2n	Setup_02	Antenna connector	passed			
op-mode 3b	Setup_02	Antenna connector	passed			
op-mode 3g	Setup_02	Antenna connector	passed			
op-mode 3n	Setup_02	Antenna connector	passed			
op-mode 1n+	Setup_02	Antenna connector	passed			
op-mode 2n+	Setup_02	Antenna connector	passed			
op-mode 3n+	Setup_02	Antenna connector	passed			
op-mode 1a	Setup_02	Antenna connector	passed			
op-mode 2a	Setup_02	Antenna connector	passed			
op-mode 3a	Setup_02	Antenna connector	passed			
op-mode 1n5	Setup_02	Antenna connector	passed			
op-mode 2n5	Setup_02	Antenna connector	passed			
op-mode 3n5	Setup_02	Antenna connector	passed			
op-mode 2n5+	Setup_02	Antenna connector	passed			
op-mode 3n5+	Setup_02	Antenna connector	passed			

§ 15.247 (b) (1)

FCC Part 15, Subpart C

Spurious radiated emissions The measurement was performed according to ANSI C63.4

OP-Mode op-mode 1b op-mode 2b op-mode 3b op-mode 1g op-mode 2g op-mode 3g op-mode 1n op-mode 2n op-mode 3n op-mode 1a op-mode 2a op-mode 3a

Setup_01 Setup_01 Setup_01 Setup_01 Setup_01 Setup_01 Setup_01 Setup_01 Setup_01 Setup_01

Setup_01

Setup

Setup_01

§ 15.247 (d), § 15.35 (b), § 15.209

ng to ANSI C63.42009PortFinalEnclosurepasse

Final Result passed passed

Responsible for Accreditation Scope:

Responsible for Test Report:

1 Administrative Data

1.1 Testing Laboratory

Company Name:

7 Layers AG

Address

Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz Dipl.-Ing. Marco Kullik

Report Template Version:

1.2 Project Data

Responsible for testing and report:	DiplIng. Marco Kullik
Date of Test(s):	2013-12-10 to 2014-02-26
Date of Report:	2014-03-07

1.3 Applicant Data

Company Name:

Address:

Contact Person:

1.4 Manufacturer Data

Company Name:

Address:

Lesswire AG

2012-08-27

Rudower Chaussee 30 12489 Berlin Germany Dr. Daniel Dietterle

PRETTL Electronics AG

Robert-Bosch-Straße 10, 01454 Radeberg, Germany

Contact Person:

Kerstin Sauer

2 Test object Data

2.1 General EUT Description

Equipment under Test:	IEEE 802.11a/b/g/n WLAN transceiver
Type Designation:	WiBear11n – DF2
Kind of Device:	Transceiver module
(optional)	
Voltage Type:	DC
Voltage Level:	1.8 V and 3.3 V
Tested Modulation Type:	DBPSK; OFDM:BPSK; OFDM:64-QAM

General product description:

The EUT is industrial universal module, targeted for integration into different Original Equipment Manufacturer products. The module is designed for both - simultaneous and independent operation of the following:

IEEE 802.11a/b/g/n payload data rates for Wireless Local Area Network (WLAN), Bluetooth 3.0+High Speed (HS) and Bluetooth 2.1+EDR. It provides a complete end-to-end solution for low power applications. It includes an integrated MAC/Baseband processor and RF front-end components, and can connect to a host processor via SDIO interface.

Specific product description for the EUT:

The EUT is a dual band WLAN (802.11 a/b/g/n, 2.5 and 5 GHz) and Bluetooth module with one joint antenna connector for WLAN and Bluetooth. In IEEE 802.11n mode it supports 20 MHz and 40 MHz bandwidth channels (both with MCS7), providing 72.2 Mbit/s, and 150 Mbit/s transfer data rates respectively.

The object of this test report is the WLAN transceiver, consequently switched on the IEEE 802.11 a/b/g/n modes, working in 2.4 MHz and 5 MHz bands. In IEEE 802.11n mode, it was tested with 20 MHz and 40 MHz channel bandwidth.

The EUT provides the following ports:

Ports

- Antenna connector
- DC port
- Data port
- Enclosure

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: LS003r01)	WLAN transceiver	WiBear11n- DF2	AN00J93176 C432 1001 1341	mounted on evaluation board #23 Ver. C4	14.44.35.p200	-
		vith a dual band Je and 4.1 dBi in	2	· ·	antenna gain = 1. e).	8 dBi at
EUT B (Code: LS003w01)	WLAN transceiver	WiBear11n- DF2	AN00J93176 C432 1001 1395	mounted on evaluation board #12 Ver. C4	14.44.35.p200	-
Remark: EUTB A is equipped with a joint antena connector						

NOTE: The short description used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment, which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
-	-	-	-	-	-	-

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment, which is used temporarily to enable operational and control features especially used for the tests of the EUT, which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AUX1	Laptop Acer TravelMate 5720	Model: 2205	LXTK20603274 4008D6A2000	-	WinXP Prof.EN	-
AUX2	AC/DC Adapter for AUX1 Acer/LITEON	Model PA-1900-24	870923010AR	Rev A06	-	-
AUX3	cable & adapter board & SDIO connector to the host PC	Lesswire AG HOST SDIO	SDIO 1	-	-	-
AUX4	evaluation board with antenna (gain = 4.1 dBi) enabled and antenna connector (open).	EB1 & Antenova A10194 dual-band WLAN/BT antenna	#23	-	-	-
AUX5	evaluation board with antenna (gain = 4.1 dBi) enabled and antenna connector (open).	EB1 & Antenova A10194 dual-band WLAN/BT antenna	#12	-	-	_

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_01	EUT A + AUX1 to AUX4	setup for radiated measurements into the anechoic chamber
Setup_02	EUT B + AUX1 to AUX3 + AUX 5	setup for conducted measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1b	TX-mode, the EUT transmits on the	Worst case data rate 1 Mbps (channel 1)
	lowest channel (2412 MHz)	20 MHz channel bandwidth
op-mode 1g	TX-mode, the EUT transmits on the	Worst case data rate 6 Mbps (channel 1)
-	lowest channel (2412 MHz)	20 MHz channel bandwidth
op-mode 1n	TX-mode, the EUT transmits on the	Worst case data rate 72.2 Mbps (channel 1)
	lowest channel (2412 MHz)	20 MHz channel bandwidth
op-mode 2b	TX-mode, the EUT transmits on the mid	Worst case data rate 1 Mbps (channel 6)
	channel (2437 MHz)	20 MHz channel bandwidth
op-mode 2g	TX-mode, the EUT transmits on the mid	Worst case data rate 6 Mbps (channel 6)
	channel (2437 MHz)	20 MHz channel bandwidth
op-mode 2n	TX-mode, the EUT transmits on the mid	Worst case data rate 72.2 Mbps (channel 6)
	channel (2437 MHz)	20 MHz channel bandwidth
op-mode 3b	TX-mode, the EUT transmits on the	Worst case data rate 1 Mbps (channel 11)
	highest channel (2462 MHz)	20 MHz channel bandwidth
op-mode 3g	TX-mode, the EUT transmits on the	Worst case data rate 6 Mbps (channel 11)
	highest channel (2462 MHz)	20 MHz channel bandwidth
op-mode 3n	TX-mode, the EUT transmits on the	Worst case data rate 72.2 Mbps (channel 11)
	highest channel (2462 MHz)	20 MHz channel bandwidth
op-mode 1n+	TX-mode, the EUT transmits on the	Worst case data rate 150 Mbps (channel 3)
	channel 3 (2422 MHz)	40 MHz channel bandwidth
op-mode 2n+	TX-mode, the EUT transmits on the mid	Worst case data rate 150 Mbps (channel 6)
	channel (2437 MHz)	40 MHz channel bandwidth
op-mode 3n+	TX-mode, the EUT transmits on the	Worst case data rate 150 Mbps (channel 11)
	highest channel (2462 MHz)	40 MHz channel bandwidth
op-mode 1a	TX-mode, the EUT transmits on the	Worst case data rate 6 Mbps (channel 149)
	lowest channel (5745 MHz)	20 MHz channel bandwidth
op-mode 2a	TX-mode, the EUT transmits on the mid	Worst case data rate 6 Mbps (channel 157)
	channel (5785 MHz)	20 MHz channel bandwidth
op-mode 3a	TX-mode, the EUT transmits on the	Worst case data rate 6 Mbps (channel 165)
	highest channel (5825 MHz)	20 MHz channel bandwidth
op-mode 4a	TX-mode, the EUT transmits on the	Worst case data rate 6 Mbps (channel 52)
	channel 52 of U-NII-2A band (5260 MHz)	20 MHz channel bandwidth
op-mode 1n5	TX-mode, the EUT transmits on the	Worst case data rate 72.2 Mbps (channel 149)
	lowest channel (5745 MHz)	20 MHz channel bandwidth
op-mode 2n5	TX-mode, the EUT transmits on the mid	Worst case data rate 72.2 Mbps (channel 157)
	channel (5785 MHz)	20 MHz channel bandwidth
op-mode 3n5	TX-mode, the EUT transmits on the	Worst case data rate 72.2 Mbps (channel 165)
	highest channel (5825 MHz)	20 MHz channel bandwidth
op-mode 2n5+	TX-mode, the EUT transmits on the	Worst case data rate 150 Mbps (channel 151)
	lowest channel (5755 MHz)	40 MHz channel bandwidth
op-mode 3n5+	TX-mode, the EUT transmits on the	Worst case data rate 150 Mbps (channel 159)
	highest channel (5795 MHz)	40 MHz channel bandwidth

2.6.1 Special software used for testing

Marvell Labtool SW is used to set the EUT at different operating modes.

2.7 Product labelling

Please refer to the documentation of the applicant.

2.7.1 FCC ID label

Please refer to the documentation of the applicant.

2.7.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Peak power output

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.1.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: RMS

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 Watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

3.1.3 Test Protocol

Temperature:	23.5°C
Air Pressure:	1018hPa
Humidity:	39%

Op. Mode S	etup	Port	
op-mode 1b S	etup_02	Antenna connector	
Output power (dBn	ı)	Remarks	
23.1		A maximum antenna gain of 3 dBi shall be used according to the applicant. Considering the measuring cable attenuation of 1 dB this leads to a maximum EIRP of 23.1 dBm.	

Remark: Please see annex for the measurement plot.

Op. Mode	Set	up	Port
op-mode 1g	Seti	up_02	Antenna connector
Output power (dBm)		Remarks
25.5		A maximum antenna gain of 3 dBi shall be used according to the applicant.	
		Considerin	g the measuring cable attenuation of 1 dB this leads to a maximum
		EIRP of 25.5 dBm	

Op. Mode	Setup	Port	
op-mode 1n	Setup_02	Antenna connector	
Output power (d	Bm)	Remarks	
25.1		A maximum antenna gain of 3 dBi shall be used according to the applicant. Considering the measuring cable attenuation of 1 dB this leads to a maximum EIRP of 25.1 dBm	

Op. Mode	Setup	Port	
op-mode 2b	Setup_02	Antenna connector	
Output power (dBm)	Remarks	

Output power (dBm)	Remarks
23.0	A maximum antenna gain of 3 dBi shall be used according to the applicant.
	Considering the measuring cable attenuation of 1 dB this leads to a maximum
	EIRP of 23.0 dBm

Op. Mode	Setup	Port
op-mode 2g	Setup_02	Antenna connector

Output power (dBm)	Remarks
25.5	A maximum antenna gain of 3 dBi shall be used according to the applicant.
	Considering the measuring cable attenuation of 1 dB this leads to a maximum
	EIRP of 25.5 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setu	Port	
op-mode 2n	Setup	_02 Antenna connector	
Output power (dl	Bm)	Remarks	
25.3		A maximum antenna gain of 3 dBi shall be used according to the applicant. Considering the measuring cable attenuation of 1 dB this leads to a maximum EIRP of 25.3 dBm	

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3b	Setup_02	Antenna connector
Output power (c	lBm)	Remarks
22.7	Accord	ding to the applicant a maximum antenna gain of 3 dBi shall be used. Fring the measuring cable attenuation of 1 dB this leads to a maximum EIRP of 22.7 dBm
Op. Mode	Setup	Port
op-mode 3g	Setup_02	Antenna connector
Output power (a	lBm)	Remarks
24.3	Accord	ding to the applicant a maximum antenna gain of 3 dBi shall be used. Fring the measuring cable attenuation of 1 dB this leads to a maximum EIRP of 24.3 dBm
Remark: Please se	e annex for the r	measurement plot.
Op. Mode	Setup	Port
op-mode 3n	Setup_02	Antenna connector
Output power (a	lBm)	Remarks
24.8	Accord	ding to the applicant a maximum antenna gain of 3 dBi shall be used. Fring the measuring cable attenuation of 1 dB this leads to a maximum EIRP of 24.8 dBm
Op. Mode	Setup	Port
op-mode 1n+	Setup_02	Antenna connector
Output power (a	lBm)	Remarks
24.8	Accord	ding to the applicant a maximum antenna gain of 3 dBi shall be used. Fring the measuring cable attenuation of 1 dB this leads to a maximum EIRP of 24.8 dBm
Op. Mode	Setup	Port
op-mode 2n+	Setup_02	Antenna connector
Output power (c	lBm)	Remarks
24.5	Accord	ding to the applicant a maximum antenna gain of 3 dBi shall be used. Fring the measuring cable attenuation of 1 dB this leads to a maximum EIRP of 24.5 dBm
Op. Mode	Setup	Port
op-mode 3n+	Setup_02	Antenna connector
Output power (c	iBm)	Remarks
24.6	Accord	ding to the applicant a maximum antenna gain of 3 dBi shall be used. The measuring cable attenuation of 1 dB this leads to a maximum EIRP of 24.6 dBm
Remark: Please se	e annex for the r	measurement plot.
Op. Mode	Setup	Port
op-mode 1a	Setup_02	Antenna connector

· · · · · · · · · · · · · · · · · · ·	
Output power (dBm)	Remarks
25.5	According to the applicant antenna gain is 4.1 dBi. Considering the measuring
	cable attenuation of 1 dB this leads to EIRP of 25.5 dBm

Op. Mode	Setup	Port
op-mode 2a	Setup_02	Antenna connector
Output power (c	lBm)	Remarks
25.4	Accordi	ing to the applicant antenna gain is 4.1 dBi. Considering the measuring cable attenuation of 1 dB this leads to EIRP of 25.4 dBm
Op. Mode	Setup	Port
op-mode 3a	Setup_02	Antenna connector
Output power (c	lBm)	Remarks
25.1	Accordi	ing to the applicant antenna gain is 4.1 dBi. Considering the measuring cable attenuation of 1 dB this leads to EIRP of 25.1 dBm
Op. Mode	Setup	Port
op-mode 1n5	Setup_02	Antenna connector
Output power (c	lBm)	Remarks
25.5	Accordi	ing to the applicant antenna gain is 4.1 dBi. Considering the measuring cable attenuation of 1 dB this leads to EIRP of 25.5 dBm
Op. Mode	Setup	Port
op-mode 2n5	Setup_02	Antenna connector
Output power (c	lBm)	Remarks
25.6		ing to the applicant antenna gain is 4.1 dBi. Considering the measuring cable attenuation of 1 dB this leads to EIRP of 25.6 dBm
Remark: Please se	e annex for the	measurement plot.
Op. Mode	Setup	Port
op-mode 3n5	Setup_02	Antenna connector

	Dementer
Output power (dBm)	Remarks
25.1	According to the applicant antenna gain is 4.1 dBi. Considering the measuring
	cable attenuation of 1 dB this leads to EIRP of 25.1 dBm

Setup	Port	
Setup_02	Antenna connector	
)	Remarks	
According to the applicant antenna gain is 4.1 dBi. Considering the measur cable attenuation of 1 dB this leads to EIRP of 24.3 dBm		

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port		
op-mode 3n5+	Setup_02	Antenna connector		
Output power (dB	m)	Remarks		
23.8	According	According to the applicant antenna gain is 4.1 dBi. Considering the measuring		
		cable attenuation of 1 dB this leads to EIRP of 23.8 dBm		

3.1.4 Test result: Peak power output

Op. Mode	Result
op-mode 1b	passed
op-mode 1g	passed
op-mode 1n	passed
op-mode 2b	passed
op-mode 2g	passed
op-mode 2n	passed
op-mode 3b	passed
op-mode 3g	passed
op-mode 3n	passed
op-mode 1n+	passed
op-mode 2n+	passed
op-mode 3n+	passed
op-mode 1a	passed
op-mode 2a	passed
op-mode 3a	passed
op-mode 1n5	passed
op-mode 2n5	passed
op-mode 3n5	passed
op-mode 2n5+	passed
op-mode 3n5+	passed
	op-mode 1g op-mode 1n op-mode 2b op-mode 2g op-mode 2n op-mode 3b op-mode 3g op-mode 3n op-mode 1n+ op-mode 2n+ op-mode 2n+ op-mode 1a op-mode 1a op-mode 1a op-mode 2a op-mode 3a op-mode 3a op-mode 3a op-mode 3a op-mode 3n5 op-mode 2n5+

3.2 Spurious RF conducted emissions

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector:
- Peak-Maxhold 30 - 40000 MHz
- Frequency range: 30 400
 Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter **Error! Reference source not found.**). This value is used to calculate the 20 dBc limit.

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

3.2.3 Test Protocol

Temperature:	23.5°C
Air Pressure:	1018hPa
Humidity:	38%

Op. Mode	Setup	Port		
op-mode 4a	Setup_02	Antenna connec	tor	
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Margin dB
_	-	-	-	-

Remark: No spurious emisions in the range 20 dB below the limit found. Please see annex for the measurement plot.

3.3 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.3.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is performed while the EUT is powered from a DC power source.

Measurement above 1 GHz

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance is 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). In this frequency range a double-ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used.

EMI receiver settings:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)		surement ance (m)	Calculated Limits(dBµV/m @10m)	Limits(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	59.1 dB	(48.5 - 13.8) + 30 dB	78.5 - 43.8
0.49 - 1.705	24000/F(kHz)	30	19.1 dB	(48.9 – 23.0) + 10 dB	58.9 - 33.0
1.705 - 30	30	30	19.1 dB	29.5 + 10 dB	39.5

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

3.3.3 Test Protocol

Temperature:	23 °C
Air Pressure:	1019 hPa
Humidity:	42 %

3.3.3.1 Measurement above 1 GHz

Op. Mode	Setup			Port					
op-mode 4	a Setup_	01	1 Enclosure						
Polari- sation	Frequency MHz	Corrected value dBµV/m				Limit dBµV/m		Maı d	
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	_	_	_	_	_	74.0	54.0	_	-

Remark: No spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup		F	Port					
op-mode 1	o Setup_	01	E	Enclosur	e				
Polari- sation	Frequency MHz	Cor	rected va dBµV/m	lue		Limit dBµV/m		Mar di	5
		QP	PK	AV	QP	PK	AV	QP/PK	AV
Hor. + Vert.	2386		51.6	42.6	_	74.0	54.0	22.4	11.4
Hor. + Vert.	4824	-	48.0	45.7	-	74.0	54.0	26.0	8.3
Hor. + Vert.	4960	I	46.0	34.5	-	74.0	54.0	28.0	19.5
Hor. + Vert.	12401	-	53.0	37.7	-	74.0	54.0	21.0	16.3

Remark: No further spurious emissions in the range 20 dB below the limit found.

3.3.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result	
	op-mode 2a	passed	
	op-mode 1b	passed	

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:	Lab 2	
Manufacturer:	Frankonia	
Description:	Anechoic Chamber for radiated testing	
Type:	10.58x6.38x6.00 m ³	
	Calibration Details	Last Execution Next Exec.
	NSA (FCC, IC)	2011/01/10 2014/01/10
	NSA (FCC)	2014/01/09 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ Calibration Details	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18		2011/01/11 2014/01/10
	IC listing 3699A-1 3m		2011/02/07 2014/02/06
	FCC listing 96716 3m Part15/18		2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID:	Lab 1
Manufacturer:	Rohde & Schwarz GmbH & Co.KG
Description:	EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

Single Device Name	Туре	Serial Number	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber&Suhner
Impedance Stabilization Network	ISN T800	36159	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/02/06 2016/02/28
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ENY41	100002	Rohde & Schwarz GmbH & Co. KG
	Standard calibration		2013/03/01 2015/03/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ST08	36292	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/10 2016/01/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN T8-Cat6	32187	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/08 2016/01/31
One-Line V-Network	ESH 3-Z6	100489	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/02/08 2014/02/07
One-Line V-Network	ESH 3-Z6	100570	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/11/25 2016/11/24
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standart Calibration		2013/03/01 2015/02/28
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/03/01 2015/02/28

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Description: Serial Number:

Lab 2 Equipment for emission measurements see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	Maturo GmbH
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical Broadband	SBA 9119	9119-005	Schwarzbeck
Antenna	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2009/06/04 2014/06/03
Biconical dipole	VUBA 9117 Standard Calibration	9117-108	Schwarzbeck 2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01 2	- Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02 2	- Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co.
	Standard Calibration		KG 2012/05/18 2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5НС3500/12750-1.2-КК	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	BBHA 9170 2		
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/10/27 2014/10/26
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH

Test report Reference: MDE_LESSW_1302_FCCc

Page 22 of 39

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Tilt device Maturo	Antrieb TD1.5-10kg	TD1.5-	Maturo GmbH
(Rohacell)		10kg/024/379070	9

Test Equipment Auxiliary Test Equipment

Lab ID:	Lab 2, Lab 3
Manufacturer:	see single devices
Description:	Single Devices for various Test Equipment
Type:	various
Serial Number:	none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide N (Aux)	r1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	rWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
()	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID: Description: Lab 1, Lab 2, Lab 3 Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

-			
Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Unit CBT	t CBT	100589	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/24 2014/11/23
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Initial factory calibration		2012/01/26 2014/01/25
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/28 2014/11/27
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	HW/SW Status		Date of Start Date of End
	K21 4v21, K22 4v21, K23 4v21, K24 K43 4v21, K53 4v21, K56 4v22, K57 K59 4v22, K61 4v22, K62 4v22, K63 K65 4v22, K66 4v22, K67 4v22, K68 Firmware: μP1 8v50 02.05.06	4v22, K58 4v22, 4v22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/12/07 2014/12/06
	HW/SW Status		Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B B54V14, B56V14, B68 3v04, B95, PCI SW options: K21 4v11, K22 4v11, K23 4v11, K24 K28 4v10, K42 4v11, K43 4v11, K53 K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	MCIA, U65V02 4v11, K27 4v10,	2007/01/02
	SW: K62, K69		2008/11/03
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test Equipment Emission measurement devices

Lab ID:Lab 1, Lab 2Description:Equipment for emission measurementsSerial Number:see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer	
Personal Computer	Dell	30304832059	Dell	
Power Meter	NRVD	828110/016	Rohde & Schwa Co.KG	arz GmbH &
	Standard calibration		2013/05/03	2014/05/02
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwa Co.KG	arz GmbH &
	Standard calibration		2013/04/30	2014/04/29
Signal Generator	SMR 20	846834/008	Rohde & Schwa KG	arz GmbH & Co.
	Calibration Details		Last Execution	Next Exec.
	standard calibration		2011/05/12	2014/05/11
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwa KG	arz GmbH & Co.
	Calibration Details		Last Execution	Next Exec.
	Standard Calibration		2011/12/05	2013/12/31
	Standard Calibration		2014/01/07	2016/01/31
	HW/SW Status		Date of Start	Date of End
	Firmware-Update 4.34.4 from 3.45 during	ng calibration	2009/12/03	

Test Equipment Multimeter 12

Lab ID:	Lab 4
Description:	Ex-Tech 520
Serial Number:	05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
· · · ·	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03

Test Equipment Radio Lab Test Equipment

Lab ID:	Lab 3
Description:	Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide SMA	rWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2013/05/03 2014/05/02
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
	Standard calibration		2013/06/24 2014/06/23
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2013/04/30 2014/04/29
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/02/12 2015/02/11
Temperature Chamber Vötsch 03	VT 4002	58566002150010	Vötsch
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2012/03/12 2014/03/11

Test Equipment Regulatory Bluetooth RF Test Solution

Lab ID:	Lab 4
Description:	Regulatory Bluetooth RF Tests
Type:	Bluetooth RF
Serial Number:	001

Single Devices for Regulatory Bluetooth RF Test Solution

Single Device Name	Туре	Serial Number	Manufacturer	
ADU 200 Relay Box 7	Relay Box	A04380	Ontrak Control	Systems Inc.
Bluetooth Signalling Unit CBT	: CBT	100302	Rohde & Schwa Co.KG	arz GmbH &
	Standard calibration		2013/08/28	2014/08/27
Power Meter NRVD	NRVD Standard calibration	832025/059	2013/08/26	2014/08/25
Power Sensor NRV Z1 A	PROBE	832279/013		
	Standard calibration		2013/08/28	2014/08/27
Power Supply	NGSM 32/10 Standard calibration	2725	2013/06/14	2015/06/13
Rubidium Frequency	Datum MFS	002	Datum GmbH	
Normal MFS	Standard calibration		2013/08/27	2014/08/26
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwa Co.KG	arz GmbH &
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017		
	Standard calibration		2013/06/21	2016/06/20

Test Equipment Shielded Room 02

Lab ID:	Lab 1
Manufacturer:	Frankonia
Description:	Shielded Room for conducted testing
Type:	12 qm
Serial Number:	none

Test Equipment Shielded Room 07

Lab ID:	Lab 4
Description:	Shielded Room 4m x 6m

Test Equipment T/H Logger 04

Lab ID:	Lab 4
Description:	Lufft Opus10
Serial Number:	7481

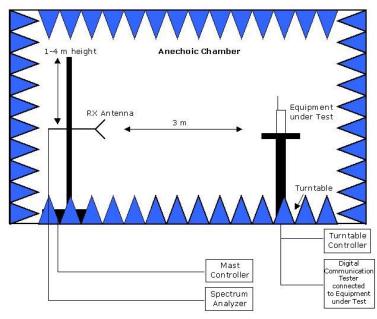
Single Devices for T/H Logger 04

Single Device Name Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 04 (Environ)	7481	Lufft Mess- und Regeltechnik GmbH

Test Equipment Temperature Chamber 01

Lab ID:	Lab 4
Manufacturer:	see single devices
Description:	Temperature Chamber KWP 120/70
Type:	Weiss
Serial Number:	see single devices

Single Devices for Temperature Chamber 01


Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2012/03/12 2014/03/11

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane. Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces.

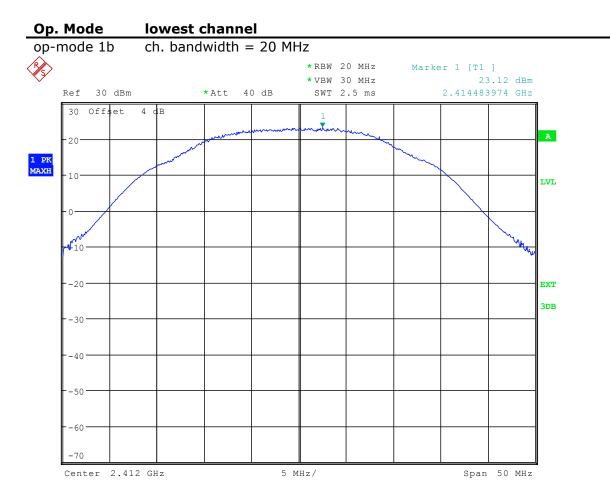
7 FCC and IC Correlation of measurement requirements

The following tables show the correlation of measurement requirements for DTS (e.g. WLAN) equipment and Information Technology Equipment (ITE) from FCC and IC standards.

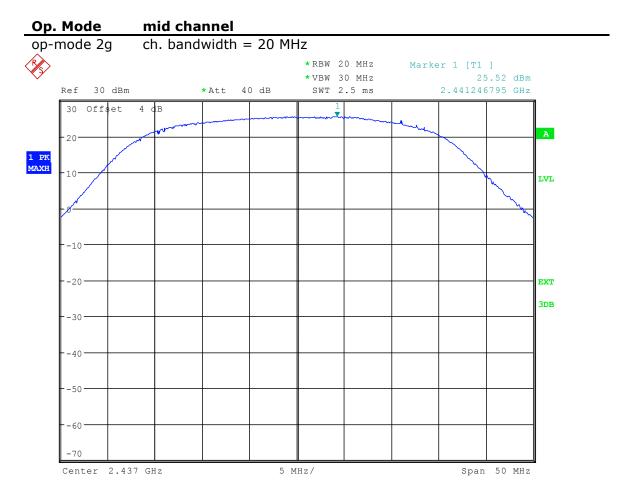
DTS equipment

• •		
Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 3: 7.2.4
Occupied bandwidth	§ 15.247 (a) (2)	RSS-210 Issue 8: A8.2 (a)
Peak power output	§ 15.247 (b) (3), (4)	RSS-210 Issue 8: A8.4 (4)
Spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210 Issue 8: A8.5
Power density	§ 15.247 (e)	RSS-210 Issue 8: A8.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 3: 7.1.2
Receiver spurious emissions	_	RSS-210 Issue 8: 2.3 RSS Gen Issue 3: 6 *)

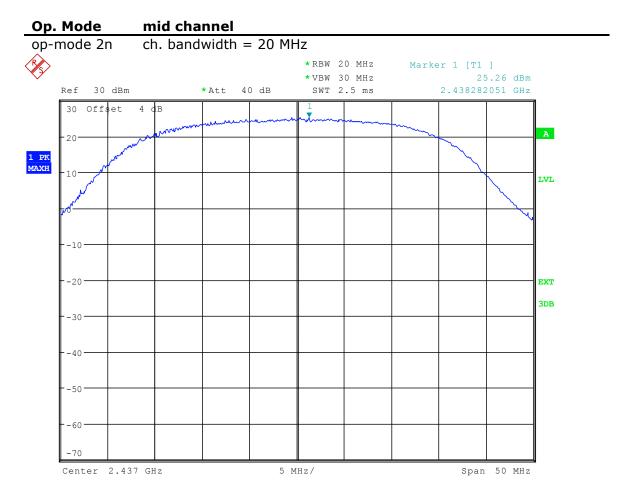
*) Receivers which are part of Transceivers are exempted with respect to Notice 2012-DRS0126.

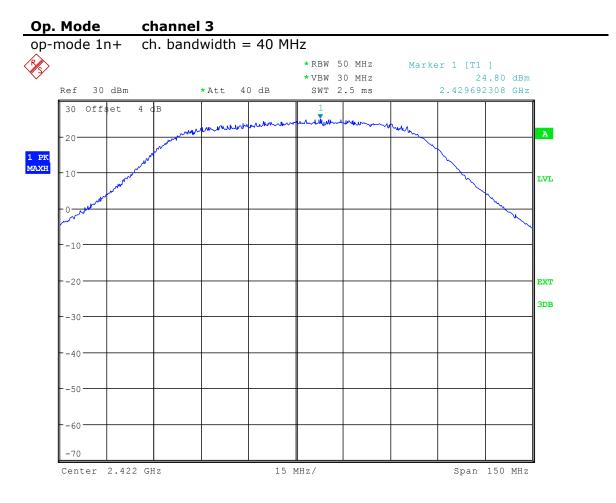

Information Technology Equipment (ITE)

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.107	ICES-003 Issue 5: 6.1
Spurious Radiated Emissions	§ 15.109	ICES-003 Issue 5: 6.2

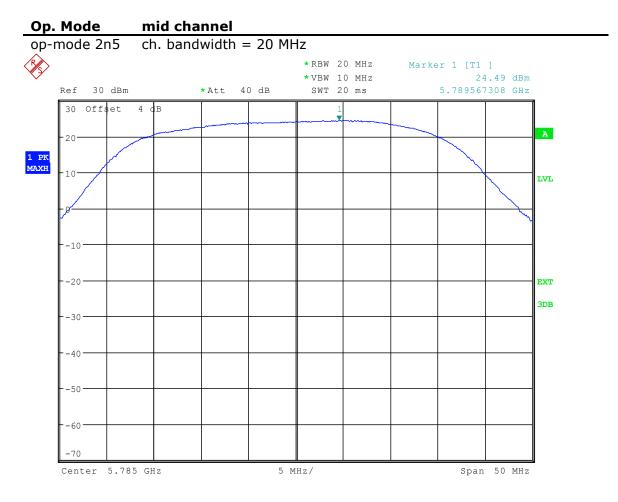

8 Annex measurement plots

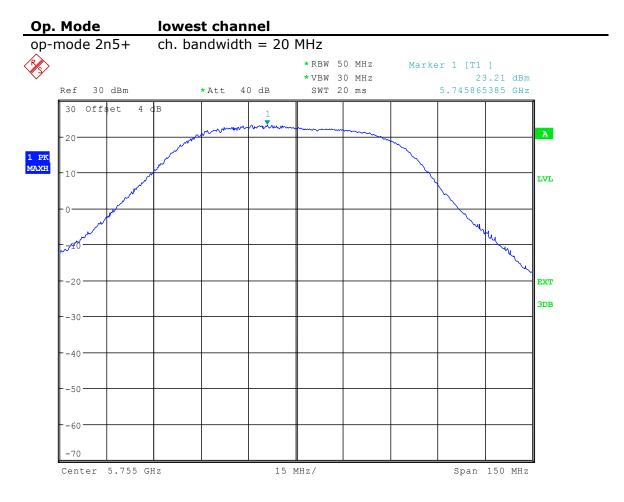
8.1 Peak power output


Date: 27.FEB.2014 11:06:45

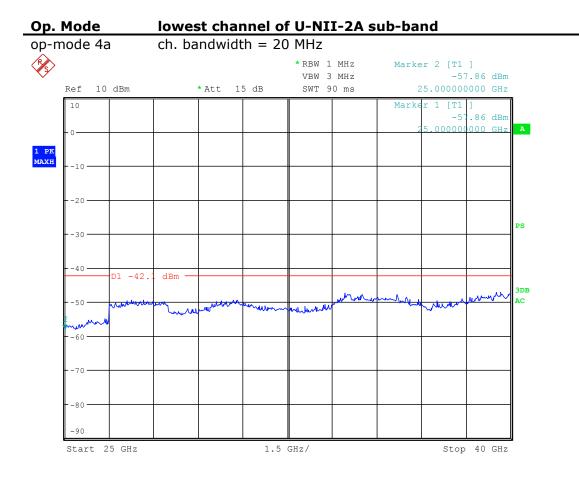

Date: 27.FEB.2014 11:28:27


Date: 27.FEB.2014 11:41:15

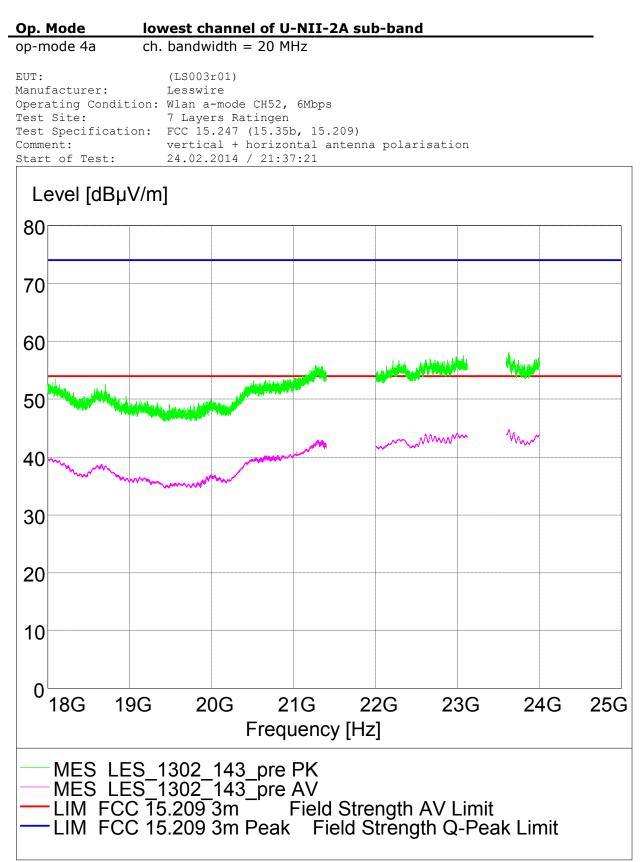

Date: 27.FEB.2014 13:18:29


Date: 27.FEB.2014 15:14:32

Date: 27.FEB.2014 15:21:40



Date: 27.FEB.2014 15:09:31


8.2 Spurious RF conducted emissions.

Date: 28.FEB.2014 16:49:58

8.3 Spurious radiated emissions

