

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-5389_22-01-02-A

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://cetecomadvanced.com
e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number:

D-PL-12047-01-00.

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

Scheidt & Bachmann GmbH

Breite Str. 132

41238 Mönchengladbach / GERMANY

Phone: +49 216 626-60 Contact: Nils Hündgen

e-mail: <u>huendgen.nils@scheidt-bachmann.de</u>

Manufacturer

Scheidt & Bachmann GmbH

Breite Str. 132

41238 Mönchengladbach / GERMANY

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 210 Issue 10 incl. Spectrum Management and Telecommunications Radio Standards
Amendment Specification - Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Smartcard interface

Model name: 05K-SCR3
FCC ID: 05K-SCR3
ISED certification number: 8312A-SCR3
Frequency: 13.56 MHz
Technology tested: RFID

Antenna: 2 external antennas

Power supply: 5.0 V to 24.0 V DC by external power supply

Temperature range: -25°C to +60°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Christoph Schneider	Tobias Wittenmeier

Testing Manager

Radio Labs

Christoph Schneider Lab Manager Radio Labs

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test s	standard/s, references and accreditations	4
4	Repoi	ting statements of conformity – decision rule	<u>5</u>
5	_	environment	
6	Test i	tem	б
	6.1 6.2	General description	
7	Descr	iption of the test setup	7
	7.1 7.2 7.3 7.4	Shielded semi anechoic chamber	10 11
8	Seque	ence of testing	13
	8.1 8.2	Sequence of testing radiated spurious 9 kHz to 30 MHz	
9	Meas	urement uncertainty	15
10	Sur	nmary of measurement results	16
11	Add	litional comments	17
12	Me	asurement results	18
	12.1 12.2 12.3 12.4 12.5	Occupied bandwidth	20 21 28
13	Obs	servations	32
14	Glo	ssary	33
15	Doo	cument history	34

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-5389_22-01-02 and dated 2023-05-25.

2.2 Application details

 Date of receipt of order:
 2023-01-17

 Date of receipt of test item:
 2023-05-04

 Start of test:*
 2023-05-04

 End of test:*
 2023-05-12

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

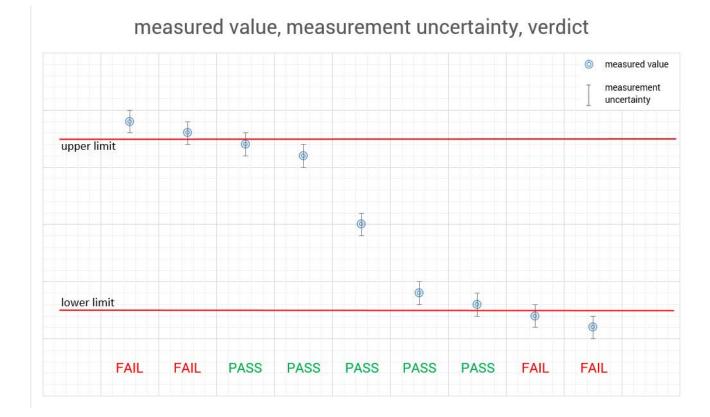
None

© cetecom advanced GmbH Page 3 of 34

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 10 incl. Amendment	April 2020	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices


© cetecom advanced GmbH Page 4 of 34

4 Reporting statements of conformity - decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© cetecom advanced GmbH Page 5 of 34

5 Test environment

		T_{nom}	+22 °C during room temperature tests
Temperature	:	T_{max}	+60 °C during high temperature tests
		T_{min}	-25 °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V _{nom}	5.0 V DC by external power supply
Power supply	:	V_{max}	24.0 V
		V_{min}	5.0 V

6 Test item

6.1 General description

Kind of test item :	Smartcard interface		
Model name :	O5K-SCR3		
HMN :			
PMN :	Smartcard Reader 3		
HVIN :	03870610		
FVIN :	07346220		
S/N serial number :	-/-		
	PCB SCR 3.0 03870610		
Hardware status :	PCB Sym. DPC Antenna SCR 3.0 03861110		
	CB-SMARTCARD ANTENNA FSD 03581490		
Software status :	-/-		
Firmware status :	07346220		
Frequency band :	13.553 to 13.567 MHz		
Type of radio transmission:	Modulated carrier		
Use of frequency spectrum :	ivioudiated carrier		
Type of modulation :	A1D		
Number of channels :	1		
Antenna :	2 external antennas		
Power supply :	5.0 V to 24.0 V DC by external power supply		
Temperature range :	-25°C to +60°C		

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-5389_22-01-02_AnnexA

1-5389_22-01-02_AnnexB 1-5389_22-01-02_AnnexD

© cetecom advanced GmbH Page 6 of 34

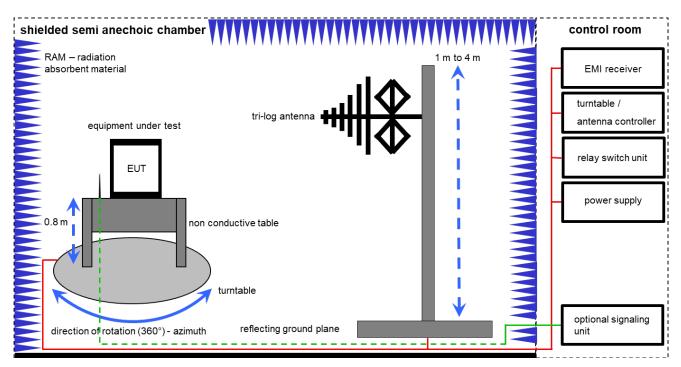
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© cetecom advanced GmbH Page 7 of 34

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

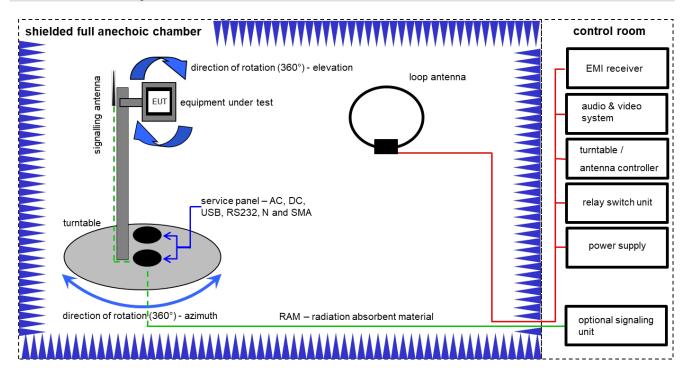
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

© cetecom advanced GmbH Page 8 of 34


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKI!	29.12.2021	31.12.2023
2	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
3	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
4	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
5	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	30.09.2021	29.09.2023
6	Α	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
7	Α	PC	TecLine	F+W		300004388	ne	-/-	-/-
8	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023
9	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
10	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
11	А	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-

© cetecom advanced GmbH Page 9 of 34

7.2 Shielded fully anechoic chamber

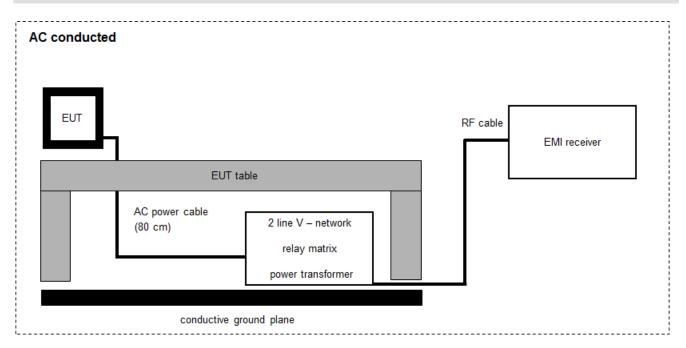
Measurement distance: loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
2	Α	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	07.12.2022	31.12.2023
3	Α	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
4	Α	NEXIO EMV- Software	BAT EMC V2022.0.22.0	Nexio	-/-	300004682	ne	-/-	-/-
5	Α	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	09.12.2020	08.12.2023
6	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	01.07.2021	31.07.2023
7	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-

© cetecom advanced GmbH Page 10 of 34

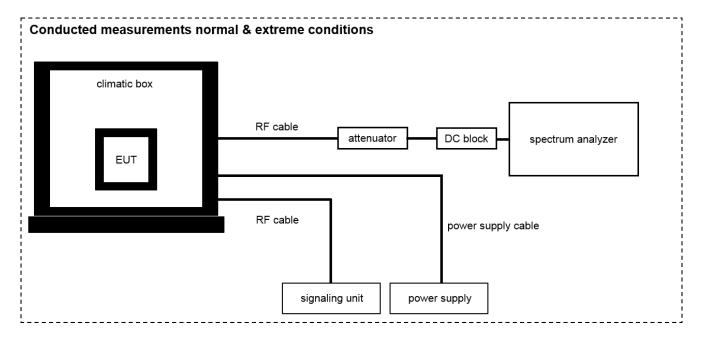
7.3 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
2	Α	PC	TecLine	F+W		300003532	ne	-/-	-/-
3	Α	EMI Test Receiver 3.6 GHz	ESR3	Rohde & Schwarz	102981	300006318	k	09.12.2022	31.12.2023
4	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	Rohde & Schwarz	892475/017	300002209	vlKI!	14.12.2021	31.12.2023
5	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
6	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKI!	29.12.2021	31.12.2023

© cetecom advanced GmbH Page 11 of 34

7.4 RF measurements normal and extreme conditions

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B	Loop Antenna		ZEG TS Steinfurt		400001208	ev	-/-	-/-
2	A,B	RF Cable BNC	RG58	Huber & Suhner		400001209	ev	-/-	-/-
3	В	Temperature Test Chamber	VT 4011	Voetsch Industrietechnik	585662306000 10	300005363	ev	09.05.2022	31.05.2024
4	A,B	Signal analyzer	FSV30	Rohde&Schwarz	104365	300005923	k	13.12.2022	31.12.2023
5	A,B	Power Supply	HMP2020	Rohde & Schwarz	102219	300006192	k	15.12.2022	31.12.2024

© cetecom advanced GmbH Page 12 of 34

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 13 of 34

^{*)} Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 14 of 34

9 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Occupied bandwidth	± used RBW					
Field strength of the fundamental	± 3 dB					
Field strength of the harmonics and spurious	± 3 dB					
Receiver spurious emissions and cabinet radiations	± 3 dB					
Conducted limits	± 2.6 dB					

© cetecom advanced GmbH Page 15 of 34

Summary of measurement results 10

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
	CFR Part 15			
RF-Testing	RSS 210 Issue 10	See table!	2023-09-14	-/-
	RSS Gen Issue 5			

Test specification clause	Test case	Temperature conditions	Power source conditions	С	NC	NA	NP	Remark
RSS Gen Issue 5	Occupied bandwidth	Nominal	Nominal	X				-/-
§ 15.225 (a) RSS 210 Issue 10	Field strength of the fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 § 15.225 (b-d) RSS Gen Issue 5	Field strength of the harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal	X				-/-
§ 15.225 (a) RSS 210 Issue 10	Frequency tolerance	Normal & extreme conditions	Normal & extreme conditions	X				-/-

Note: Compliant NC Not compliant NA Not applicable NP Not performed

© cetecom advanced GmbH Page 16 of 34

11 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions:

Antenna 1 (Chain 1):

Antenna 2 (Chain 2):

© cetecom advanced GmbH Page 17 of 34

12 Measurement results

12.1 Occupied bandwidth

Measurement:

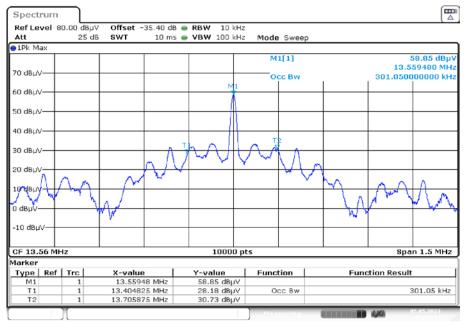
The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal. Measurement performed according to ANSI C63.10, chapter 6.9.3, "Occupied bandwidth—power bandwidth (99%) measurement procedure"

Measurement parameters			
Detector:	Peak		
Resolution bandwidth:	1 % - 5 % of the occupied bandwidth		
Video bandwidth:	≥ 3x RBW		
Trace mode:	Max hold		
Analyser function:	99 % power function		
Used equipment:	See chapter 7.4A		
Measurement uncertainty:	See chapter 9		

Limit:

IC
for RSP-100 test report coversheet only

Result: valid for both chains


99% emission bandwidth
301.1 kHz

© cetecom advanced GmbH Page 18 of 34

Plot:

Plot 1:99 % emission bandwidth

Date: 5.MAY.2023 06:43:33

© cetecom advanced GmbH Page 19 of 34

12.2 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal. Measurement performed according to ANSI C63.10 chapter 6.4

Measurement parameters			
Detector:	Quasi Peak		
Resolution bandwidth:	9 kHz		
Video bandwidth:	≥ 3x RBW		
Trace mode:	Max hold		
Used equipment:	See chapter 7.2A		
Measurement uncertainty:	See chapter 9		

Limit:

FCC & IC				
Frequency	Field strength	Measurement distance		
/ MHz	/ (µV/m)	/ m		
13.553 to 13.567	15,848 (84 dBµV/m)	30		

Recalculation:

According to ANSI C63.10				
Frequency	Formula	Correction value		
13.56 MHz	$FS_{limit} = FS_{max} - 40 log \left(\frac{d_{\textit{meastreel}}}{d_{\textit{meastree}}}\right) - 20 log \left(\frac{d_{\textit{limit}}}{d_{\textit{nearfield}}}\right)$ is the calculation of field strength at the limit distance, expressed in dBµV/m FS_{max} is the measured field strength, expressed in dBµV/m is the $\lambda/2\pi$ distance described is the distance of the measurement point from EUT dlimit is the reference limit distance	-21.4 dB from 3m to 30m		

Result:

Field strength of the fundamental				
Frequency	13.56 MHz			
Distance	@ 3 m	@ 30 m		
Measured / calculated value Chain 1	80.0 dBμV/m	58.6 dBμV/m		
Measured / calculated value Chain 2	72.3 dBμV/m	50.9 dBμV/m		
Measured / calculated value Chain 1 & 2 active	80.0 dBμV/m	58.6 dBμV/m		

© cetecom advanced GmbH Page 20 of 34

12.3 Field strength of the harmonics and spurious

Measurement:

The maximum detected field strength for the harmonics and spurious. Measurement performed according to ANSI C63.10, chapter 6.4 and 6.5

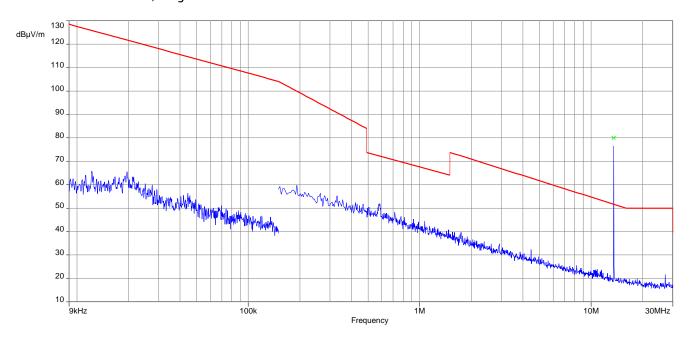
Measurement parameters				
Detector:	Quasi peak / average or			
Detector.	peak (worst case - pre-scan)			
	F < 150 kHz: 200 Hz			
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz			
	30 MHz < F < 1 GHz: 120 kHz			
	F < 150 kHz: 1 kHz			
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz			
	30 MHz < F < 1 GHz: 300 kHz			
Trace mode:	Max hold			
Used equipment: See chapter 7.1A & 7.2A & 7.4A				
Measurement uncertainty: See chapter 9				

Limit:

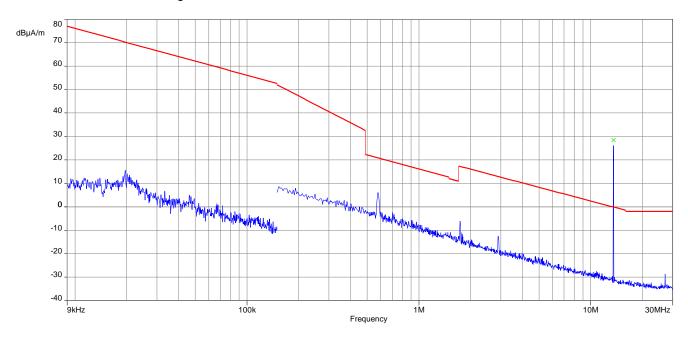
FCC				
Frequency	Field strength	Measurement distance		
(MHz)	(μV/m)	(m)		
0.009 - 0.490	2400/(F/kHz)	300		
0.490 - 1.705	24000/(F/kHz)	30		
1.705 – 30	30 (29.5 dBμV/m)	30		
30 – 88	100 (40 dBμV/m)	3		
88 – 216	150 (43.5 dBμV/m)	3		
216 - 960	200 (46 dBµV/m)	3		

IC					
Frequency	Field strength	Measurement distance			
(MHz)	(μA/m)	(m)			
0.009 - 0.490	6.37/F (F in kHz)	300			
0.490 - 1.705	63.7/F (F in kHz)	30			
1.705 – 30	0.08 (-22 dBμA/m)	30			

Result:

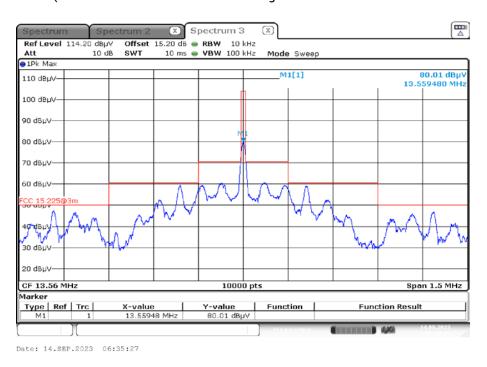

Detected emissions					
Frequency	Detector	Resolution bandwidth	Detected value (@ 3m)		
No emissions detected. For emissions between 30 MHz and 1 GHz see result table below the plot.					

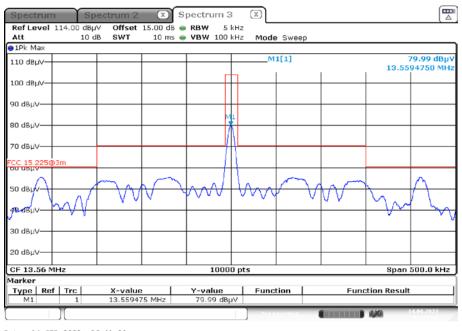
© cetecom advanced GmbH Page 21 of 34



Plots: chain 1

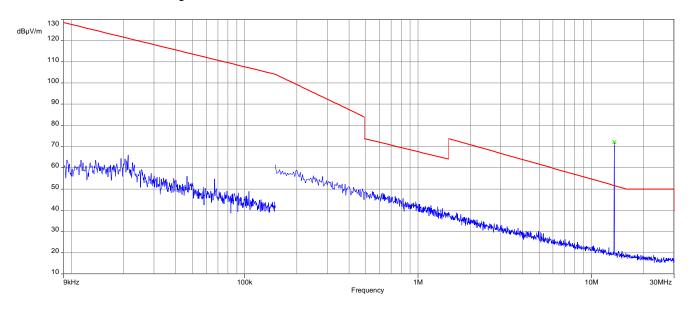
Plot 1: 9 kHz - 30 MHz, magnetic emissions FCC


Plot 2: 9 kHz - 30 MHz, magnetic emissions IC

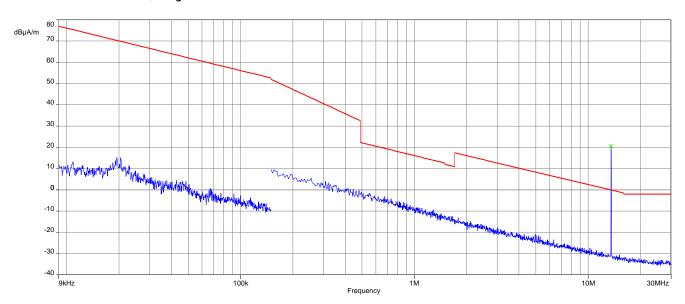

© cetecom advanced GmbH Page 22 of 34

Plot 3: Spectrum mask (the limits are recalculated according to the ANSI C63.10-2013 sub clause 6.4)

Plot 4: Spectrum mask - reduced RBW for mask center

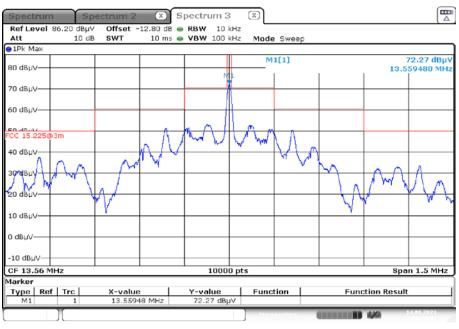

Date: 14.SEP.2023 06:41:30

© cetecom advanced GmbH Page 23 of 34

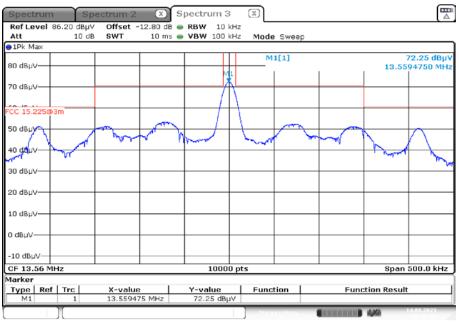


Plots: chain 2

Plot 1: 9 kHz - 30 MHz, magnetic emissions FCC


Plot 2: 9 kHz - 30 MHz, magnetic emissions IC

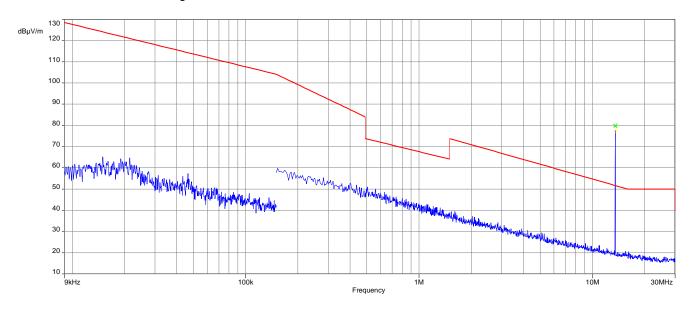
© cetecom advanced GmbH Page 24 of 34



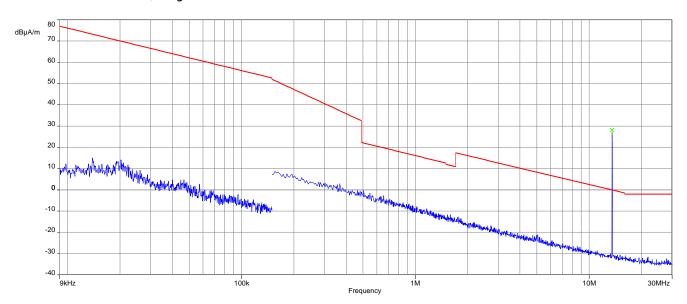
Plot 3: Spectrum mask (the limits are recalculated according to the ANSI C63.10-2013 sub clause 6.4)

Date: 14.SEP.2023 06:44:44

Plot 4: Spectrum mask - zoom

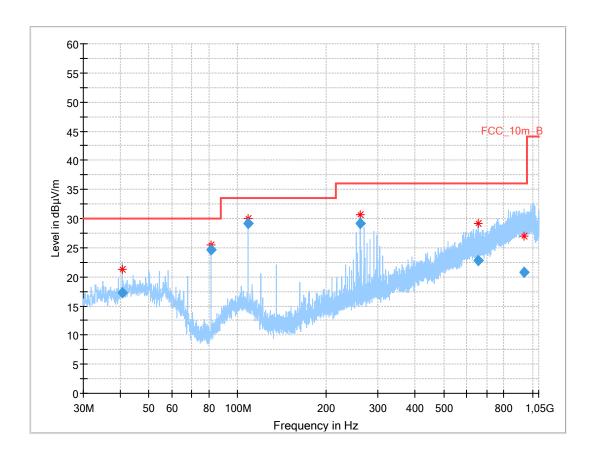

Date: 14.SEP.2023 06:45:38

© cetecom advanced GmbH Page 25 of 34



Plots: chain 1 & 2

Plot 1: 9 kHz - 30 MHz, magnetic emissions FCC


Plot 2: 9 kHz - 30 MHz, magnetic emissions IC

© cetecom advanced GmbH Page 26 of 34

Plot 3: 30 MHz – 1 GHz, vertical and horizontal polarization; valid for both single chain and combined

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
40.659	17.31	30.0	12.7	1000	120.0	200.0	V	61	15
81.368	24.61	30.0	5.4	1000	120.0	203.0	V	95	9
108.471	29.10	33.5	4.4	1000	120.0	135.0	V	225	13
260.706	29.10	36.0	6.9	1000	120.0	103.0	V	83	14
654.577	22.76	36.0	13.2	1000	120.0	241.0	V	0	22
935.038	20.75	36.0	15.3	1000	120.0	400.0	Н	135	26

© cetecom advanced GmbH Page 27 of 34

12.4 Conducted limits

Measurement:

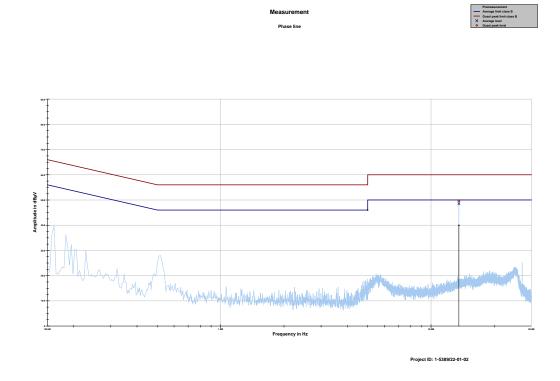
Measurement of the conducted spurious emissions for an intentional radiator that is designed to be connected to the public utility (AC) power line. Measurement performed according to ANSI C63.10, chapter 6.2

Measurement parameters				
Detector:	Quasi peak / average or			
Detector.	peak (worst case – pre-scan)			
Resolution bandwidth:	F < 150 kHz: 200 Hz			
nesolution bandwidth.	F > 150 kHz: 9 kHz			
Video bandwidth:	F < 150 kHz: 1 kHz			
video bandwidth.	F > 150 kHz: 100 kHz			
Trace mode:	Max hold			
Used equipment:	See chapter 7.3A			
Measurement uncertainty:	See chapter 9			

Limit:

FCC & IC				
Frequency	Quasi-peak	Average		
/ MHz	/ (dBµV/m)	/ (dBµV/m)		
0.15 - 0.5	66 to 56*	56 to 46*		
0.5 - 5	56	46		
5 - 30.0	60	50		

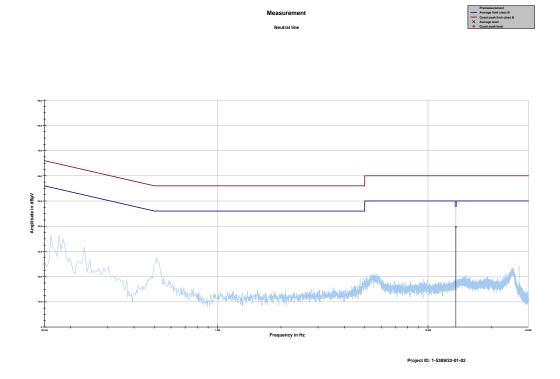
Result: valid for both chains


See result table below the plots.

© cetecom advanced GmbH Page 28 of 34

Plots:

Plot 1: 150 kHz to 30 MHz, phase line


Final_Result

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
13.560113	49.58	10.42	60.000	48.54	1.46	50.000

© cetecom advanced GmbH Page 29 of 34

Plot 2: 150 kHz to 30 MHz, neutral line

Final_Result

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
13.560113	49.28	10.72	60.000	48.18	1.82	50.000

© cetecom advanced GmbH Page 30 of 34

12.5 Frequency error

Measurement:

The maximum detected field strength for the spurious. Measurement performed according to ANSI C63.10, chapter 6.8

Measurement parameters			
Detector:	Peak detector		
Resolution bandwidth:	10 Hz		
Video bandwidth:	> RBW		
Trace mode:	Max hold		
Used equipment:	See chapter 7.4B		
Measurement uncertainty:	See chapter 9		

Limit:

FCC & IC

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. (±1.356 kHz)

Carrier frequency stability shall be maintained to ±0.01% (±100 ppm)

Result: Temperature variation; valid for both chains

Frequency tolerance					
Measured frequency	Frequency error	Conditions	Result		
13.559632 MHz	-0.368 kHz	-25 °C & 100% voltage	compliant		
13.559649 MHz	-0.351 kHz	-20 °C & 100% voltage	compliant		
13.559668 MHz	-0.332 kHz	-10 °C & 100% voltage	compliant		
13.559669 MHz	-0.331 kHz	0 °C & 100% voltage	compliant		
13.559655 MHz	-0.345 kHz	+10 °C & 100% voltage	compliant		
13.559622 MHz	-0.378 kHz	+30 °C & 100% voltage	compliant		
13.559618 MHz	-0.382 kHz	+40 °C & 100% voltage	compliant		
13.559630 MHz	-0.370 kHz	+50 °C & 100% voltage	compliant		
13.559673 MHz	-0.327 kHz	+60 °C & 100% voltage	compliant		

Result: Voltage variation; valid for both chains

Frequency tolerance					
Measured frequency	Frequency error	Conditions	Result		
13.559620 MHz	-0.380 kHz	+20 °C & 85% voltage	compliant		
13.559620 MHz	-0.380 kHz	+20 °C & 100% voltage	compliant		
13.559619 MHz	-0.381 kHz	+20 °C & 115% voltage	compliant		

© cetecom advanced GmbH Page 31 of 34

13 Observations

No observations except those reported with the single test cases have been made.

© cetecom advanced GmbH Page 32 of 34

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EISI	European Standard European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
	Industry Canada
IC PMN	
HMN	Product marketing name
HVIN	Host marketing name Hardware version identification number
	Firmware version identification number
FVIN	
EMC	Electromagnetic Compatibility Hardware
HW	
Inv. No.	Software Inventory number
S/N or SN	Serial number
C	Compliant
NC NA	Not compliant
NA	Not applicable
NP PP	Not performed
	Positive peak
QP	Quasi peak
AVG OC	Average Operating channel
OCW	Operating channel
OBW	Operating channel bandwidth Occupied bandwidth
OBW	Out of band
DFS	
CAC	Dynamic frequency selection Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz
C/IN0	Carrier to noise-density ratio, expressed in de-fiz

© cetecom advanced GmbH Page 33 of 34

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2023-05-25
Α	Editorial changes; 2nd antenna added	2023-09-14

© cetecom advanced GmbH Page 34 of 34