

Test Item

	rest item	
Kind of test item:	Mobile Validation Equipment	
Model name:	FareGo Val OV 41; FareGo Val SV 51	
FCC ID:	O5K-NVP	
IC:	8312A-NVP	
Frequency:	DTS band 2400 MHz to 2483.5 MHz	
Technology tested:	WLAN	
Antenna:	1 integrated PCB antenna	
Power supply:	36 V DC by external power supply	
Temperature range:	-20°C to +55°C	

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino Lab Manager Radio Communications & EMC

Test performed:

David Lang Lab Manager Radio Communications & EMC

1	Table	of contents	2
2	Gener	al information	3
	2.1	Notes and disclaimer	3
	2.2 2.3	Application details Test laboratories sub-contracted	
3	-	tandard/s and references	
-		nvironment	
4			
5		em	
	5.1 5.2	General description Additional information	
6	Descr	iption of the test setup	6
	6.1	Shielded semi anechoic chamber	
	6.2	Shielded fully anechoic chamber	
	6.3 6.4	Radiated measurements > 18 GHz Conducted measurements with peak power meter & spectrum analyzer	
7		ence of testing	
'	•	•	
	7.1 7.2	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz	
	7.3	Sequence of testing radiated spurious 30 MHz to 18 GHz	
	7.4	Sequence of testing radiated spurious above 18 GHz	
8	Meası	Irement uncertainty	
8 9			15
	Summ	urement uncertainty	15 16
9	Summ Add	urement uncertainty nary of measurement results	15 16 17
9 10	Summ Add Mea	arement uncertainty hary of measurement results litional comments isurement results	15 16 17 18
9 10	Summ Add	urement uncertainty hary of measurement results litional comments hsurement results Antenna gain	15 16 17 18 18
9 10	Summ Add Mea 11.1	arement uncertainty hary of measurement results litional comments isurement results	15 16 17 18 18
9 10	Summ Add Mea 11.1 11.2 11.3 11.4	ary of measurement results itional comments surement results Antenna gain Identify worst case data rate Maximum output power Duty cycle	15 16 17 18 18 18 19 20 21
9 10	Summ Add Mea 11.1 11.2 11.3 11.4 11.5	urement uncertainty hary of measurement results litional comments surement results Antenna gain Identify worst case data rate Maximum output power Duty cycle Peak power spectral density	15 16 17 18 18 19 20 21 21
9 10	Summ Add Mea 11.1 11.2 11.3 11.4 11.5 11.6	urement uncertainty hary of measurement results litional comments surement results Antenna gain Identify worst case data rate Maximum output power Duty cycle Peak power spectral density 6 dB DTS bandwidth	15 16 17 18 18 18 19 20 21 21 21
9 10	Summ Add Mea 11.1 11.2 11.3 11.4 11.5 11.6 11.7	urement uncertainty hary of measurement results litional comments surement results Antenna gain Identify worst case data rate Maximum output power Duty cycle Peak power spectral density 6 dB DTS bandwidth	15 16 17 18 18 18 19 20 21 21 21
9 10	Summ Add Mea 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	ary of measurement results hary of measurement results litional comments asurement results Antenna gain Identify worst case data rate Maximum output power Duty cycle Peak power spectral density 6 dB DTS bandwidth	15 16 17 18 18 18 18 19 20 21 21 21
9 10	Summ Add Mea 11.1 11.2 11.3 11.4 11.5 11.6 11.7	urement uncertainty hary of measurement results litional comments surement results Antenna gain Identify worst case data rate Maximum output power Duty cycle Peak power spectral density 6 dB DTS bandwidth	15 16 17 18 18 18 18 19 20 21 21 21
9 10	Summ Add Mea 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	ary of measurement results hary of measurement results litional comments asurement results Antenna gain	15 16 17 18 18 18 18 19 20 21 21
9 10	Summ Add Mea 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10	urement uncertainty hary of measurement results litional comments surement results Antenna gain	15 16 17 18 18 18 18 19 20 21 21
9 10	Summ Add Mea 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11	urement uncertainty hary of measurement results litional comments asurement results Antenna gain Identify worst case data rate Maximum output power Duty cycle Peak power spectral density	15 16 17 18 18 18 18 19 20 21 21
9 10	Summ Add Mea 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13	urement uncertainty hary of measurement results litional comments surement results Antenna gain	15 16 17 18 18 18 18 18 19
9 10 11 11	Summ Add Mea 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13	urement uncertainty hary of measurement results litional comments surement results Antenna gain Identify worst case data rate Maximum output power Duty cycle Peak power spectral density 6 dB DTS bandwidth	
9 10 11 12 Anr	Summ Add Mea 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 Obs	Antenna gain	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-4406/17-02-04-A and dated 2017-11-06

2.2 Application details

Date of receipt of order:	2017-08-17
Date of receipt of test item:	2017-08-15
Start of test:	2017-08-15
End of test:	2017-10-13
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

Test standard/s and references 3

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices

Guidance	Version	Description
DTS: KDB 558074 D01	V04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 American national standard for methods of measurement of radio-
ANSI C63.4-2014	-/-	noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme temperature conditions required. No tests under extreme temperature conditions required.
Relative humidity content	:		46 %
Barometric pressure	:		1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	 36 V DC by external power supply No tests under extreme voltage conditions required. No tests under extreme voltage conditions required.

5 **Test item**

General description 5.1

Kind of test item	Mobile Validation Equipment
Type identification	FareGo Val OV 41; FareGo Val SV 51
HMN	-/-
PMN	PMN 1: FareGo Val OV 41 PMN 2: FareGo Val SV 51
HVIN	HVIN 1: OV41 HVIN 2: SV51
FVIN	FVIN 1: 07337760 FVIN 2: 07338370
S/N serial number	Radiated unit:0130070174Conducted unit:0130069621
HW hardware status	00346640
SW software status	07337760
Frequency band	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission Use of frequency spectrum	
Type of modulation	(D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
Number of channels	11
Antenna	1 integrated PCB antenna; 2390 MHz to 2490 MHz: 1.5 dBi - 2.5 dBi as of operational description 00.02.01 issued 2017-07-27.
Power supply	36 V DC by external power supply
Temperature range	-20°C to +55°C

Note: Since both devices, the OV41 and the SV51 use the identical WLAN radio module and antenna only the OV41 was actually tested. Justification regarding the equality of components can also be found within the photo documentation. See AnnexA and AnnexB as referenced below.

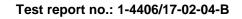
5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-4406/17-02-09_AnnexA 1-4406/17-02-09_AnnexB 1-4406/17-02-09_AnnexD

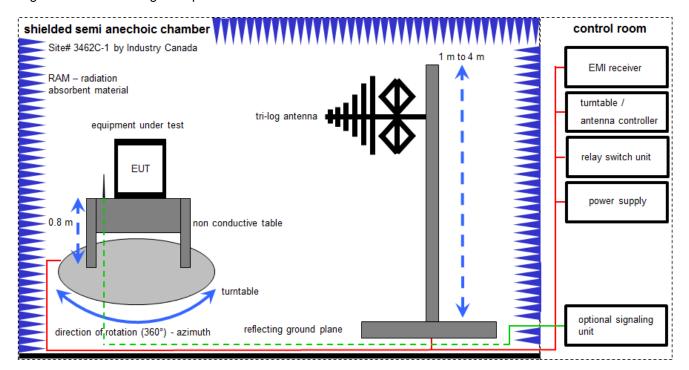
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

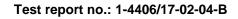

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

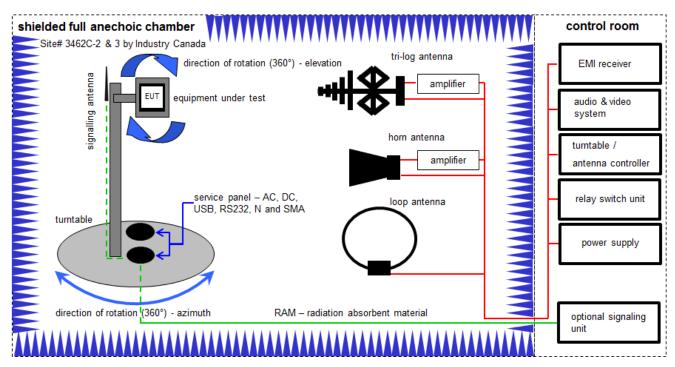
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

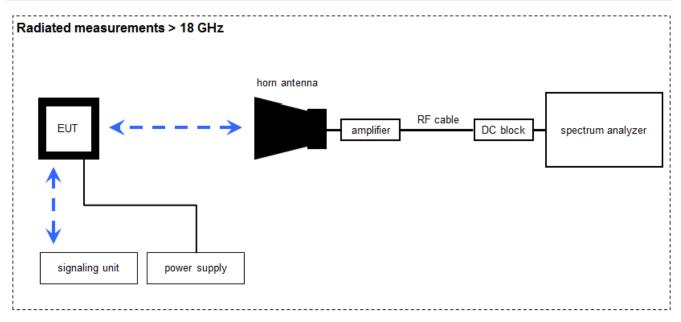
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
4	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	01.02.2017	31.01.2018
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

6.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

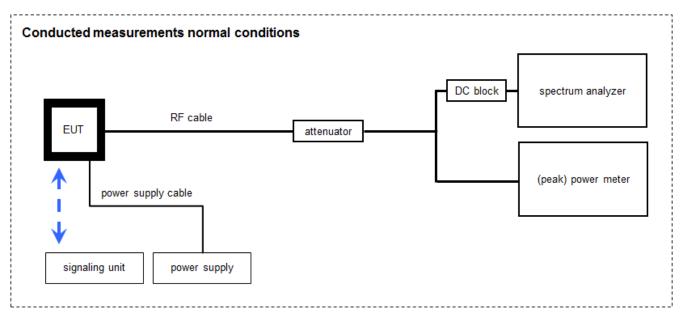
Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A+B	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	-/-	-/-
2	A+B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	в	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	14.02.2017	13.02.2019
4	A+B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
6	В	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
7	A+B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	31.01.2017	30.01.2018
8	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	A+B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
11	A+B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
12	A+B	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF


(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Equip	ment t	<u>able:</u>		
	Lab/	_		

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-022	300001748	k	22.05.2015	22.05.2018
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	25.01.2017	24.01.2018
4	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

6.4 Conducted measurements with peak power meter & spectrum analyzer

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
2	А	Power Supply + 2nd Power Supply	LA 2x30/5GB2	Zentro	2012	300001275	NK!	12.03.2007	-/-
3	A	PC-WLAN Tester	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
4	А	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	-/-	300004590	ne	-/-	-/-
5	Α	Power Sensor	NRP-Z81	R&S	100010	300003780	k	26.01.2017	25.01.2019
6	A	PowerSplitter/Combi ner 150-6000MHz N-Type	ZB3PD-63-N+	Mini-Circuits	-/-	400000451	ev	-/-	-/-
7	А	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
8	А	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	-/-	400001186	ev	-/-	-/-
9	А	Synchron Power Meter	SPM-4	СТС	1	400001294	ev	-/-	-/-

CTC I advanced

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

 The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

Measurement uncertainty 8

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Power spectral density	± 1.5 dB				
DTS bandwidth	± 100 kHz (depends on the used RBW)				
Occupied bandwidth	± 100 kHz (depends on the used RBW)				
Maximum output power	± 1.5 dB				
Detailed spurious emissions @ the band edge - conducted	± 1.5 dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description			Ve	rdict	Date			Remark		
RF-Testing		CFR Part 15 RSS - 247, Issue 2			See	e table! 2017-12-08		8	-/-		
Test specification clause	Test case	Guideline	Temperature conditions	so	ower ource tages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (f)(ii)	Antenna gain	-/-	Nominal	No	minal	DSSS		-,	/_		-/-
	Duty cycle	-/-	Nominal	No	minal	DSSS OFDM		-/	/_		-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	KDB 558074 DTS clause: 10.2	Nominal	No	minal	DSSS OFDM	X				-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandwidth	KDB 558074 DTS clause: 8.1	Nominal	No	minal	DSSS OFDM	X				-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	No	minal	DSSS OFDM	\boxtimes				-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	KDB 558074 DTS clause: 9.1.3	Nominal	No	minal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	-/-	Nominal	No	minal	DSSS OFDM			\boxtimes		-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance conducted – restricted bands	KDB 558074 DTS clause: 13.3.2 and clause 12.2.2	Nominal	No	minal	DSSS OFDM	X				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated – restricted bands	-/-	Nominal	No	minal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	No	minal	DSSS OFDM	X				-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated below 30 MHz	-/-	Nominal	No	minal	DSSS OFDM	X				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	No	minal	DSSS OFDM	X				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions radiated above 1 GHz	-/-	Nominal	No	minal	DSSS OFDM	X				-/-
§15.109 RSS-Gen	RX spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	No	minal	RX / idle	X				-/-
§15.109 RSS-Gen	RX spurious emissions radiated above 1 GHz	-/-	Nominal	No	minal	RX / idle	X				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	No	minal	DSSS OFDM	\boxtimes				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

Reference documents:

Special test descriptions:	Power	setting versu	s test mode:	
	Powe	r Setting	Mode	
		15	b-mode	
		14	g-mode	
		14	nHT20	
		11	nHT40	
Configuration descriptions:	None			
C .				
Test mode:		No test mod	le available.	
		lperf was us size	ed to ping another	de
	\boxtimes	Special soft	ware is used.	
		EUT is trans	smitting pseudo ran	ldo
Antennas and transmit	\boxtimes	Operating m	node 1 (single anter	nna
operating modes:		- Equipment	with 1 antenna,	
			with 2 diversity antennas of t any moment in time only 1	
			nna system with 2 or more n a mode where only 1 tran	
		Operating m	node 2 (multiple ant	tenna
			operating in this mode con ceive chains simultaneously	
		Operating m	node 3 (multiple and	tenna
		transmit/red In addition	operating in this mode con ceive chains simultaneously to the antenna assembly ga t when performing the mea	ly with ain (G

O5K-NVP_OV41_Customer Questionnaire

CTC I advanced

11 Measurement results

11.1 Antenna gain

A maximum antenna gain of 2.5dBi is stated by the manufacturer (see operational description of FareGo Val OV41)

11.2 Identify worst case data rate

Measurement:

All modes of the module will be measured with an average power meter or spectrum analyzer to identify the maximum transmission power.

In further tests only the identified worst case modulation scheme or bandwidth will be measured and this mode is used as representative mode for all other modulation schemes.

Additional the band edge compliance test will be performed in the lowest and highest modulation scheme.

Measurement parameters:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	3 MHz			
Video bandwidth:	3 MHz			
Trace mode:	Max hold			
Test setup:	See sub clause 6.4 – A			
Measurement uncertainty:	-/-			

Modulation	Modulation scheme / bandwidth
DSSS / b – mode	1 Mbit/s
OFDM / g – mode	6 Mbit/s
OFDM / n HT20 – mode	MCS7
OFDM / n HT40 – mode	MCS7

11.3 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. The measurements are performed using the data rate producing the highest conducted output power.

Measurement:

Measurement parameter			
According to DTS clause: 9.1.3			
Peak power meter			
Test setup: See sub clause 6.4 – A			
Measurement uncertainty: See sub clause 8			

Limits:

FCC	IC				
Conducted: 1.0 W – Antenna gain with max. 6 dBi					

	Maximum Output Power [dBm]				
Frequency	2412 MHz	2437 MHz	2462 MHz		
Output power conducted DSSS / b – mode	15.9	17.9	17.8		
Output power conducted OFDM / g – mode	22.9	23.4	22.8		
Output power conducted OFDM / n HT20 – mode	22.1	22.4	22.3		
Frequency	2422 MHz	2437 MHz	2452 MHz		
Output power conducted OFDM / n HT40 – mode	21.1	21.1	21.1		

11.4 Duty cycle

Measurement parameters:

Measurement parameter				
Detector:	Peak			
Sweep time:	Depends on the signal see plot			
Resolution bandwidth:	10 MHz			
Video bandwidth:	10 MHz			
Trace mode:	Max hold			
Test setup:	See sub clause 6.4 – A			
Measurement uncertainty:	See sub clause 8			

Limits:

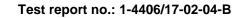
FCC	IC			
-/-				

T _{nom}	V _{nom}	lowest channel 2412 MHz	middle channel 2437 MHz	highest channel 2462 MHz
DSSS / B	o – mode	100 % / 0.0 dB	100 % / 0.0 dB	100 % / 0.0 dB
OFDM /	g – mode	100 % / 0.0 dB	100 % / 0.0 dB	100 % / 0.0 dB
OFDM / n HT20 – mode		100 % / 0.0 dB	100 % / 0.0 dB	100 % / 0.0 dB
Tnom	Vnom	lowest channel 2422 MHz	middle channel 2437 MHz	highest channel 2452 MHz
OFDM / n HT40 – mode		100 % / 0.0 dB	100 % / 0.0 dB	100 % / 0.0 dB

11.5 Peak power spectral density

Description:

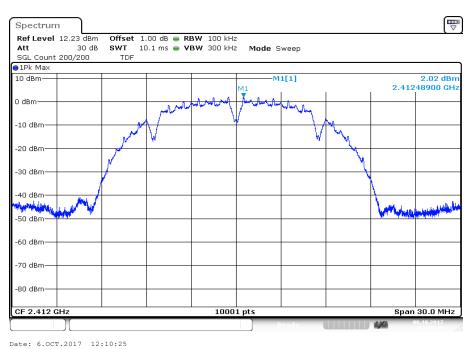
Measurement of the power spectral density of a digital modulated system. The measurement is repeated for both modulations at the lowest, middle and highest channel.

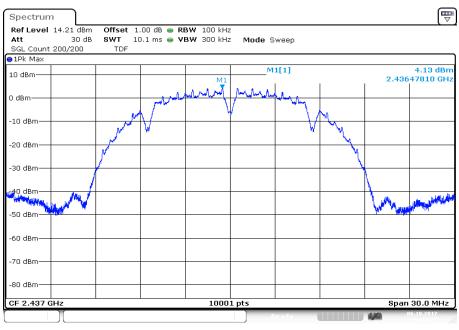

Measurement:

Measurement parameter According to DTS clause: 10.2					
	15 clause. 10.2				
Detector: Positive Peak					
Sweep time:	Auto				
Resolution bandwidth:	100 kHz				
Video bandwidth:	300 kHz				
Span:	30 MHz				
Trace mode:	Max hold (allow trace to fully stabilize)				
Test setup:	See sub clause 6.4 – A				
Measurement uncertainty	See sub clause 8				

Limits:

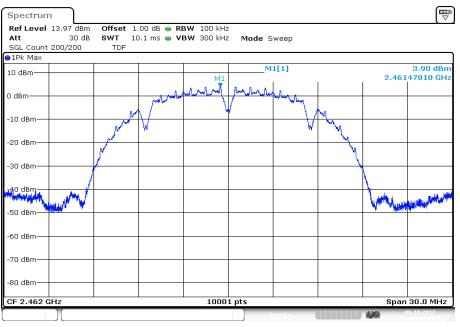
FCC	IC				
8 dBm / 3kHz (conducted)					


Modulation	Peak power spectral density [dBm @ 100 kHz]					
Frequency	2412 MHz	2437 MHz	2462 MHz			
DSSS / b – mode	2.0	4.1	3.9			
OFDM / g – mode	-1.1	-0.9	-0.9			
OFDM / n HT20 – mode	-0.9	-1.4	-0.4			
Frequency	2422 MHz	2437 MHz	2452 MHz			
OFDM / n HT40 – mode	-6.3	-6.0	-6.3			



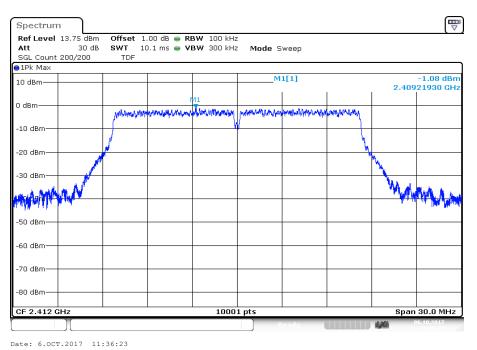
Plots: DSSS / b - mode

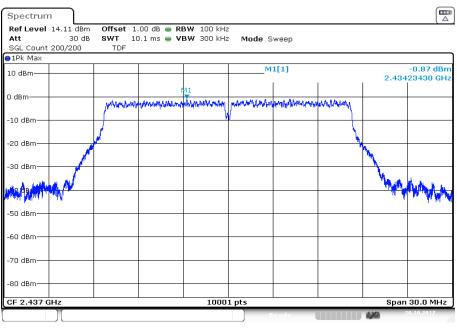
Plot 1: Lowest channel


Plot 2: Middle channel


Date: 6.0CT.2017 12:17:27

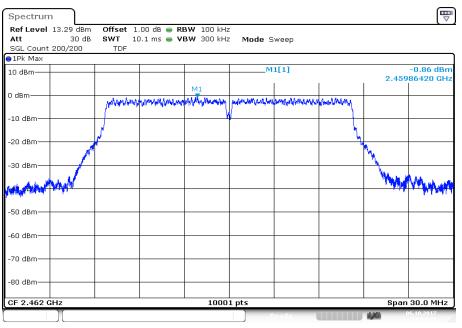
Plot 3: Highest channel

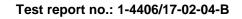

Date: 6.0CT.2017 12:24:29



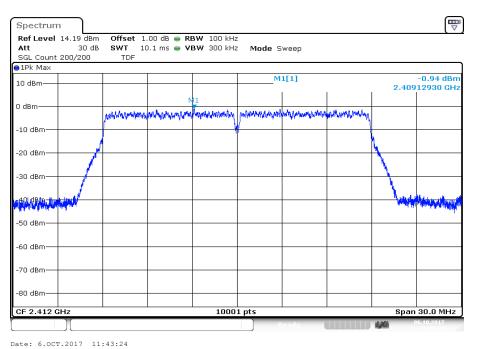
Plots: OFDM / g - mode

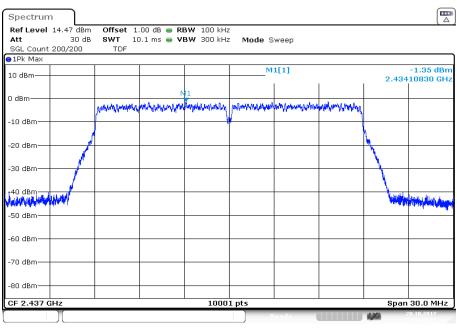
Plot 1: Lowest channel


Plot 2: Middle channel


Date: 20.0CT.2017 13:51:11

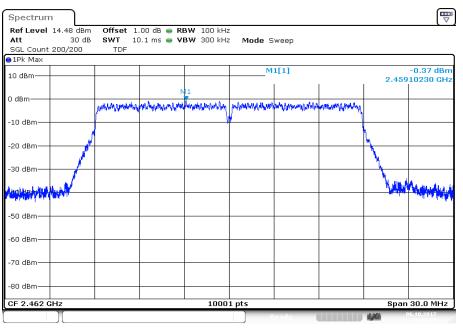
Plot 3: Highest channel


Date: 6.0CT.2017 11:04:11



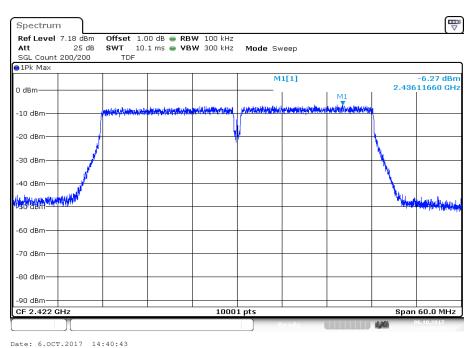
Plots: OFDM / n HT20 – mode

Plot 1: Lowest channel

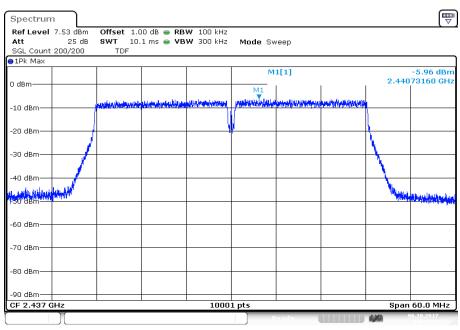

Plot 2: Middle channel

Date: 20.0CT.2017 13:37:54

Plot 3: Highest channel

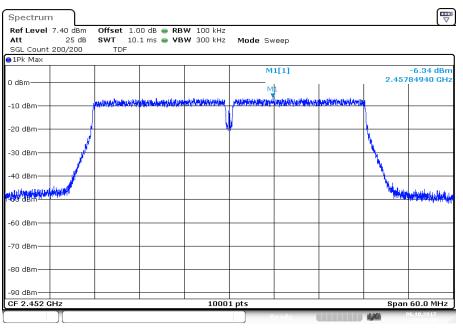


Date: 6.0CT.2017 11:11:16



Plots: OFDM / n HT40 – mode

Plot 1: Lowest channel


Plot 2: Middle channel

Date: 6.0CT.2017 14:48:28

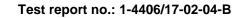
Plot 3: Highest channel

Date: 6.0CT.2017 14:23:40

11.6 6 dB DTS bandwidth

Description:

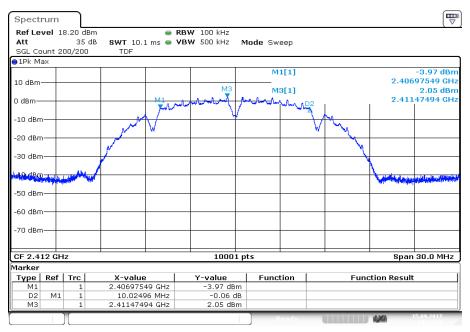
Measurement of the 6 dB bandwidth of the modulated signal.

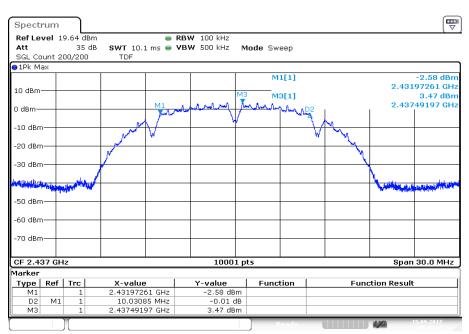

Measurement:

Measurement parameter					
According to DTS clause: 8.1					
Detector:	Peak				
Sweep time:	Auto				
Resolution bandwidth:	100 kHz				
Video bandwidth:	500 kHz				
Span:	30 MHz / 50 MHz				
Trace mode:	Single count with 200 counts				
Test setup:	See sub clause 6.4 – A				
Measurement uncertainty	See sub clause 8				

Limits:

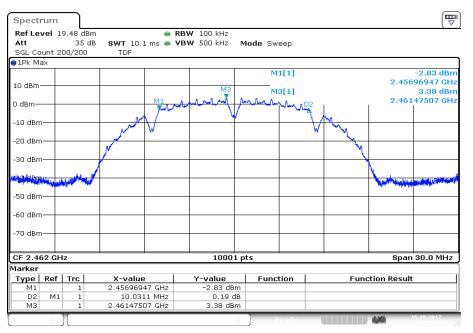
FCC	IC
	may operate in the 2400–2483.5 MHz band. Ith shall be at least 500 kHz.

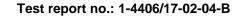

	6 dB DTS bandwidth [kHz]				
Frequency	2412 MHz	2437 MHz	2462 MHz		
DSSS / b – mode	10025	10031	10031		
OFDM / g – mode	16564	16564	16561		
OFDM / n HT20 – mode	17797	17797	17806		
Frequency	2422 MHz	2437 MHz	2452 MHz		
OFDM / n HT40 – mode	36494	36476	36488		


Plots: DSSS / b - mode

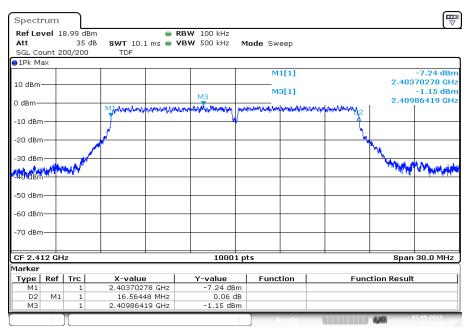
Plot 1: Lowest channel

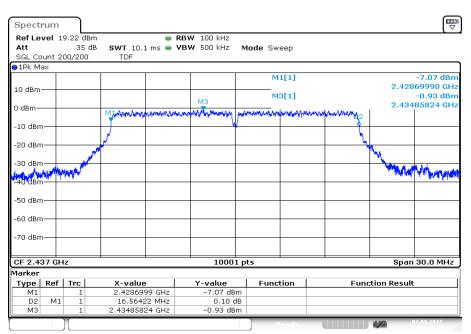
Date: 15.SEP.2017 14:33:56


Plot 2: Middle channel


Date: 15.SEP.2017 14:48:02

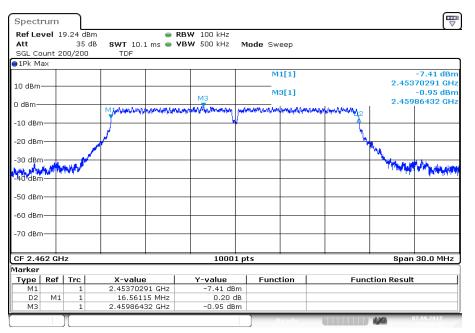
Plot 3: Highest channel


Date: 15.SEP.2017 14:55:30


Plots: OFDM / g - mode

Plot 1: Lowest channel

Date: 7.SEP.2017 16:58:11


Plot 2: Middle channel

Date: 7.SEP.2017 17:09:25

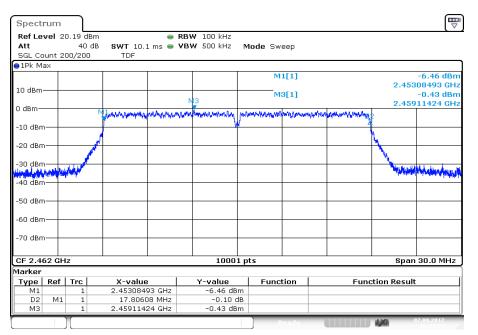
Plot 3: Highest channel

Date: 7.SEP.2017 17:24:44

Plots: OFDM / n HT20 – mode

Plot 1: Lowest channel

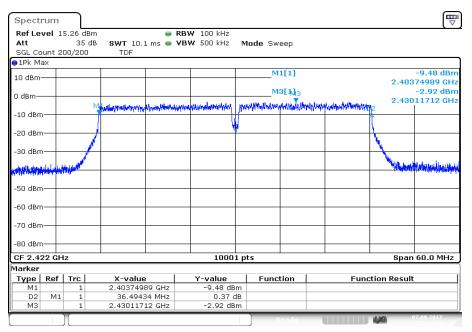
Spect	um									
Ref Le [.] Att	vel 2	0.27 dE 40			BW 100 kHz BW 500 kHz	Mode Swi	еер			
SGL Co		00/200	TDF							
∎1Pk Ma	X					M	1[1]		2 40	-6.67 dBn 309402 GH;
10 dBm-					мз	M	3[1]			-0.52 dBn 911437 GH
0 dBm—			Manyonia	manner	ry how was	manan	un partition and the	Municipal providence	2	
-10 dBm			-			*		- 4		
-20 dBm	-		A							
-30 dBm -40 dBm	سالطيط	w							144	-
-40 dBm -50 dBm										
-60 dBm										
-70 dBm										
CF 2.4	L2 GH	lz			1000	1 pts			Spa	n 30.0 MHz
1arker										
Type M1	Ref	Trc 1	2.403094		<u>Y-value</u> -6.67 dB			tion Resu	t	
D2 M3	M1	1 1	2.403094 17.797 2.409114	12 MHz	-0.57 de -0.17 (-0.52 de	ЗВ				
						, R	eady		120	07.09.2017


Date: 7.SEP.2017 16:19:10

Plot 2: Middle channel

Spect	rum									
Ref Le	vel 2	0.41 dBm	1	😑 F	RBW 100 kHz					
Att		40 dE	SWT 10.3	1 ms 👄	/BW 500 kHz	Mode Sw	еер			
SGL Co	ount 2	00/200	TDF							
⊖1Pk M	ах									
						M	1[1]			-6.37 dBm
10 dBm									2.428	309088 GHz
TO GDIII						M	3[1]			-0.27 dBm
0 dBm-					MIS				2.434	10534 GHz
o abiii			Martin	where where	walk was a provide a strategy	monitor	majeromen	at we are a state of the state	2	
-10 dBn	n					/		4		
			6						N.	
-20 dBn	n		*						`	
		j j							N	
-30 dBn		11.							a diam'n	the blanch of the
	h hin h	NYY.							a Southers	A HANNA HANNA
-40 dBn	n									
FO do-	_									
-50 dBn										
-60 dBn										
-00 001	"									
-70 dBn	n									
CF 2.4	07.01	-			1000	1			0	1 30.0 MHz
Marker	37 GF	12			1000	T hrs			spar	1 30.0 MHZ
	Ref	Trc	X-value		Y-value	Func		F	tion Resul	
Type M1	ĸer	1	2.428090		-6.37 dB		uun	Fund	cion Resul	ι
D2	M1	1	17.797:		0.06 (
M3		1	2.434105		-0.27 dB					
		1				-			4.562	07.09.2017
		Л				E State				

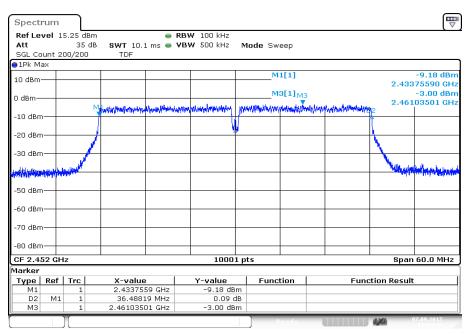
Date: 7.SEP.2017 16:30:41


Date: 7.SEP.2017 16:44:01

Test report no.: 1-4406/17-02-04-B

Plots: OFDM / n HT40 – mode

Plot 1: Lowest channel


Date: 7.SEP.2017 15:48:00

Plot 2: Middle channel

Spect	rum										
Ref Le Att SGL Co		.5.43 dBm 35 dB :00/200	SWT 10.1 ms TDF		/ 100 kHz / 500 kHz	M	ode Swa	зер			
O 1Pk M	ах										
10 dBm							M	L[1]		2.418	-8.72 dBm 76173 GHz
0 dBm-							<u></u> M3			2 441	-2.49 dBm 02554 GHz
-10 dBm	<u>ا</u> ــــ	M	water the states in the states	hypertype for the second s	Numplementering	hin	nthe aller and	wandthead	Number and All Marine 2	2.111	
-20 dBm	ι	/				V					
-30 dBm	-									N	
handerhalter	we we we we we we we									MAN	and the story in the second second
-50 dBm	-										
-60 dBm	۱										
-70 dBm	<u>+</u>										
-80 dBm	η										
CF 2.4	37 Ġ⊦	lz	1		1000	1 pt	s			Span	60.0 MHz
Marker											
Туре	Ref	Trc	X-value		Y-value		Funct	ion	Functi	on Result	
M1		1	2.41876173 GH		-8.72 dB						
D2 M3	M1	1	36.47642 MH 2.44102554 GH		0.10 (-2.49 dB						
)[R	e ad y		ya	07.09.2017

Date: 7.SEP.2017 16:01:25

Date: 7.SEP.2017 15:04:43

11.7 Occupied bandwidth – 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

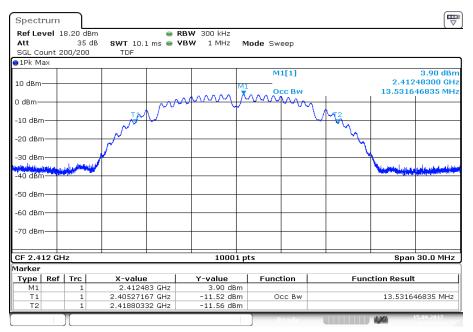
Measurement:

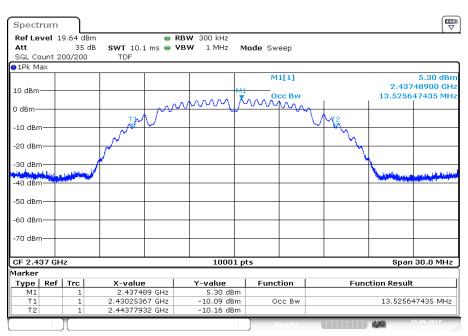

Measurement parameter							
Detector:	Peak						
Sweep time:	Auto						
Resolution bandwidth:	300 kHz						
Video bandwidth:	1 MHz						
Span:	30 MHz / 50 MHz						
Measurement procedure:	Measurement of the 99% bandwidth using the integration function of the analyzer						
Trace mode:	Single count with 200 counts						
Test setup:	See sub clause 6.4 – A						
Measurement uncertainty	See sub clause 8						

<u>Usage:</u>

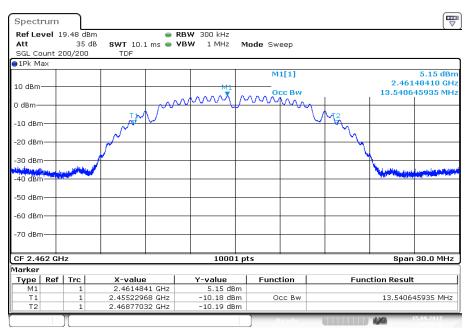
-/-	IC			
OBW is necessary for Emission Designator				

Results:


Modulation	99% bandwidth [kHz]					
Frequency	2412 MHz	2437 MHz	2462 MHz			
DSSS / b – mode	13532	13526	13541			
OFDM / g – mode	16747	16753	16750			
OFDM / n HT20 – mode	17860	17869	17869			
Frequency	2422 MHz	2437 MHz	2452 MHz			
OFDM / n HT40 – mode	36728	36734	36704			


Plots: DSSS / b - mode

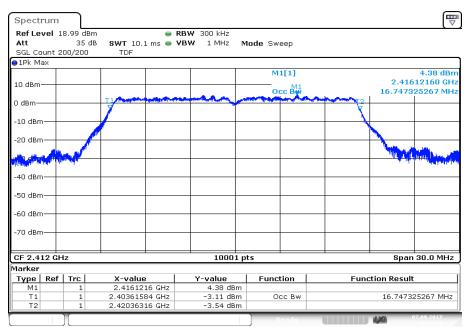
Plot 1: Lowest channel

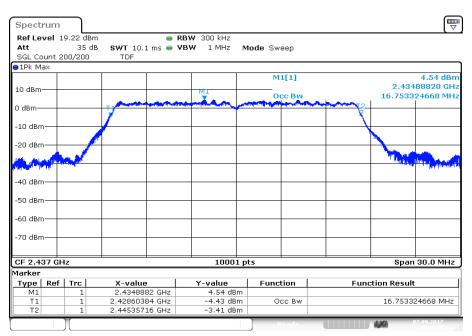

Date: 15.SEP.2017 14:34:11

Plot 2: Middle channel

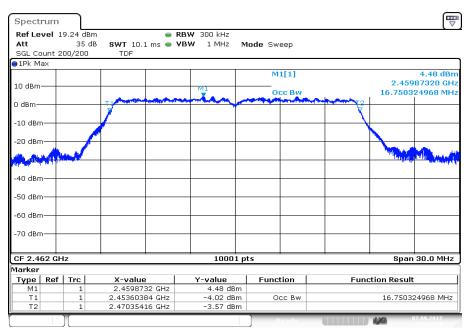


Date: 15.SEP.2017 14:48:17

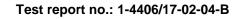

Date: 15.SEP.2017 14:55:47


Plots: OFDM / g - mode

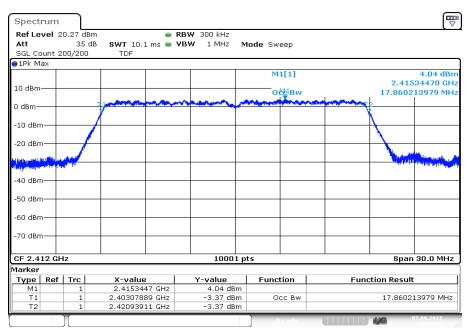
Plot 1: Lowest channel

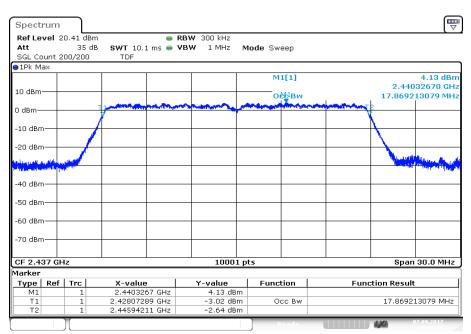

Date: 7.SEP.2017 16:58:26

Plot 2: Middle channel

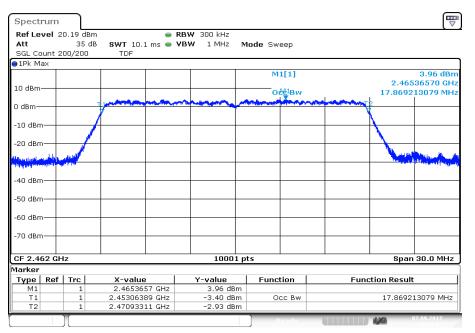


Date: 7.SEP.2017 17:09:41

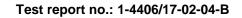

Date: 7.SEP.2017 17:25:00


Plots: OFDM / n HT20 – mode

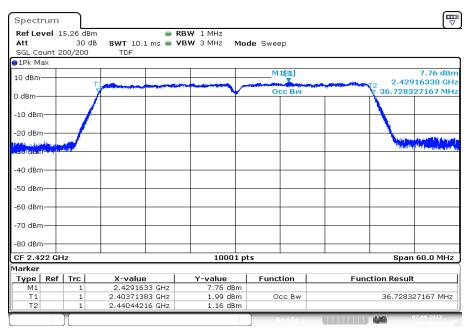
Plot 1: Lowest channel

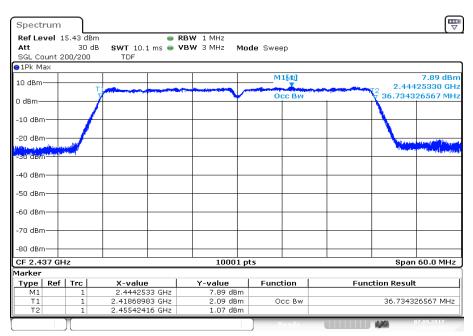

Date: 7.SEP.2017 16:19:25

Plot 2: Middle channel

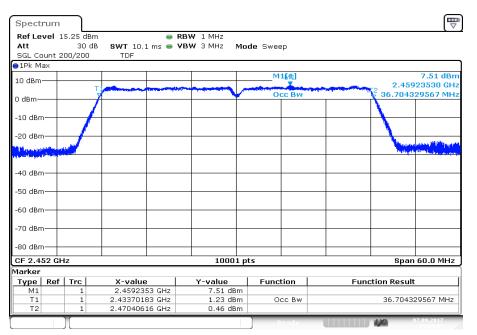


Date: 7.SEP.2017 16:30:56


Date: 7.SEP.2017 16:44:18


Plots: OFDM / n HT40 – mode

Plot 1: Lowest channel


Date: 7.SEP.2017 15:48:14

Plot 2: Middle channel

Date: 7.SEP.2017 16:01:39

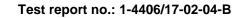
Date: 7.SEP.2017 15:04:57

11.8 Occupied bandwidth - 20 dB bandwidth

Description:

Measurement of the 20 dB bandwidth of the modulated carrier.

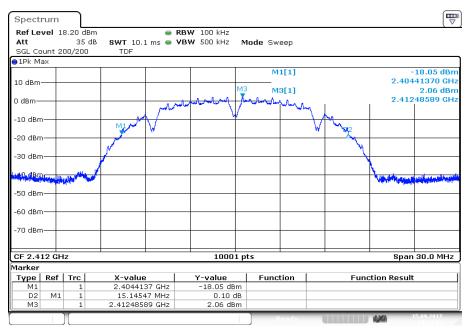
Measurement:

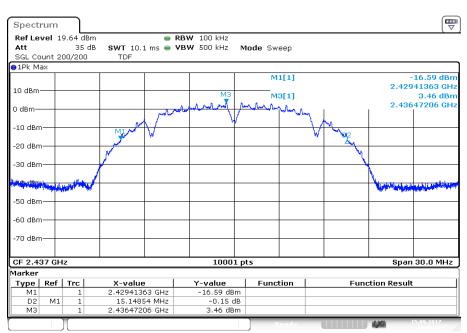

Measurement parameter							
Detector:	Peak						
Sweep time:	Auto						
Resolution bandwidth:	100 kHz						
Video bandwidth:	500 kHz						
Span:	30 MHz / 50 MHz						
Trace mode:	Single count with min. 200 counts						
Test setup:	See sub clause 6.4 – A						
Measurement uncertainty	See sub clause 8						

<u>Usage:</u>

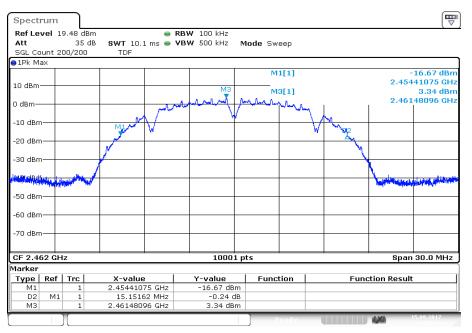
-/-	IC			
Within the used band!				

Results:

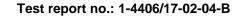

Modulation	20 dB bandwidth [MHz]					
Frequency	2412 MHz	2437 MHz	2462 MHz			
DSSS / b – mode	15.15	15.15	15.15			
OFDM / g – mode	18.25	18.24	18.26			
OFDM / n HT20 – mode	19.14	19.15	19.12			
Frequency	2422 MHz	2437 MHz	2452 MHz			
OFDM / n HT40 – mode	37.99	37.82	37.83			


Plots: DSSS / b - mode

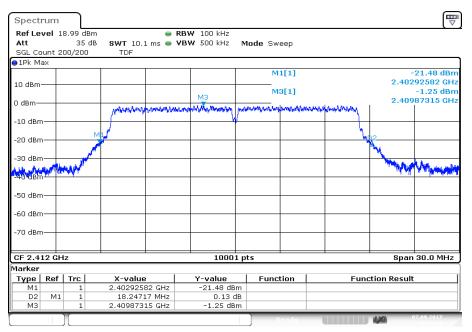
Plot 1: Lowest channel

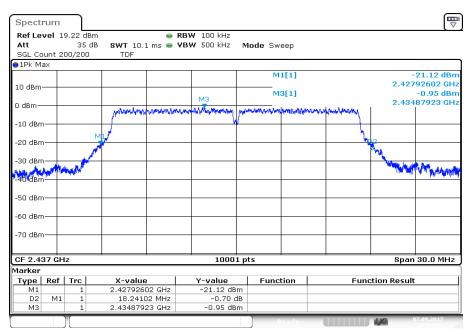

Date: 15.SEP.2017 14:34:04

Plot 2: Middle channel

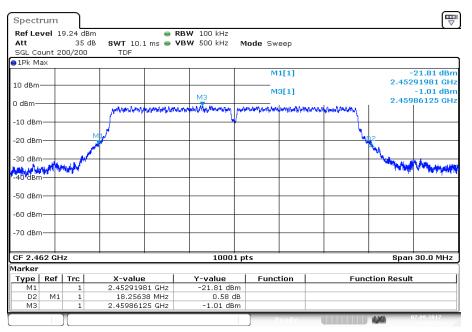


Date: 15.SEP.2017 14:48:09


Date: 15.SEP.2017 14:55:39


Plots: OFDM / g - mode

Plot 1: Lowest channel


Date: 7.SEP.2017 16:58:19

Plot 2: Middle channel

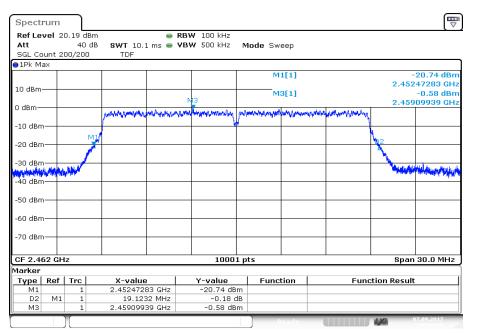
Date: 7.SEP.2017 17:09:33

Date: 7.SEP.2017 17:24:52

Plots: OFDM / n HT20 – mode

Plot 1: Lowest channel

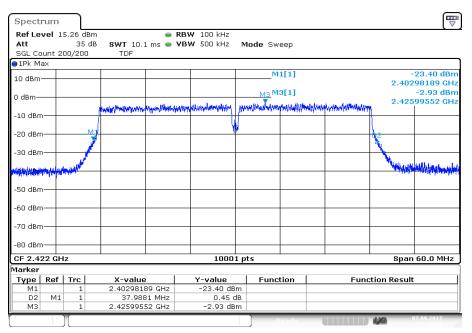
Spectr	um									
Ref Lev Att	vel 2	0.27 dB 40 d			BW 100 kHz BW 500 kHz	Mode Swi	еер			
SGL Co		00/200	TDF							
∋1Pk Ma	эх									00 CE 40
						IVI.	1[1]			-20.65 dBn 245504 GHa
10 dBm-					МЗ	M	3[1]			-0.50 dBn
0 dBm—			whitehaltena	m. Manthan V	million	phonestaneout	and the second	white when whether	2.10.	
-10 dBm			-			Y				
-20 dBm	-		1						<u>x</u> .	
-30 dBm		1213							New Street and	ada a ta ta tikana sa
-40 dBm	WWW									
-50 dBm	-									
-60 dBm	-									
-70 dBm	-									
CF 2.41	12 GH	z			1000	1 pts			Spar	30.0 MHz
Marker										
Туре	Ref		X-value		Y-value	Func	tion	Fund	tion Result	t
M1 D2	M1	1	2.4024550		-20.65 dB -1.02 (
M3	INIT.	1	2.4091054		-0.50 dB					
						R	eady		1/1	07.09.2017


Date: 7.SEP.2017 16:19:18

Plot 2: Middle channel

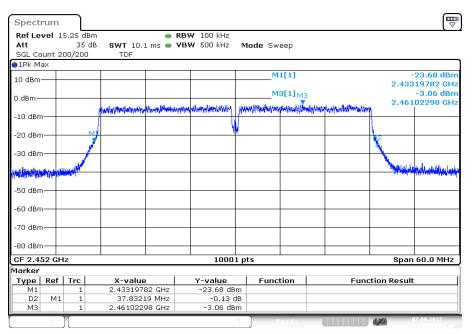
Spect	rum									
Att		0.41 dBm 40 dB 00/200	SWT 10.: TDF		3W 100 kHz 3W 500 kHz	Mode Sw	еер			
O1Pk M										
10 dBm							1[1] 3[1]		2.42	-20.45 dBm 744294 GHz -0.27 dBm
0 dBm-					MIS			1	2.43	410534 GHz
-10 dBn	<u>ا</u> ر		white	an freedom and the	and the second second second	manna	na'ny/www.aww.glw/hele	na hanna hanna		
-20 dBn	n	M1							22	
-30 dBn		. MARK							No.	MR. Hold Hand
-40 dBn		don du.								- a construction of the second se
-50 dBn	י 									
-60 dBn	י 									
-70 dBn	<u>ו</u> רי									
CF 2.4	37 GH	Iz			1000	1 pts		1	Spa	n 30.0 MHz
Marker										
Туре	Ref	Trc	X-value		Y-value	Func	tion	Fund	tion Resu	lt
M1		1	2.427442		-20.45 dB					
D2 M3	M1	1	19.1531 2.434105		0.17 (-0.27 dB					
							eady		4,70	07.09.2017

Date: 7.SEP.2017 16:30:49


Date: 7.SEP.2017 16:44:10

Plots: OFDM / n HT40 – mode

Plot 1: Lowest channel


Date: 7.SEP.2017 15:48:06

Plot 2: Middle channel

Spect	rum										
Ref Le Att	vel 1	L5.43 dBm 35 dB 200/200	SWT 10.1 TDF		₩ 100 kHz ₩ 500 kHz	Мо	ode Swa	зер			
O 1Pk M		,									
10 dBm							M	l[1]			-23.81 dBm 319776 GHz
0 dBm—	_			. Illust a seta	Al one of the statistical		M3 MC		. Jean also , in the Marthada, be say	2.4 4	-2.48 dBm 100762 GHz
-10 dBm	1-		water townstaterationald	AND ALL AND	And Manager and		Uni anno anter de	and all of the second	Newskirker		
-20 dBm	<u>+</u>	<u> </u>				1				ŝ.	
-30 dBm	י	La sult								WHALLOW	AN A
<u>Manaka ka</u>	WYART	ululutu.									
-50 dBm -60 dBm											
-70 dBm											
-80 dBm											
CF 2.4	37 GI	Ηz			1000	1 pt:	s			Spar	n 60.0 MHz
Marker										•	
Type	Ref	Trc	X-value	1	Y-value	1	Funct	ion	Functi	on Resul	t
M1		1	2.4181977	6 GHz	-23.81 dB	m					
D2	M1		37.82042		0.50 (
МЗ		1	2.4410076	2 GHZ	-2.48 dB	m					
[П					R	e a d y		X	07.09.2017

Date: 7.SEP.2017 16:01:31

Date: 7.SEP.2017 15:04:49

11.9 Band edge compliance conducted - restricted bands

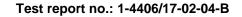
Description:

Measurement of the radiated band edge compliance with a conducted test setup.

Measurement:

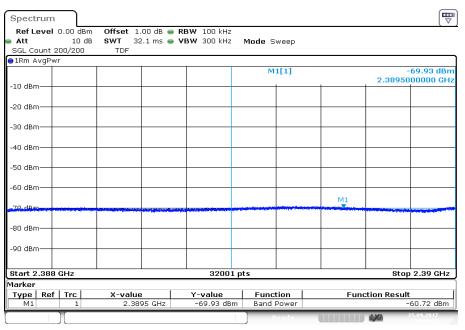
Measurement parameter for measurements							
According to DTS clause: 13.3.2 and clause 12.2.2							
Detector:	RMS						
Sweep time:	Auto						
Resolution bandwidth:	100 kHz						
Video bandwidth:	300 kHz						
Span:	Lower band edge: 2388 MHz to 2390 MHz (2 MHz) Upper band edge: 2483.5 MHz to 2485.5 MHz (2 MHz)						
Trace mode:	Trace average with 200 counts						
Test setup:	See sub clause 6.4 – A						
Measurement uncertainty	See sub clause 8						

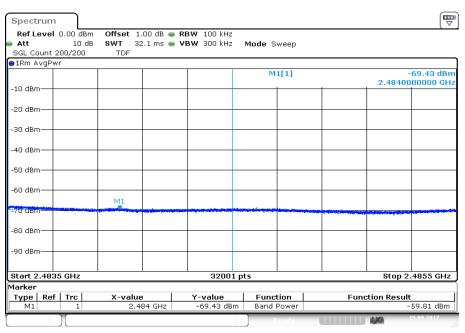
Limits:


FCC	IC			
-41.26 dBm				

Test report no.: 1-4406/17-02-04-B

Results:

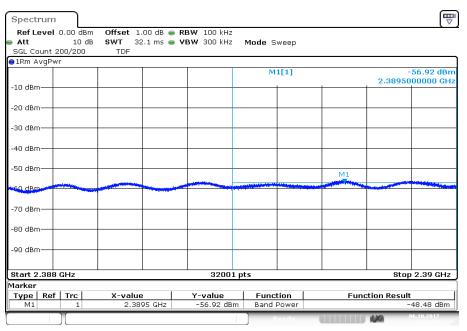

Scenario	Band edge compliance [dBm] (gain calculation)			
Modulation	DSSS / b – mode	OFDM / g – mode	OFDM / n HT20 – mode	OFDM / n HT40 – mode
Max. lower band edge power conducted	-60.7	-48.5	-47.4	-49.0
Antenna gain	2.5			
Max. lower band edge power radiated	-57.7	-46.0	-44.9	-46.5
		ſ	Γ	
Max. upper band edge power conducted	-59.8	-47.7	-46.6	-50.9
Antenna gain	2.5			
Max. upper band edge power radiated	-57.3	-45.2	-44.1	-48.5

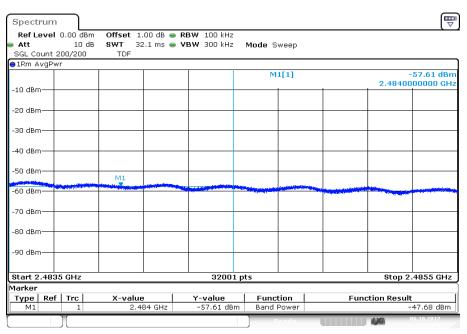

Plots: DSSS / b - mode

Plot 1: Lower band edge

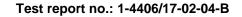
Date: 15.SEP.2017 14:36:27

Plot 2: Upper band edge


Date: 15.SEP.2017 14:58:18

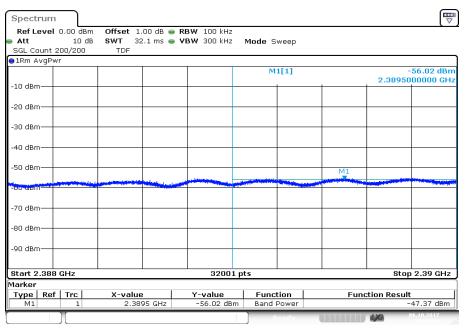

Plots: OFDM / g - mode

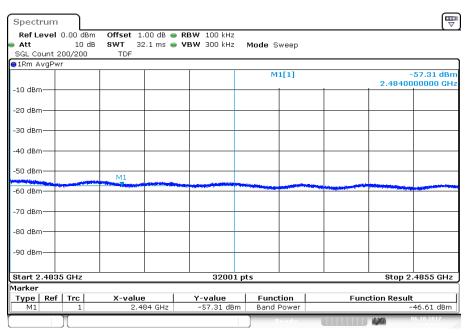
Plot 1: Lower band edge



Date: 6.0CT.2017 11:36:50

Plot 2: Upper band edge

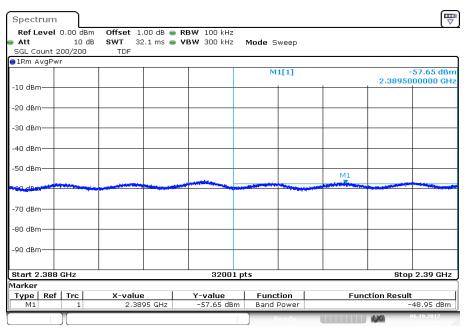

Date: 6.0CT.2017 11:04:53


Plots: OFDM / n HT20 – mode

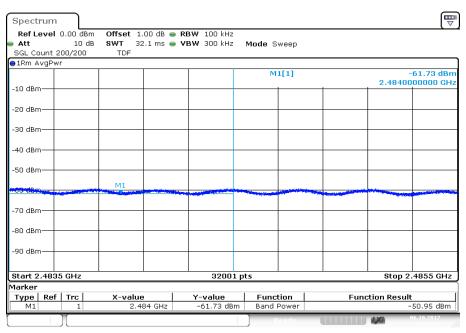
Plot 1: Lower band edge

Date: 6.0CT.2017 11:43:51

Plot 2: Upper band edge


Date: 6.0CT.2017 11:11:59

Test report no.: 1-4406/17-02-04-B


Plots: OFDM / n HT40 – mode

Plot 1: Lower band edge

Date: 6.0CT.2017 14:41:09

Plot 2: Upper band edge

Date: 6.OCT.2017 14:24:21

11.10 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The measurement is performed at channel 1, 6 and 11. The measurement is repeated for all modulations.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	100 kHz		
Video bandwidth:	500 kHz		
Span:	9 kHz to 25 GHz		
Trace mode:	Max Hold		
Test setup: See sub clause 6.4 – A			
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below					

radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

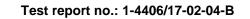
Test report no.: 1-4406/17-02-04-B

Results: DSSS / b - mode

	TX Spurious Emissions Conducted					
	DSSS / b – mode					
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results	
2412		3.36	30 dBm	-/-	Operating frequency	
	No peaks detected.		-20 dBc (peak)	-/-	compliant	
			-30 dBc (average)			
2437		4.30	30 dBm	-/-	Operating frequency	
	No peaks detected.		-20 dBc (peak)	-/-	compliant	
			30 dBc (average)			
2462		4.42	30 dBm	-/-	Operating frequency	
	No peaks detect	ed.	-20 dBc (peak) -30 dBc (average)	-/-	compliant	

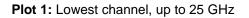
Results: OFDM / g - mode

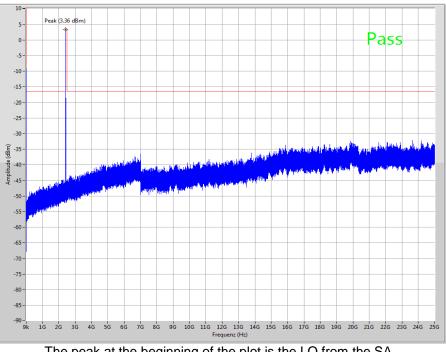
	TX Spurious Emissions Conducted					
	OFDM / g – mode					
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results	
2412		0.06	30 dBm	-/-	Operating frequency	
	No peaks detect	ed.	-20 dBc (peak) -30 dBc (average)		compliant	
2437		-0.16	30 dBm	-/-	Operating frequency	
	No peaks detect	ed.	-20 dBc (peak) -30 dBc (average)		compliant	
2462		0.23	30 dBm	-/-	Operating frequency	
	No peaks detected.		-20 dBc (peak) -30 dBc (average)		compliant	

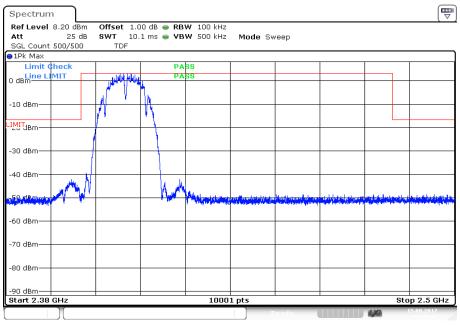


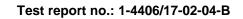
Results: OFDM / n HT20 - mode

	TX Spurious Emissions Conducted					
	OFDM / n HT20 – mode					
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results	
2412		-0.21	30 dBm	-/-	Operating frequency	
	No peaks detect	ed.	-20 dBc (peak) -30 dBc (average)		compliant	
2437		0.01	30 dBm	-/-	Operating frequency	
	No peaks detect	ed.	-20 dBc (peak) -30 dBc (average)		compliant	
2462		-0.61	30 dBm	-/-	Operating frequency	
	No peaks detect	ed.	-20 dBc (peak) -30 dBc (average)		compliant	


Results: OFDM / n HT40 - mode

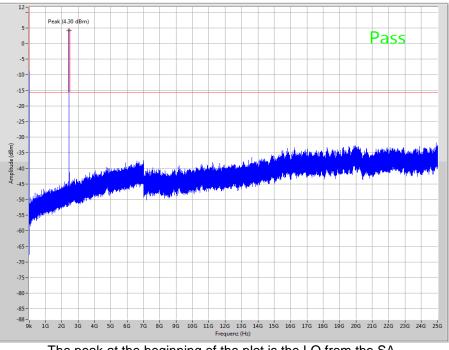

	TX Spurious Emissions Conducted					
	OFDM / n HT40 – mode					
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results	
2422		-1.97	30 dBm	-/-	Operating frequency	
	No peaks detect	ed.	-20 dBc (peak) -30 dBc (average)		compliant	
2437		-1.72	30 dBm	-/-	Operating frequency	
	No peaks detect	ed.	-20 dBc (peak) -30 dBc (average)		compliant	
2452		-2.85	30 dBm	-/-	Operating frequency	
No peaks detected.		-20 dBc (peak) -30 dBc (average)		compliant		


Plots: DSSS / b - mode

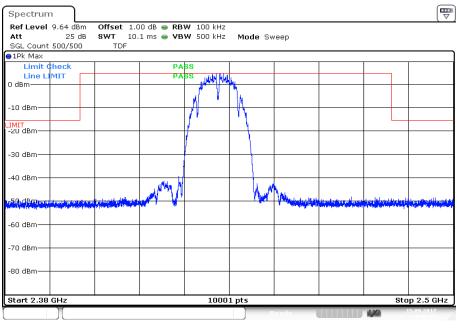


The peak at the beginning of the plot is the LO from the SA.

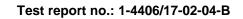
Plot 2: Lowest channel, zoomed carrier



Date: 15.SEP.2017 14:36:12

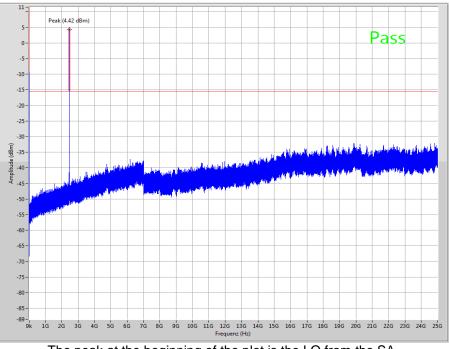


Plot 3: Middle channel, up to 25 GHz

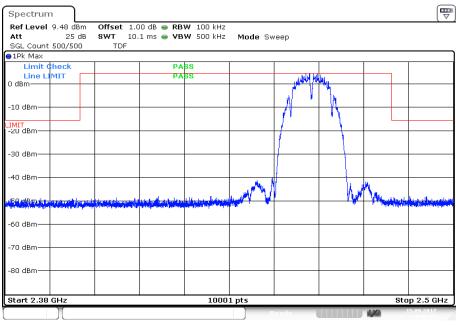


The peak at the beginning of the plot is the LO from the SA.

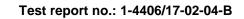
Plot 4: Middle channel, zoomed carrier



Date: 15.SEP.2017 14:50:19

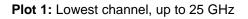


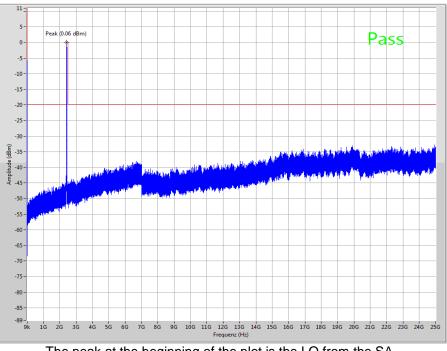
Plot 5: Highest channel, up to 25 GHz

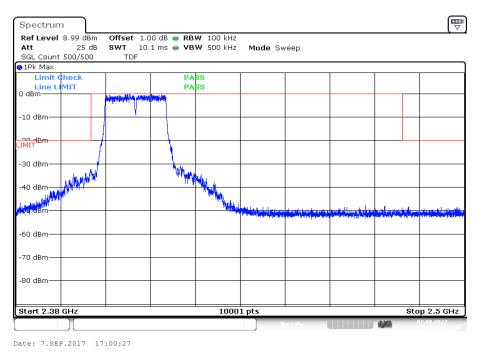


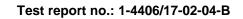
The peak at the beginning of the plot is the LO from the SA.

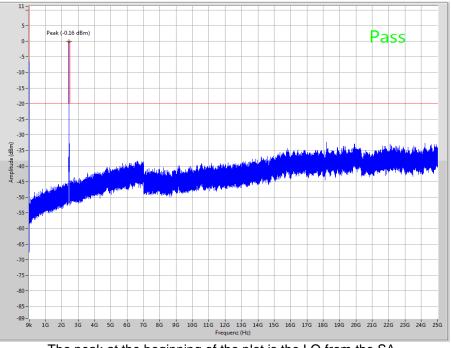
Plot 6: Highest channel, zoomed carrier



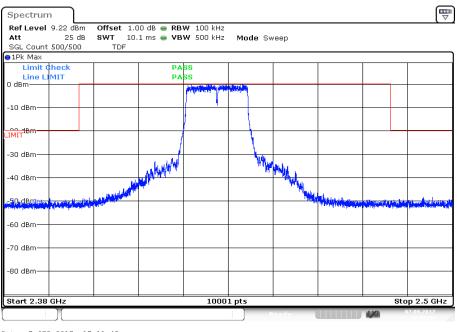

Date: 15.SEP.2017 14:57:49


Plots: OFDM / g - mode

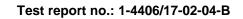



The peak at the beginning of the plot is the LO from the SA.

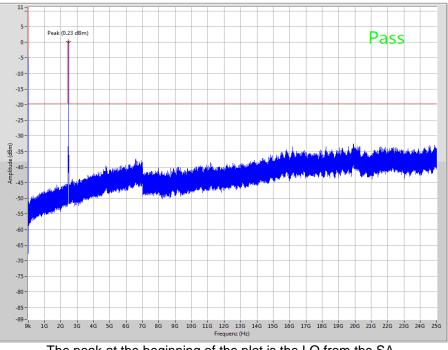
Plot 2: Lowest channel, zoomed carrier



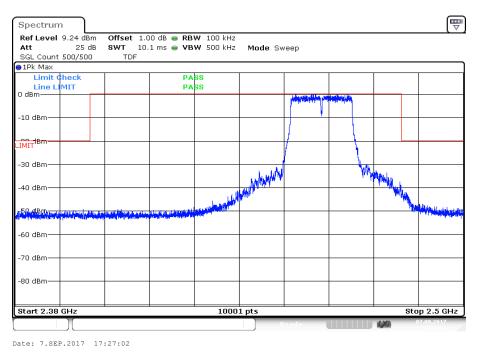
Plot 3: Middle channel, up to 25 GHz


The peak at the beginning of the plot is the LO from the SA.

Plot 4: Middle channel, zoomed carrier

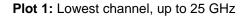

Date: 7.SEP.2017 17:11:42

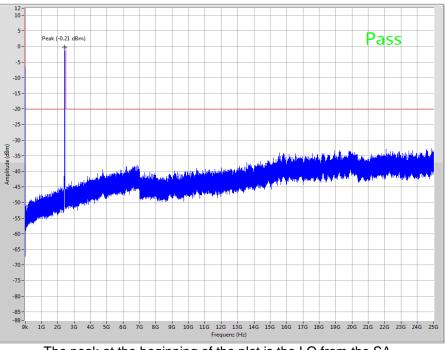
CTC I advanced



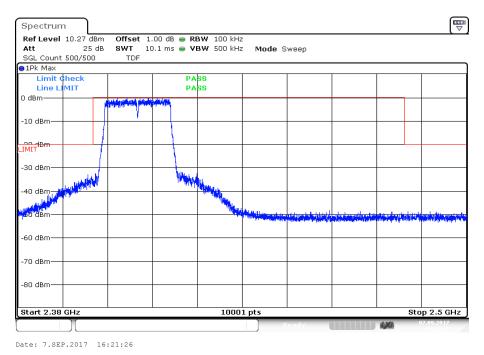
Plot 5: Highest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.


Plot 6: Highest channel, zoomed carrier

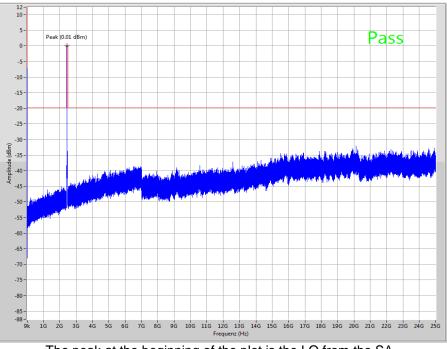


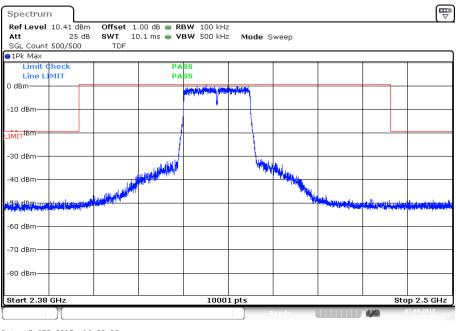
Test report no.: 1-4406/17-02-04-B

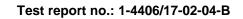

Plots: OFDM / n HT 20 - mode



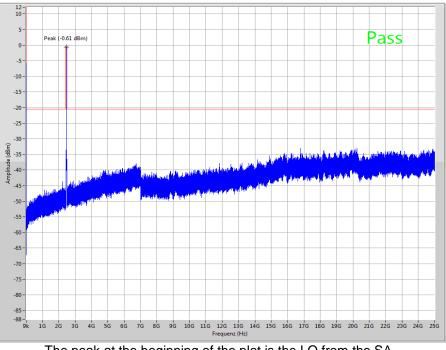
The peak at the beginning of the plot is the LO from the SA.

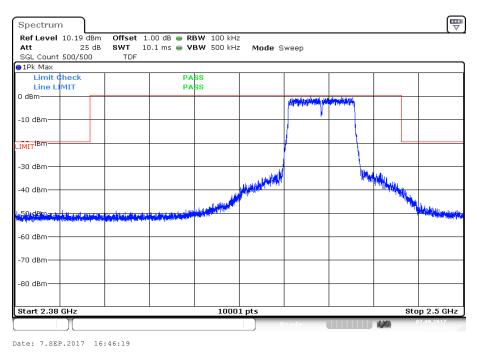

Plot 2: Lowest channel, zoomed carrier




Plot 3: Middle channel, up to 25 GHz

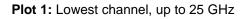
The peak at the beginning of the plot is the LO from the SA.

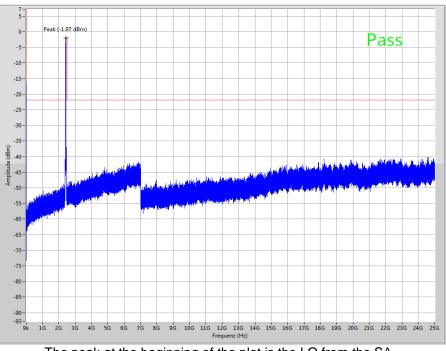

Plot 4: Middle channel, zoomed carrier



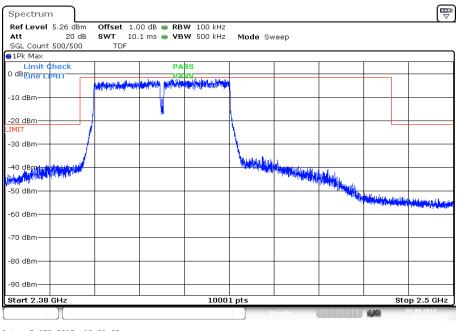
Plot 5: Highest channel, up to 25 GHz

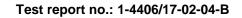
The peak at the beginning of the plot is the LO from the SA.


Plot 6: Highest channel, zoomed carrier



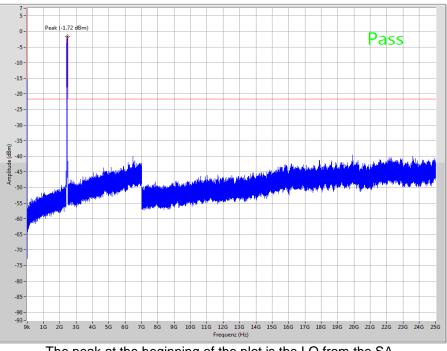
Test report no.: 1-4406/17-02-04-B


Plots: OFDM / n HT 40 - mode

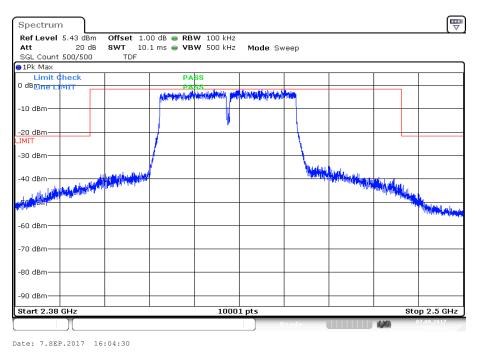


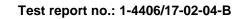
The peak at the beginning of the plot is the LO from the SA.

Plot 2: Lowest channel, zoomed carrier

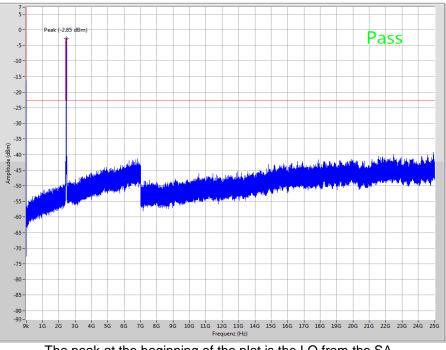


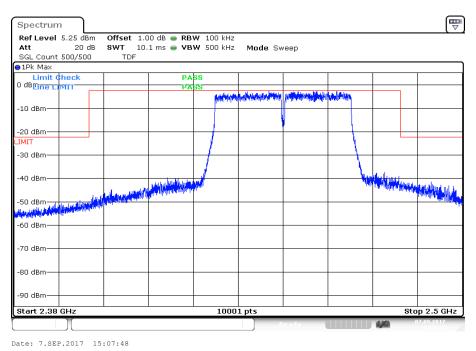
Date: 7.SEP.2017 15:51:05




Plot 3: Middle channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.


Plot 4: Middle channel, zoomed carrier



Plot 5: Highest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

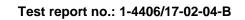
Plot 6: Highest channel, zoomed carrier

11.11 Spurious emissions radiated below 30 MHz

Description:

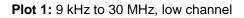
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to channel 6. This measurement is representative for all channels and modes. If peaks are found channel 1 and channel 11 will be measured too. The measurement is performed with the data rate producing the highest output power. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

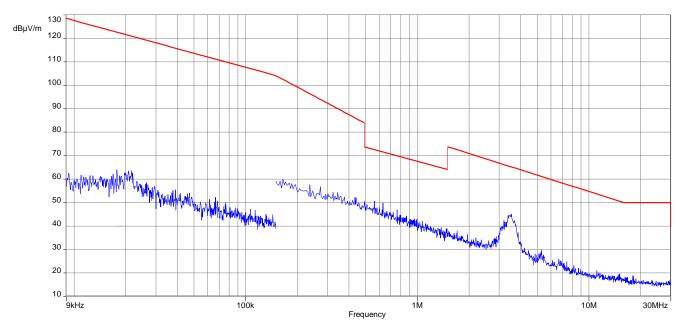
Measurement:

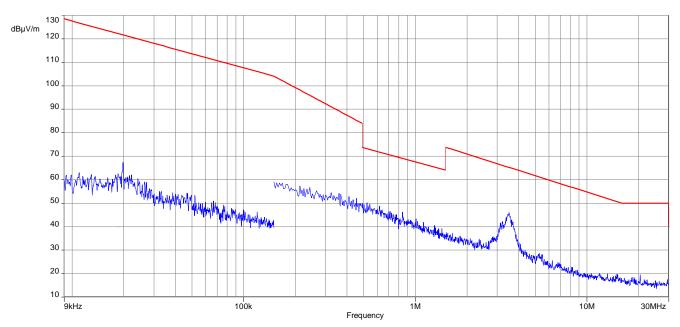

Measurement parameter									
Detector:	Peak / Quasi Peak								
Sweep time:	Auto								
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz								
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz								
Span:	9 kHz to 30 MHz								
Trace mode:	Max Hold								
Measured modulation	 DSSS b – mode OFDM g – mode OFDM n HT20 – mode OFDM n HT40 – mode 								
Test setup:	See sub clause 6.2 - A								
Measurement uncertainty	See sub clause 8								

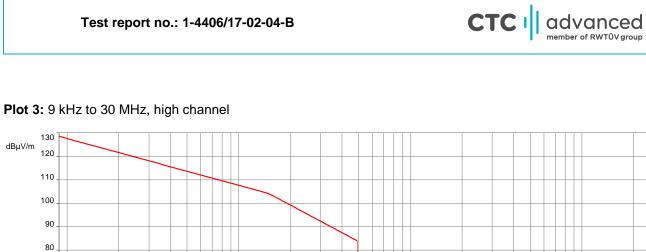
Limits:

FCC		IC			
Frequency (MHz)	Field Streng	Field Strength (dBµV/m) Measurement d			
0.009 – 0.490	2400/F(kHz) 300				
0.490 – 1.705	24000/	/F(kHz)	30		
1.705 – 30.0	3	0	30		


Results:


TX Spurious Emissions Radiated < 30 MHz [dBµV/m]									
F [MHz] Detector Level [dBµV/m]									
All dete	ected peaks are more than 20 dB below th	e limit.							




Plots: DSSS

Plot 2: 9 kHz to 30 MHz, mid channel

mummer and the state of the state

Frequency

the state of the s

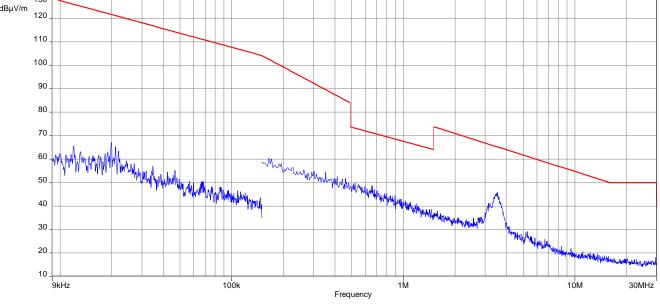
10M

30MHz

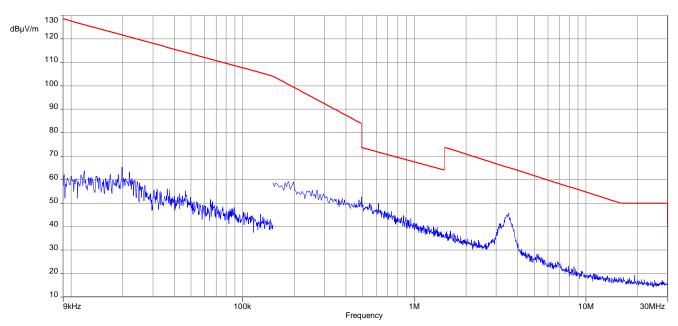
1M

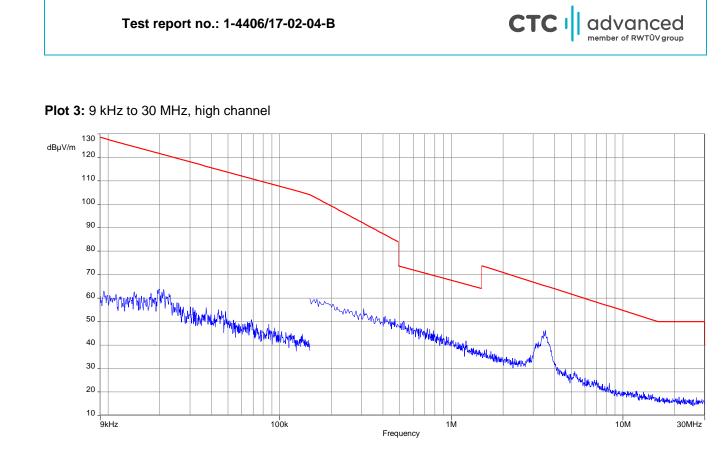
whether and whether where the all and the second seco

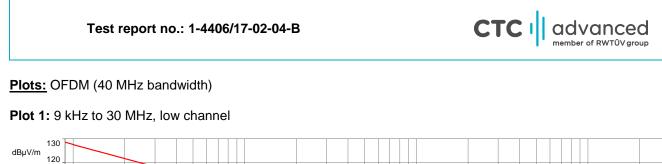
100k

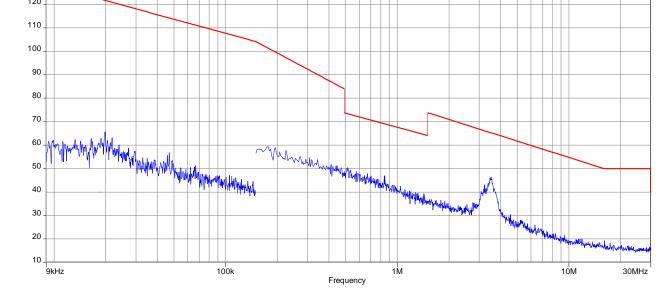

70

60 50 40

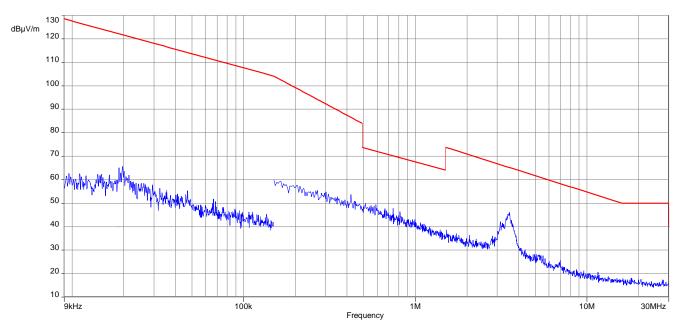

30 20 10

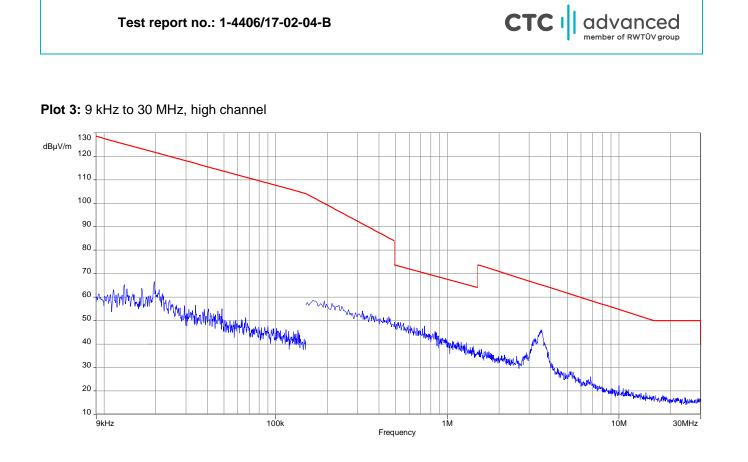

9kHz





Plot 2: 9 kHz to 30 MHz, mid channel





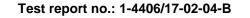
Plot 2: 9 kHz to 30 MHz, mid channel

Test report no.: 1-4406/17-02-04-B

11.12 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

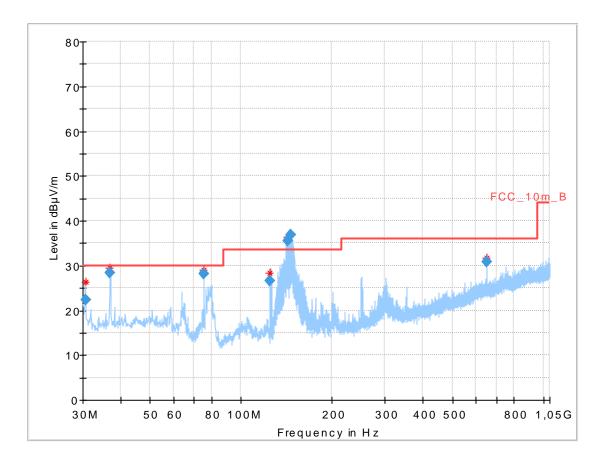

Measurement:

Measureme	nt parameter
Detector:	Peak / Quasi Peak
Sweep time:	Auto
Resolution bandwidth:	120 kHz
Video bandwidth:	3 x RBW
Span:	30 MHz to 1 GHz
Trace mode:	Max Hold
	🖾 DSSS b-mode
	🖾 OFDM g – mode
Measured modulation	OFDM n HT20 – mode
	🛛 OFDM n HT40 – mode
	🖾 RX / Idle – mode
Test setup:	See sub clause 6.1 – A
Measurement uncertainty	See sub clause 8

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC		IC							
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).									
Frequency (MHz)	Field Streng	th (dBµV/m)	Measurement distance						
30 - 88	30	0.0	10						
88 – 216	33	3.5	10						
216 – 960	36	5.0	10						

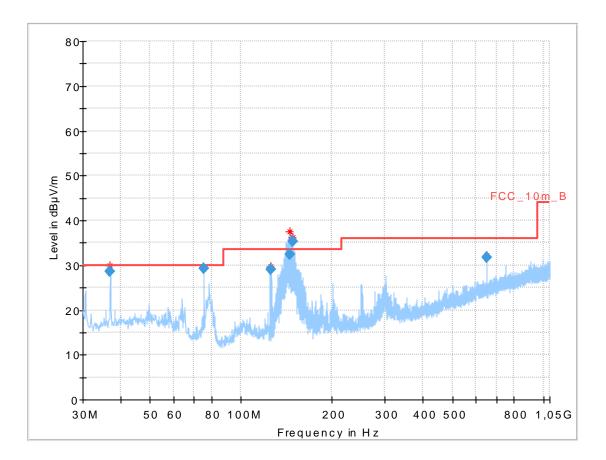

Note: Emissions exceeding the given limit in the sub-range 30 MHz to 1 GHz are not caused by the evaluated radio module. To indicate that these emissions are caused by the peripherals the measurement was also performed with the radio module shut off.

СТС

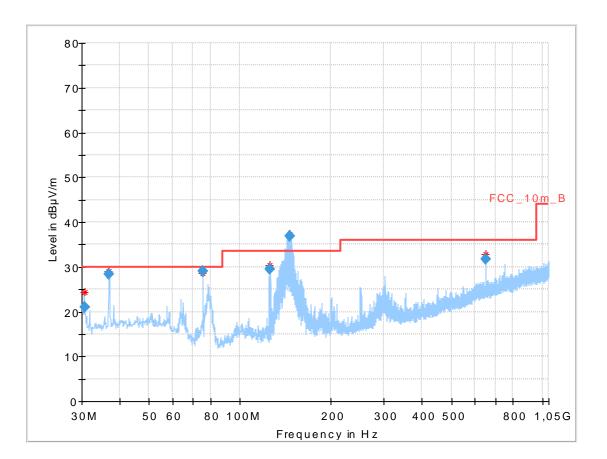
advanced

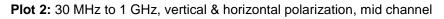
member of RWTÜV group

Plot: W-LAN Module shut off.

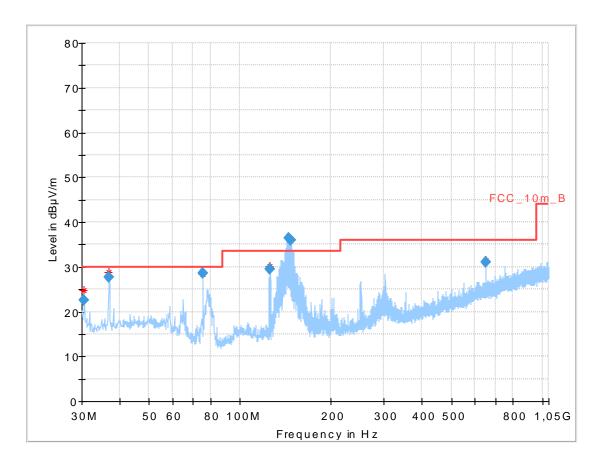

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.584	22.37	30.0	7.63	1000	120	101.0	V	176.0	11.9
36.927	28.34	30.0	1.66	1000	120	98.0	٧	290.0	12.9
75.554	28.05	30.0	1.95	1000	120	170.0	٧	297.0	8.8
125.006	26.68	33.5	6.82	1000	120	98.0	V	8.0	9.9
143.366	35.53	33.5	-2.03	1000	120	98.0	V	135.0	9.0
145.626	36.92	33.5	-3.42	1000	120	98.0	V	160.0	9.1
649.998	30.75	36.0	5.25	1000	120	98.0	Н	10.0	21.1

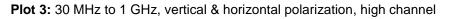
Test report no.: 1-4406/17-02-04-B

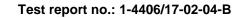

Plot: DSSS

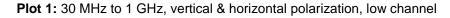

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel

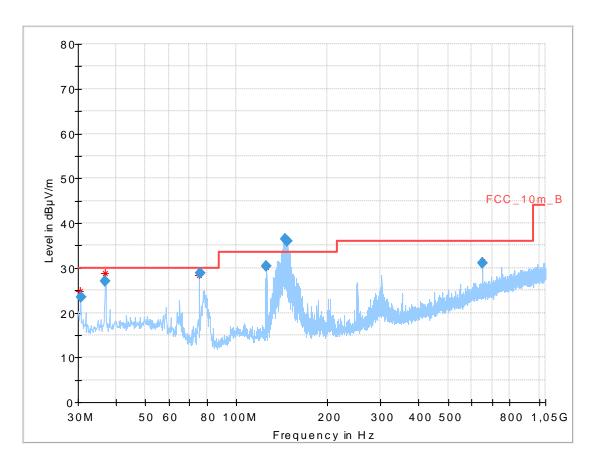
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.958	28.67	30.0	1.33	1000	120	100.0	V	275.0	12.9
75.557	29.31	30.0	0.69	1000	120	170.0	V	1.0	8.8
125.941	29.02	33.5	4.48	1000	120	98.0	V	0.0	9.8
144.663*	32.36	33.5	1.14	1000	120	98.0	V	204.0	9.1
147.917*	35.31	33.5	-1.81	1000	120	98.0	V	197.0	9.2
650.010	31.81	36.0	4.19	1000	120	98.0	Н	169.0	21.1





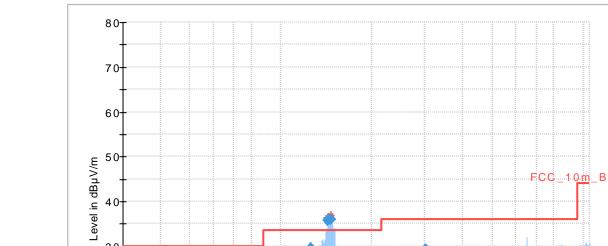

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.603	20.92	30.0	9.08	1000	120	101.0	V	151.0	11.9
36.925	28.30	30.0	1.70	1000	120	98.0	V	235.0	12.9
75.573	29.15	30.0	0.85	1000	120	170.0	V	92.0	8.8
125.938	29.47	33.5	4.03	1000	120	98.0	٧	12.0	9.8
145.623*	36.78	33.5	-3.28	1000	120	98.0	V	212.0	9.1
650.006	31.64	36.0	4.36	1000	120	98.0	Н	166.0	21.1




Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.534	22.46	30.0	7.54	1000	120	101.0	V	213.0	11.9
36.928	27.78	30.0	2.22	1000	120	101.0	V	120.0	12.9
75.566	28.66	30.0	1.34	1000	120	170.0	V	99.0	8.8
125.941	29.40	33.5	4.10	1000	120	101.0	V	-9.0	9.8
143.564*	36.53	33.5	-3.03	1000	120	98.0	V	129.0	9.1
147.843*	35.99	33.5	-2.49	1000	120	98.0	V	164.0	9.2
650.015	31.07	36.0	4.93	1000	120	98.0	Н	43.0	21.1

Plot: OFDM (20 MHz bandwidth)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.641	23.46	30.0	6.54	1000	120	100.0	V	223.0	11.9
36.898	27.02	30.0	2.98	1000	120	101.0	V	130.0	12.9
75.766	28.86	30.0	1.24	1000	120	152.0	V	99.0	8.8
125.921	30.40	33.5	3.10	1000	120	121.0	V	9.0	9.8
145.164*	36.51	33.5	-3.01	1000	120	99.0	V	128.0	9.1
147.803*	36.05	33.5	-2.45	1000	120	102.0	V	144.0	9.2



المطريقا

400 500

800 1,05G

300

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.891	28.08	30.0	1.92	1000	120	98.0	V	111.0	12.9
75.572	26.24	30.0	3.76	1000	120	101.0	٧	339.0	8.8
125.943	29.59	33.5	3.91	1000	120	98.0	٧	-9.0	9.8
143.334*	35.77	33.5	-2.27	1000	120	98.0	V	199.0	9.0
146.692*	35.88	33.5	-2.38	1000	120	98.0	V	152.0	9.1
302.295	29.33	36.0	6.67	1000	120	170.0	Н	291.0	14.5

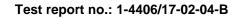
200

Frequency in Hz

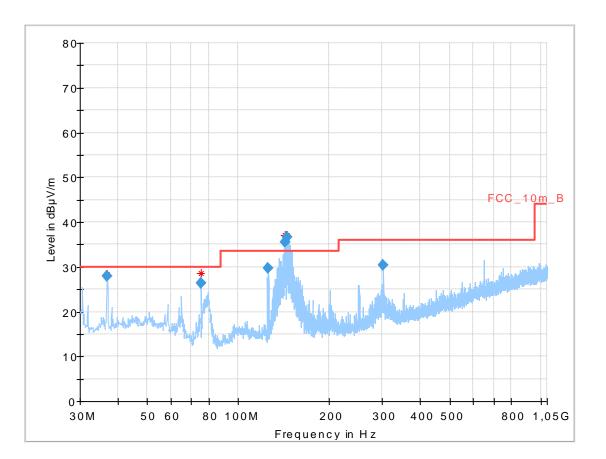
* Frequency is outside the restricted bands and therefore not rated.

50 60

80 100M

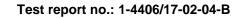

30

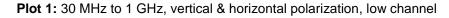
20

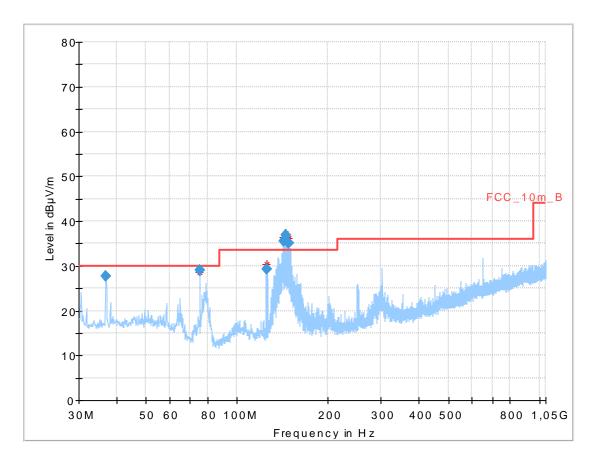

10

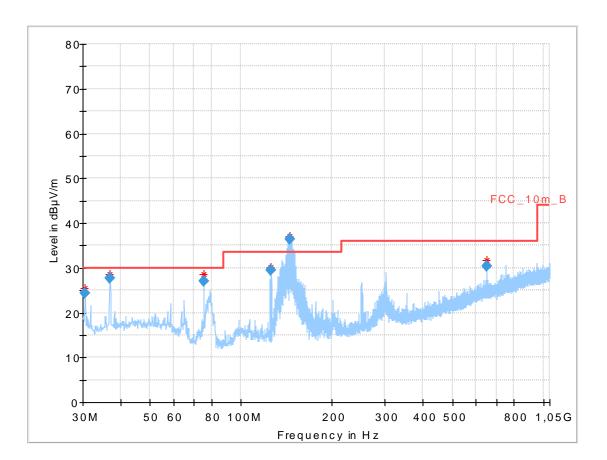

0

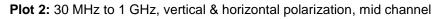
30 M



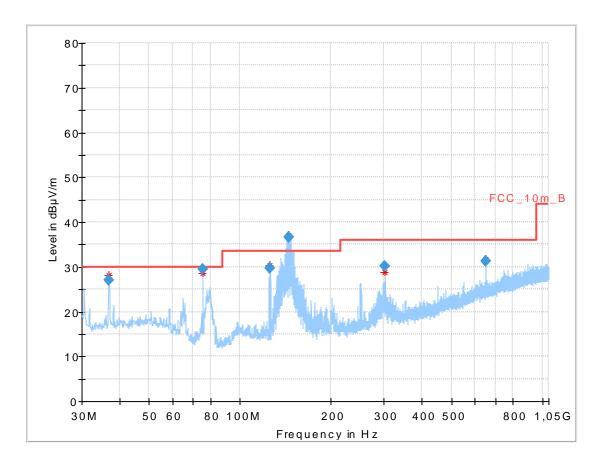


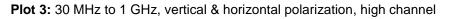

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.907	27.88	30.0	2.12	1000	120	100.0	V	121.0	12.9
75.563	26.28	30.0	3.72	1000	120	101.0	V	341.0	8.8
125.946	29.63	33.5	3.87	1000	120	98.0	V	-3.0	9.8
143.365*	35.54	33.5	-2.04	1000	120	100.0	V	123.0	9.0
145.563*	36.71	33.5	-3.21	1000	120	98.0	V	163.0	9.1
302.254	30.30	36.0	5.70	1000	120	170.0	Н	295.0	14.5

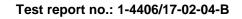

Plot: OFDM (40 MHz bandwidth)

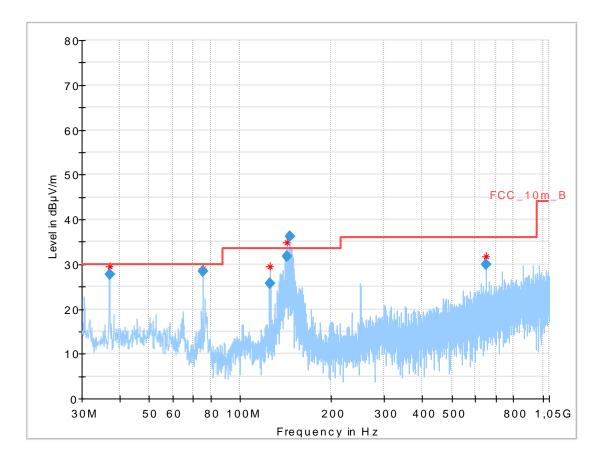


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.910	27.81	30.0	2.19	1000	120	101.0	V	111.0	12.9
75.572	29.03	30.0	0.97	1000	120	170.0	V	101.0	8.8
125.931	29.38	33.5	4.12	1000	120	98.0	V	3.0	9.8
143.303*	35.46	33.5	-1.96	1000	120	98.0	V	173.0	9.0
145.565*	36.76	33.5	-3.26	1000	120	100.0	V	160.0	9.1
147.855*	35.14	33.5	-1.64	1000	120	98.0	V	129.0	9.2






Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.534	24.35	30.0	5.65	1000	120	100.0	V	353.0	11.9
36.896	27.64	30.0	2.36	1000	120	98.0	V	126.0	12.9
75.556	26.96	30.0	3.04	1000	120	101.0	V	59.0	8.8
125.945	29.53	33.5	3.97	1000	120	98.0	V	-10.0	9.8
145.562*	36.52	33.5	-3.02	1000	120	98.0	V	80.0	9.1
650.016	30.37	36.0	5.63	1000	120	98.0	Н	1.0	21.1


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.904	27.10	30.0	2.90	1000	120	98.0	V	217.0	12.9
75.559	29.52	30.0	0.48	1000	120	170.0	V	84.0	8.8
125.945	29.62	33.5	3.88	1000	120	98.0	V	-5.0	9.8
145.548*	36.71	33.5	-3.21	1000	120	98.0	V	157.0	9.1
302.237	30.09	36.0	5.91	1000	120	170.0	Н	280.0	14.5
650.013	31.23	36.0	4.77	1000	120	98.0	Н	35.0	21.1

Plot: RX / Idle mode

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.025	27.70	30.0	2.30	1000	120	101.0	V	300.0	12.9
75.573	28.30	30.0	1.70	1000	120	101.0	٧	287.0	8.8
125.933	25.81	33.5	7.69	1000	120	98.0	V	350.0	9.8
142.421*	31.74	33.5	1.76	1000	120	98.0	V	34.0	9.0
145.678*	36.16	33.5	-2.66	1000	120	98.0	V	141.0	9.1
649.989	29.98	36.0	6.02	1000	120	98.0	Н	0.0	21.1

11.13 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

Measureme	nt parameter
Detector:	Peak / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 x RBW
Span:	1 GHz to 26 GHz
Trace mode:	Max Hold
	🖾 DSSS b – mode
	🖾 OFDM g – mode
Measured modulation	OFDM n HT20 – mode
	🛛 OFDM n HT40 – mode
	🖾 RX / Idle – mode
Test setup:	See sub clause 6.2 – B
•	See sub clause 6.3 – A
Measurement uncertainty	See sub clause 8

Limits:

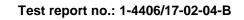
FCC		IC				
radiator is operating, the radio frequency that in the 100 kHz bandwidth within the conducted or a radiated measurement. A	outside the frequency band in which the spread spectrum or digitally modulated intentior lio frequency power that is produced by the intentional radiator shall be at least 30 dB belo th within the band that contains the highest level of the desired power, based on either an F asurement. Attenuation below the general limits specified in Section 15.209(a) is not require ons which fall in the restricted bands, as defined in §15.205(a), must also comply with t cified in §15.209(a) (see §15.205(c)).					
Frequency (MHz) Field Strength (dBµV/m) Measurement distance						
Above 960	54.0 3					

Test report no.: 1-4406/17-02-04-B

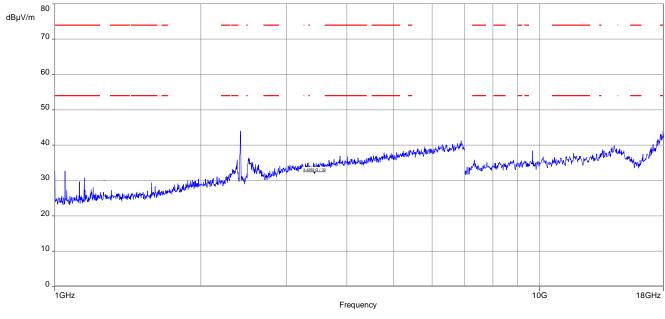
Results: DSSS

	TX Spurious Emissions Radiated [dBµV/m]								
	2412 MHz		2437 MHz 2462 MHz						
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBµV/m] F [MHz] Detector Level [dBµV/m]					
All detected	peak emissio	ns are below	All detected peak emissions are below			4022	Peak	54.2	
th	ne average lim	nit.	th	49.3.3				44.5	

Results: OFDM (20 MHz bandwidth)

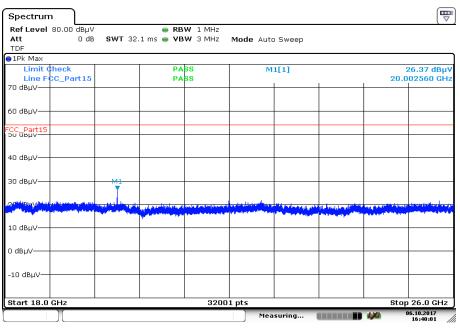

TX Spurious Emissions Radiated [dBµV/m]							
2412 MHz		2437 MHz 2462 MHz					
Detector	Level [dBµV/m]	F [MHz] Detector Level [dBµV/m] F [MHz] Detector Level [dBµV/m]					
		All detected peak emissions are below All detected peak emissions are below the average limit					
	Detector peak emissio	2412 MHz	2412 MHz Level Detector Level [dBµV/m] F [MHz] peak emissions are below All detected	2412 MHz 2437 MHz Detector Level [dBµV/m] F [MHz] Detector peak emissions are below All detected peak emission	2412 MHz 2437 MHz Detector Level [dBµV/m] F [MHz] Detector Level [dBµV/m] peak emissions are below All detected peak emissions are below	2412 MHz 2437 MHz Detector Level [dBµV/m] F [MHz] Detector Level [dBµV/m] F [MHz] peak emissions are below All detected peak emissions are below All detected	2412 MHz 2437 MHz 2462 MHz Detector Level [dBµV/m] F [MHz] Detector Level [dBµV/m] F [MHz] Detector peak emissions are below All detected peak emissions are below All detected peak emissions All detected peak emissions All detected peak emissions

Results: OFDM (40 MHz bandwidth)

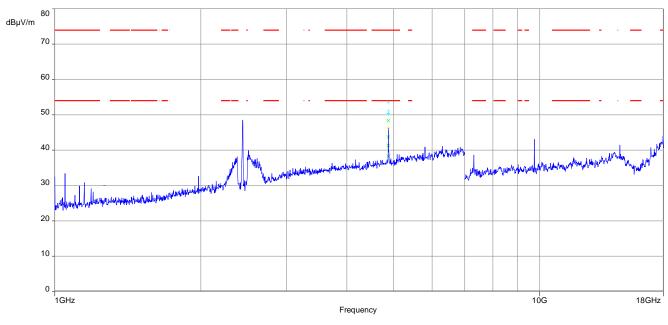

	TX Spurious Emissions Radiated [dBµV/m]								
	2412 MHz		2437 MHz 2462 MHz						
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBµV/m] F [MHz] Detector [dBµV/m]					
All detected	peak emissic	ns are below	All detected	All detected peak emissions are below			Peak	55.2	
tł	ne average lin	nit.	th	the average limit. 4908 AVG 42.4					

Results: RX / idle – mode

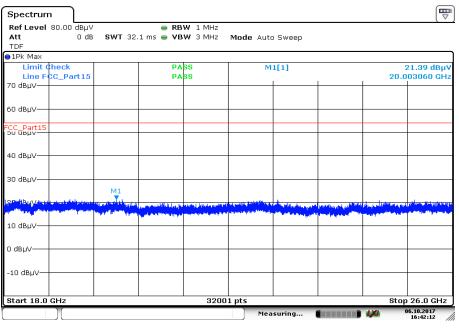
TX Spurious Emissions Radiated [dBµV/m]							
F [MHz] Detector Level [dBµV/m]							
All det	ected peak emissions are below the ave	erage limit.					
	AVG						

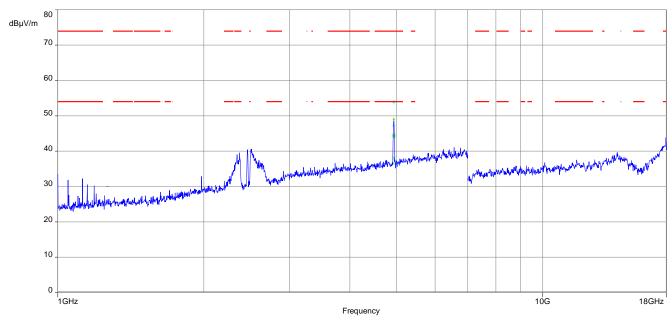

Plots: DSSS

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

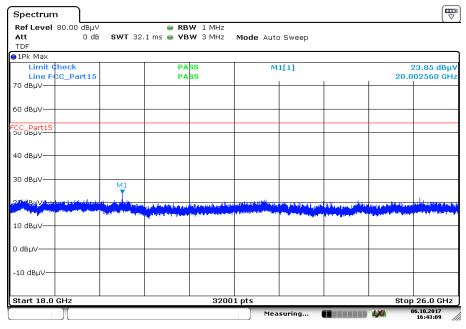

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

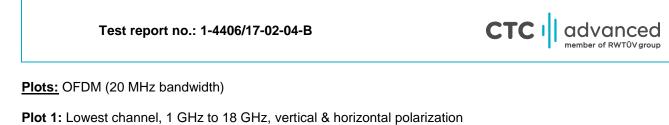

Date: 6.0CT.2017 16:40:01

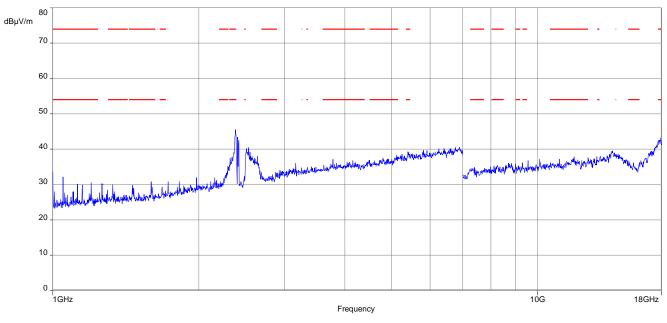

Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

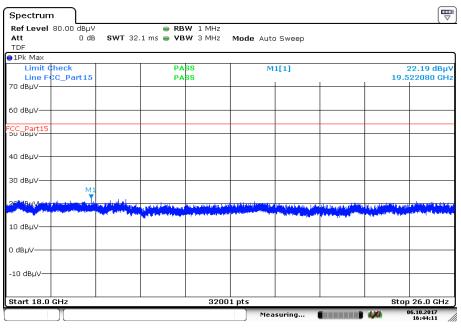
Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization



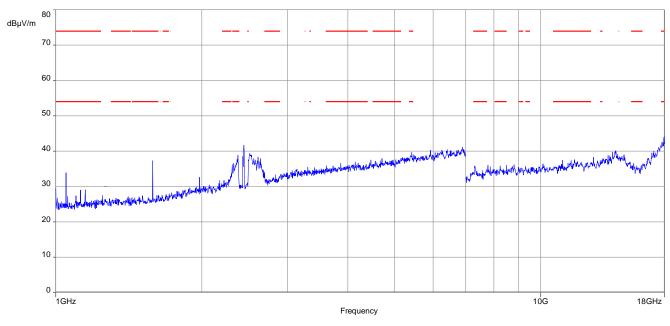
Date: 6.0CT.2017 16:42:12



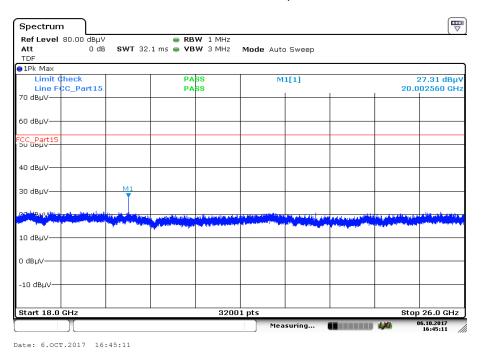

Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

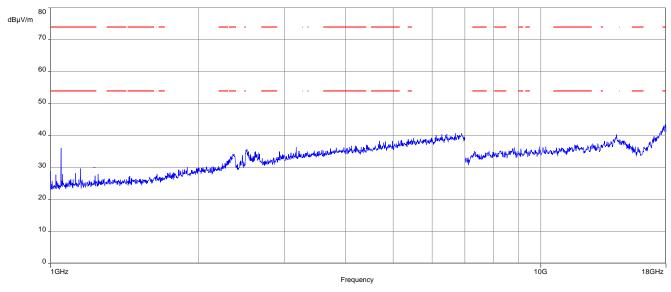

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 6.0CT.2017 16:43:09

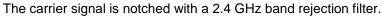


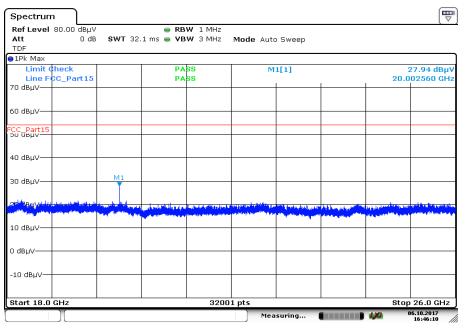
Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

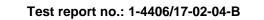




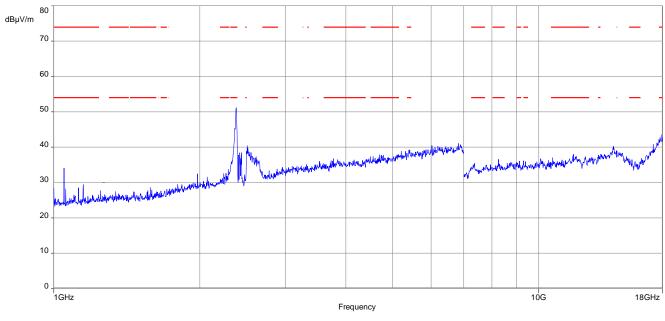
Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization


Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

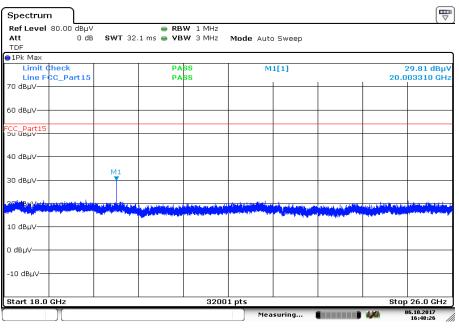



Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

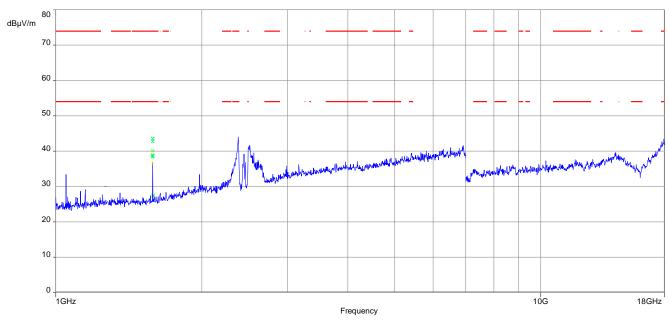
Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization



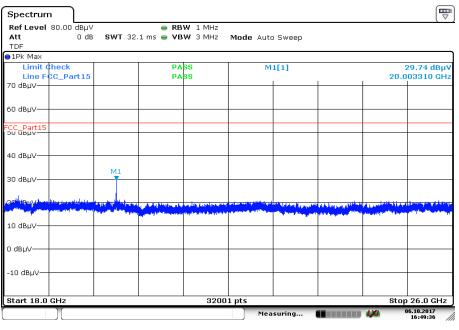
Date: 6.0CT.2017 16:46:10

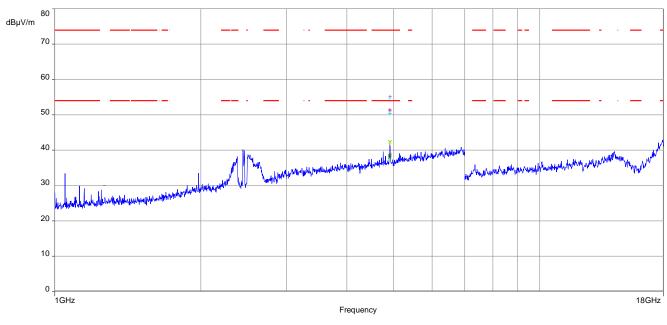

Plots: OFDM (40 MHz bandwidth)

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

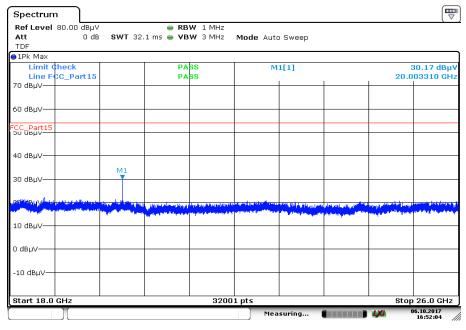

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

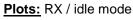

Date: 6.0CT.2017 16:48:26

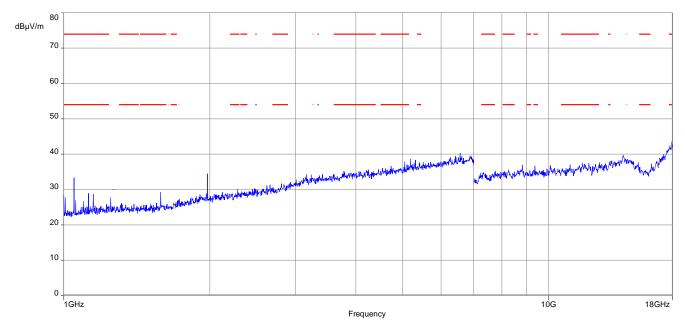

Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

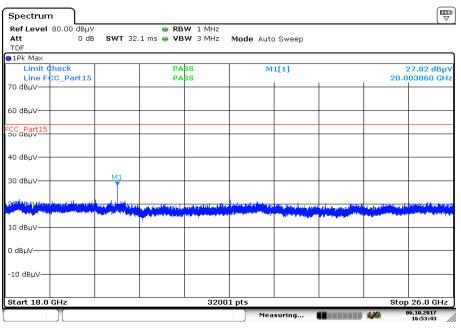


Date: 6.0CT.2017 16:49:36


Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization


Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 6.0CT.2017 16:52:04



Plot 2: 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 6.0CT.2017 16:53:42

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test
DUT	Equipment under test Device under test
UUT	Unit under test
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
CAC	Channel availability check
OP	Occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2017-10-25
A	General information revised FCC ID, PMN, HVIN, FVIN	2017-11-06
В	Editorial changes	2017-12-08

Annex C Accreditation Certificate

first page	last page
<image/> <image/> <image/> <text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text>	<section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header>
Sehe Hissoire ad der Klöstifte	

Note: The current certificate including annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-01.pdf

http://www.dakks.de/as/ast/d/D-PL-12076-01-02.pdf

© CTC advanced GmbH