

FCC RF Test Report

APPLICANT	:	Lenovo(Shanghai) Electronics Technology Co., Ltd.
EQUIPMENT	:	Notebook Computer
BRAND NAME	:	Lenovo
MODEL NAME	:	Lenovo YB-J912L
FCC ID	:	O57YBJ912L
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DSS) Spread Spectrum Transmitter

The product were integrated the WWAN module (Brand Name: Fibocom, Model Name: L850-GL, FCC ID: ZMOL850GL) and the BT/WLAN module (Brand Name: Intel®, Model Name: 8265D2W, FCC ID: PD98265D2) during the test.

The product was received on Jan. 03, 2018 and testing was completed on Mar. 28, 2018. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Journes Huang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: O57YBJ912L Page Number : 1 of 26 Report Issued Date : Mar. 30, 2018 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

TABLE OF CONTENTS

		I HISTORY	
SUI	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Location	7
	1.7	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Descriptions of Test Mode	8
	2.2	Carrier Frequency Channel	9
	2.3	Test Mode	10
	2.4	Connection Diagram of Test System	11
	2.5	Support Unit used in test configuration and system	11
	2.6	EUT Operation Test Setup	11
3	TEST	RESULT	12
	3.1	Peak Output Power Measurement	12
	3.2	Radiated Band Edges and Spurious Emission Measurement	14
	3.3	AC Conducted Emission Measurement	20
	3.4	Antenna Requirements	24
4	-	OF MEASURING EQUIPMENT	-
5	UNCE	RTAINTY OF EVALUATION	26
APF	PENDI	X A. RADIATED SPURIOUS EMISSION	

APPENDIX B. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR810315A	Rev. 01	Initial issue of report	Mar. 30, 2018

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
-	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	1
-	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	1
-	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	1
-	15.247(a)(1)	20dB Bandwidth	NA	Pass	1
-	-	99% Bandwidth	-	Pass	1
3.1	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
-	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	1
-	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	1
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.68 dB at 45.52 MHz
3.3	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 10.21 dB at 0.212 MHz
3.4	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-
Remark 1 : / "160321-02		items were leverage from	module RF report which	n can refer to R	eport No.

1 General Description

1.1 Applicant

Lenovo(Shanghai) Electronics Technology Co., Ltd. NO.68 BUILDING, 199 FENJU RD, Pilot Free Trade Zone, 200131, China

1.2 Manufacturer

Lenovo PC HK Limited

23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong

1.3 Product Feature of Equipment Under Test

Product Feature						
Equipment	Notebook Computer					
Brand Name	Lenovo					
Model Name	Lenovo YB-J912L					
FCC ID	O57YBJ912L					
EUT supports Radios application	WCDMA/HSPA/HSPA+ (16QAM uplink is not supported)/ DC-HSDPA/LTE WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80 Bluetooth v3.0+EDR/ Bluetooth v4.0 LE/ Bluetooth v4.1 LE/ Bluetooth v4.2 LE					
HW Version	Lenovo YB-J912L					
SW Version	Windows 10					
EUT Stage	Identical Prototype					

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification					
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz				
Number of Channels	79				
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78				
	Bluetooth BR(1Mbps) : 10.28 dBm (0.0107 W)				
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 8.92 dBm (0.0078 W)				
	Bluetooth EDR (3Mbps) : 8.32 dBm (0.0068 W)				
	For PC Mode:				
Antonno Typo / Coin	PIFA Antenna with gain 3.60 dBi				
Antenna Type / Gain	For Pad Mode:				
	PIFA Antenna with gain -0.40 dBi				
	Bluetooth BR (1Mbps) : GFSK				
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK				
	Bluetooth EDR (3Mbps) : 8-DPSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600155-0) and the FCC designation No is CN5013.

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

	Frequency	Bluetooth RF Output Power				
Channel		Data Rate / Modulation				
Channel		GFSK	π/4-DQPSK	8-DPSK		
		1Mbps	2Mbps	3Mbps		
Ch00	2402MHz	9.56 dBm	8.37 dBm	7.65 dBm		
Ch39	2441MHz	<mark>10.28</mark> dBm	8.92 dBm	8.32 dBm		
Ch78	2480MHz	8.96 dBm	7.56 dBm	7.13 dBm		

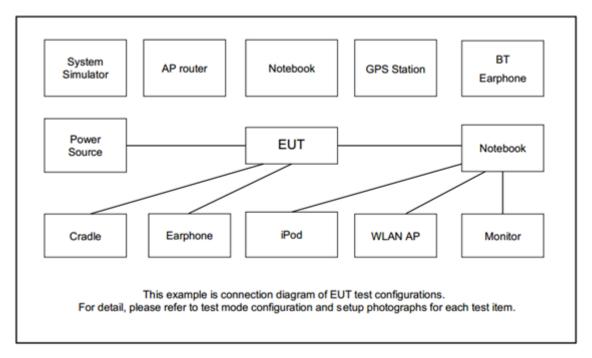
Remark:

- 1. All the test data for each data rate were verified, but only the worst case was reported.
- 2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.

2.2 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.3 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases							
Test Item	Data Rate / Modulation							
	Bluetooth BR 1Mbps GFSK							
Radiated	Mode 1: CH00_2402 MHz							
Test Cases	Mode 2: CH39_2441 MHz							
	Mode 3: CH78_2480 MHz							
	Summary table of Test Cases							
AC Conducted Emission	Mode 1 :Bluetooth Link + WLAN Link(2.4G) + Adaptor 1 with Type C cable 1 + Type C port 2 + USB Link with U-Disk from Type C port 2 + Play H Plane							

2.4 Connection Diagram of Test System

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	BT Base Station	R&S	СВТ	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-link	DIR-855	KA2DIR855A2	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
4.	SD Card	Kingston	SDC4/4GB	N/A	N/A	N/A
5.	U Disk	SanDisk	SDCZ51-004G	N/A	N/A	N/A

2.6 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

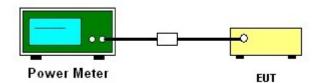
For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

3 Test Result

3.1 Peak Output Power Measurement

3.1.1 Limit of Peak Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Test Mode :	1Mbps		Temperature :		21~25℃	
Test Engineer :	Silent Hai		Relative Hun	nidity :	51~55%	
	F	RF Power (dBm)				
Channel	Frequency (MHz)	(GFSK	M	ax. Limits	Pass/Fail
	(11172)	1	Mbps		(dBm)	Pass/Fall
00	2402		9.56		20.97	Pass
39	2441		10.28		20.97	Pass
78	2480		8.96		20.97	Pass

Test Mode :	2Mbps	Temperature :	21~25 ℃
Test Engineer :	Silent Hai	Relative Humidity :	51~55%

Channel	Eroguopov	RF Power (dBm)						
	Frequency (MHz)	π /4-DQPSK	Max. Limits	Pass/Fail				
		2 Mbps	(dBm)	Pass/raii				
00	2402	8.37	20.97	Pass				
39	2441	8.92	20.97	Pass				
78	2480	7.56	20.97	Pass				

Test Mode :	3Mbps		Temperature :		21~25℃			
Test Engineer :	Silent Hai		Relative Hum	idity :	51~55%			
	-		F	RF Powe	er (dBm)			
Channel	Frequency (MHz)	8.	8-DPSK		Max. Limits			
		3	Mbps		(dBm)	Pass/Fail		
00	2402		7.65		20.97	Pass		
39	2441		8.32		20.97	Pass		
78	2480		7.13		20.97	Pass		

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

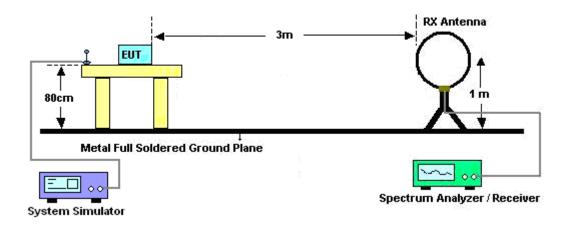
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance			
(MHz)	(microvolts/meter)	(meters)			
0.009 - 0.490	2400/F(kHz)	300			
0.490 – 1.705	24000/F(kHz)	30			
1.705 – 30.0	30	30			
30 – 88	100	3			
88 – 216	150	3			
216 - 960	200	3			
Above 960	500	3			

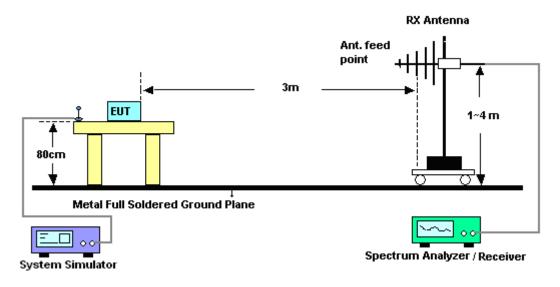
3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

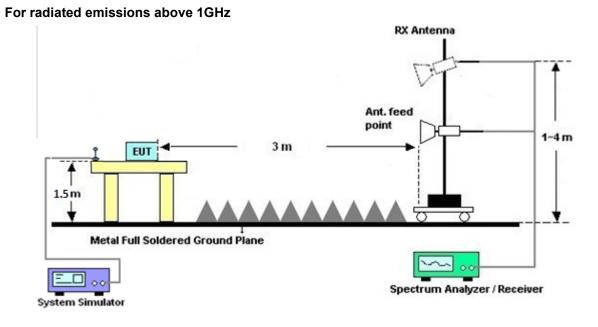
3.2.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

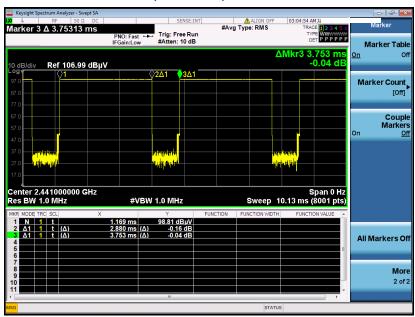
Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.2.4 Test Setup

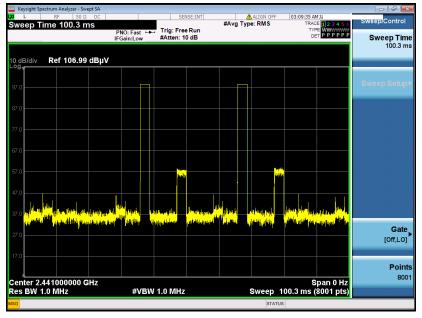

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz


3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.



3.2.6 Duty cycle correction factor for average measurement

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.76 \text{ ms}/100 \text{ms}) = -24.79 \text{ dB}$

3.2.7 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A.

3.3 AC Conducted Emission Measurement

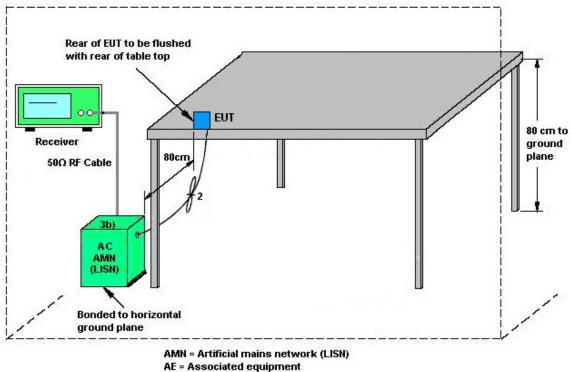
3.3.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Fraguancy of omission (MHz)	Conducted limit (dBµV)						
Frequency of emission (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

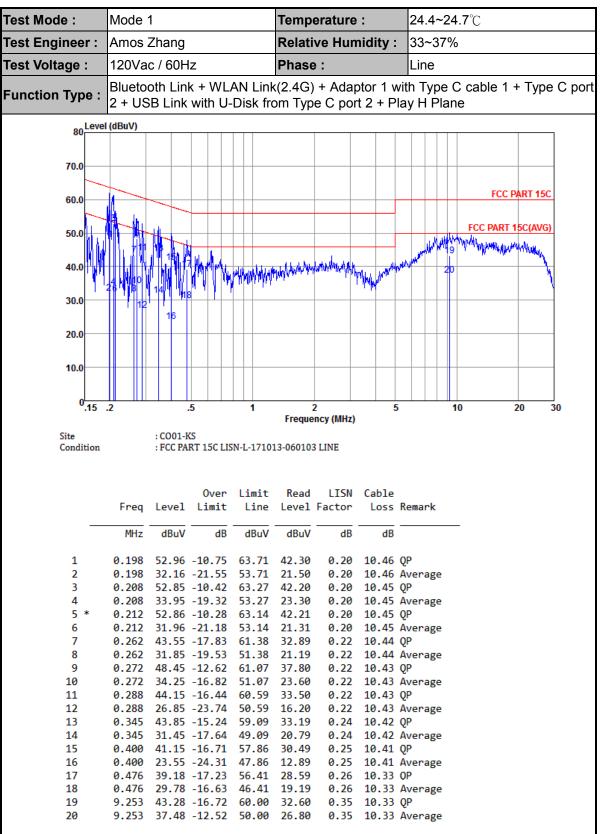
*Decreases with the logarithm of the frequency.

3.3.2 Measuring Instruments

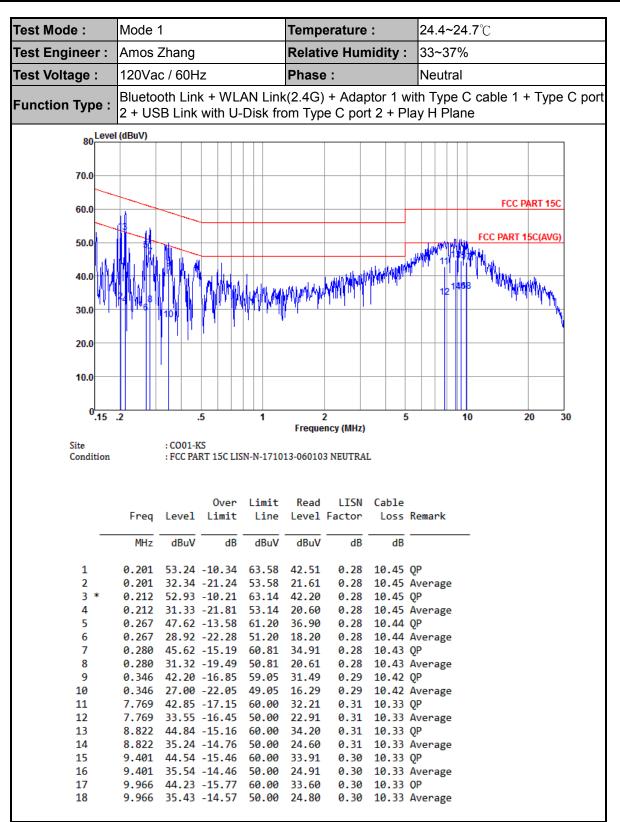

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.


3.3.4 Test Setup

- EUT = Equipment under test
- ISN = Impedance stabilization network



3.3.5 Test Result of AC Conducted Emission

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: O57YBJ912L

3.4 Antenna Requirements

3.4.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.4.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 18, 2018	Mar. 28, 2018	Jan. 17, 2019	Conducted (TH01-KS)	
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 18, 2018	Mar. 28, 2018	Jan. 17, 2019	Conducted (TH01-KS)	
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 20, 2017	Mar. 23, 2018	Apr. 19, 2018	Conduction (CO01-KS)	
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 13, 2017	Mar. 23, 2018	Oct. 12, 2018	Conduction (CO01-KS)	
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 13, 2017	Mar. 23, 2018	Oct. 12, 2018	Conduction (CO01-KS)	
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2017	Mar. 23, 2018	Oct. 11, 2018	Conduction (CO01-KS)	
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz;M ax 30dBm	Oct19.2017	Jan. 20, 2018~ Jan. 23, 2018 Oct. 18.2018		Radiation (03CH03-KS)	
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44GHz	Apr. 18, 2017	Jan. 20, 2018~ Jan. 23, 2018	Apr.17, 2018	Radiation (03CH03-KS)	
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 22, 2017	Jan. 20, 2018~ Jan. 23, 2018	Oct.21, 2018	Radiation (03CH03-KS)	
Bilog Antenna	TeseQ	CBL6112D	35406	25MHz-2GHz	Apr. 22, 2017	Jan. 20, 2018~ Jan. 23, 2018	Apr 21, 2018	Radiation (03CH03-KS)	
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-135 6	1GHz~18GHz	Apr. 22, 2017	Jan. 20, 2018~ Jan. 23, 2018	Apr 21, 2018	Radiation (03CH03-KS)	
SHF-EHF Horn	Schwarzbeck	BBHA 9170	BBHA1702 49	15GHz~40GHz	Feb. 07, 2017	Jan. 20, 2018~ Jan. 23, 2018	Feb. 06, 2018	Radiation (03CH03-KS)	
Amplifier	com-power	PA-103A	161069	1MHz ~1000MHz / 32 dB	Apr 18, 2017	Jan. 20, 2018~ Jan. 23, 2018	Apr 17, 2018	Radiation (03CH03-KS)	
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Apr.18.2017	Jan. 20, 2018∼ Jan. 23, 2018	Apr.17,2018	Radiation (03CH03-KS)	
Amplifier	Agilent	8449B	3008A023 70	1GHz~26.5GHz	Oct. 12, 2017	Jan. 20, 2018~ Jan. 23, 2018	Oct. 11, 2018	Radiation (03CH03-KS)	
Amplifier	MITEQ	TTA1840-35- HG	1887435	18~40GHz	Oct. 12, 2017	Jan. 20, 2018~ Jan. 23, 2018	Oct. 11, 2018	Radiation (03CH03-KS)	
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jan. 20, 2018~ Jan. 23, 2018	NCR	Radiation (03CH03-KS)	
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jan. 20, 2018~ Jan. 23, 2018	NCR	Radiation (03CH03-KS)	
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jan. 20, 2018∼ Jan. 23, 2018	NCR	Radiation (03CH03-KS)	

NCR: No Calibration Required

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.3 dB
of 95% (U = 2Uc(y))	2.3 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.6 dB
of 95% (U = 2Uc(y))	4.0 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.5 dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.5 dB	
of 95% (U = 2Uc(y))	4:5 dB	

Appendix A. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BT Note Frequency Limit Antenna Table Peak Pol. Level Over Read Cable Preamp Ant Limit Line Level Factor Loss Factor Pos Pos Avg. (dBµV/m) (dB) (dBµV/m) (MHz) (dBµV) (dB/m) (dB) (dB) (P/A) (H/V) (cm) deg) Ρ 2311.95 46.31 -27.69 74 41.81 31.16 5.55 32.21 299 53 Н 2311.95 21.52 -32.48 54 _ _ _ _ _ _ А Н * 2402 102.97 _ -98.32 31.3 5.65 32.3 299 53 Ρ Н BΤ * 2402 78.18 Н -А --_ -_ _ -CH00 2354.33 46.2 Р V -27.8 74 41.6 31.25 5.61 32.26 110 110 2402MHz 2354.33 21.41 -32.59 54 _ _ _ _ _ А V _ * 5.65 2402 101.08 _ -96.43 31.3 32.3 110 110 Ρ V * 2402 76.29 _ А V -_ _ -_ -_ Ρ 2385.66 45.8 -28.2 74 41.15 31.3 5.65 32.3 286 54 Н 2385.66 21.01 -32.99 А Н 54 _ _ _ _ -_ * Ρ 2442 103.75 _ _ 98.99 31.39 5.71 32.34 286 54 Н * 2442 78.96 -А Н _ _ _ _ _ _ -2486.14 45.8 -28.2 74 40.98 31.44 5.75 32.37 286 54 Р Н BΤ 2486.14 21.01 -32.99 54 А Н _ _ _ _ -_ CH 39 Ρ V 2334.83 45.85 -28.15 74 41.29 31.22 5.59 32.25 105 107 2441MHz 2334.83 21.06 -32.94 V 54 _ А _ _ -_ _ * 2442 101.24 96.48 31.39 5.71 32.34 105 107 Ρ V _ -* V 2442 76.45 _ _ _ _ --А _ _ 2484.6 46.16 -27.84 74 41.34 31.44 5.75 32.37 105 107 Ρ V А 2484.6 21.37 -32.63 54 V _ _ _ _ _ _

BT (Band Edge @ 3m)

	*	2480	100.76	-	-	95.94	31.44	5.75	32.37	312	55	Р	Н
	*	2480	75.97	-	-	-	-	-	-	-	-	А	Н
		2483.9	49.22	-24.78	74	44.4	31.44	5.75	32.37	312	55	Р	Н
BT		2483.9	24.43	-29.57	54	-	-	-	-	-	-	А	Н
CH 78 2480MHz	*	2480	96.85	-	-	92.03	31.44	5.75	32.37	100	73	Р	V
240010112	*	2480	72.06	-	-	-	-	-	-	-	-	А	V
		2483.83	47.57	-26.43	74	42.75	31.44	5.75	32.37	100	73	Р	V
		2483.83	22.78	-31.22	54	-	-	-	-	-	-	А	V
Remark	1. No other spurious found.												

BT (Harmonic @ 3m)													
ВТ	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BT		4806	43.02	-30.98	74	60.87	35.66	7.84	61.35	100	0	Р	Н
CH 00 2402MHz		4806	43.87	-30.13	74	61.72	35.66	7.84	61.35	100	0	Р	V
		4884	42.28	-31.72	74	59.97	35.61	7.9	61.2	100	0	Р	Н
ВТ СН 39		7320	40.04	-33.96	74	57.74	35.9	9.51	63.11	100	0	Р	Н
2441MHz		4884	40.9	-33.1	74	58.59	35.61	7.9	61.2	100	360	Ρ	V
244 111112		7320	40.86	-33.14	74	58.56	35.9	9.51	63.11	100	360	Р	V
		4962	42.59	-31.41	74	60.09	35.54	7.97	61.01	100	360	Ρ	Н
ВТ СН 78		7440	40.92	-33.08	74	58.6	35.97	9.57	63.22	100	360	Р	Н
2480MHz		4962	43.41	-30.59	74	60.91	35.54	7.97	61.01	100	360	Ρ	V
240010172		7440	40.52	-33.48	74	58.2	35.97	9.57	63.22	100	360	Р	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	e.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BT (LF)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
0.4011-		45.52	20.94	-19.06	40	34.3	17.33	0.73	31.42	-	-	Ρ	Н
		89.17	26.55	-16.95	43.5	39.51	16.76	1.04	30.76	-	-	Ρ	Н
		149.31	29.23	-14.27	43.5	41.5	17.31	1.32	30.9	100	269	Ρ	Н
		209.45	22.07	-21.43	43.5	35.52	16.12	1.55	31.12	-	-	Ρ	Н
		329.73	30.43	-15.57	46	39.4	20.55	1.98	31.5	-	-	Ρ	Н
2.4GHz BT		419.94	28.7	-17.3	46	35.11	22.88	2.25	31.54	-	-	Ρ	Н
LF		45.52	36.32	-3.68	40	49.68	17.33	0.73	31.42	100	261	Ρ	V
ī		89.17	34.41	-9.09	43.5	47.37	16.76	1.04	30.76	-	-	Ρ	V
		149.31	31.72	-11.78	43.5	43.99	17.31	1.32	30.9	-	-	Ρ	V
		269.59	25.23	-20.77	46	36.19	18.57	1.79	31.32	-	-	Ρ	V
		329.73	27.46	-18.54	46	36.43	20.55	1.98	31.5	-	-	Ρ	V
		660.5	30.9	-15.1	46	32.25	26.41	2.9	30.66	-	-	Ρ	V
Remark		o other spuric I results are F		st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any						
	unwanted emissions shall not exceed the level of the fundamental frequency.						
!	Test result is over limit line.						
P/A	Peak or Average						
H/V	Horizontal or Vertical						

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".