

FCC SAR Test Report

APPLICANT	: Lenovo (Shanghai) Electronics Technology Co., Ltd.
EQUIPMENT	: Portable Tablet Computer
BRAND NAME	: Lenovo
MODEL NAME	: Lenovo TB-X704Y
FCC ID	: O57TBX704Y
STANDARD	: FCC 47 CFR Part 2 (2.1093)
	ANSI/IEEE C95.1-1992
	IEEE 1528-2013

We, SPORTON International (ShenZhen) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON International (ShenZhen) INC., the test report shall not be reproduced except in full.

Monthe Qu

Prepared by: Mark Qu / Manager

Approved by: Jones Tsai / Manager

SPORTON International (ShenZhen) INC. 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan District, Shenzhen City, Guangdong Province, China

Table of Contents

1. Statement of Compliance	4
2. Administration Data	5
3. Guidance Applied	5
4. Equipment Under Test (EUT) Information	6
4.1 General Information	6
4.2 Component List	6
5. RF Exposure Limits	7
5.1 Uncontrolled Environment	7
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	8
6.1 Introduction	8
6.2 SAR Definition	
7. System Description and Setup	9
7.1 E-Field Probe	
7.2 Data Acquisition Electronics (DAE)	10
7.3 Phantom	11
7.4 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	13
8.2 Power Reference Measurement	
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	
10.1 Tissue Simulating Liquids	
10.2 Tissue Verification	18
10.3 System Performance Check Results	19
11. RF Exposure Positions	
11.1 SAR Testing for Tablet	
12. Conducted RF Output Power (Unit: dBm)	21
13. Antenna Location	
14. SAR Test Results	
14.1 Body SAR	
14.2 Repeated SAR Measurement	
15. Simultaneous Transmission Analysis	33
16. Uncertainty Assessment	
17. References	37
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA722203-01	Rev. 01	Initial issue of report	Jun. 26, 2017

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Lenovo (Shanghai) Electronics Technology Co., Ltd., Portable Tablet Computer, Lenovo TB-X704Y, are as follows.

		Highest SAR Summary
Equipment	Frequency	Body
Class	Band	1g SAR (W/kg)
		(0mm Gap)
DTS	WLAN 2.4GHz Band	1.12
NII	WLAN 5GHz Band	1.14
DSS	Bluetooth	0.50
Date of Testing:		2017/6/12

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

2. Administration Data

Testing Laboratory		
Test Site	SPORTON International (ShenZhen) INC.	
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan District, Shenzhen City, Guangdong Province, China TEL: +86-755-8637-9589 FAX: +86-755-8637-9595	
	Applicant	
Company Name	Lenovo(Shanghai) Electronics Technology Co., Ltd.	
Address	NO.68 BUILDING, 199 FENJU RD, China (Shanghai) Pilot Free Trade Zone, 200131, CHINA	
Manufacturer		
Company Name	Lenovo PC HK Limited	
Address	23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong	

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02

4. Equipment Under Test (EUT) Information

4.1 General Information

Product Feature & Specification		
Equipment Name	Portable Tablet Computer	
Brand Name	Lenovo	
Model Name	Lenovo TB-X704Y	
FCC ID	O57TBX704Y	
Wireless Technology and Frequency Range	WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5700 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz	
Mode	WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 5GHz 802.11a/n/ac HT20/HT40/VHT20/VHT40/VHT80 Bluetooth v3.0+EDR, Bluetooth v4.0 LE, Bluetooth v4.1 LE, Bluetooth v4.2 LE	
HW	Lenovo Tablet TB-X704Y	
SW	TB-X704Y_RF01_20170420	
EUT Stage	Identical Prototype	
Remark: This device has no voice function.		

4.2 <u>Component List</u>

Note: There are two types of EUT, please refer to the following table for the difference between them. According to the difference, we choose sample 1 to perform full test, and sample 2 to verify the worst case.

Component	Sample 1	Sample 2
CPU	Qualcomm APQ-8053-1-857NSP-TR-01-0-AB	Qualcomm APQ-8053-1-857NSP-TR-01-0-AB
BT/WIFI Module	Qualcomm WCN-3680B-0-79BWLNSP-TR-05-1	Qualcomm WCN-3680B-0-79BWLNSP-TR-05-1
RAM/EMMC	2G+16G Samsung KMQE10013M-B318 MCP_16GB+16Gb,LPDDR3	2G+16G Hynix H9TQ17ABJTBCUR-KUM MCP_16GB+16Gb,LPDDR3
LCD	INX: P101KDA-AF0	BOE: TV101WUM-NL1
Battery	SCUD: L16D2P31, 3.85V/7000mAh	Celxpert: L16D2P31, 3.85V/7000mAh
Camera front	Q Tech: F5695AK	AVC: BFL05006
Camera rear	Q Tech: FX219BH	film: L8856A10

5. <u>RF Exposure Limits</u>

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

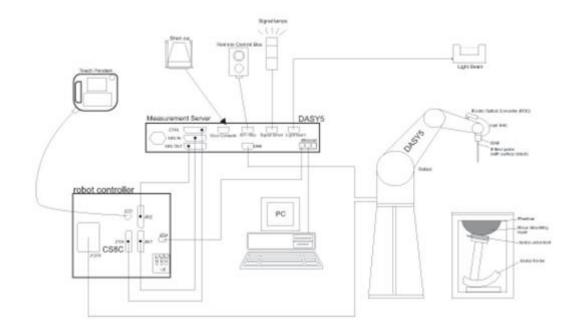
6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:


$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

7.1 <u>E-Field Probe</u>

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz – >6 GHz Linearity: ±0.2 dB (30 MHz – 6 GHz)	
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

7.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

7.3 Phantom

<SAM Twin Phantom>

Shell Thickness	ness 2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	4
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	42
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No. : FA722203-01

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

7.4 <u>Device Holder</u>

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

8. <u>Measurement Procedures</u>

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (b) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

8.3 <u>Area Scan</u>

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	\leq 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$		
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

8.4 <u>Zoom Scan</u>

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			< 3 GHz	> 3 GHz	
			_		
Maximum zoom scan s	patial reso	lution: Δx_{700m} , Δy_{700m}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}_{*}$	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$	
	1		$2-3$ GHz: ≤ 5 mm [*]	$4 - 6 \text{ GHz} \le 4 \text{ mm}^*$	
				$3 - 4$ GHz: ≤ 4 mm	
	uniform	grid: ∆z _{Zoom} (n)	$\leq 5 \text{ mm}$	$4-5$ GHz: ≤ 3 mm	
				$5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$	
Maximum zoom scan spatial resolution,	graded	$\Delta z_{Zoom}(1)$: between		3 – 4 GHz: ≤ 3 mm	
		1^{st} two points closest	\leq 4 mm	$4-5$ GHz: ≤ 2.5 mm	
normal to phantom surface		to phantom surface		$5 - 6 \text{ GHz}: \le 2 \text{ mm}$	
surface	grid	∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
N dia inana ang ang		•		3 – 4 GHz: ≥ 28 mm	
Minimum zoom scan volume	x, y, z		\geq 30 mm	$4-5$ GHz: ≥ 25 mm	
volume				$5 - 6 \text{ GHz}$: $\geq 22 \text{ mm}$	
	•		•		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

9. Test Equipment List

	N /F · · /			Calibra	ation	
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	2450MHz System Validation Kit	D2450V2	840	Nov. 25, 2016	Nov. 24, 2017	
SPEAG	5000MHz System Validation Kit	D5GHzV2	1167	Jul. 27, 2016	Jul. 26, 2017	
SPEAG	Data Acquisition Electronics	DAE4	1338	Nov. 22, 2016	Nov. 21, 2017	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3911	Sep. 29, 2016	Sep. 28, 2017	
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR	
SPEAG	ELI4 Phantom	ELI5.0	1225	NCR	NCR	
Agilent	Wireless Communication Test Set	E5515C	MY50267224	Jul. 16, 2016	Jul. 15, 2017	
Agilent	Network Analyzer	E5071C	MY46523671	Oct. 11, 2016	Oct. 10, 2017	
SPEAG	Dielectric Assessment KIT	DAK-3.5	1071	Nov. 23, 2016	Nov. 22, 2017	
Agilent	Signal Generator	N5181A	MY50145381	Jan. 03, 2017	Jan. 02, 2018	
R&S	CBT BLUETOOTH TESTER	CBT	100963	Jan. 03, 2017	Jan. 02, 2018	
Anritsu	Power Senor	MA2411B	1306099	Jan. 03, 2017	Jan. 02, 2018	
Anritsu	Power Meter	ML2495A	1349001	Jan. 03, 2017	Jan. 02, 2018	
Anritsu	Power Sensor	MA2411B	1207253	Jan. 03, 2017	Jan. 02, 2018	
Anritsu	Power Meter	ML2495A	1218010	Jan. 03, 2017	Jan. 02, 2018	
R&S	Spectrum Analyzer	FSP7	101634	Jul. 16, 2016	Jul. 15, 2017	
ARRA	Power Divider	A3200-2	NA	Not	e	
Agilent	Dual Directional Coupler	778D	50422	Not	e	
PASTERNACK	Dual Directional Coupler	PE2214-10	N/A	Not	e	
AR	Amplifier	5S1G4	333096	Not	e	
mini-circuits	Amplifier	ZVE-3W-83+	162601250	Not	e	
MCL	Attenuation1	BW-S10W5+	N/A	Not	e	
MCL	Attenuation2	BW-S10W5+	N/A	Not	е	
MCL	Attenuation3	BW-S10W5+	N/A	Note		

Note:

Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1.

Fig 10.1 Photo of Liquid Height for Body SAR

10.2 <u>Tissue Verification</u>

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)		
	For Body									
2450	68.6	0	0	0	0	31.4	1.95	52.7		

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)		
Water	64~78%		
Mineral oil	11~18%		
Emulsifiers	9~15%		
Additives and Salt	2~3%		

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
2450	Body	22.5	1.977	51.617	1.95	52.70	1.38	-2.06	±5	2017/6/12
5250	Body	22.5	5.253	50.847	5.36	48.90	-2.00	3.98	±5	2017/6/12
5600	Body	22.9	5.839	50.233	5.77	48.50	1.20	3.57	±5	2017/6/12
5750	Body	22.6	6.067	49.895	5.94	48.30	2.14	3.30	±5	2017/6/12

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured SAR (W/kg)	Targeted SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
2017/6/12	2450	Body	250	840	3911	1338	13.60	50.90	54.4	6.88
2017/6/12	5250	Body	100	1167	3911	1338	7.73	75.80	77.3	1.98
2017/6/12	5600	Body	100	1167	3911	1338	8.33	78.40	83.3	6.25
2017/6/12	5750	Body	100	1167	3911	1338	7.20	75.90	72	-5.14

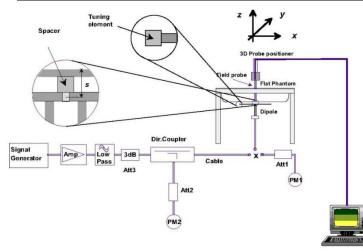


Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

11. <u>RF Exposure Positions</u>

11.1 SAR Testing for Tablet

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

This EUT was tested in two different positions. They are bottom-face and Edge1 touching with phantom 0mm.

<EUT Setup Photos>

Please refer to Appendix D for the test setup photos.

12. Conducted RF Output Power (Unit: dBm)

<WLAN Conducted Power>

General Note:

- 1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.
- 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
 - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
 - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

<2.4GHz WLAN>

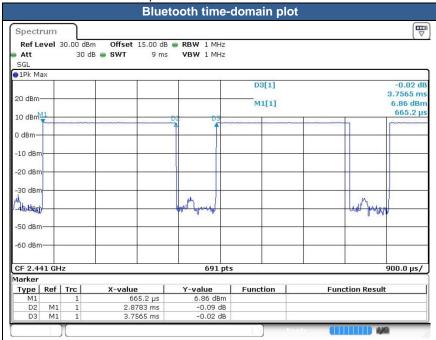
	Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %
		CH 1	2412		<mark>15.01</mark>	15.50	
	802.11b	CH 6	2437	1Mbps	14.44	15.00	97.94
		CH 11	2462		13.40	14.00	
	802.11g	CH 1	2412		14.32	14.50	87.04
2.4GHz WLAN		CH 6	2437	6Mbps	13.76	14.00	
		CH 11	2462		12.94	13.50	
		CH 1	2412		14.31	14.50	86.67
	802.11n-HT20	CH 6	2437	MCS0	13.57	14.00	
		CH 11	2462		12.99	13.50	
		CH 3	2422	MCS0	14.66	15.00	76.04
	802.11n-HT40	CH 6	2437		14.28	14.50	
		CH 9	2452		13.58	14.50	

<5GHz WLAN>

	Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %
		CH 36	5180		13.19	14.00	
	802.11a	CH 40	5200	6Mbps	12.69	14.00	87.41
	602.11a	CH 44	5220		12.99	14.00	07.41
_		CH 48	5240		<mark>13.47</mark>	14.00	
		CH 36	5180	- MCS0	13.37	13.50	
	802.11n-HT20	CH 40	5200		12.74	13.50	86.67
5.2GHz	002.1111-F1120	CH 44	5220		13.04	13.50	
WLAN		CH 48	5240		13.22	13.50	
	802.11n-HT40	CH 38	5190	MCS0	13.36	13.50	76.12
	оо <u>2.1111-н</u> 140	CH 46	5230	WC30	13.33	13.50	
		CH 36	5180		12.54	13.50	
	802.11ac-VHT20	CH 40	5200	MCS0	12.33	13.50	
	602.11ac-VH120	CH 44	5220	IVIC-SU	12.52	13.50	83.03
		CH 48	5240		12.55	13.50	
	802 11ac \/UT40	CH 38	5190	MCSO	12.53	13.50	71.13
	802.11ac-VHT40	CH 46	5230	MCS0	12.45	13.50	/1.13
	802.11ac-VHT80	CH 42	5210	MCS0	12.70	13.50	55.16

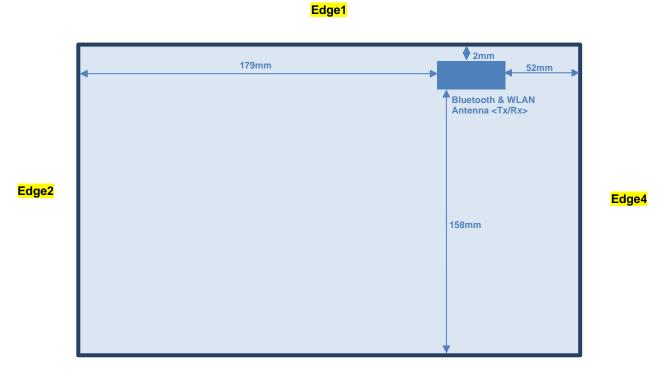
	Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %
		CH 52	5260		13.01	14.00	
802.11a	CH 56	5280	GMbpp	12.23	14.00	87.41	
	802.11a	CH 60	5300	6Mbps	<mark>13.49</mark>	14.00	07.41
		CH 64	5320		13.09	14.00	
		CH 52	5260		12.92	13.50	
	802.11n-HT20	CH 56	5280	MCS0	12.13	13.50	86.67
5.3GHz	602.1111-H120	CH 60	5300		13.39	13.50	
WLAN		CH 64	5320		13.00	13.50	
	802.11n-HT40	CH 54	5270	MCS0	13.24	13.50	76.12
	602.1111-H140	CH 62	5310	WCSU	13.33	13.50	
		CH 52	5260		12.49	13.50	
	802.11ac-VHT20	CH 56	5280	MCS0	12.30	13.50	83.03
	802.11ac-VH120	CH 60	5300	MCSU	12.42	13.50	
		CH 64	5320		12.35	13.50	
	802 11 co \// IT 10	CH 54	5270		12.42	13.50	71.10
	802.11ac-VHT40	CH 62	5310	MCS0	12.24	13.50	71.13
	802.11ac-VHT80	CH 58	5290	MCS0	12.69	13.50	55.16

	Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %
		CH 100	5500		<mark>13.39</mark>	14.00	
		CH 116	5580		12.98	14.00	
	802.11a	CH 124	5620	6Mbps	12.56	14.00	87.41
		CH 132	5660		12.77	14.00	
		CH 140	5700		12.51	14.00	
		CH 100	5500		13.21	13.50	
		CH 116	5580		12.90	13.50	
802.	802.11n-HT20	CH 124	5620	MCS0	12.64	13.50	86.67
		CH 132	5660		12.74	13.50	
		CH 140	5700		12.55	13.50	
5.5GHz	802.11n-HT40	CH 102	5510	- MCS0	13.19	13.50	
WLAN		CH 110	5550		13.19	13.50	70.40
		CH 126	5630		13.16	13.50	- 76.12
		CH 134	5670		13.20	13.50	
		CH 100	5500		12.18	13.50	-
		CH 116	5580		12.08	13.50	
	802.11ac-VHT20	CH 124	5620	MCS0	11.64	13.50	83.03
		CH 132	5660		11.68	13.50	
		CH 140	5700		11.83	13.50	
		CH 102	5510		12.08	13.50	
	000 44	CH 110	5550	MOOO	11.95	13.50	74.40
	802.11ac-VHT40	CH 126	5630	MCS0	11.68	13.50	71.13
		CH 134	5670		12.07	13.50	
		CH 106	5530	MOOO	12.39	13.50	55.40
	802.11ac-VHT80	CH 122	5610	MCS0	12.47	13.50	- 55.16


	Mode	Channel	Frequency (MHz)	Data Rate	Average Power (dBm)	Tune-Up Limit (dBm)	Duty Cycle %
		CH 149	5745		12.57	14.00	
802.11a	CH 157	5785	6Mbps	<mark>12.74</mark>	14.00	87.41	
	CH 165	5825		12.09	14.00		
		CH 149	5745		12.70	14.00	86.67
	802.11n-HT20	CH 157	5785	MCS0	12.34	14.00	
5.8GHz WLAN		CH 165	5825		12.21	14.00	
	802.11n-HT40	CH 151	5755	MCS0	12.69	13.50	76.12
	602.11 П-П 140	CH 159	5795	IVIC50	12.63	13.50	
		CH 149	5745		12.45	13.50	
	802.11ac-VHT20	CH 157	5785	MCS0	12.15	13.50	83.03
		CH 165	5825		12.21	13.50	
	802 11 co \// JT 40	CH 151	5755	MCS0	12.47	13.50	71.13
80	802.11ac-VHT40	CH 159	5795	IVIC SU	12.04	13.50	
	802.11ac-VHT80	CH 155	5775	MCS0	11.23	13.00	55.16

<2.4GHz Bluetooth>

General Note:


- 1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power.
- 2. The Bluetooth duty cycle is 76.62% as following figure, according to 2016 Oct. TCB workshop for Bluetooth SAR scaling need further consideration and the theoretical duty cycle is 83.3%, therefore the actual duty cycle will be scaled up to the theoretical value of Bluetooth reported SAR calculation.

Mode	Channel	Frequency (MHz)	Average Power (dBm) GFSK	Tune-Up Limit (dBm)
	CH 00	2402	5.77	6.00
Bluetooth v3.0+EDR	CH 39	2441	<mark>6.75</mark>	7.00
	CH 78	2480	3.84	4.00

Mode	Channel	Frequency	Average Power (dBm)	Tune-Up
Mode	Channel	(MHz)	GFSK	Limit (dBm)
	CH 00	2402	0.96	1.00
v4.0/4.1/4.2 with LE	CH 19	2440	<mark>1.79</mark>	2.00
	CH 39	2480	-1.47	-1.00

Diagonal Dimension: 298m

Edge3

Back View


General Note:

- The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW"
- 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold.
- 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
 - Power and distance are rounded to the nearest mW and mm before calculation
 - The result is rounded to one decimal place for comparison
- 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150] mW, at 100 MHz to 1500 MHz b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and \leq 6 GHz

	Wireless Interface	Bluetooth	2.4GHz WLAN	5GHz WLAN			
Exposure Position	Calculated Frequency	2480MHz	2462MHz	5825MHz			
	Maximum power (dBm)	7.00	15.50	14.00			
	Maximum rated power(mW)	5.0	35.0	25.0			
	Separation distance(mm)		0.0				
Bottom Face	exclusion threshold	1.6	11.0	12.1			
	Testing required?	No	Yes	Yes			
	Separation distance(mm)						
Edge 1	exclusion threshold	1.6	11.0	12.1			
	Testing required?	No	Yes	Yes			
	Separation distance(mm)	179.0					
Edge 2	exclusion threshold	1385.0	1386.0	1352.0			
	Testing required?	No	No	No			
	Separation distance(mm)		158.0				
Edge 3	exclusion threshold	1175.0	1176.0	1142.0			
	Testing required?	No	No	No			
	Separation distance(mm)		52.0				
Edge 4	exclusion threshold	115.0	116.0	82.0			
	Testing required?	No	No	No			

14. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
 - c. For WLAN/BT: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \cdot \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
 - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is not required when the measured SAR is < 0.8W/kg.
- 4. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 5. Per KDB 248227 D01v02r02, U-NII-1 SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.
- 6. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- 7. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 8. During SAR testing the WLAN transmission was verified using a spectrum analyzer.

14.1 <u>Body SAR</u>

<WLAN 2.4GHz SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Ch.	Freq. (MHz)	Dower	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	1	1	2412	15.01	15.50	1.119	97.94	1.021	0.08	0.970	1.109
	WLAN 2.4GHz	802.11b 1Mbps	Edge 1	0	1	1	2412	15.01	15.50	1.119	97.94	1.021	0.14	0.367	0.419
	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	1	6	2437	14.44	15.00	1.138	97.94	1.021	0.07	0.833	0.968
	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	1	11	2462	13.40	14.00	1.148	97.94	1.021	0.06	0.721	0.845
#01	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	2	1	2412	15.01	15.50	1.119	97.94	1.021	0.09	0.976	<mark>1.116</mark>
	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	2	6	2437	14.44	15.00	1.138	97.94	1.021	0.05	0.851	0.988
	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	2	11	2462	13.40	14.00	1.148	97.94	1.021	0.03	0.671	0.787

<WLAN 5GHz SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cuala	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN 5.3GHz	802.11a 6Mbps	Bottom Face	0	1	60	5300	13.49	14.00	1.125	87.41	1.144	0.06	0.330	0.425
	WLAN 5.3GHz	802.11a 6Mbps	Edge 1	0	1	60	5300	13.49	14.00	1.125	87.41	1.144	0.08	0.661	0.850
	WLAN 5.3GHz	802.11a 6Mbps	Edge 1	0	1	52	5260	13.01	14.00	1.256	87.41	1.144	0.08	0.598	0.859
#02	WLAN 5.3GHz	802.11a 6Mbps	Edge 1	0	1	56	5280	12.23	14.00	1.503	87.41	1.144	0.09	0.654	<mark>1.125</mark>
	WLAN 5.3GHz	802.11a 6Mbps	Edge 1	0	1	64	5320	13.09	14.00	1.233	87.41	1.144	0.04	0.722	1.019
	WLAN 5.3GHz	802.11a 6Mbps	Edge 1	0	2	56	5280	12.23	14.00	1.503	87.41	1.144	0.04	0.545	0.937
	WLAN 5.3GHz	802.11a 6Mbps	Edge 1	0	2	52	5260	13.01	14.00	1.256	87.41	1.144	0.02	0.548	0.787
	WLAN 5.3GHz	802.11a 6Mbps	Edge 1	0	2	60	5300	13.49	14.00	1.125	87.41	1.144	0.05	0.604	0.777
	WLAN 5.3GHz	802.11a 6Mbps	Edge 1	0	2	64	5320	13.09	14.00	1.233	87.41	1.144	0.07	0.516	0.728
	WLAN 5.5GHz	802.11a 6Mbps	Bottom Face	0	1	100	5500	13.39	14.00	1.151	87.41	1.144	0.08	0.602	0.793
	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	1	100	5500	13.39	14.00	1.151	87.41	1.144	0.05	0.788	1.037
#03	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	1	116	5580	12.98	14.00	1.265	87.41	1.144	0.03	0.790	<mark>1.143</mark>
	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	1	124	5620	12.56	14.00	1.393	87.41	1.144	0.06	0.709	1.130
	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	1	132	5660	12.77	14.00	1.327	87.41	1.144	0.03	0.663	1.007
	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	1	140	5700	12.51	14.00	1.409	87.41	1.144	0.07	0.694	1.119
	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	2	116	5580	12.98	14.00	1.265	87.41	1.144	0.03	0.728	1.053
	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	2	100	5500	13.39	14.00	1.151	87.41	1.144	0.05	0.769	1.012
	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	2	124	5620	12.56	14.00	1.393	87.41	1.144	0.07	0.713	1.136
	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	2	132	5660	12.77	14.00	1.327	87.41	1.144	0.06	0.704	1.069
	WLAN 5.5GHz	802.11a 6Mbps	Edge 1	0	2	140	5700	12.51	14.00	1.409	87.41	1.144	0.15	0.598	0.964
	WLAN 5.8GHz	802.11a 6Mbps	Bottom Face	0	1	157	5785	12.74	14.00	1.337	87.41	1.144	0.05	0.504	0.771
	WLAN 5.8GHz	802.11a 6Mbps	Edge 1	0	1	157	5785	12.74	14.00	1.337	87.41	1.144	0.03	0.510	0.780
#04	WLAN 5.8GHz	802.11a 6Mbps	Edge 1	0	1	149	5745	12.57	14.00	1.390	87.41	1.144	0.06	0.578	<mark>0.919</mark>
	WLAN 5.8GHz	802.11a 6Mbps	Edge 1	0	1	165	5825	12.09	14.00	1.552	87.41	1.144	0.07	0.474	0.842
	WLAN 5.8GHz	802.11a 6Mbps	Edge 1	0	2	149	5745	12.57	14.00	1.390	87.41	1.144	0.04	0.528	0.840
	WLAN 5.8GHz	802.11a 6Mbps	Edge 1	0	2	157	5785	12.74	14.00	1.337	87.41	1.144	0.06	0.457	0.699
	WLAN 5.8GHz	802.11a 6Mbps	Edge 1	0	2	165	5825	12.09	14.00	1.552	87.41	1.144	0.06	0.368	0.654

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Sample	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	Bluetooth	1Mbps	Bottom Face	0	1	39	2441	6.75	7.00	1.059	76.62	1.087	0.03	0.362	0.417
	Bluetooth	1Mbps	Edge 1	0	1	39	2441	6.75	7.00	1.059	76.62	1.087	-0.02	0.145	0.167
	Bluetooth	1Mbps	Bottom Face	0	1	00	2402	5.77	6.00	1.054	76.62	1.087	0.05	0.283	0.324
	Bluetooth	1Mbps	Bottom Face	0	1	78	2480	3.84	4.00	1.038	76.62	1.087	0.09	0.248	0.280
#05	Bluetooth	1Mbps	Bottom Face	0	2	39	2441	6.75	7.00	1.059	76.62	1.087	0.02	0.430	<mark>0.495</mark>

14.2 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (mm)	Sample	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	2	1	2412	15.01	15.50	1.119	97.94	1.021	0.09	0.976	1	1.116
2nd	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	2	1	2412	15.01	15.50	1.119	97.94	1.021	0.04	0.950	1.027	1.086

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

15. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission Configurations
1.	None
Note:	

- 1. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 2. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment.

Test Engineer : Weilong Chen

16. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 16.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)				
Measurement System											
Probe Calibration	6.0	N	1	1	1	6.0	6.0				
Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9				
Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9				
Boundary Effects	1.0	R	1.732	1	1	0.6	0.6				
Linearity	4.7	R	1.732	1	1	2.7	2.7				
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6				
Modulation Response	3.2	R	1.732	1	1	1.8	1.8				
Readout Electronics	0.3	N	1	1	1	0.3	0.3				
Response Time	0.0	R	1.732	1	1	0.0	0.0				
Integration Time	2.6	R	1.732	1	1	1.5	1.5				
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7				
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7				
Probe Positioner	0.4	R	1.732	1	1	0.2	0.2				
Probe Positioning	2.9	R	1.732	1	1	1.7	1.7				
Max. SAR Eval.	2.0	R	1.732	1	1	1.2	1.2				
Test Sample Related											
Device Positioning	3.0	N	1	1	1	3.0	3.0				
Device Holder	3.6	N	1	1	1	3.6	3.6				
Power Drift	5.0	R	1.732	1	1	2.9	2.9				
Power Scaling	0.0	R	1.732	1	1	0.0	0.0				
Phantom and Setup											
Phantom Uncertainty	6.1	R	1.732	1	1	3.5	3.5				
SAR correction	0.0	R	1.732	1	0.84	0.0	0.0				
Liquid Conductivity Repeatability	0.2	N	1	0.78	0.71	0.1	0.1				
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0				
Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0				
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4				
Liquid Permittivity Repeatability	0.15	N	1	0.23	0.26	0.0	0.0				
Liquid Permittivity (target)	Liquid Permittivity (target) 5.0 R 1.732 0.23 0.2										
Liquid Permittivity (mea.)	2.5	R	1.732	0.23	0.26	0.3	0.4				
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1				
Cor	nbined Std. Ur	certainty				11.4%	11.4%				
Co	verage Factor	for 95 %				K=2	K=2				
Exp	Expanded STD Uncertainty										

 Table 16.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

Error Description Uncertainty Value (±%) Probability Divisor (Ci) 1g (Ci) (1g) Standard Uncertainty (tg) (±%) Standard Uncertainty (tg) (±%) Measurement System	ORTON LAB. TOO SAN TESTNE							RI 22203-01				
Probe Calibration 6.55 N 1 1 1 1 1 6.6 6.6 Axial Isotropy 4.7 R 1.732 0.7 0.7 1.9 1.9 Hemispherical Isotropy 9.6 R 1.732 0.7 0.7 3.9 3.9 Boundary Effects 2.0 R 1.732 1 1 1.2 1.2 Linearity 4.7 R 1.732 1 1 0.6 0.6 Modulation Response 3.2 R 1.732 1 1 0.6 0.6 Modulation Response 3.2 R 1.732 1 1 0.0 0.0 Integration Time 0.0 R 1.732 1 1 1.7 1.7 RF Ambient Noise 3.0 R 1.732 1 1 1.7 1.7 Probe Positioning 6.7 R 1.732 1 1 2.9 2.9 Probe Positioni	Error Description	Value	Probability	Divisor			Uncertainty	Uncertainty				
Axial Isotropy 4.7 R 1.732 0.7 0.7 1.9 1.9 Hemispherical Isotropy 9.6 R 1.732 0.7 0.7 3.9 3.9 Boundary Effects 2.0 R 1.732 1 1 1.2 1.2 Linearity 4.7 R 1.732 1 1 2.7 2.7 System Detection Limits 1.0 R 1.732 1 1 0.6 0.6 Modulation Response 3.2 R 1.732 1 1 0.6 0.6 Medulation Response 3.2 R 1.732 1 1 0.8 0.3 Response Time 0.0 R 1.732 1 1 1.5 1.5 RF Ambient Reflections 3.0 R 1.732 1 1 1.7 1.7 Probe Positioning 6.7 R 1.732 1 1 2.3 2.3 Test Sample Related Devi	Measurement System											
Hemispherical Isotropy 9.6 R 1.732 0.7 0.7 3.9 3.9 Boundary Effects 2.0 R 1.732 1 1 1.2 1.2 Linearity 4.7 R 1.732 1 1 2.7 2.7 System Detection Limits 1.0 R 1.732 1 1 0.6 0.6 Modulation Response 3.2 R 1.732 1 1 0.6 0.6 Modulation Response 3.2 R 1.732 1 1 0.6 0.6 Meduation Response 3.2 R 1.732 1 1 0.0 0.0 Integration Time 2.6 R 1.732 1 1 1.5 1.5 RF Ambient Reflections 3.0 R 1.732 1 1 1.7 1.7 Probe Positioner 0.4 R 1.732 1 1 2.3 2.3 Device Positioning 6.7	Probe Calibration	6.55	N	1	1	1	6.6	6.6				
Boundary Effects 2.0 R 1.732 1 1 1.2 1.2 Linearity 4.7 R 1.732 1 1 2.7 2.7 System Detection Limits 1.0 R 1.732 1 1 2.7 2.7 System Detection Limits 1.0 R 1.732 1 1 0.6 0.6 Modulation Response 3.2 R 1.732 1 1 0.3 0.3 Readout Electronics 0.3 N 1 1 1 0.0 0.0 Integration Time 2.6 R 1.732 1 1 1.7 1.7 RF Ambient Reflections 3.0 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 2.3 2.3 Test Sample Related Device Po	Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9				
Linearity 4.7 R 1.732 1 1 2.7 2.7 System Detection Limits 1.0 R 1.732 1 1 0.6 0.6 Modulation Response 3.2 R 1.732 1 1 0.6 0.6 Medulation Response 0.3 N 1 1 1 0.3 0.3 Readout Electronics 0.3 N 1 1 1 0.0 0.0 Integration Time 2.6 R 1.732 1 1 1.7 1.7 RF Ambient Noise 3.0 R 1.732 1 1 1.7 1.7 Probe Positioner 0.4 R 1.732 1 1 3.9 3.9 Max. SAR Eval. 4.0 R 1.732 1 1 2.3 2.3 Test Sample Related Device Positioning 3.0 N 1 1 1 3.6 3.6 Power Drift	Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9				
System Detection Limits 1.0 R 1.732 1 1 0.6 0.6 Modulation Response 3.2 R 1.732 1 1 1.8 1.8 Readout Electronics 0.3 N 1 1 1 0.3 0.3 Response Time 0.0 R 1.732 1 1 0.0 0.0 Integration Time 2.6 R 1.732 1 1 1.7 1.7 RF Ambient Noise 3.0 R 1.732 1 1 1.7 1.7 Probe Positioner 0.4 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 3.9 3.9 Max. SAR Eval. 4.0 R 1.732 1 1 2.3 2.3 Test Sample Related 1 1 3.6 3.6 Power Drift 5.0	Boundary Effects	2.0	R	1.732	1	1	1.2	1.2				
Modulation Response 3.2 R 1.732 1 1 1.8 1.8 Readout Electronics 0.3 N 1 1 1 0.3 0.3 Response Time 0.0 R 1.732 1 1 0.0 0.0 Integration Time 2.6 R 1.732 1 1 1.5 1.5 RF Ambient Noise 3.0 R 1.732 1 1 1.7 1.7 RF Ambient Noise 3.0 R 1.732 1 1 1.7 1.7 Probe Positioner 0.4 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 2.3 2.3 Test Sample Related U U U U 1 1 3.6 3.6 Power Drift 5.0 R 1.732 1 1 2.9 2.9 Power Scaling 0.0	Linearity	4.7	R	1.732	1	1	2.7	2.7				
Readout Electronics 0.3 N 1 1 1 1 0.3 0.3 Response Time 0.0 R 1.732 1 1 0.0 0.0 Integration Time 2.6 R 1.732 1 1 1.5 1.5 RF Ambient Noise 3.0 R 1.732 1 1 1.7 1.7 RF Ambient Reflections 3.0 R 1.732 1 1 1.7 1.7 Probe Positioner 0.4 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 2.3 2.3 Test Sample Related	System Detection Limits	1.0	R	1.732	1	1	0.6	0.6				
Response Time 0.0 R 1.732 1 1 0.0 0.0 Integration Time 2.6 R 1.732 1 1 1.5 1.5 RF Ambient Noise 3.0 R 1.732 1 1 1.7 1.7 RF Ambient Reflections 3.0 R 1.732 1 1 1.7 1.7 Probe Positioner 0.4 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 2.3 2.3 Test Sample Related 1 1 3.0 3.0 Device Positioning 3.0 N 1 1 1 3.6 3.6 Power Drift 5.0 R 1.732 1 1 3.8 3.8 SAR correction 0.0	Modulation Response	3.2	R	1.732	1	1	1.8	1.8				
Integration Time 2.6 R 1.732 1 1 1.5 1.5 RF Ambient Noise 3.0 R 1.732 1 1 1.7 1.7 RF Ambient Reflections 3.0 R 1.732 1 1 1.7 1.7 Probe Positioner 0.4 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 2.3 2.3 Test Sample Related	Readout Electronics	0.3	N	1	1	1	0.3	0.3				
RF Ambient Noise 3.0 R 1.732 1 1 1.7 1.7 RF Ambient Reflections 3.0 R 1.732 1 1 1.7 1.7 Probe Positioner 0.4 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 0.2 0.2 Max. SAR Eval. 4.0 R 1.732 1 1 2.3 2.3 Test Sample Related 1 1 3.6 3.6 Device Positioning 3.0 N 1 1 1 3.6 3.6 Power Drift 5.0 R 1.732 1 1 0.0 0.0 Phantom Uncertainty 6.6	Response Time	0.0	R	1.732	1	1	0.0	0.0				
RF Ambient Reflections 3.0 R 1.732 1 1 1.7 1.7 Probe Positioner 0.4 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 3.9 3.9 Max. SAR Eval. 4.0 R 1.732 1 1 2.3 2.3 Test Sample Related Device Positioning 3.0 N 1 1 1 3.6 3.6 Device Holder 3.6 N 1 1 1 3.6 3.6 Power Drift 5.0 R 1.732 1 1 0.0 0.0 Phantom Uncertainty 6.6 R 1.732 1 1 3.8 3.8 SAR correction 0.0 R 1.732 1 0.84 0.0 0.0 <td< td=""><td>Integration Time</td><td>2.6</td><td>R</td><td>1.732</td><td>1</td><td>1</td><td>1.5</td><td>1.5</td></td<>	Integration Time	2.6	R	1.732	1	1	1.5	1.5				
Probe Positioner 0.4 R 1.732 1 1 0.2 0.2 Probe Positioning 6.7 R 1.732 1 1 3.9 3.9 Max. SAR Eval. 4.0 R 1.732 1 1 2.3 2.3 Test Sample Related Device Positioning 3.0 N 1 1 1 3.0 3.0 Device Holder 3.6 N 1 1 1 3.6 3.6 Power Drift 5.0 R 1.732 1 1 2.9 2.9 Power Scaling 0.0 R 1.732 1 1 0.0 0.0 Phantom Uncertainty 6.6 R 1.732 1 1 3.8 3.8 SAR correction 0.0 R 1.732 1 1 3.8 3.8 Iquid Conductivity Repeatability 0.2 N 1 0.78 0.71 0.1 0.1	RF Ambient Noise	1	1.7	1.7								
Probe Positioning 6.7 R 1.732 1 1 3.9 3.9 Max. SAR Eval. 4.0 R 1.732 1 1 2.3 2.3 Test Sample Related Device Positioning 3.0 N 1 1 1 3.0 3.0 Device Positioning 3.0 N 1 1 1 3.6 3.6 Device Holder 3.6 N 1 1 1 3.6 3.6 Power Drift 5.0 R 1.732 1 1 2.9 2.9 Power Scaling 0.0 R 1.732 1 1 0.0 0.0 Phantom Uncertainty 6.6 R 1.732 1 1 3.8 3.8 SAR correction 0.0 R 1.732 1 0.84 0.0 0.0 Liquid Conductivity Repeatability 0.2 N 1 0.78 0.71 0.1 0.1	RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7				
Max. SAR Eval. 4.0 R 1.732 1 1 2.3 2.3 Test Sample Related	Probe Positioner	0.4	R	1.732	1	1	0.2	0.2				
Max. SAR Eval. 4.0 R 1.732 1 1 2.3 2.3 Test Sample Related Device Positioning 3.0 N 1 1 1 2.3 2.3 Device Positioning 3.0 N 1 1 1 3.0 3.0 Device Holder 3.6 N 1 1 1 3.6 3.6 Power Drift 5.0 R 1.732 1 1 2.9 2.9 Power Scaling 0.0 R 1.732 1 1 0.0 0.0 Phantom and Setup Phantom Uncertainty 6.6 R 1.732 1 1 3.8 3.8 SAR correction 0.0 R 1.732 1 0.84 0.0 0.0 Liquid Conductivity Repeatability 0.2 N 1 0.78 0.71 0.1 0.1 Liquid Conductivity (target) 5.0 R 1.732 0.78 0.71 1.1 1.0	Probe Positioning	6.7	R	1.732	1	1	3.9	3.9				
Device Positioning 3.0 N 1 1 1 1 3.0 3.0 Device Holder 3.6 N 1 1 1 3.6 3.6 Power Drift 5.0 R 1.732 1 1 2.9 2.9 Power Scaling 0.0 R 1.732 1 1 0.0 0.0 Phantom and Setup	Max. SAR Eval.	4.0	R	1.732	1	1	2.3	2.3				
Device Holder 3.6 N 1 1 1 1 1 3.6 3.6 Power Drift 5.0 R 1.732 1 1 2.9 2.9 Power Scaling 0.0 R 1.732 1 1 0.0 0.0 Phantom and Setup V V V V V V Phantom Uncertainty 6.6 R 1.732 1 1 0.0 0.0 Phantom Uncertainty 6.6 R 1.732 1 0.84 0.0 0.0 Liquid Conductivity Repeatability 0.2 N 1 0.78 0.71 0.1 0.1 Liquid Conductivity (target) 5.0 R 1.732 0.78 0.71 1.1 1.0 Temp. unc Conductivity (mea.) 2.5 R 1.732 0.78 0.71 1.5 1.4 Liquid Permittivity (Repeatability 0.15 N 1 0.23 0.26 0.0 0.0	Test Sample Related											
Power Drift 5.0 R 1.732 1 1 2.9 2.9 Power Scaling 0.0 R 1.732 1 1 0.0 0.0 Phantom and Setup	Device Positioning	3.0	N	1	1	1	3.0	3.0				
Power Scaling 0.0 R 1.732 1 1 0.0 0.0 Phantom and Setup Phantom Uncertainty 6.6 R 1.732 1 1 3.8 3.8 SAR correction 0.0 R 1.732 1 0.84 0.0 0.0 Liquid Conductivity Repeatability 0.2 N 1 0.78 0.71 0.1 0.1 Liquid Conductivity (target) 5.0 R 1.732 0.78 0.71 2.3 2.0 Liquid Conductivity (mea.) 2.5 R 1.732 0.78 0.71 1.1 1.0 Temp. unc Conductivity 3.4 R 1.732 0.78 0.71 1.5 1.4 Liquid Permittivity Repeatability 0.15 N 1 0.23 0.26 0.0 0.0 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.77 0.8 Liquid Permittivity (mea.) 2.5 R 1.732 0.23	Device Holder	3.6	N	1	1	1	3.6	3.6				
Phantom and Setup Phantom Uncertainty 6.6 R 1.732 1 1 3.8 3.8 SAR correction 0.0 R 1.732 1 0.84 0.0 0.0 Liquid Conductivity Repeatability 0.2 N 1 0.78 0.71 0.1 0.1 Liquid Conductivity (target) 5.0 R 1.732 0.78 0.71 2.3 2.0 Liquid Conductivity (mea.) 2.5 R 1.732 0.78 0.71 1.1 1.0 Temp. unc Conductivity 3.4 R 1.732 0.78 0.71 1.5 1.4 Liquid Permittivity Repeatability 0.15 N 1 0.23 0.26 0.0 0.0 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (mea.) 2.5 R 1.732	Power Drift	5.0	R	1.732	1	1	2.9	2.9				
Phantom and Setup Phantom Uncertainty 6.6 R 1.732 1 1 3.8 3.8 SAR correction 0.0 R 1.732 1 0.84 0.0 0.0 Liquid Conductivity Repeatability 0.2 N 1 0.78 0.71 0.1 0.1 Liquid Conductivity (target) 5.0 R 1.732 0.78 0.71 2.3 2.0 Liquid Conductivity (mea.) 2.5 R 1.732 0.78 0.71 1.1 1.0 Temp. unc Conductivity 3.4 R 1.732 0.78 0.71 1.5 1.4 Liquid Permittivity Repeatability 0.15 N 1 0.23 0.26 0.0 0.0 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.3 0.4 Temp. unc Permittivity (mea.) 2.5 R	Power Scaling	0.0	R	1.732	1	1	0.0	0.0				
SAR correction 0.0 R 1.732 1 0.84 0.0 0.0 Liquid Conductivity Repeatability 0.2 N 1 0.78 0.71 0.1 0.1 Liquid Conductivity (target) 5.0 R 1.732 0.78 0.71 2.3 2.0 Liquid Conductivity (mea.) 2.5 R 1.732 0.78 0.71 1.1 1.0 Temp. unc Conductivity 3.4 R 1.732 0.78 0.71 1.5 1.4 Liquid Permittivity Repeatability 0.15 N 1 0.23 0.26 0.0 0.0 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.3 0.4 Temp. unc Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.1 0.1 Combined Std. Uncertainty 12.5% 12.5% 12.5%	-		l.									
Liquid Conductivity Repeatability 0.2 N 1 0.78 0.71 0.1 0.1 Liquid Conductivity (target) 5.0 R 1.732 0.78 0.71 2.3 2.0 Liquid Conductivity (mea.) 2.5 R 1.732 0.78 0.71 1.1 1.0 Temp. unc Conductivity 3.4 R 1.732 0.78 0.71 1.5 1.4 Liquid Permittivity Repeatability 0.15 N 1 0.23 0.26 0.0 0.0 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.3 0.4 Temp. unc Permittivity 0.83 R 1.732 0.23 0.26 0.1 0.1 Combined Std. Uncertainty 12.5% 12.5% K=2<	Phantom Uncertainty	6.6	R	1.732	1	1	3.8	3.8				
Liquid Conductivity (target) 5.0 R 1.732 0.78 0.71 2.3 2.0 Liquid Conductivity (mea.) 2.5 R 1.732 0.78 0.71 1.1 1.0 Temp. unc Conductivity 3.4 R 1.732 0.78 0.71 1.5 1.4 Liquid Permittivity Repeatability 0.15 N 1 0.23 0.26 0.0 0.0 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.3 0.4 Temp. unc Permittivity 0.83 R 1.732 0.23 0.26 0.1 0.1 Combined Std. Uncertainty 12.5% 12.5% K=2 K=2	SAR correction	0.0	R	1.732	1	0.84	0.0	0.0				
Liquid Conductivity (mea.) 2.5 R 1.732 0.78 0.71 1.1 1.0 Temp. unc Conductivity 3.4 R 1.732 0.78 0.71 1.5 1.4 Liquid Permittivity Repeatability 0.15 N 1 0.23 0.26 0.0 0.0 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.1 0.4 Temp. unc Permittivity 0.83 R 1.732 0.23 0.26 0.1 0.1 Combined Std. Uncertainty 12.5% 12.5% 12.5% 12.5% 12.5%	Liquid Conductivity Repeatability	0.2	N	1	0.78	0.71	0.1	0.1				
Temp. unc Conductivity 3.4 R 1.732 0.78 0.71 1.5 1.4 Liquid Permittivity Repeatability 0.15 N 1 0.23 0.26 0.0 0.0 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.1 0.4 Temp. unc Permittivity 0.83 R 1.732 0.23 0.26 0.1 0.1 Combined Std. Uncertainty 12.5% 12.5% K=2 K=2	Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0				
Liquid Permittivity Repeatability 0.15 N 1 0.23 0.26 0.0 0.0 Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.3 0.4 Temp. unc Permittivity 0.83 R 1.732 0.23 0.26 0.1 0.1 Combined Std. Uncertainty Coverage Factor for 95 % K=2 K=2	Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0				
Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26 0.7 0.8 Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.3 0.4 Temp. unc Permittivity 0.83 R 1.732 0.23 0.26 0.1 0.1 Combined Std. Uncertainty K=2 K=2 K=2 K=2	Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4				
Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.3 0.4 Temp. unc Permittivity 0.83 R 1.732 0.23 0.26 0.1 0.1 Combined Std. Uncertainty Coverage Factor for 95 % K=2 K=2	Liquid Permittivity Repeatability											
Liquid Permittivity (mea.) 2.5 R 1.732 0.23 0.26 0.3 0.4 Temp. unc Permittivity 0.83 R 1.732 0.23 0.26 0.1 0.1 Combined Std. Uncertainty K 12.5% K=2	Liquid Permittivity (target)	Liquid Permittivity (target) 5.0 R 1.732 0.23 0.26										
Combined Std. Uncertainty 12.5% 12.5% Coverage Factor for 95 % K=2 K=2		2.5	R			0.26	0.3	0.4				
Coverage Factor for 95 % K=2 K=2	Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1				
	Cor	nbined Std. Ur	ncertainty				12.5%	12.5%				
Expanded STD Uncertainty 25.1% 25.0%	Co	verage Factor	for 95 %				K=2	K=2				
	Exp											

 Table 16.3. Uncertainty Budget for frequency range 3 GHz to 6 GHz

17. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015
- [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015
- [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [8] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [9] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015

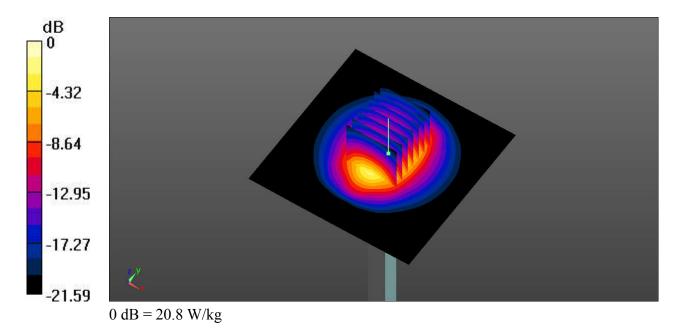
Report No. : FA722203-01

Appendix A. Plots of System Performance Check

The plots are shown as follows.

System Check_Body_2450MHz_170612

DUT: D2450V2-SN:840


Communication System: UID 0, CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: MSL_2450_170612 Medium parameters used: f = 2450 MHz; $\sigma = 1.977$ S/m; $\epsilon_r = 51.617$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration:

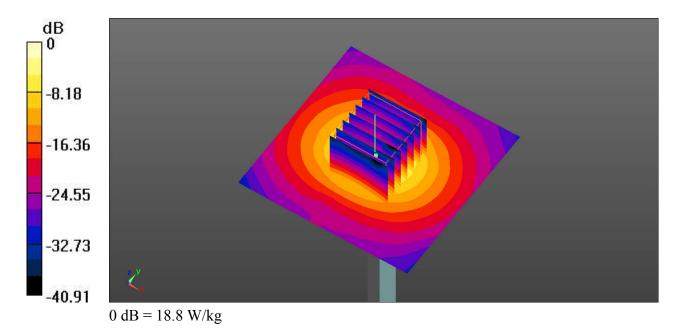
- Probe: EX3DV4 SN3911; ConvF(7.66, 7.66, 7.66); Calibrated: 2016.09.29;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2016.11.22
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 20.9 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.82 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.8 W/kg **SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.29 W/kg** Maximum value of SAR (measured) = 20.8 W/kg

System Check_Body_5250MHz_170612

DUT:D5GHzV2-SN:1167


Communication System: UID 0, CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium: MSL_5250_170612 Medium parameters used: f = 5250 MHz; $\sigma = 5.253$ S/m; $\epsilon_r = 50.847$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration:

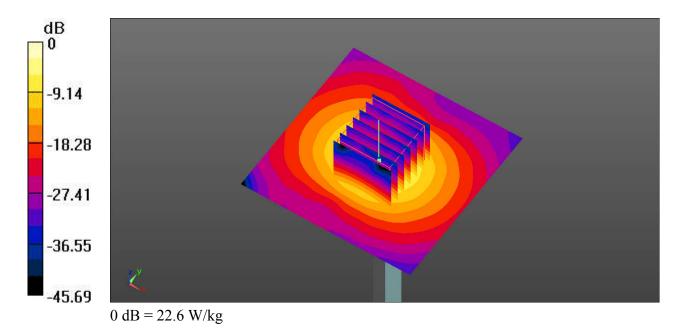
- Probe: EX3DV4 SN3911; ConvF(4.62, 4.62, 4.62); Calibrated: 2016.09.29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2016.11.22
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 18.2 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 49.76 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.8 W/kg

System Check_Body_5600MHz_170612

DUT: D5GHzV2-SN:1167


Communication System: UID 0, CW (0); Frequency: 5600 MHz;Duty Cycle: 1:1 Medium: MSL_5600_170612 Medium parameters used: f = 5600 MHz; $\sigma = 5.839$ S/m; $\epsilon_r = 50.233$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.9 °C

DASY5 Configuration:

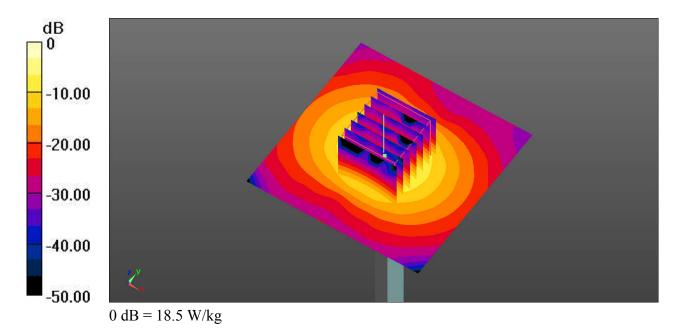
- Probe: EX3DV4 SN3911; ConvF(3.78, 3.78, 3.78); Calibrated: 2016.09.29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2016.11.22
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 21.6 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 51.85 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 35.9 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 22.6 W/kg

System Check_Body_5750MHz_170612

DUT: D5GHzV2-SN:1167


Communication System: UID 0, CW (0); Frequency: 5750 MHz;Duty Cycle: 1:1 Medium: MSL_5750_170612 Medium parameters used: f = 5750 MHz; $\sigma = 6.067$ S/m; $\epsilon_r = 49.895$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3911; ConvF(3.95, 3.95, 3.95); Calibrated: 2016.09.29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2016.11.22
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 17.9 W/kg

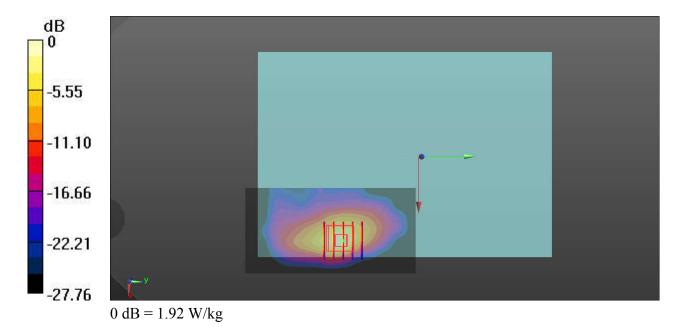
Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 44.98 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 30.0 W/kg SAR(1 g) = 7.2 W/kg; SAR(10 g) = 1.96 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Report No. : FA722203-01

Appendix B. Plots of High SAR Measurement

The plots are shown as follows.

#01_WLAN2.4GHz_802.11b 1Mbps_Bottom Face_0mm_Ch1_Sample 2


Communication System: UID 0, WIFI (0); Frequency: 2412 MHz;Duty Cycle: 1:1.021 Medium: MSL_2450_170612 Medium parameters used: f = 2412 MHz; $\sigma = 1.925$ S/m; $\epsilon_r = 51.737$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.5 °C

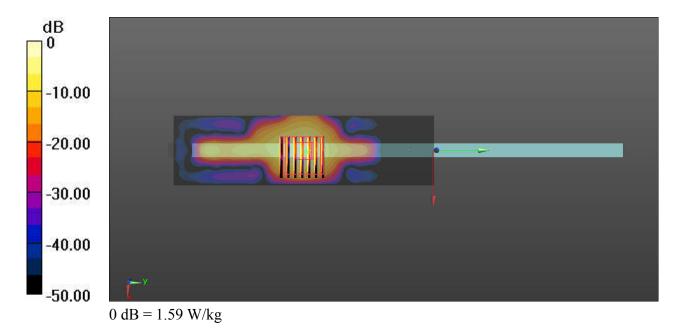
DASY5 Configuration:

- Probe: EX3DV4 SN3911; ConvF(7.66, 7.66, 7.66); Calibrated: 2016.09.29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2016.11.22
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch1/Area Scan (61x121x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.80 W/kg

Ch1/Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 2.49 W/kg SAR(1 g) = 0.976 W/kg; SAR(10 g) = 0.407 W/kg Maximum value of SAR (measured) = 1.92 W/kg

#02_WLAN5.3GHz_802.11a 6Mbps_Edge 1_0mm_Ch56_Sample 1


Communication System: UID 0, WIFI (0); Frequency: 5280 MHz;Duty Cycle: 1:1.144 Medium: MSL_5250_170612 Medium parameters used: f = 5280 MHz; $\sigma = 5.305$ S/m; $\epsilon_r = 50.821$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration:

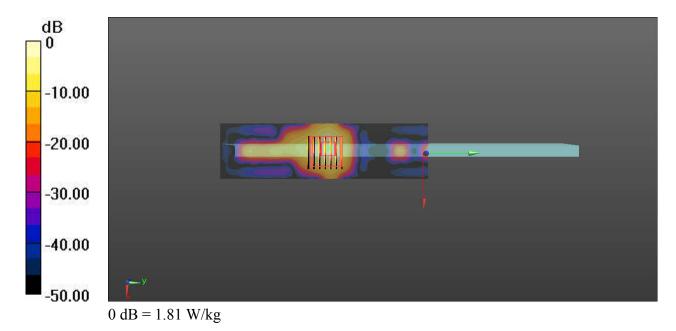
- Probe: EX3DV4 SN3911; ConvF(4.62, 4.62, 4.62); Calibrated: 2016.09.29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2016.11.22
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch56/Area Scan (41x151x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.78 W/kg

Ch56/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 2.41 W/kgSAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.162 W/kgMaximum value of SAR (measured) = 1.59 W/kg

#03_WLAN5.5GHz_802.11a 6Mbps_Edge 1_0mm_Ch116_Sample 1

Communication System: UID 0, WIFI (0); Frequency: 5580 MHz;Duty Cycle: 1:1.144 Medium: MSL_5600_170612 Medium parameters used: f = 5580 MHz; $\sigma = 5.802$ S/m; $\epsilon_r = 50.26$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.4 °C; Liquid Temperature : 22.9 °C

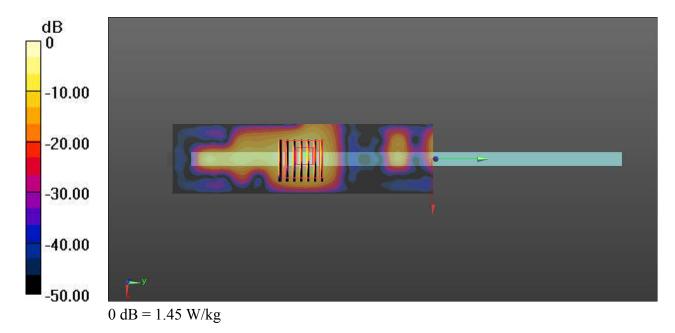
DASY5 Configuration:

- Probe: EX3DV4 SN3911; ConvF(3.78, 3.78, 3.78); Calibrated: 2016.09.29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2016.11.22
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch116/Area Scan (41x151x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.93 W/kg

Ch116/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.72 W/kg SAR(1 g) = 0.790 W/kg; SAR(10 g) = 0.196 W/kg Maximum value of SAR (measured) = 1.81 W/kg

#04_WLAN5.8GHz_802.11a 6Mbps_Edge 1_0mm_Ch149_Sample 1


Communication System: UID 0, WIFI (0); Frequency: 5745 MHz;Duty Cycle: 1:1.144 Medium: MSL_5750_170612 Medium parameters used: f = 5745 MHz; $\sigma = 6.059$ S/m; $\epsilon_r = 49.907$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C

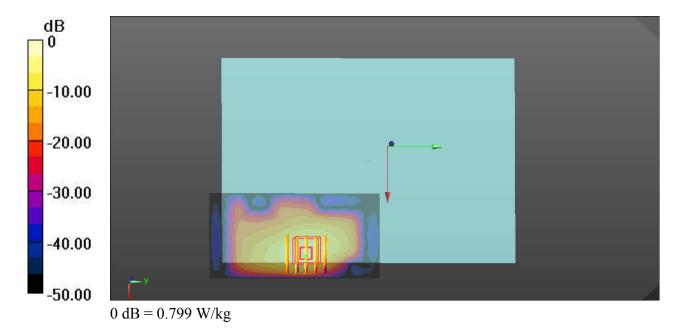
DASY5 Configuration:

- Probe: EX3DV4 SN3911; ConvF(3.95, 3.95, 3.95); Calibrated: 2016.09.29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2016.11.22
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch149/Area Scan (41x151x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.55 W/kg

Ch149/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 2.92 W/kg SAR(1 g) = 0.578 W/kg; SAR(10 g) = 0.143 W/kg Maximum value of SAR (measured) = 1.45 W/kg

#05_Bluetooth_1Mbps_Bottom Face_0mm_Ch39_Sample 2


Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz;Duty Cycle: 1:1.305 Medium: MSL_2450_170612 Medium parameters used: f = 2441 MHz; $\sigma = 1.967$ S/m; $\varepsilon_r = 51.626$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3911; ConvF(7.66, 7.66, 7.66); Calibrated: 2016.09.29;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2016.11.22
- Phantom: ELI v5.0(Right); Type: QDOVA001BB; Serial: TP:1225
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch39/Area Scan (61x121x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.799 W/kg

Ch39/Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.430 W/kg; SAR(10 g) = 0.183 W/kg Maximum value of SAR (measured) = 0.848 W/kg

Report No. : FA722203-01

Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.

Add: N	In Collaboration with S D C ALIBRATION LABORAT Ro.51 Xueyuan Road, Haidian District, Beijing, 1001	Micro-HILVE GIVAJ 校准
Tel: +8	6-10-62304633-2079 Fax: +86-10-62304633- : cttl@chinattl.com <u>Http://www.chinattl.cn</u>	
Client	Sporton-CN	Certificate No: Z16-97231
Object	D2450V2 - SN: 840	
Calibration Proces	FD-211-003-01	s for dipole validation kits
Calibration date:	November 25, 2016	
		national standards, which realize the physical units of ies with confidence probability are given on the following

pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
SN 771	02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17
Name	Function	Signature
Zhao Jing	SAR Test Engineer	12
Qi Dianyuan	SAR Project Leader	ZR
Lu Bingsong	Deputy Director of the laboratory	BALASTY
	101919 101547 SN 7433 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing Qi Dianyuan	10191927-Jun-16 (CTTL, No.J16X04777)10154727-Jun-16 (CTTL, No.J16X04777)SN 743326-Sep-16(SPEAG,No.EX3-7433_Sep16)SN 77102-Feb-16(CTTL-SPEAG,No.Z16-97011)ID #Cal Date(Calibrated by, Certificate No.)MY4907143001-Feb-16 (CTTL, No.J16X00893)MY4611067326-Jan-16 (CTTL, No.J16X00894)NameFunctionZhao JingSAR Test EngineerQi DianyuanSAR Project Leader

Issued: November 27, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with
SDEAG

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

e

а

a

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 *C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9±6%	1.79 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

Condition	
250 mW input power	13.5 mW / g
normalized to 1W	54.0 mW /g ± 20.8 % (k=2)
Condition	
250 mW input power	6.33 mW / g
normalized to 1W	25.3 mW /g ± 20.4 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	1.97 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	(2002)	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.02 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.0 mW /g ± 20.4 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7Ω+ 5.54jΩ
Return Loss	- 24.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8Ω+ 6.00jΩ	
Return Loss	- 24.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.045 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

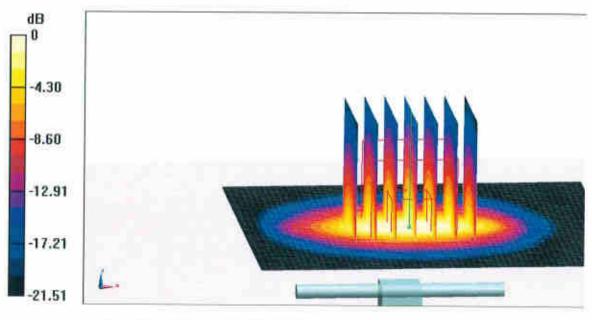
DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz: Type: D2450V2: Serial: F

Date: 11.25.2016

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.793 S/m; εr = 38.86; ρ = 1000 kg/m3 Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.45, 7.45, 7.45); Calibrated: 9/26/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.5 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

0 dB = 20.5 W/kg = 13.12 dBW/kg



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

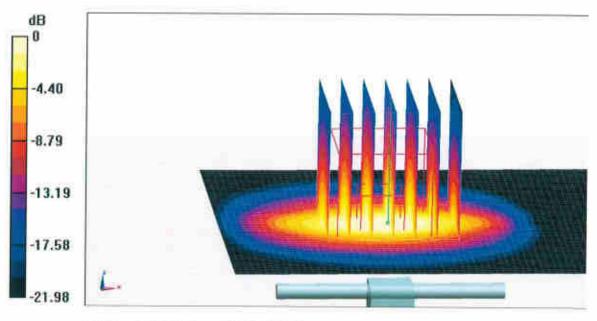
 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.966$ S/m; $\varepsilon_r = 52.29$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.46, 7.46, 7.46); Calibrated: 9/26/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.46 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 25.9 W/kg

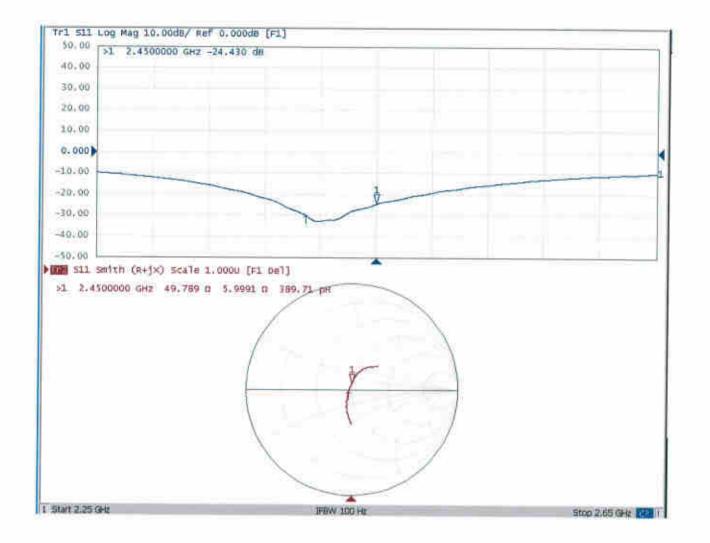
SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6.02 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 19.2 W/kg = 12.83 dBW/kg

Certificate No: Z16-97231

Date: 11.24.2016



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kallbrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton-SZ (Auden)

Certificate No: D5GHzV2-1167_Jul16

Object D5GHzV2 - SN:1167 Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits Calibration date: July 27, 2016 This calibration certificate documents the traceability to national standards, which realize the physic The measurements and the uncertainties with confidence probability are given on the following pag All calibrations have been conducted in the closed laboratory facility: environment temperature (22) Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Calibration NRP-291 SN: 104778 Power meter NRP SN: 104778 Power sensor NRP-291 SN: 103244 Power sensor NRP-291 SN: 103245 Power sensor NRP-291 SN: 103245 SN: 5058 (20k) 05-Apr-16 (No. 217-02289) Power sensor NRP-291 SN: 103245 SN: 5058 (20k) 05-Apr-16 (No. 217-02289) Power sensor NRP-291 SN: 103245 SN: 601 30-Dec-15 (No. 217-02289) SN: 601 30-Dec-15 (No. 246-01_Dec15) Secondary Standards D # Check Date (in house) SN: 603 Power sensor HP 8481A <th>al units of measurements (SI), as and are part of the certificate.</th>	al units of measurements (SI), as and are part of the certificate.
Calibration procedure for dipole validation kits Calibration date: July 27, 2016 Chilbration certificate documents the traceability to national standards, which realize the physic The measurements and the uncertainties with confidence probability are given on the following page All calibrations have been conducted in the closed laboratory facility: environment temperature (22) Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter NRP SN: 104778 Power sensor NRP-Z91 SN: 103244 SN: 103245 06-Apr-16 (No. 217-02288) Power sensor NRP-Z91 SN: 103245 SN: 5058 (20k) 05-Apr-16 (No. 217-02289) Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02289) SN: 5047.2 / 06327 05-Apr-16 (No. 217-02289) SN: 503 30-Jun-16 (No. EX3-3503_Jun16) SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Secondary Standards ID # Check Date (in house) Power meter EPM-442A Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02223) Power sensor HP 8481A SN: W141092317 07-Oct-15 (No. 217-02223) <tr< th=""><th>al units of measurements (SI), as and are part of the certificate. a) *C and humidity < 70%.</th></tr<>	al units of measurements (SI), as and are part of the certificate. a) *C and humidity < 70%.
Calibration date: July 27, 2016 This calibration certificate documents the traceability to national standards, which realize the physic The measurements and the uncertainties with confidence probability are given on the following pag All calibrations have been conducted in the closed laboratory facility: environment temperature (22) Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter NRP SN: 104778 Power sensor NRP-291 SN: 103244 SN: 103245 06-Apr-16 (No. 217-02288) Power sensor NRP-291 SN: 103245 SN: 103245 06-Apr-16 (No. 217-02289) Power sensor NRP-291 SN: 103245 SN: 5058 (20k) 05-Apr-16 (No. 217-02289) SN: 5058 (20k) 05-Apr-16 (No. 217-02289) SN: 5058 (20k) 05-Apr-16 (No. 217-02289) SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Aderence Probe EX3DV4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Secondary Standards ID # Check Date (in house) Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) Power sensor HP 8481A SN: WY41092317 07-Oct-15 (No. 217-02223	al units of measurements (SI), as and are part of the certificate. a) *C and humidity < 70%.
This calibration certificate documents the traceability to national standards, which realize the physic The measurements and the uncertainties with confidence probability are given on the following page All calibrations have been conducted in the closed laboratory facility: environment temperature (22 Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter NRP SN: 104778 Power sensor NRP-Z91 SN: 103244 SN: 103245 06-Apr-16 (No. 217-02288) Power sensor NRP-Z91 SN: 103245 SN: 103245 06-Apr-16 (No. 217-02289) Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Ype-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Reference Probe EX3DV4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) SN: 601 30-Dec-15 (No. DAE4-601_Dec15) SN: 601 SN: 0537292783 07-Oct-15 (No. 217-02222) Yower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) Yower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) Yower sensor HP 8481A SN: 109972 15-Jun-15 (in house check Jun-15)	es and are part of the certificate. = 3)°C and humidity < 70%.
This calibration certificate documents the traceability to national standards, which realize the physic The measurements and the uncertainties with confidence probability are given on the following page All calibrations have been conducted in the closed laboratory facility: environment temperature (22 Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter NRP SN: 104778 Power sensor NRP-Z91 SN: 103244 SN: 103245 06-Apr-16 (No. 217-02288) Power sensor NRP-Z91 SN: 103245 SN: 103245 06-Apr-16 (No. 217-02289) Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Ype-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Reference Probe EX3DV4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Apr-4 SN: 601 30-Dec-15 (No. 217-02222) ower meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) F generator H8&S SMT-05 SN: 100972 15-Jun-15 (in house check Jun-15)<	es and are part of the certificate. = 3)°C and humidity < 70%.
The measurements and the uncertainties with confidence probability are given on the following pag All calibrations have been conducted in the closed laboratory facility: environment temperature (22) Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Primary Standards ID # Primary Standards ID # Cal Date (Certificate No.) Primary Standards SN: 103245 Cal Paper 16 (No. 217-02289) Reference 20 dB Attenuator SN: 5058 (20k) SN: 3503 30-Jun-16 (No. 217-02282) Ype-N mismatch combination SN: 3503 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Gecondary Standards ID # Check Date (in house) Power sensor HP 8481A SN: US37292783 OF-Oct-1	es and are part of the certificate. = 3)°C and humidity < 70%.
The measurements and the uncertainties with confidence probability are given on the following pag All calibrations have been conducted in the closed laboratory facility: environment temperature (22) Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Primary Standards ID # Cal Date (Certificate No.) Prover meter NRP SN: 104778 O6-Apr-16 (No. 217-02288) Prover sensor NRP-Z91 SN: 103245 SN: 103245 O6-Apr-16 (No. 217-02289) Reference 20 dB Attenuator SN: 5047.2 / 06327 O5-Apr-16 (No. 217-02282) Type-N mismatch combination SN: 3503 30-Jun-16 (No. EX3-3503_Jun16) DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Secondary Standards ID # Check Date (in house)	es and are part of the certificate. = 3)°C and humidity < 70%.
all calibrations have been conducted in the closed laboratory facility: environment temperature (22. calibration Equipment used (M&TE critical for calibration) rimary Standards ID # Cal Date (Certificate No.) rower meter NFIP SN: 104778 06-Apr-16 (No. 217-02288/02289) rower sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) rower sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) rower sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) rower sensor NRP-Z91 SN: 5058 (20k) 05-Apr-16 (No. 217-02292) ype-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) eference Probe EX3DV4 SN: 3503 30-Jun-16 (No. EX3-3503_Jun16) AE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) econdary Standards ID # Check Date (in house) ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15)	: 3)°C and humidity < 70%.
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Power sensor NRP-Z91 SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Power mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Power sensor Probe EX3DV4 SN: 3503 30-Jun-16 (No. EX3-3503_Jun-16) AE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec-15) econdary Standards ID # Check Date (in house) ower meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15)	
rimary Standards ID # Cal Date (Certificate No.) ower meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) ower sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) ower sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) ower sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) ower sensor NRP-Z91 SN: 5058 (20k) 05-Apr-16 (No. 217-02289) ofference 20 dB Attenuator SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) over mismatch combination SN: 3503 30-Jun-16 (No. EX3-3503_Jun15) AE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) econdary Standards ID # Check Date (in house) ower meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jon-15)	Scheduled Calibration
ID # Cal Date (Certilicate No.) rower meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) rower sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) rower sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) rower sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) rower sensor NRP-Z91 SN: 5058 (20k) 05-Apr-16 (No. 217-02289) rower sensor NRP-Z91 SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) reference 20 dB Attenuator SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) reference Probe EX3DV4 SN: 3503 30-Jun-16 (No. EX3-3503_Jun15) AE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) econdary Standards ID # Check Date (in house) ower meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) F generator FR&S SMT-06 SN: 100972 15-Jun-15 (in house check Jon-15)	Scheduled Calibration
Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02289) Ype-N mismatch combination SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Ype-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Reference Probe EX3DV4 SN: 3503 30-Jun-16 (No. EX3-3503_Jun16) NAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Recondary Standards ID # Check Date (in house) Power sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) Power sensor HP 8481A SN: WY41092317 07-Oct-15 (No. 217-02223) Power sensor HP 8481A SN: 100972 15-Jun-15 (in house check Jun-15)	Scheduled Calibration
Image: New Sensor NEP-Z91 SN: 103244 06-Apr-16 (No. 217-02268) Inverse sensor NEP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Ideference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) ype-N mismatch combination SN: 5047 2 / 06327 05-Apr-16 (No. 217-02295) Ideference Probe EX3DV4 SN: 3503 30-Jun-16 (No. EX3-3503_Jun16) AE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) econdary Standards ID # Check Date (in house) ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: WY41092317 07-Oct-15 (No. 217-02223) F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15)	
ower sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) eference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02282) /pe-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) eference Probe EX3DV4 SN: 3503 30-Jun-16 (No. EX3-3503_Jun16) AE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) econdary Standards ID # Check Date (in house) ower meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02223) ower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) SN: 100972 15-Jun-15 (in house check Jun-15)	Apr-17
ID# Check Date (in house) econdary Standards ID# Check Date (in house) ewer meter EPM-442A SN: 5037292783 07-Oct-15 (No. 217-02292) ewer sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02292) ewer sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ewer sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ewer meter FPS SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15)	Apr-17
Image: Problem EX3DV4 SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) AE4 SN: 3503 30-Jun-16 (No. EX3-3503_Jun16) SN: 601 30-Dec-15 (No. DAE4-601_Dec15) econdary Standards ID # Check Date (in house) wer meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) wer sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) wer sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) * generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jon-15)	Apr-17
eference Probe EX3DV4 SN: 3503 30-Jun-16 (No. EX3-3503_Jun16) AE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) acondary Standards ID # Check Date (in house) ower meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jon-15)	Apr-17
AE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) acondary Standards ID # Check Date (in house) ower meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15)	Apr-17
econdary Standards ID # Check Date (in house) ower meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) F generator H&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15)	Jun-17
ower meter EPM-442A SN: GB37480704 07-Oct-15 (No. 217-02222) wer sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) wer sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) generator H&S SMT-06 SN: 100972 15-Jun-15 (In house check Jun-15)	Dec-16
ower sensor HP 8481A SN: US37292783 07-Oct-15 (No. 217-02222) ower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) F generator H&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15)	Scheduled Check
Tower sensor HP 8481A SN: MY41092317 07-Oct-15 (No. 217-02223) IF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15)	In house check: Oct-10
F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15)	In house check: Oct-16
F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Jun-15)	In house check: Oct-16
NU TITLE TO DESCRIPTION DESCRIPTION OF THE PARTY OF THE P	In house check: Oct-16
	In house check: Oct-16
Name Function	Signature
alibrated by: Claudio Leubler Laboratory Technician	The
	lika
pproved by: Katja Pokovic Technical Manager	
	anin
	lell-
his calibration certificate shall not be reproduced except in full without written approval of the labor	Relly

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst s
 - Service suisse d'étalonnage
- C Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end . of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		 Ali anti anti anti anti anti anti anti ant

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	4.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

Condition	
100 mW input power	8.19 W/kg
normalized to 1W	81.0 W / kg ± 19.9 % (k=2)
	100 mW input power

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.7 ± 6 %	5.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.64 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.8 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	5.88 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.90 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.11 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	in an	

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition		
SAR measured	100 mW input power	2.13 W/kg	
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)	

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	46.9 Ω - 13.4 jΩ	· · · ·
Return Loss	- 17.0 dB	

Antenna Parameters with Head TSL at 5600 MHz

ſ	Impedance, transformed to feed point		53.9 Ω - 9.8 jΩ	
-	Return Loss		- 19.9 dB	

Antenna Parameters with Head TSL at 5750 MHz

[Impedance, transformed to feed point	53.9 Ω - 11.8 jΩ
	Return Loss	- 18.5 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	45.5 Ω - 11.0 jΩ
Return Loss	- 18.2 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	53.9 Ω - 8.9 jΩ	
 Return Loss	- 20.6 dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.7 Ω - 11.8 jΩ
Return Loss	- 18.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

[Manufactured by	SPEAG	
	Manufactured on	October 30, 2013	

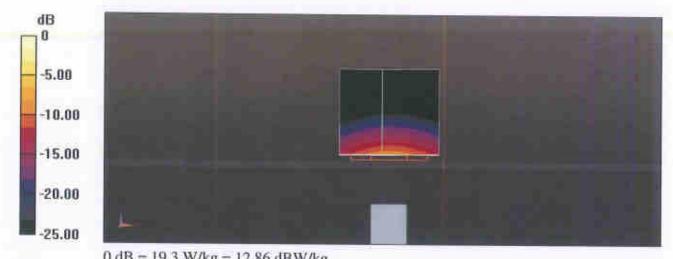
DASY5 Validation Report for Head TSL

Date: 27.07.2016

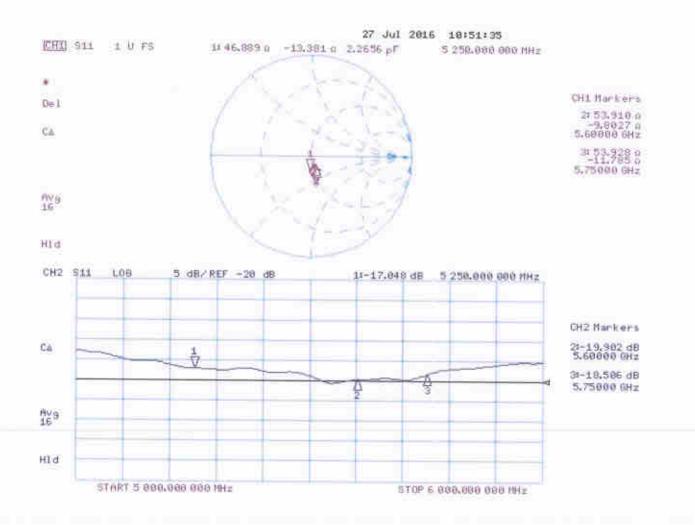
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1167

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.52$ S/m; $\varepsilon_r = 34.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.86$ S/m; $\varepsilon_r = 33.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 5.02$ S/m; $\varepsilon_r = 33.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.42, 5.42, 5.42); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.17 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.11 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.34 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.18 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg

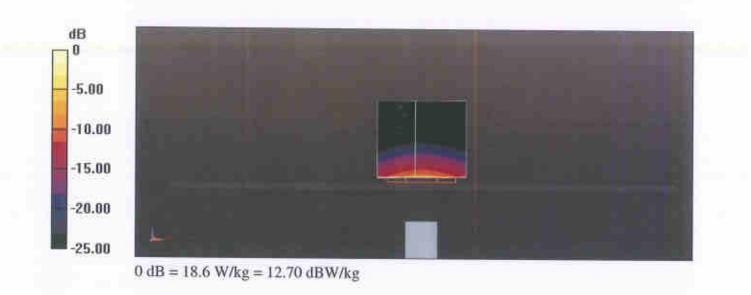
DASY5 Validation Report for Body TSL

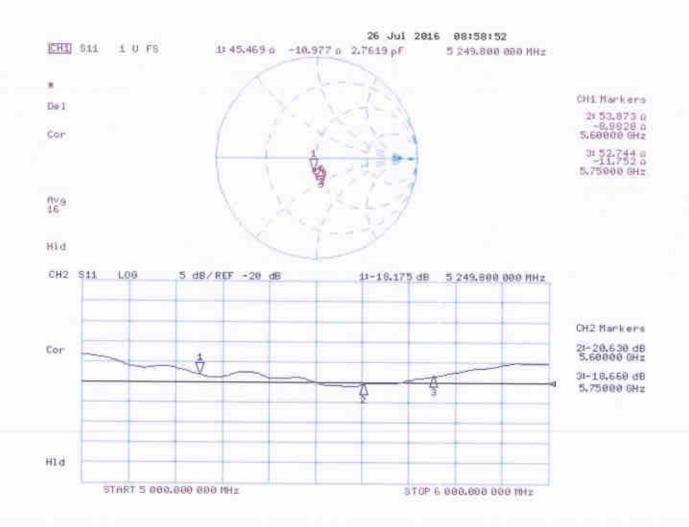
Date: 26.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1167

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.42$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.88$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 6.11$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.3, 4.3, 4.3); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.19 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.0 W/kg SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.01 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.9 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.17 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 18.6 W/kg

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

speag

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

1338

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst Service aulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

client Sporton - SZ (Auden)

Certificate No: DAE4-1338 Nov16

Accreditation No.: SCS 0108

	ERTIFICATE	X			
Object	DAE4 - SD 000 D04 BM - SN: 1338				
Calibration procedure(s)	QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE)				
Calibration date:	November 22, 201	16			
The measurements and the unce	rtainties with confidence pro cted in the closed laboratory TE critical for calibration)	nal standards, which realize the physical units obability are given on the following pages and a reality: environment temperature (22 ± 3)"C a	ne part of the certificate. Ind humidity < 70%.		
Primary Standards	iD #	Cal Date (Certificate No.)	Scheduled Calibration		
eithley Multimeter Type 2001	SN: 0810278	09-Sep-16 (No:19065)	Sep-17		
	1D #	Check Date (in house)	Scheduled Check		
Secondary Standards			Provide the state of the state		
Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001 SE UMS 006 AA 1002	05-Jan-16 (in house check) 05-Jan-16 (in house check)	In house check: Jan-17 In house check: Jan-17		
Auto DAE Calibration Unit	SE UMS 006 AA 1002	05-Jan-16 (in house check)	In house check: Jan-17		
Auto DAE Calibration Unit	and the second second second second	and a second	In house check: Jan-17 Signature		
Auto DAE Calibration Unit Calibrator Box V2.1	SE UMS 006 AA 1002	05-Jan-16 (in house check)	In house check: Jan-17		

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svízzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolutio	n nominal				
High Range:	1LSB =	6.1µV ,	full range =	-100+300 mV	
Low Range:	1LSB =	61nV,	full range =	-1+3mV	
DASY measurement para	meters: Auto Z				

Calibration Factors	ананананан Х анан улсан алар	Y	Z
High Range	403.674 ± 0.02% (k=2)	404.250 ± 0.02% (k=2)	404.207 ± 0.02% (k=2)
Low Range	3.97238 ± 1.50% (k=2)	3.97905 ± 1.50% (k=2)	3.97471 ± 1.50% (k=2)

Connector Angle

	Connector Angle to be used in DASY system	$62.0^{\circ} \pm 1^{\circ}$
ĵ.		02.0

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199996.77	0.71	0.00
Channel X	+ Input	20002.26	0.91	0.00
Channel X	- Input	-20000.38	0.70	-0.00
Channel Y	+ Input	199996.98	1.32	0.00
Channel Y	+ Input	19999.89	-1.32	-0.01
Channel Y	- Input	-20003.36	-2.29	0.01
Channel Z	+ Input	199997.81	1.86	0.00
Channel Z	+ Input	20001.76	0.52	0.00
Channel Z	- Input	-20002.73	-1.59	0.01

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.72	0.37	0.02
Channel X	+ Input	201.83	0.23	0.11
Channel X	- Input	-197.67	0.66	-0.33
Channel Y	+ Input	2001.35	-0.07	-0.00
Channel Y	+ Input	200.56	-1.07	-0.53
Channel Y	- Input	-199.76	-1.41	0.71
Channel Z	+ Input	2001.21	-0.12	-0.01
Channel Z	+ Input	200.89	-0.61	-0.30
Channel Z	- Input	-199.38	-0.88	0.44

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)	
Channel X	200	7.57	6.75	
	- 200	-5.52	-6.95	
Channel Y	200	-21.81	-21.79	
	- 200	20.05	19.45	
Channel Z	200	-2.35	-2.47	
	- 200	0.80	0.82	

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Υ (μV)	Channel Z (μV)
Channel X	200	-	2.79	-3.02
Channel Y	200	8.38	-	5.71
Channel Z	200	9.27	5.72	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16201	15043
Channel Y	16281	15799
Channel Z	16108	15449

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1.34	0.13	2.66	0.51
Channel Y	-0.17	-1.21	1.45	0.49
Channel Z	-0.51	-1.57	0.55	0.45

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)		
Supply (+ Vcc)	+7.9		
Supply (- Vcc)	-7.6		

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst S

- Service suisse d'étalonnage C
- Servizio svizzero di taratura S
- Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-3911_Sep16

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Sporton-SZ (Auden) Client

CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:3911		
Calibration procedure(s)	and the second se	CAL-14.v4, QA CAL-23.v5, QA e for dosimetric E-field probes	
Calibration date:	September 29, 2016		
		standards, which realize the physical units mility are given on the following pages and	
All calibrations have been co	ducted in the closed laboratory fac	flity: environment temperature (22 \pm 3)°C	and humidity < 70%.
Calibration Equipment used (M&TE critical for calibration)		
Primary Standards	a	Cal Date (Certificate No.)	Scheduled Calibration
Power mater NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Anr-17

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Agir-17
Power sensor NRP-Z91	SN: 103244	08-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Age-17
Reference Probe ES30V2	SN: 3013	31-Dec-15 (No: ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: U53642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sef Illan
Approved by:	Katja Pokovic	Technical Mariager	dal lig
This calibration certificate	shall not be concidented accent in ful	Luithout written anormal of the laboration	Issued: October 4, 2016

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

Glossaly.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Pelarization (op rotation around probe axis
Polarization 9	8 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e. 9 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(I)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3911

Calibrated:

Manufactured: September 4, 2012 September 29, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.30	0.33	0.47	± 10.1 %
DCP (mV) ^B	101.9	102.3	100.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊨] (k=2)
0	CW	X	X 0.0	0.0	1.0	0.00	138.8	±3.5 %
		Y	0.0	0.0	1.0		138.9	
		Z	0.0	0.0	1.0		138.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

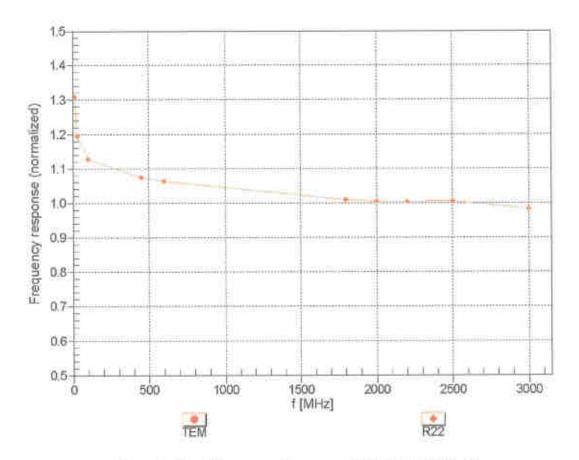
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.99	10.99	10.99	0.57	0.81	± 12.0 %
835	41.5	0.90	10.54	10.54	10.54	0.26	1.26	± 12.0 %
900	41.5	0.97	10.05	10.05	10.05	0.38	0.93	± 12.0 %
1750	40.1	1.37	8.88	8.88	8.88	0.31	0.93	± 12.0 %
1900	40.0	1.40	8.50	8.50	8.50	0.40	0.80	± 12.0 %
2000	40.0	1.40	8.48	8.48	8.48	0.35	0.85	± 12.0 %
2300	39.5	1.67	7.93	7.93	7.93	0.36	0.80	± 12.0 %
2450	39.2	1.80	7.43	7.43	7.43	0.29	0.98	± 12.0 %
2600	39.0	1.96	7.39	7.39	7.39	0.45	0.80	± 12.0 %
5250	35.9	4.71	5.25	5.25	5.25	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.49	4.49	4.49	0.50	1.80	± 13.1 %
5750	35.4	5.22	4.75	4.75	4.75	0.50	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to \pm 110 MHz.

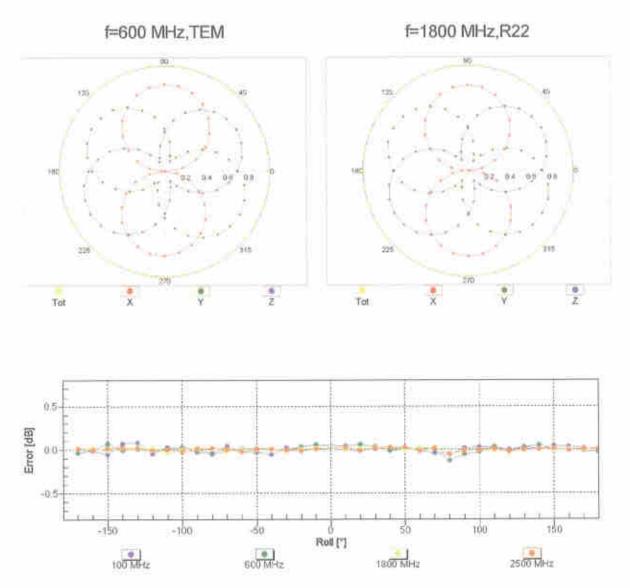
validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Dopth are determined during collibration SDE AC uncertainty is the time in the transmission formula is applied to the transmission formula is applied to the transmission of the transmission formula is applied to the transmission formula is applied to the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

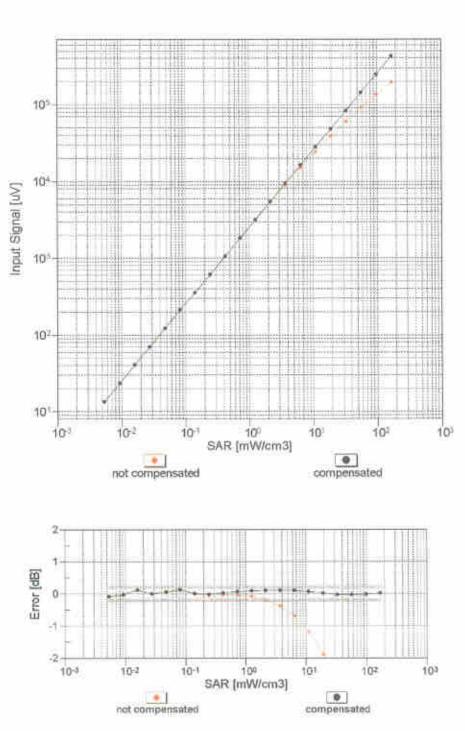

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.43	10.43	10.43	0.42	0.80	± 12.0 %
835	55.2	0.97	10.19	10.19	10.19	0.20	1.33	± 12.0 %
1750	53.4	1.49	8.46	8.46	8.46	0.42	0.80	± 12.0 %
1900	53.3	1.52	8.17	8.17	8.17	0.35	0.97	± 12.0 %
2300	52.9	1.81	7.93	7.93	7.93	0.33	0.98	± 12.0 %
2450	52.7	1.95	7.66	7.66	7.66	0.43	0.80	± 12.0 %
2600	52.5	2.16	7.38	7.38	7.38	0.33	0.80	± 12.0 %
5250	48.9	5.36	4.62	4.62	4.62	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.78	3.78	3.78	0.60	1.90	± 13.1 %
5750	48.3	5.94	3.95	3.95	3.95	0.60	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

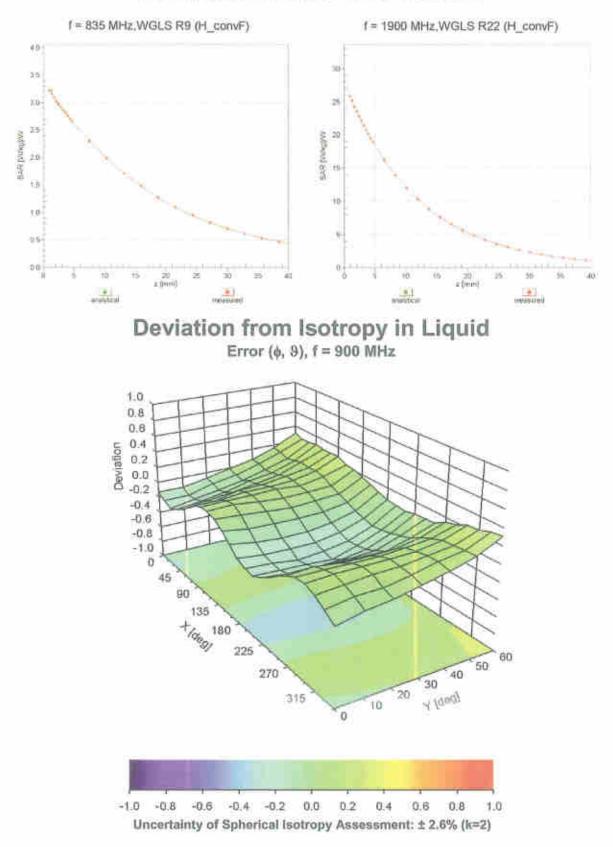
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to \pm 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

The ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{oval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	80
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm