

FCC PART 15C TEST REPORT No.**I17Z40076-SRD01**

for

Lenovo(Shanghai) Electronics Technology Co., Ltd.

Portable Tablet Computer

Model Name: Lenovo TB-X304L

FCC ID:057TBX304L

with

Hardware Version: Lenovo Tablet TB-X304L

Software Version: TB-X304L_RF01_170209

Issued Date: 2017-4-1

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT

No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl terminals@catr.cn, website: www.chinattl.com

©Copyright. All rights reserved by CTTL.

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I17Z40076-SRD01	Rev.0	1st edition	2017-4-1

CONTENTS

1.	ТЕ	ST LABORATORY	5
1.	.1.	TESTINGLOCATION	5
1.	.2.	TestingEnvironment	5
1.	.3.	PROJECT DATA	5
1.	.4.	SIGNATURE	5
2.	CL	IENTINFORMATION	6
2	1		~
	.1.	APPLICANT INFORMATION	
Ζ.			
3.	EQ	UIPMENT UNDERTEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.	.1.	About EUT	7
3.	.2.	INTERNAL IDENTIFICATION OF EUT	7
3.	.3.	INTERNAL IDENTIFICATION OF AE	7
3.	.4.	NORMAL ACCESSORY SETTING	7
3.	.5.	GENERAL DESCRIPTION	7
4.	RE	FERENCE DOCUMENTS	8
4.	.1.	DOCUMENTS SUPPLIED BY APPLICANT	8
4.	.2.	Reference Documents for testing	8
5.	ТЕ	ST RESULTS	9
5	.1.	SUMMARY OF TEST RESULTS	9
	.2.	STATEMENTS	
6.	те	ST FACILITIES UTILIZED 1	0
7.	Mŀ	ASUREMENT UNCERTAINTY1	1
7.	.1.	PEAK OUTPUT POWER - CONDUCTED1	1
7.	.2.	FREQUENCY BAND EDGES1	1
7.	.3.	CONDUCTED EMISSION	1
7.	.4.	RADIATED EMISSION1	
7.	.5.	TIME OF OCCUPANCY (DWELL TIME)	1
7.	.6.	20dB BANDWIDTH	
	.7.	CARRIER FREQUENCY SEPARATION	
7.	.8.	AC POWERLINE CONDUCTED EMISSION	2
ANI	NEX	A: DETAILED TEST RESULTS 1	3
А	.1. N	IEASUREMENT METHOD	3
А	2. P	PEAK OUTPUT POWER – CONDUCTED 1	4
А	3. F	REQUENCY BAND EDGES – CONDUCTED 1	5
А	4. C	Conducted Emission	2
		ADIATED EMISSION	
А	6. T	IME OF OCCUPANCY (DWELL TIME)	

No.I17Z40076-SRD01 Page4of81

A.7. 20dB Bandwidth	66
A.8. CARRIER FREQUENCY SEPARATION	72
A.9. NUMBER OF HOPPING CHANNELS	75
A.10. AC POWERLINE CONDUCTED EMISSION	79

1. Test Laboratory

1.1. TestingLocation

Conducted testing Location: CTTL(huayuan North Road) Address: No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China100191

Radiated testing Location: CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China100191

1.2. TestingEnvironment

Normal Temperature:	15-35°C
Relative Humidity:	20-75%

1.3. Project data

Testing Start Date:	2017-3-1
Testing End Date:	2017-4-1

1.4. Signature

F

Wu Le (Prepared this test report)

Sun Zhenyu (Reviewed this test report)

Li Zhuofang (Approved this test report)

2. ClientInformation

2.1. Applicant Information

Company Name:	Lenovo(Shanghai) Electronics Technology Co., Ltd.		
Address/Post:	NO.68 BUILDING, 199 FENJU RD, Pilot Free Trade Zone, 200131,		
Audress/Post.	China		
City:	Shanghai		
Postal Code:	200131		
Country:	China		
Telephone:	86-21-50504500-8281		
Fax:	86-21-50807240		

2.2. Manufacturer Information

Lenovo PC HK Limited
23/F, Lincoln House, Taikoo Place
979 King's Road, Quarry Bay, Hong Kong
Hong Kong
/
China
86-21-50504500-8281
86-21-50807240

3. Equipment UnderTest (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	Portable Tablet Computer
Model Name	Lenovo TB-X304L
FCC ID	O57TBX304L
Frequency Band	ISM 2400MHz~2483.5MHz
Type of Modulation	GFSK/π/4 DQPSK/8DPSK
Number of Channels	79
Power Supply	3.85V DC by Battery

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	
EUT1	D7021603379	Lenovo Tablet	TB-X304L RF01 170209	
		TB-X304L	1B-X304L_KF01_170209	
EUT2	D7021603484	Lenovo Tablet	TB V2041 BE01 170200	
		TB-X304L	TB-X304L_RF01_170209	

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE Description

AE ID*			
AE1	Battery	/	Inbuilt

AE1

Model	L16D2P31	
Manufacturer	SCUD(Fujian)	Electronics Co., Ltd.
Capacitance	7000 mAh	
Nominal voltage	3.85 V	

*AE ID: is used to identify the test sample in the lab internally.

3.4. Normal Accessory setting

Fully charged battery should be used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of Portable Tablet Computerwith integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test.

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

0	0	
Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2015
	15.247 Operation within the bands 902–928MHz,	
	2400–2483.5 MHz, and 5725–5850 MHz.	
	American National Standard of Procedures for	luna 2012
ANSI C63.10	ComplianceTesting of Unlicensed Wireless Devices	June,2013

5. Test Results

5.1. Summary of Test Results

Abbreviations used in this clause:

- P Pass, The EUT complies with the essential requirements in the standard.
- F Fail, The EUT does not comply with the essential requirements in the standard
- NA Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by CTTL

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
Peak Output Power - Conducted	15.247 (b)(1)	Р
Frequency Band Edges	15.247 (d)	Р
Conducted Emission	15.247 (d)	Р
Radiated Emission	15.247, 15.205, 15.209	Р
Time of Occupancy (Dwell Time)	15.247 (a) (1)(iii)	Р
20dB Bandwidth	15.247 (a)(1)	NA
Carrier Frequency Separation	15.247 (a)(1)	Р
Number of hopping channels	15.247 (a)(b)(iii)	Р
AC Powerline Conducted Emission	15.107, 15.207	Р

Please refer to **ANNEX A** for detail.

The measurement is made according to ANSI C63.10.

5.2. Statements

CTTL has evaluated the test cases requested by the applicant /manufacturer as listed in section 5.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibratio n Period	Calibration Due date
1	Vector Signal Analyzer	FSQ26	200136	Rohde & Schwarz	1 year	2017-10-25
2	Bluetooth Tester	CBT32	100649	Rohde & Schwarz	1 year	2017-10-26
3	LISN	ENV216	101200	Rohde & Schwarz	1 year	2017-07-10
4	Test Receiver	ESCI	100344	Rohde & Schwarz	1 year	2018-03-01
5	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Test Receiver	ESCI 7	100948	Rohde & Schwarz	1 year	2017-07-05
2	Loop antenna	HFH2-Z2	829324/00 7	Rohde & Schwarz	3 years	2017-12-16
3	BiLog Antenna	VULB9163	301	Schwarzbeck	3 years	2017-12-16
4	Dual-Ridge Waveguide Horn Antenna	3115	6914	EMCO	3 years	2017-12-15
5	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	3 years	2017-06-30
6	Vector Signal Analyzer	FSV	101047	Rohde & Schwarz	1 year	2017-06-28
7	Semi-anechoic chamber	/	CT000332 -1074	Frankonia German	/	/
8	Bluetooth Tester	CBT	101042	Rohde & Schwarz	1 year	2018-03-19

7. <u>Measurement Uncertainty</u>

7.1. Peak Output Power - Conducted

Measurement Uncertainty:

Measurement Uncertainty(k=2)	0.66dB
------------------------------	--------

7.2. Frequency Band Edges

Measurement Uncertainty:

Measurement Uncertainty(k=2)	0.66dB
------------------------------	--------

7.3. Conducted Emission

Measurement Uncertainty:

FrequencyRange	Uncertainty(k=2)
30 MHz ~ 8 GHz	1.22dB
8 GHz ~ 12.75 GHz	1.51dB
12.7GHz ~ 26 GHz	1.51dB

7.4. Radiated Emission

Measurement Uncertainty:

FrequencyRange	Uncertainty(k=2)
<1 GHz	4.86dB
> 1 GHz	5.26dB

7.5. Time of Occupancy (Dwell Time)

Measurement Uncertainty:

Measurement Uncertainty(k=2)	0.88ms
------------------------------	--------

7.6. 20dB Bandwidth

Measurement Uncertainty:

Measurement Uncertainty(k=2)	61.936Hz
------------------------------	----------

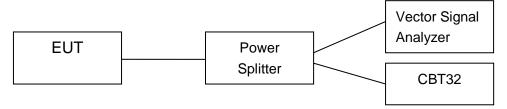
7.7. Carrier Frequency Separation

Measurement Uncertainty:

Measurement Uncertainty(k=2)	61.936Hz
------------------------------	----------

7.8. AC Powerline Conducted Emission

Measurement Uncertainty:

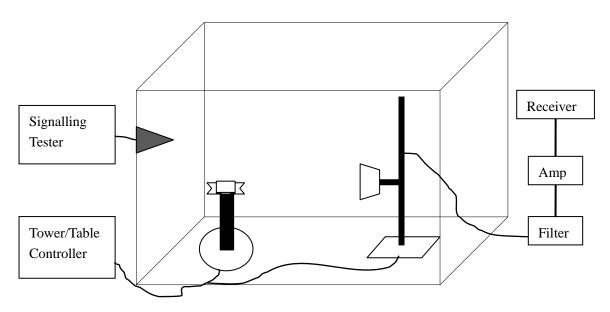

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer


A.1.2. Radiated Emission Measurements

The measurement is made according to ANSI C63.10

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

In the case of radiated emission, the used settings are as follows,

Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 1MHz;

©Copyright. All rights reserved by CTTL.

A.2. Peak Output Power – Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.5

a) Use the following spectrum analyzer settings:

- Span: 6MHz
- RBW: 3MHz
- VBW: 3MHz
- Sweep time: 2.5ms
- Detector function: peak
- Trace: max hold
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power.

Measurement Limit:

Standard	Limit (dBm)
FCC Part 15.247(b)(1)	< 30

Measurement Results:

For GFSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	4.26	5.53	3.85	Р

Form/4 DQPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	5.45	6.69	4.72	Р

For 8DPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	5.72	6.97	5.28	Р

Conclusion: PASS

A.3. Frequency Band Edges – Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.6

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output.Configure the spectrum analyzer settings as described below (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).

- -Span: 10 MHz
- Resolution Bandwidth: 100 kHz
- Video Bandwidth: 300 kHz
- Sweep Time: 5ms
- Detector: Peak
- -Trace: max hold

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel.

Observe the stored trace and measure the amplitude deltabetween the peak of the fundamental and the peak of the band-edge emission. This is not anabsolute field strength measurement; it is only a relative measurement to determine the amount bywhich the emission drops at the band edge relative to the highest fundamental emission level.

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	<-20

Measurement Result:

For GFSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.1	-56.74	Р
0	Hopping ON	Fig.2	-46.76	Р
70	Hopping OFF	Fig.3	-63.47	Р
78	Hopping ON	Fig.4	-64.26	Р

Forπ/4 DQPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.5	-53.99	Р
0	Hopping ON	Fig.6	-39.56	Р
70	Hopping OFF	Fig.7	-61.93	Р
78	Hopping ON	Fig.8	-62.51	Р

For 8DPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.9	-55.44	Р
0	Hopping ON	Fig.10	-47.95	Р

78	Hopping OFF	Fig.11	-62.11	Р
70	Hopping ON	Fig.12	-64.82	Р

Conclusion: PASS

Test graphs as below

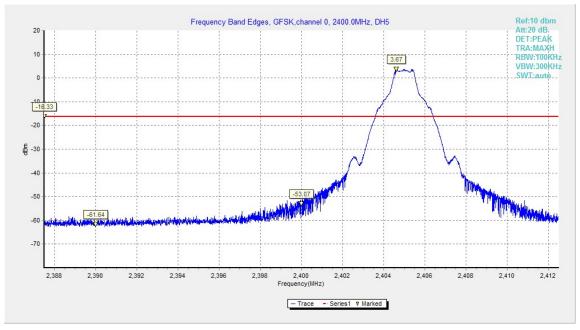


Fig.1. Frequency Band Edges: GFSK, Channel 0, Hopping Off

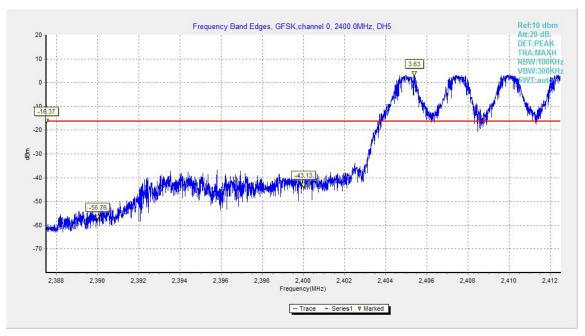


Fig.2. Frequency Band Edges: GFSK, Channel 0, Hopping On

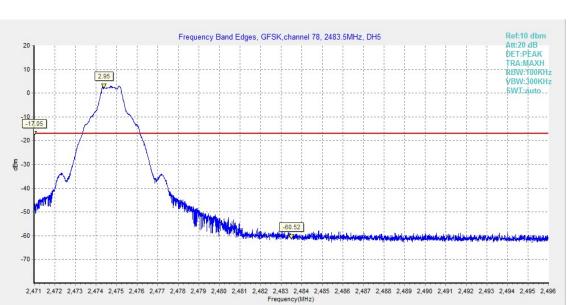


Fig.3. Frequency Band Edges: GFSK, Channel 78, Hopping Off

- Trace - Series1 V Marked

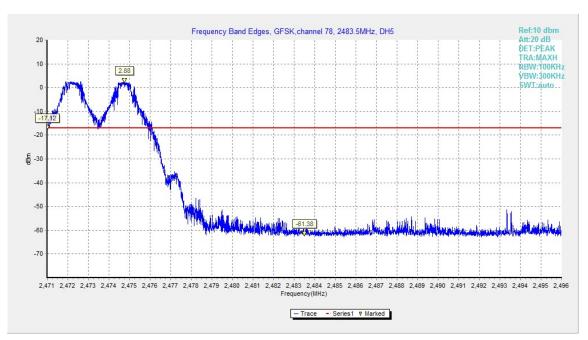


Fig.4. Frequency Band Edges: GFSK, Channel 78, Hopping On

No.I17Z40076-SRD01

Page17of81

No.I17Z40076-SRD01 Page18of81

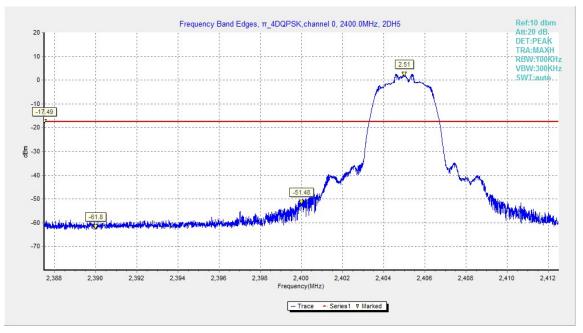


Fig.5. Frequency Band Edges: π/4 DQPSK, Channel 0, Hopping Off

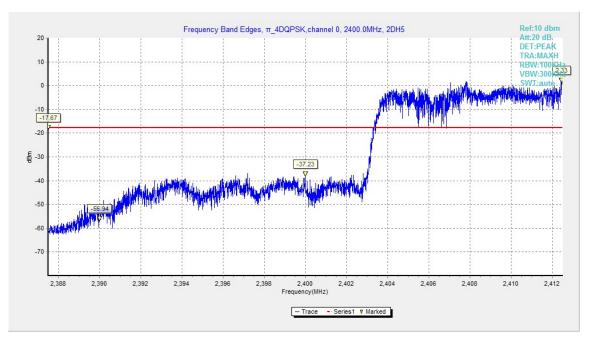


Fig.6. Frequency Band Edges: $\pi/4$ DQPSK, Channel 0, Hopping On

No.I17Z40076-SRD01 Page19of81

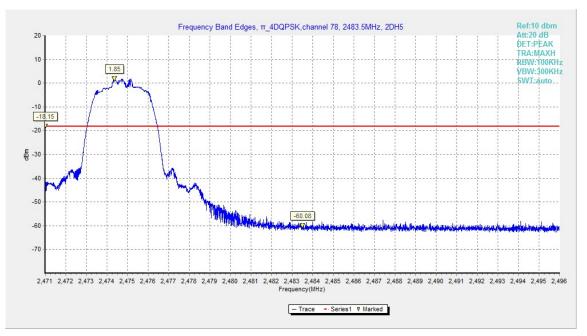


Fig.7. Frequency Band Edges: π/4 DQPSK, Channel 78, Hopping Off

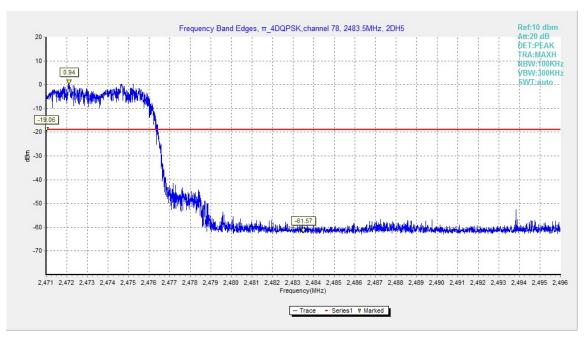


Fig.8. Frequency Band Edges: π/4 DQPSK, Channel 78, Hopping On

No.I17Z40076-SRD01 Page20of81

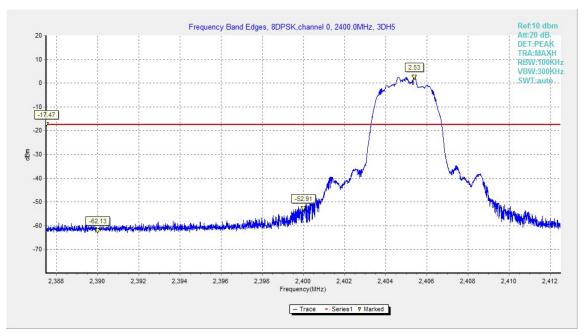


Fig.9. Frequency Band Edges: 8DPSK, Channel 0, Hopping Off

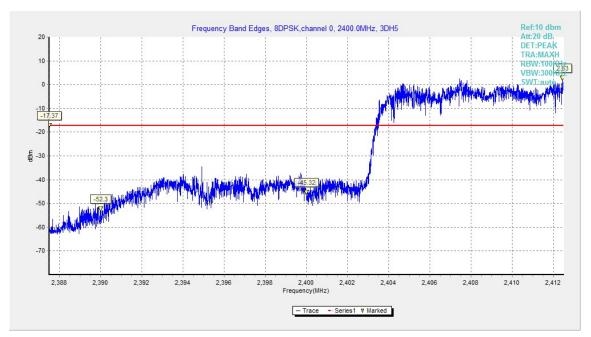


Fig.10. Frequency Band Edges: 8DPSK, Channel 0, Hopping On

No.I17Z40076-SRD01 Page21of81

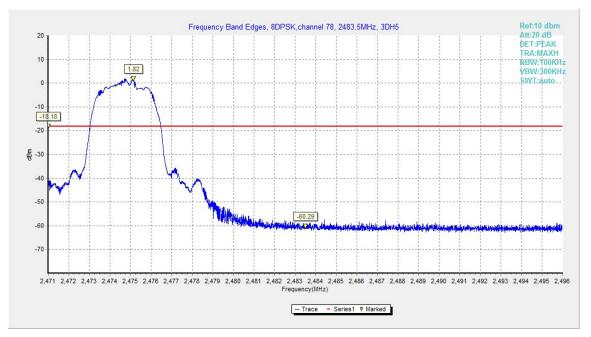


Fig.11. Frequency Band Edges: 8DPSK, Channel 78, Hopping Off

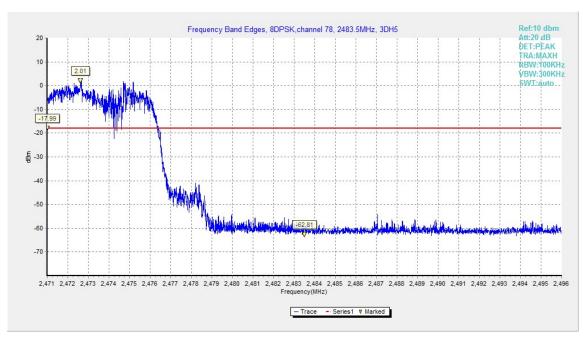


Fig.12. Frequency Band Edges: 8DPSK, Channel 78, Hopping On

A.4. Conducted Emission

Method of Measurement: See ANSI C63.10-clause 7.8.8

Measurement Procedure – Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW = 300 kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz
1 66 47 61 K Fait 15.247 (d)	bandwidth

Measurement Results:

For GFSK

Channel	Frequency Range	Test Results	Conclusion
Ch 0	Center Frequency	Fig.13	Р

No.I17Z40076-SRD01 Page23of81

2402 MHz	30 MHz ~ 1 GHz	Fig.14	Р
	1 GHz ~ 3 GHz	Fig.15	Р
	3 GHz ~ 10 GHz	Fig.16	Р
	10 GHz ~ 26 GHz	Fig.17	Р
	Center Frequency	Fig.18	Р
01.00	30 MHz ~ 1 GHz	Fig.19	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.20	Р
2441 101112	3 GHz ~ 10 GHz	Fig.21	Р
	10 GHz ~ 26 GHz	Fig.22	Р
	Center Frequency	Fig.23	Р
e	30 MHz ~ 1 GHz	Fig.24	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.25	Р
	3 GHz ~ 10 GHz	Fig.26	Р
	10 GHz ~ 26 GHz	Fig.27	P
or π/4 DQPSK			
Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.28	Р
	30 MHz ~ 1 GHz	Fig.29	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.30	Р
	3 GHz ~ 10 GHz	Fig.31	Р
	10 GHz ~ 26 GHz	Fig.32	Р
	Center Frequency	Fig.33	Р
	30 MHz ~ 1 GHz	Fig.34	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.35	Р
	3 GHz ~ 10 GHz	Fig.36	Р
	10 GHz ~ 26 GHz	Fig.37	P
	Center Frequency	Fig.38	Р
	30 MHz ~ 1 GHz	Fig.39	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.40	P
	3 GHz ~ 10 GHz	Fig.41	Р
	10 GHz ~ 26 GHz	Fig.42	P
or 8DPSK		-	1
Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.43	Р
	30 MHz ~ 1 GHz	Fig.44	Р

Ch 0	Center Frequency	Fig.43	Р
	30 MHz ~ 1 GHz	Fig.44	Р
2402 MHz	1 GHz ~ 3 GHz	Fig.45	Р
2.02.001	3 GHz ~ 10 GHz	Fig.46	Р
	10 GHz ~ 26 GHz	Fig.47	Р

©Copyright. All rights reserved by CTTL.

Ch 39 2441 MHz	Center Frequency	Fig.48	Р
	30 MHz ~ 1 GHz	Fig.49	Р
	1 GHz ~ 3 GHz	Fig.50	Р
	3 GHz ~ 10 GHz	Fig.51	Р
	10 GHz ~ 26 GHz	Fig.52	Р
Ch 78 2480 MHz	Center Frequency	Fig.53	Р
	30 MHz ~ 1 GHz	Fig.54	Р
	1 GHz ~ 3 GHz	Fig.55	Р
	3 GHz ~ 10 GHz	Fig.56	Р
	10 GHz ~ 26 GHz	Fig.57	Р

Conclusion: PASS

Test graphs as below

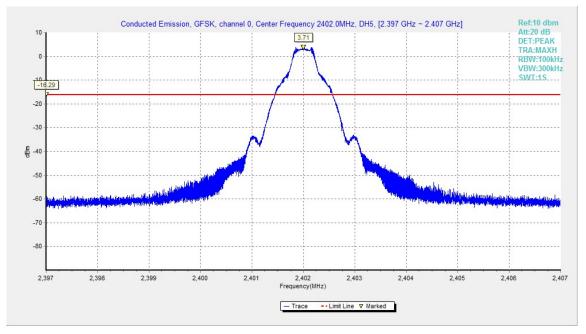


Fig.13. Conducted spurious emission: GFSK, Channel 0,2402MHz

No.I17Z40076-SRD01 Page25of81

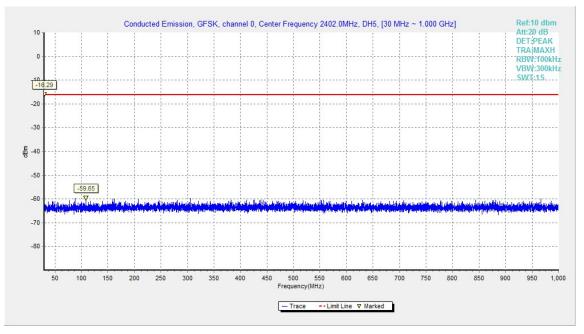


Fig.14. Conducted spurious emission: GFSK, Channel 0, 30MHz - 1GHz

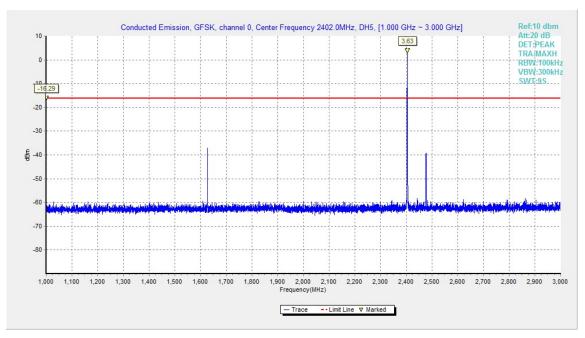
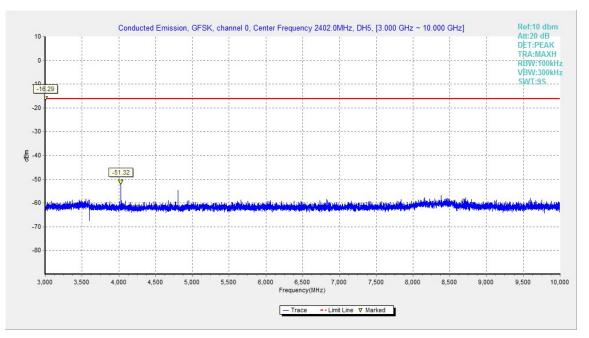



Fig.15. Conducted spurious emission: GFSK, Channel 0, 1GHz - 3GHz

No.I17Z40076-SRD01 Page26of81

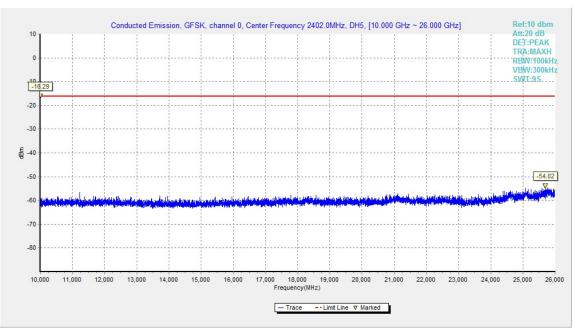


Fig.17. Conducted spurious emission: GFSK, Channel 0,10GHz - 26GHz

No.I17Z40076-SRD01 Page27of81

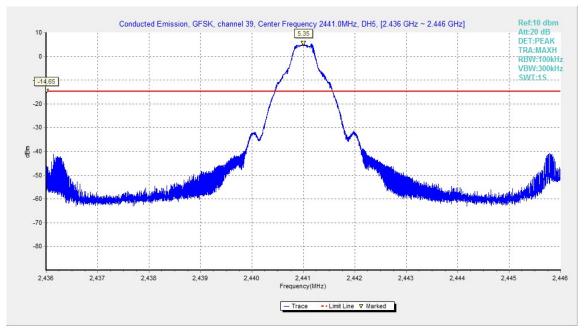


Fig.18. Conducted spurious emission: GFSK, Channel 39, 2441MHz

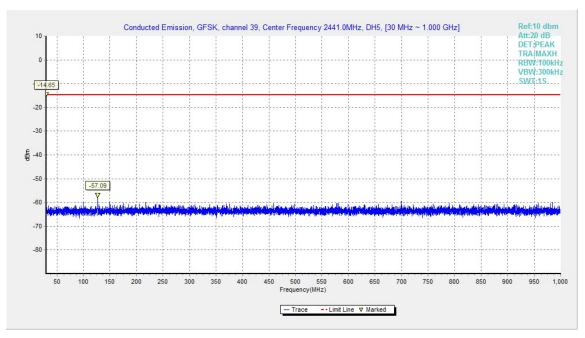


Fig.19. Conducted spurious emission: GFSK, Channel 39, 30MHz - 1GHz

No.I17Z40076-SRD01 Page28of81

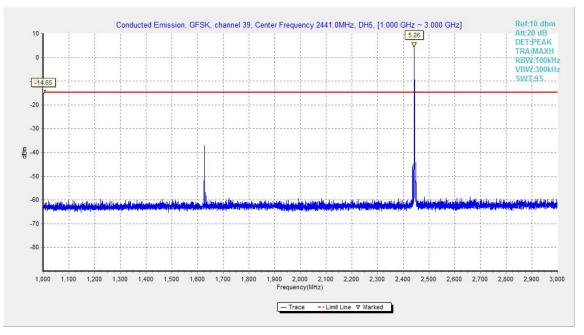


Fig.20. Conducted spurious emission: GFSK, Channel 39, 1GHz - 3GHz

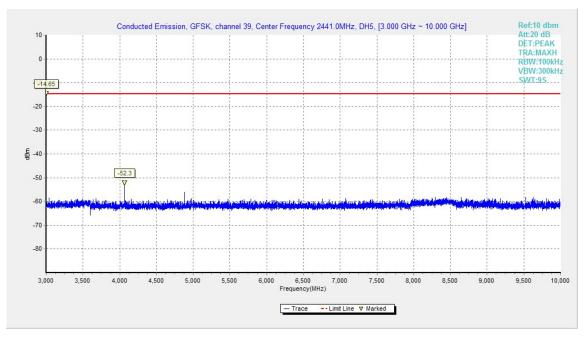


Fig.21. Conducted spurious emission: GFSK, Channel 39, 3GHz - 10GHz

No.I17Z40076-SRD01 Page29of81

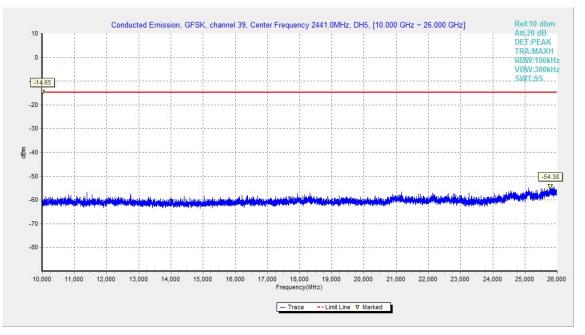


Fig.22. Conducted spurious emission: GFSK, Channel 39, 10GHz - 26GHz

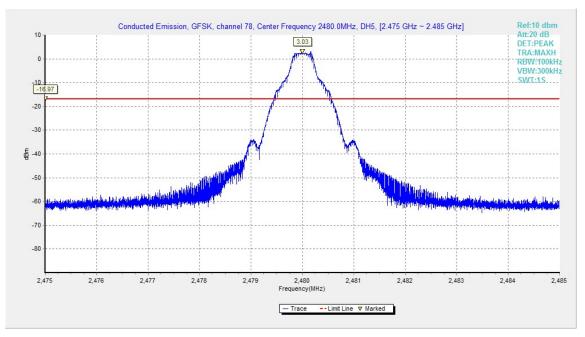


Fig.23. Conducted spurious emission: GFSK, Channel 78, 2480MHz

No.I17Z40076-SRD01 Page30of81

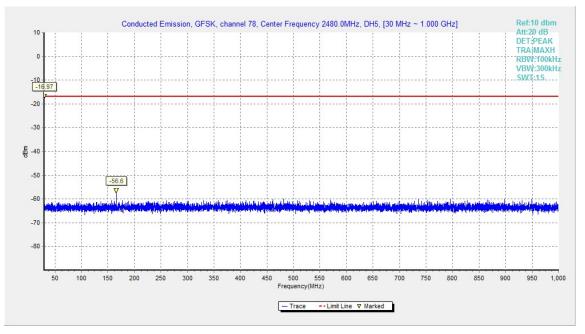


Fig.24. Conducted spurious emission: GFSK, Channel 78, 30MHz - 1GHz

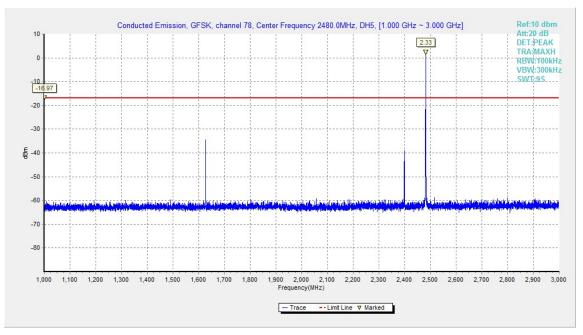


Fig.25. Conducted spurious emission: GFSK, Channel 78, 1GHz - 3GHz

No.I17Z40076-SRD01 Page31of81

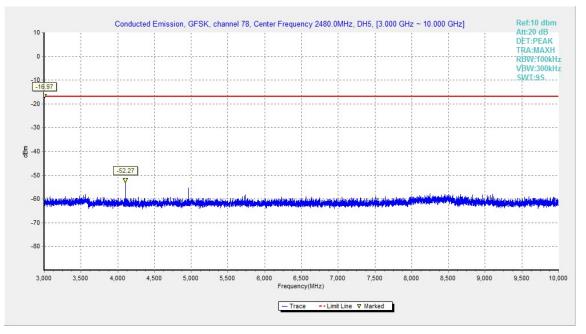


Fig.26. Conducted spurious emission: GFSK, Channel 78, 3GHz - 10GHz

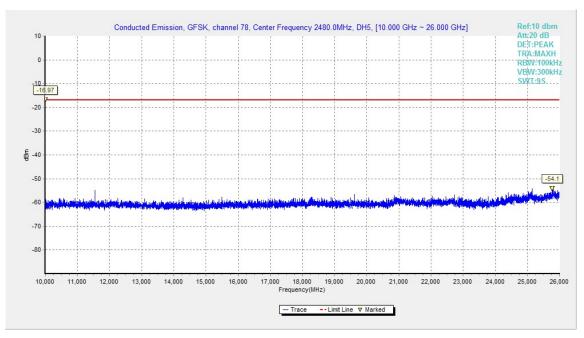


Fig.27. Conducted spurious emission: GFSK, Channel 78, 10GHz - 26GHz

No.I17Z40076-SRD01 Page32of81

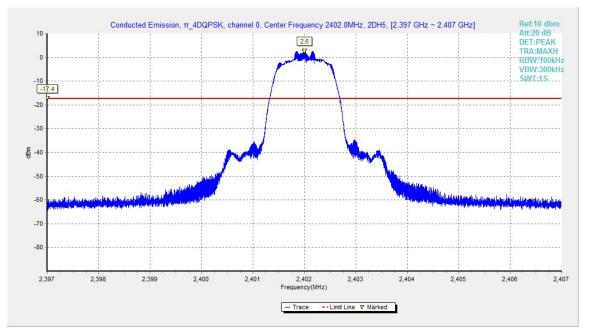


Fig.28. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0,2402MHz

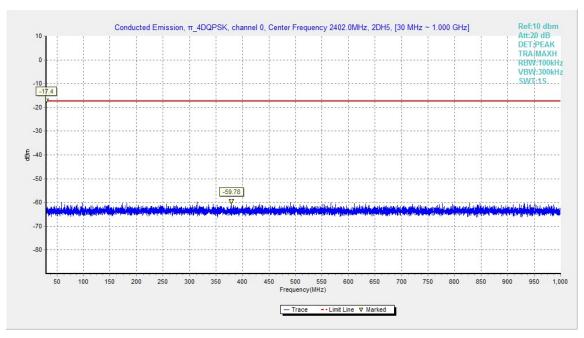


Fig.29. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 30MHz - 1GHz

No.I17Z40076-SRD01 Page33of81

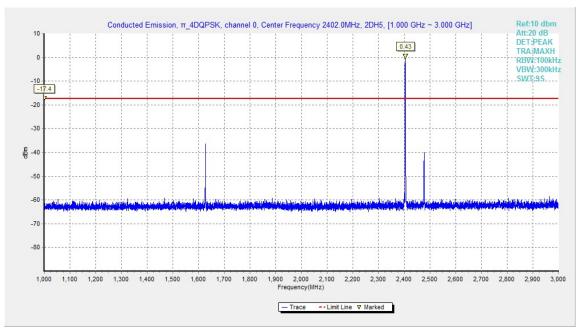


Fig.30. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 1GHz - 3GHz

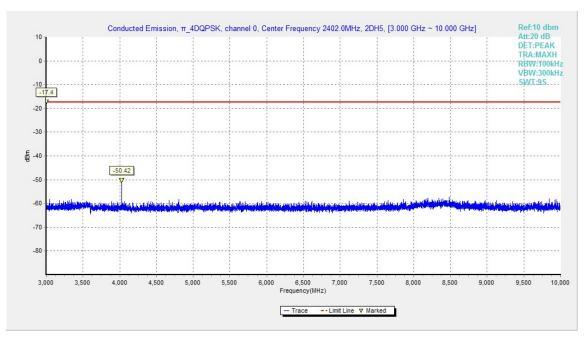


Fig.31. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 3GHz - 10GHz

No.I17Z40076-SRD01 Page34of81

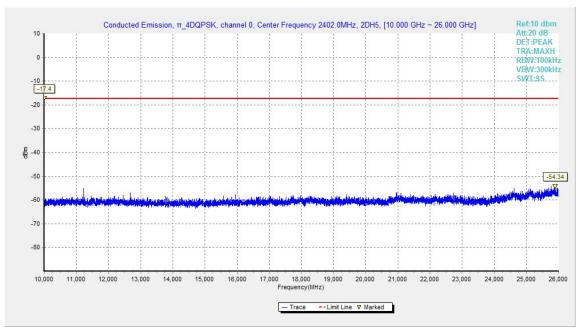


Fig.32. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0,10GHz - 26GHz

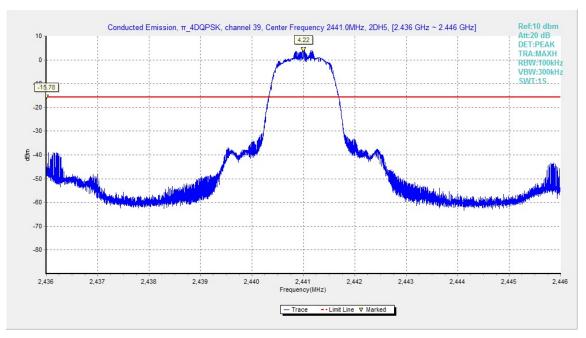


Fig.33. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 2441MHz

No.I17Z40076-SRD01 Page35of81

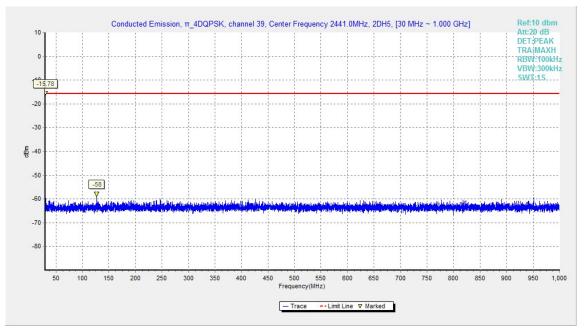


Fig.34. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 30MHz - 1GHz

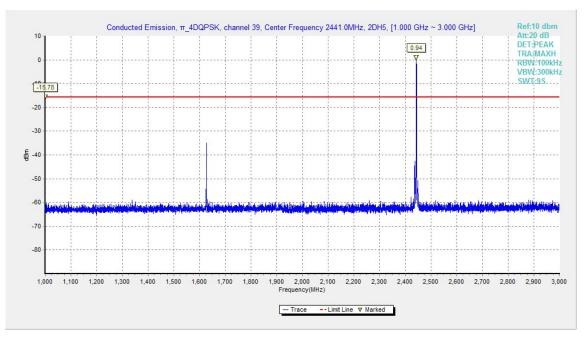


Fig.35. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 1GHz - 3GHz