FCC SAR TEST REPORT

APPLICANT : Lenovo (Shanghai) Electronics Technology

Co., Ltd.

EQUIPMENT : Portable Tablet Computer

BRAND NAME : Lenovo

Model Name : Lenovo TB-8505XS

FCC ID : O57TB8505X

STANDARD : FCC 47 CFR Part 2 (2.1093)

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Tony Zhang

Reviewed by: Tony Zhang / Supervisor

Kat Yin

Report No.: FA981204-19

Approved by: Kat Yin / Manager

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

FCC ID: O57TB8505X

Page 1 of 27 Issued Date : Mar. 23, 2022

Form version: 200414

Table of Contents

1. Statement of Compliance	
2. Administration Data	
3. Guidance Applied	
4. Equipment Under Test (EUT) Information	6
4.1 General Information	6
4.2 General LTE SAR Test and Reporting Considerations	7
5. RF Exposure Limits	9
5.1 Uncontrolled Environment	
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	10
6.1 Introduction	10
6.2 SAR Definition	10
7. System Description and Setup	
7.1 E-Field Probe	
7.2 Data Acquisition Electronics (DAE)	
7.3 Phantom	13
7.4 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	
8.2 Power Reference Measurement	16
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	
10.1 Tissue Simulating Liquids	
10.2 Tissue Verification	
10.3 System Performance Check Results	
11. RF Exposure Positions	
11.1 SAR Testing for Tablet	
12. SAR Test Results	
12.1 Body SAR	
12.2 Repeated SAR Measurement	
13. Uncertainty Assessment	
14. References	27
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

Report No.: FA981204-19

History of this test report

Report No.	Version	Description	Issued Date
FA981204-19	01	Initial issue of report	Mar. 23, 2022

Issued Date : Mar. 23, 2022 Form version: 200414

Page 3 of 27

Report No.: FA981204-19

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Lenovo (Shanghai) Electronics Technology Co., Ltd., Portable Tablet Computer, Lenovo TB-8505XS, are as follows.

Report No.: FA981204-19

Page 4 of 27

Highest Standalone 1g SAR Summary					
Equipment Class	Frequ	Body			
Equipment Glass	11640	ency Band	1g SAR (W/kg)		
	GSM	GSM850	1.06		
	GSIVI	GSM1900	1.18		
	WCDMA	Band V	0.89		
	WCDIWIA	Band II	0.87		
Licensed		Band 2	1.10		
		Band 4	0.82		
	LTE	Band 5	0.84		
		Band 7	0.96		
		Band 38	0.73		
DTS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.4GHz WLAN	1.10		
NII	WLAN	5GHz WLAN	0.98		
DSS	Bluetooth	Bluetooth	0.23		
Date of T	esting:	2022/3/19~2	022/3/20		

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

Sporton International Inc. (Kunshan) TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date $_{:}$ Mar. 23, 2022 FCC ID: O57TB8505X Form version: 200414

2. Administration Data

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: FA981204-19

	Testing Laboratory						
Test Firm	Sporton International Inc.	Sporton International Inc. (Kunshan)					
Test Site Location	Jiangsu Province 215300 TEL: +86-512-57900158	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL: +86-512-57900158 FAX: +86-512-57900958					
Took Cita No	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.				
Test Site No.	SAR06-KS	CN1257	314309				

Applicant Applicant						
Company Name	Lenovo (Shanghai) Electronics Technology Co., Ltd.					
Address	Section 304-305, Building No. 4, # 222, Meiyue Road, China (Shanghai) Pilot Free Trade Zone					

Manufacturer Manufacturer					
Company Name	Lenovo PC HK Limited				
Address	23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong P.R.CHINA				

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- · FCC 47 CFR Part 2 (2.1093)
- · ANSI/IEEE C95.1-1992
- · IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- · FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05

 Sporton International Inc. (Kunshan)
 Page
 5 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

4. Equipment Under Test (EUT) Information

4.1 General Information

Product Feature & Specification						
Equipment Name	Portable Tablet Computer					
Brand Name	Lenovo					
Model Name	Lenovo TB-8505XS					
FCC ID	O57TB8505X					
IMEI Code Sample 2: 863763040007618 Sample 3: 863763040009218						
Wireless Technology and Frequency Range	GSM850: 824 MHz ~ 849 MHz GSM1900: 1850MHz ~ 1910MHz WCDMA Band II: 1850 MHz ~ 1910 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 38: 2570 MHz ~ 2620 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5320 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5700 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5825 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz					
Mode	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (16QAM uplink is not supported) LTE: QPSK, 16QAM, 64QAM WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE					
HW Version	Lenovo TB-8505XS					
SW Version	TB-8505XS_RF01_220317					
EUT Stage	Identical Prototype					
Remark:						

Report No.: FA981204-19

Remark:

- 1. This device has voice function, but limited to speakerphone mode.
- This device does not support DTM operation and supports GRPS/EGRPS mode up to multi-slot class 12.
- The device employs proximity sensors that detect the presence of the user's body also a finger or hand near the bottom face, edge 1 or edge 4 of the device, reduced power will be active for all WWAN bands.
- The device employs proximity sensors that detect the presence of the user's body also a finger or hand near the bottom face, edge 1 or edge 2 of the device, reduced power will be active for all WLAN bands.
- 5. This is a variant report for Lenovo TB-8505XS. The change note could be referred to the Lenovo TB-8505XS Class II Permissive Change letter which is exhibited separately. According to the change, only Sample 2/3 worse cases from original report(Sporton Report Number FA981204-01) were verified for difference. For Sample 1 and Sample 3, only Memory, Front Housing and Speaker supplier is different, the differences do not affect the test, so Sample 1 is not tested.

Page 6 of 27 Sporton International Inc. (Kunshan) Issued Date : Mar. 23, 2022 TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: O57TB8505X Form version: 200414

4.2 General LTE SAR Test and Reporting Considerations

Summarize	d necessary ite	ms addres	sed in KD	В 94122	5 D05 v02	r05		
FCC ID	O57TB8505X	D57TB8505X						
Equipment Name	Portable Tablet	Portable Tablet Computer						
Operating Frequency Range of each LTE transmission band	LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz							
Channel Bandwidth	LTE Band 4:1.4 LTE Band 5:1.4 LTE Band 7: 5M LTE Band 38: 5	LTE Band 2:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 5:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 7: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 38: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 38: 5MHz, 10MHz, 15MHz, 20MHz						
uplink modulations used	QPSK / 16QAM	I / 64QAM						
LTE release	R10, Cat 4							
CA support	No							
LTE Voice / Data requirements	Voice and Data							
							and 3 MPR (dB)	
		1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
LTE MPR permanently built-in by design	QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
2.2 m reportionationally balle in by design	16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
	16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
	64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
	64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
	256 QAM ≥ 1 ≤ 5							
LTE A-MPR	In the base station simulator configuration, Network Setting value is set to NS_01 to disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI)							
Spectrum plots for RB configuration	A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report.							
Power reduction applied to satisfy SAR compliance	Yes, Proximity S		ver reduction	n will be	active at b	ottom face	, edge 1 a	nd edge 4 for

Report No.: FA981204-19

Page 7 of 27

Sporton International Inc. (Kunshan) Issued Date $_{\dot{1}}$ Mar. 23, 2022 TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: O57TB8505X Form version: 200414

SPORTON LAB. FCC SAR Test Report

	Transmission (H, M, L) channel numbers and frequencies in each LTE band												
	LTE Band 2												
	Bandwidth	1.4 MHz	Bandwid	th 3 MHz	Band	width 5 MHz	Bandwidth 10 MHz Bandwidth		h 15 MHz Bandw		width 20 MHz		
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Fre (Mł		Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	18607	1850.7	18615	1851.5	1862	5 1852.5	18650	18	55	18675	1857.5	18700	1860
М	18900	1880	18900	1880	18900	1880	18900	18	80	18900	1880	18900	1880
Н	19193	1909.3	19185	1908.5	1917	5 1907.5	19150	19	05	19125	1902.5	19100	1900
						LTE Ba							
	Bandwidth		Bandwid	th 3 MHz	Band	width 5 MHz	Bandwidt			Bandwidt	h 15 MHz	Bandv	vidth 20 MHz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Fr∈ (M⊦		Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	19957	1710.7	19965	1711.5	1997	5 1712.5	20000	17	15	20025	1717.5	20050	1720
М	20175	1732.5	20175	1732.5	2017	5 1732.5	20175	173	32.5	20175	1732.5	2017	5 1732.5
Н	20393	1754.3	20385	1753.5	2037		20350	17	50	20325	1747.5	20300	1745
						LTE Ba	and 5						
	Ban	dwidth 1.4	MHz	Bar	ndwidth	3 MHz	Ba	ndwid	th 5 N	ИHz	Ban	ndwidth 1	10 MHz
	Ch. #		eq. (MHz)	Ch. #		Freq. (MHz)	Ch. #			eq. (MHz)	Ch. #		Freq. (MHz)
L	20407		824.7	20415		825.5	2042			826.5	20450		829
M	20525		836.5	20525		836.5	2052			836.5	20525		836.5
Н	20643	B	848.3	20635		847.5	2062	5		846.5	20600)	844
	_			_		LTE Ba					_		
		ndwidth 5			dwidth '			ndwidt				ndwidth 2	
	Ch. #		eq. (MHz)	Ch. #		Freq. (MHz)	Ch. #			eq. (MHz)	Ch. #		Freq. (MHz)
L	20775		2502.5	20800		2505	2082			2507.5	20850		2510
М	21100		2535	21100		2535	21100			2535	21100		2535
Н	21425		2567.5	21400		2565	21375	5	2	2562.5	21350)	2560
	LTE Band 38 Bandwidth 5 MHz Bandwidth 10 MHz Bandwidth 15 MHz Bandwidth 15 MHz												
		ndwidth 5			dwidth '							ndwidth 2	
	Ch. #		eq. (MHz)	Ch. #		Freq. (MHz)	Ch. #			eq. (MHz)	Ch. #		Freq. (MHz)
L	37775		2572.5	37800		2575	37825			2577.5	37850		2580
M	38000		2595	38000		2595	38000			2595	38000		2595
Н	38225)	2617.5	38200		2615	3817)	2	2612.5	38150)	2610

Sporton International Inc. (Kunshan)TEL: +86-512-57900158 / FAX: +86-512-57900958
FCC ID: O57TB8505X

Page 8 of 27
Issued Date : Mar. 23, 2022
Form version: 200414

Report No. : FA981204-19

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA981204-19

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

 Sporton International Inc. (Kunshan)
 Page
 9 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA981204-19

6.2 SAR Definition

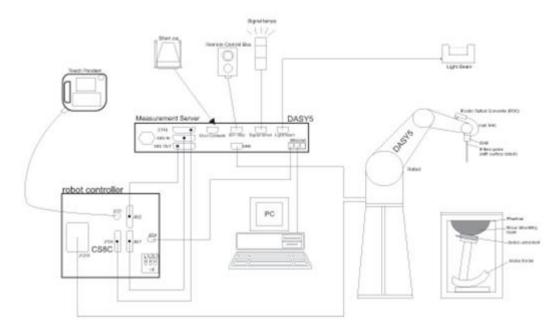
The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.


 Sporton International Inc. (Kunshan)
 Page
 10 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Report No.: FA981204-19

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	10 MHz - >6 GHz Linearity: ±0.2 dB (30 MHz - 6 GHz)		
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)		
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)		
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1		

Report No.: FA981204-19

7.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Photo of DAE

 Sporton International Inc. (Kunshan)
 Page

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Da

 FCC ID: O57TB8505X
 Form version

Page 12 of 27
Issued Date : Mar. 23, 2022
Form version: 200414

7.3 Phantom

<SAM Twin Phantom>

107 am TWIIIT Halltoille		
Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	4 +/
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 %
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA981204-19

Page 13 of 27

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Sporton International Inc. (Kunshan) Issued Date : Mar. 23, 2022 TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: O57TB8505X Form version: 200414

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA981204-19

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

Page 14 of 27 Sporton International Inc. (Kunshan) TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: O57TB8505X

Issued Date : Mar. 23, 2022 Form version: 200414

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA981204-19

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

 Sporton International Inc. (Kunshan)
 Page
 15 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$	When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

Page 16 of 27 Sporton International Inc. (Kunshan) Issued Date : Mar. 23, 2022 TEL: +86-512-57900158 / FAX: +86-512-57900958 FCC ID: O57TB8505X

Form version: 200414

Report No.: FA981204-19

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA981204-19

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·∆z	Zoom(n-1)
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

 Sporton International Inc. (Kunshan)
 Page
 17 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manuelantonan	Name of European	T (8.51 - 1	Osai's I Nisasak sa	Calib	ration	
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	835MHz System Validation Kit	D835V2	4d258	2020/5/7	2023/5/6	
SPEAG	1750MHz System Validation Kit	D1750V2	1090	2019/3/27	2022/3/25	
SPEAG	1900MHz System Validation Kit	D1900V2	5d170	2019/3/26	2022/3/24	
SPEAG	2450MHz System Validation Kit	D2450V2	908	2019/3/25	2022/3/23	
SPEAG	2600MHz System Validation Kit	D2600V2	1061	2020/11/26	2023/11/25	
SPEAG	5000MHz System Validation Kit	D5GHzV2	1113	2019/9/24	2022/9/22	
SPEAG	Data Acquisition Electronics	DAE4	1279	2021/9/21	2022/9/20	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3935	2021/4/29	2022/4/28	
SPEAG	ELI4 Phantom	ELI V8.0	TP-2134	NCR	NCR	
Testo	Thermo-Hygrometer	608-H1	1241332126	2022/1/6	2023/1/5	
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR	
Anritsu	Radio Communication Analyzer	MT8821C	6201432831	2021/4/13	2022/4/12	
Agilent	ENA Series Network Analyzer	E5071C	MY46106933	2021/7/31	2022/7/30	
SPEAG	Dielectric Probe Kit	DAK-3.5	1138	2021/6/9	2022/6/8	
Anritsu	Vector Signal Generator	MG3710A	6201682672	2022/1/6	2023/1/5	
Rohde & Schwarz	Power Meter	NRVD	102081	2021/8/12	2022/8/11	
Rohde & Schwarz	Power Sensor	NRV-Z5	100538	2021/8/12	2022/8/11	
Rohde & Schwarz	Power Sensor	NRV-Z5	100539	2021/8/12	2022/8/11	
R&S	CBT BLUETOOTH TESTER	CBT	101246	2021/4/12	2022/4/11	
EXA	Spectrum Analyzer	FSV7	101631	2021/10/14	2022/10/13	
FLUKE	DIGITAC THERMOMETER	51II	97240029	2021/8/13	2022/8/12	
BONN	POWER AMPLIFIER	BLMA 0830-3	087193A	No	te 1	
BONN	POWER AMPLIFIER	BLMA 2060-2	087193B	No	te 1	
Agilent	Agilent Dual Directional Coupler		20500	No	te 1	
Agilent	Dual Directional Coupler	11691D	MY48151020	No	te 1	
ARRA	Power Divider	A3200-2	N/A	No	te 1	
MCL	Attenuation1	BW-S10W5+	N/A	Note 1		
MCL	Attenuation2	BW-S10W5+	N/A	No	te 1	
MCL	Attenuation3	BW-S10W5+	N/A	No	te 1	

Note:

- 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.
- 2. Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The justification data of dipole can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: O57TB8505X

Page 18 of 27
Issued Date: Mar. 23, 2022
Form version: 200414

Report No.: FA981204-19

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 11.1.

Fig 11.1 Photo of Liquid Height for Body SAR

Page 19 of 27
Issued Date: Mar. 23, 2022
Form version: 200414

Report No.: FA981204-19

10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No.: FA981204-19

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(εr)
				For Head				
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0

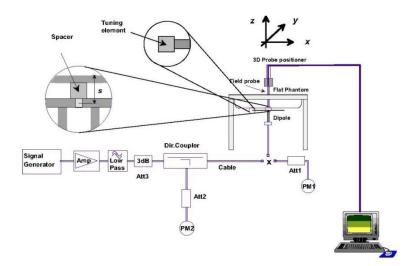
Simulating Liquid for 5GHz, Manufactured by SPEAG

<u> </u>	
Ingredients	(% by weight)
Water	64~78%
Mineral oil	11~18%
Emulsifiers	9~15%
Additives and Salt	2~3%

<Tissue Dielectric Parameter Check Results>

Chisque Dielectric i arameter Grieck Results/													
Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date			
835	Head	22.8	0.939	42.773	0.90	41.50	4.33	3.07	±5	2022/3/19			
1750	Head	22.7	1.396	40.498	1.37	40.10	1.90	0.99	±5	2022/3/19			
1900	Head	22.9	1.424	38.981	1.40	40.00	1.71	-2.55	±5	2022/3/19			
2450	Head	22.6	1.805	38.547	1.80	39.20	0.28	-1.67	±5	2022/3/19			
2600	Head	22.6	1.923	38.240	1.96	39.00	-1.89	-1.95	±5	2022/3/19			
5250	Head	22.9	4.601	35.834	4.71	35.90	-2.31	-0.18	±5	2022/3/20			
5600	Head	22.9	5.004	35.267	5.07	35.50	-1.30	-0.66	±5	2022/3/20			
5750	Head	22.9	5.171	35.076	5.22	35.40	-0.94	-0.92	±5	2022/3/20			

 Sporton International Inc. (Kunshan)
 Page
 20 of 27


 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2022/3/19	835	Head	50	4d258	3935	1279	0.494	9.44	9.88	4.66
2022/3/19	1750	Head	50	1090	3935	1279	1.810	36.40	36.2	-0.55
2022/3/19	1900	Head	50	5d170	3935	1279	1.950	39.00	39	0.00
2022/3/19	2450	Head	50	908	3935	1279	2.460	52.80	49.2	-6.82
2022/3/19	2600	Head	50	1061	3935	1279	2.700	56.60	54	-4.59
2022/3/20	5250	Head	50	1113	3935	1279	3.750	80.50	75	-6.83
2022/3/20	5600	Head	50	1113	3935	1279	3.930	83.40	78.6	-5.76
2022/3/20	5750	Head	50	1113	3935	1279	3.770	80.00	75.4	-5.75

Report No.: FA981204-19

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: O57TB8505X

Page 21 of 27
Issued Date : Mar. 23, 2022
Form version: 200414

11. RF Exposure Positions

11.1 SAR Testing for Tablet

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

Report No.: FA981204-19

<EUT Setup Photos>

Please refer to Appendix D for the test setup photos.

 Sporton International Inc. (Kunshan)
 Page
 22 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

12. SAR Test Results

12.1 Body SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Power Mode	Ch.	Freq. (MHz)	Sample			Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
01	GSM850	GPRS 4 Tx slots	Edge 1	0	Reduced	189	836.4	2	22.73	24.50	1.503	-0.01	0.704	1.058
	GSM850	GPRS 4 Tx slots	Edge 1	0	Reduced	189	836.4	3	22.73	24.50	1.503	-0.03	0.662	0.995
	GSM1900	GPRS 4 Tx slots	Edge 1	0	Reduced	810	1909.8	2	22.17	23.00	1.211	0.07	0.969	1.173
02	GSM1900	GPRS 4 Tx slots	Edge 1	0	Reduced	810	1909.8	3	22.17	23.00	1.211	-0.03	0.971	1.175

Report No.: FA981204-19

<WCDMA SAR>

Plo No		Mode	Test Position	Gap (mm)	Power Mode	Ch.	Freq. (MHz)	Sample			Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA V	RMC 12.2Kbps	Edge 1	0	Reduced	4182	836.4	2	20.14	21.00	1.219	0.06	0.658	0.802
03	WCDMA V	RMC 12.2Kbps	Edge 1	0	Reduced	4182	836.4	3	20.14	21.00	1.219	-0.08	0.730	<mark>0.890</mark>
	WCDMA II	RMC 12.2Kbps	Edge 1	0	Reduced	9538	1907.6	2	16.75	18.00	1.334	-0.03	0.644	0.859
04	WCDMA II	RMC 12.2Kbps	Edge 1	0	Reduced	9538	1907.6	3	16.75	18.00	1.334	-0.05	0.651	<mark>0.868</mark>

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Gap (mm)	Power Mode	Ch.	Freq. (MHz)	Sample	Dawar	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
05	LTE Band 2	20M	QPSK	50	24	Edge 1	0	Reduced	19100	1900	2	17.53	18.00	1.114	-0.06	0.985	<mark>1.098</mark>
	LTE Band 2	20M	QPSK	50	24	Edge 1	0	Reduced	19100	1900	3	17.53	18.00	1.114	-0.07	0.964	1.074
06	LTE Band 4	20M	QPSK	50	24	Bottom Face	0	Reduced	20175	1732.5	2	17.66	18.00	1.081	0.09	0.760	0.822
	LTE Band 4	20M	QPSK	50	24	Bottom Face	0	Reduced	20175	1732.5	3	17.66	18.00	1.081	-0.03	0.686	0.742
	LTE Band 5	10M	QPSK	50	0	Edge 1	0	Reduced	20525	836.5	2	20.22	21.00	1.197	-0.07	0.685	0.820
07	LTE Band 5	10M	QPSK	50	0	Edge 1	0	Reduced	20525	836.5	3	20.22	21.00	1.197	-0.07	0.705	<mark>0.844</mark>
	LTE Band 7	20M	QPSK	1	49	Edge 4	8	Full	21350	2560	2	23.12	24.50	1.374	0.06	0.689	0.947
80	LTE Band 7	20M	QPSK	1	49	Edge 4	8	Full	21350	2560	3	23.12	24.50	1.374	0.07	0.700	<mark>0.962</mark>

<TDD LTE SAR>

	Plot No.	Band	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Gap (mm)	Power Mode	Ch.	Freq. (MHz)	Sample	Dower	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle			Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
Ī	09	LTE Band 38	20M	QPSK	50	0	Bottom Face	0	Reduced	38000	2595	2	17.55	18.50	1.245	62.9	1.006	0.01	0.580	0.726
		LTE Band 38	20M	QPSK	50	0	Bottom Face	0	Reduced	38000	2595	3	17.55	18.50	1.245	62.9	1.006	-0.12	0.541	0.677

 Sporton International Inc. (Kunshan)
 Page
 23 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

<WLAN 2.4GHz SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Power Mode	Ch.	Freq. (MHz)	Sample	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	Reduced	6	2437	2	14.48	16.00	1.419	100	1.000	-0.03	0.676	0.959
10	WLAN 2.4GHz	802.11b 1Mbps	Bottom Face	0	Reduced	6	2437	3	14.48	16.00	1.419	100	1.000	0	0.778	<mark>1.104</mark>

Report No.: FA981204-19

<WLAN5G SAR>

Plo No	Rand	Mode	Test Position	Gap (mm)	Power Mode	Ch.	Freq. (MHz)	Sample	_	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle	Duty Cycle Scaling Factor	Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN5.3GHz	802.11a 6Mbps	Edge 1	0	Reduced	60	5300	2	12.79	14.50	1.483	96.97	1.031	0.04	0.621	0.949
11	WLAN5.3GHz	802.11a 6Mbps	Edge 1	0	Reduced	60	5300	3	12.79	14.50	1.483	96.97	1.031	-0.04	0.638	<mark>0.975</mark>
	WLAN5.5GHz	802.11a 6Mbps	Edge 1	0	Reduced	100	5500	2	13.09	14.50	1.384	96.97	1.031	0.03	0.401	0.572
12	WLAN5.5GHz	802.11a 6Mbps	Edge 1	0	Reduced	100	5500	3	13.09	14.50	1.384	96.97	1.031	-0.02	0.402	<mark>0.573</mark>
13	WLAN5.8GHz	802.11a 6Mbps	Edge 1	0	Reduced	157	5785	2	13.02	14.50	1.406	96.97	1.031	-0.04	0.447	0.648
	WLAN5.8GHz	802.11a 6Mbps	Edge 1	0	Reduced	157	5785	3	13.02	14.50	1.406	96.97	1.031	0.01	0.442	0.641

<Bluetooth SAR>

Plc No	Rand	Mode	Test Position	Gap (mm)	Power Mode	Ch.	Freq. (MHz)	Sample	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	Bluetooth	1Mbps	Bottom Face	0	Full	78	2480	2	8.60	10.00	1.380	76.72	1.086	0.01	0.153	0.229
14	Bluetooth	1Mbps	Bottom Face	0	Full	78	2480	3	8.60	10.00	1.380	76.72	1.086	0.06	0.154	0.231

Note: The verified maximum SAR chapter 12.1 are all less than original report, so no need to consider co-located SAR for original report has been performed conservatively.

 Sporton International Inc. (Kunshan)
 Page
 24 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

12.2 Repeated SAR Measurement

No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Mode	Test Position	Gap (mm)	Power State	Ch.	Freq. (MHz)	Sample	Average Power (dBm)	Tune-Up Limit (dBm)			Measured 1g SAR (W/kg)		Reported 1g SAR (W/kg)
1st	GSM1900	-	-	-	-	GPRS 4 Tx slots	Edge 1	0mm	Reduced	810	1909.8	3	22.17	23.00	1.211	-0.03	0.971	1	1.175
2nd	GSM1900	-	-	-	-	GPRS 4 Tx slots	Edge 1	0mm	Reduced	810	1909.8	3	22.17	23.00	1.211	-0.03	0.911	1.066	1.103
1st	LTE Band 2	20M	QPSK	50	24	-	Edge 1	0mm	Reduced	19100	1900	2	17.53	18.00	1.114	-0.06	0.985	1	1.098
2nd	LTE Band 2	20M	QPSK	50	24		Edge 1	0mm	Reduced	19100	1900	2	17.53	18.00	1.114	0.09	0.935	1.053	1.042

Report No.: FA981204-19

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

Test Engineer: Bruce Li, Martin Li, Ricky Gu

 Sporton International Inc. (Kunshan)
 Page
 25 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

13. <u>Uncertainty Assessment</u>

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg. Therefore, the measurement uncertainty table is not required in this report.

Report No.: FA981204-19

 Sporton International Inc. (Kunshan)
 Page
 26 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

14. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No.: FA981204-19

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [8] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [9] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015
- [10] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [11] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015

----THE END-----

 Sporton International Inc. (Kunshan)
 Page
 27 of 27

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Mar. 23, 2022

 FCC ID: O57TB8505X
 Form version: 200414

Appendix A. Plots of System Performance Check

The plots are shown as follows.

Sporton International Inc. (Kunshan)TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: O57TB8505X

Page: A1 of A1
Issued Date: Mar. 23, 2022
Form version: 200414

Report No. : FA981204-19

System Check_Head_835MHz

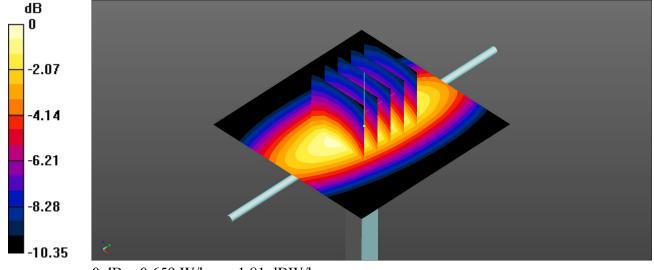
DUT: D835V2 - SN:4d258

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL_835 Medium parameters used: f = 835 MHz; $\sigma = 0.939$ S/m; $\varepsilon_r = 42.773$; $\rho = 1000$ kg/m³

Date: 2022/3/19

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.27, 10.27, 10.27); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=50mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.658 W/kg

Pin=50mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.51 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.744 W/kg SAR(1 g) = 0.494 W/kg; SAR(10 g) = 0.327 W/kg

Maximum value of SAR (measured) = 0.659 W/kg

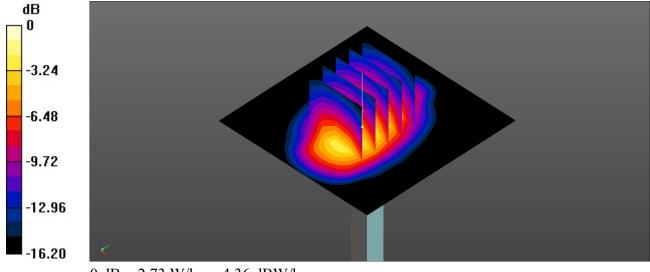
0 dB = 0.659 W/kg = -1.81 dBW/kg

System Check_Head_1750MHz

DUT: D1750V2 - SN:1090

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1750 MHz; $\sigma = 1.396$ S/m; $\epsilon_r = 40.498$; $\rho = 1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.9, 8.9, 8.9); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=50mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.75 W/kg

Pin=50mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 45.74 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 3.20 W/kg SAR(1 g) = 1.81 W/kg; SAR(10 g) = 0.983 W/kg Maximum value of SAR (measured) = 2.73 W/kg

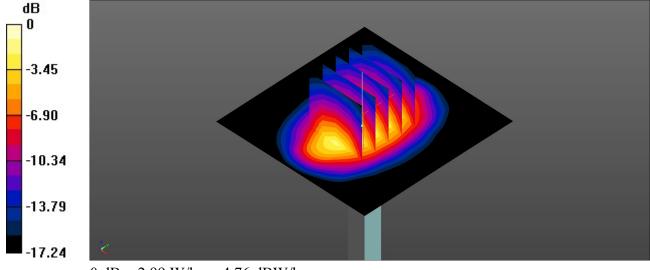
0 dB = 2.73 W/kg = 4.36 dBW/kg

System Check_Head_1900MHz

DUT: D1900V2 - SN:5d170

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f=1900 MHz; $\sigma=1.424$ S/m; $\epsilon_r=38.981$; $\rho=1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.61, 8.61, 8.61); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=50mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.96 W/kg

Pin=50mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 45.48 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 3.55 W/kg SAR(1 g) = 1.95 W/kg; SAR(10 g) = 1.03 W/kg Maximum value of SAR (measured) = 2.99 W/kg

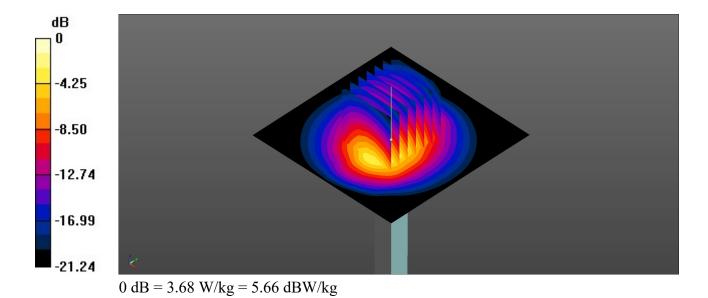
0 dB = 2.99 W/kg = 4.76 dBW/kg

System Check_Head_2450MHz

DUT: D2450V2 - SN:908

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.805$ S/m; $\epsilon_r = 38.547$; $\rho = 1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.86, 7.86, 7.86); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=50mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 3.59 W/kg

Pin=50mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.34 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 4.47 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.13 W/kg Maximum value of SAR (measured) = 3.68 W/kg

System Check_Head_2600MHz

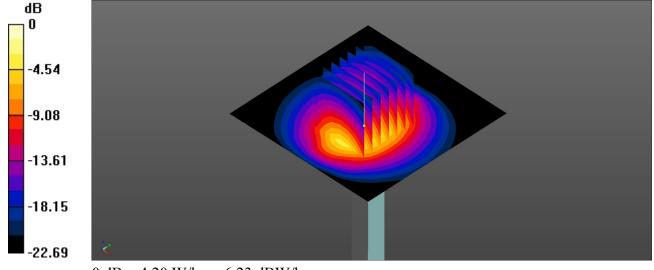
DUT: D2600V2 - SN:1061

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: HSL_2600 Medium parameters used: f = 2600 MHz; $\sigma = 1.923$ S/m; $\epsilon_r = 38.24$; $\rho = 1000$

Date: 2022/3/19

 kg/m^3

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.66, 7.66, 7.66); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=50mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 4.17 W/kg

Pin=50mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 40.98 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 5.16 W/kg SAR(1 g) = 2.7 W/kg; SAR(10 g) = 1.19 W/kg

Maximum value of SAR (measured) = 4.20 W/kg

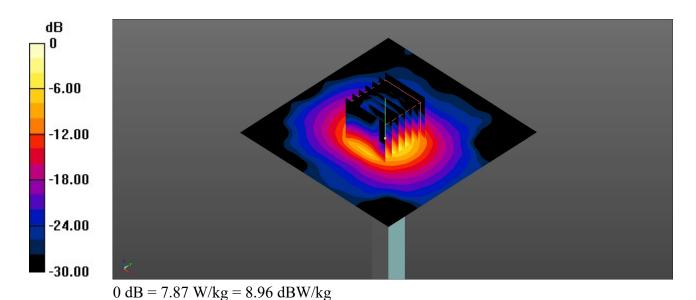
0 dB = 4.20 W/kg = 6.23 dBW/kg

System Check_Head_5250MHz

DUT: D5GHzV2 - SN:1113

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5250 MHz; $\sigma = 4.601$ S/m; $\epsilon_r = 35.834$; $\rho = 1000$ kg/m³

Date: 2022/3/20


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(5.04, 5.04, 5.04); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=50mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 7.28 W/kg

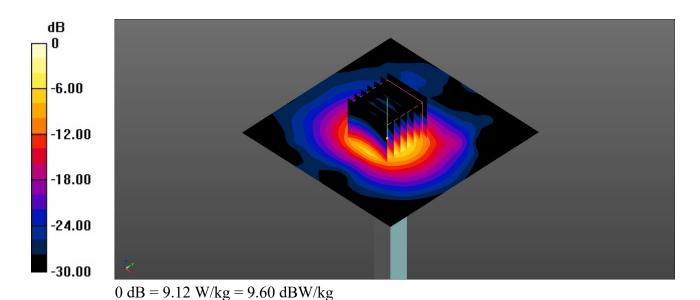
Pin=50mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 40.48 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 12.5 W/kg SAR(1 g) = 3.75 W/kg; SAR(10 g) = 1.09 W/kg Maximum value of SAR (measured) = 7.87 W/kg

System Check_Head_5600MHz

DUT: D5GHzV2 - SN:1113

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5600 MHz; $\sigma = 5.004$ S/m; $\epsilon_r = 35.267$; $\rho = 1000$ kg/m³

Date: 2022/3/20


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(4.69, 4.69, 4.69); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=50mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 8.51 W/kg

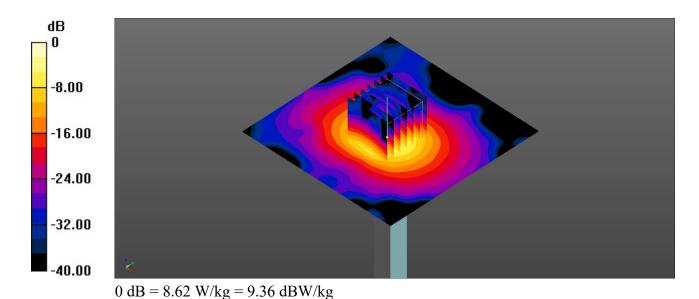
Pin=50mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 41.70 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 15.6 W/kg SAR(1 g) = 3.93 W/kg; SAR(10 g) = 1.11 W/kg Maximum value of SAR (measured) = 9.12 W/kg

System Check Head 5750MHz

DUT: D5GHzV2 - SN:1113

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5750 MHz; $\sigma = 5.171$ S/m; $\epsilon_r = 35.076$; $\rho = 1000$ kg/m³

Date: 2022/3/20


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(4.71, 4.71, 4.71); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=50mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 7.94 W/kg

Pin=50mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 39.44 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 15.1 W/kg SAR(1 g) = 3.77 W/kg; SAR(10 g) = 1.07 W/kg Maximum value of SAR (measured) = 8.62 W/kg

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

Sporton International Inc. (Kunshan)TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: O57TB8505X

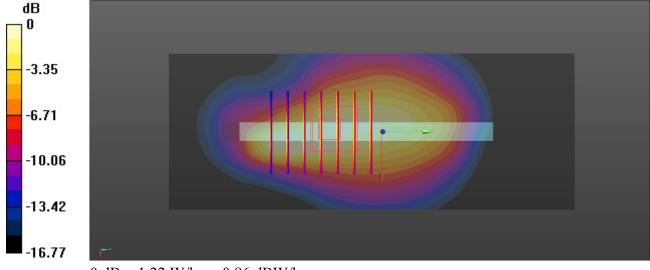
Page: B1 of B1
Issued Date: Mar. 23, 2022
Form version: 200414

Report No. : FA981204-19

01 GSM850 GPRS 4 Tx slots Edge 1 0mm Ch189

Communication System: UID 0, GSM850 (0); Frequency: 836.4 MHz; Duty Cycle: 1:2.08 Medium: HSL_835 Medium parameters used: f = 836.4 MHz; $\sigma = 0.939$ S/m; $\varepsilon_r = 42.77$; $\rho = 1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.27, 10.27, 10.27); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.36 W/kg

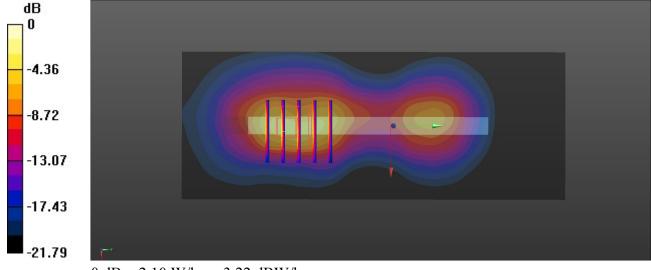
Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 44.02 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.84 W/kg SAR(1 g) = 0.704 W/kg; SAR(10 g) = 0.456 W/kg Maximum value of SAR (measured) = 1.22 W/kg

0 dB = 1.22 W/kg = 0.86 dBW/kg

02_GSM1900_GPRS 4 Tx slots_Edge 1_0mm_Ch810

Communication System: UID 0, PCS (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08 Medium: HSL_1900 Medium parameters used: f = 1910 MHz; $\sigma = 1.428$ S/m; $\epsilon_r = 38.957$; $\rho = 1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.61, 8.61, 8.61); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.06 W/kg

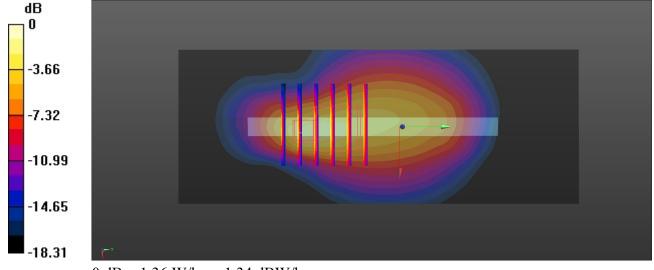
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 36.55 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.53 W/kg SAR(1 g) = 0.971 W/kg; SAR(10 g) = 0.406 W/kg Maximum value of SAR (measured) = 2.10 W/kg

0 dB = 2.10 W/kg = 3.22 dBW/kg

03 WCDMA V RMC 12.2Kbps Edge 1 0mm Ch4182

Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: HSL_835 Medium parameters used: f = 836.4 MHz; $\sigma = 0.939$ S/m; $\epsilon_r = 42.77$; $\rho = 1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.27, 10.27, 10.27); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.981 W/kg

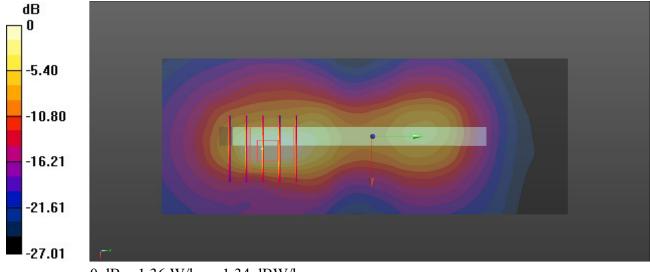
Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 44.50 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.84 W/kg SAR(1 g) = 0.730 W/kg; SAR(10 g) = 0.388 W/kg Maximum value of SAR (measured) = 1.36 W/kg

0 dB = 1.36 W/kg = 1.34 dBW/kg

04_WCDMA II_RMC 12.2Kbps_Edge 1_0mm_Ch9538

Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1908 MHz; $\sigma = 1.426$ S/m; $\epsilon_r = 38.968$; $\rho = 1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.61, 8.61, 8.61); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.83 W/kg

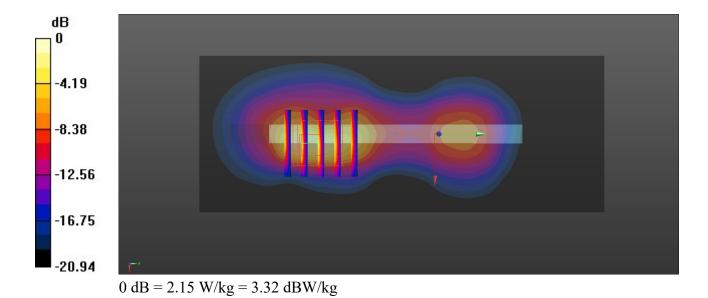
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.93 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.65 W/kg SAR(1 g) = 0.651 W/kg; SAR(10 g) = 0.276 W/kg Maximum value of SAR (measured) = 1.36 W/kg

0 dB = 1.36 W/kg = 1.34 dBW/kg

05_LTE Band 2_20M_QPSK_50RB_24Offset_Edge 1_0mm_Ch19100

Communication System: UID 0, LTE-FDD (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 40.49$; $\rho = 1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.61, 8.61, 8.61); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

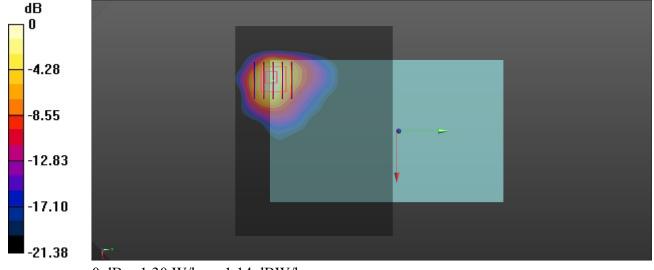
Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.52 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.06 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 2.57 W/kg SAR(1 g) = 0.985 W/kg; SAR(10 g) = 0.404 W/kg Maximum value of SAR (measured) = 2.15 W/kg

06_LTE Band 4_20M_QPSK_50RB_24Offset_Bottom Face_0mm_Ch20175

Communication System: UID 0, LTE-FDD (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.385$ S/m; $\epsilon_r = 40.55$; $\rho = 1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.1 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.9, 8.9, 8.9); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (121x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.00 W/kg

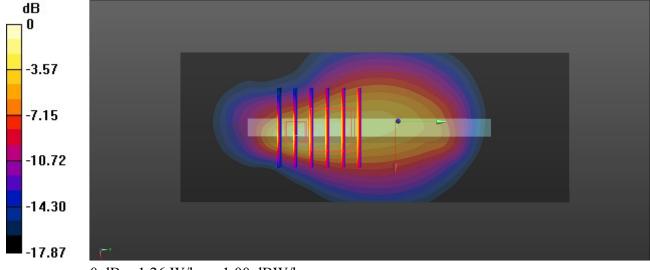
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 1.89 W/kg SAR(1 g) = 0.760 W/kg; SAR(10 g) = 0.340 W/kg Maximum value of SAR (measured) = 1.30 W/kg

0 dB = 1.30 W/kg = 1.14 dBW/kg

07_LTE Band 5_10M_QPSK_50RB_0Offset_Edge 1_0mm_Ch20525

Communication System: UID 0, LTE-FDD (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: HSL_835 Medium parameters used: f = 836.5 MHz; $\sigma = 0.939$ S/m; $\varepsilon_r = 42.77$; $\rho = 1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.27, 10.27, 10.27); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.03 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.19 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 0.705 W/kg; SAR(10 g) = 0.372 W/kg Maximum value of SAR (measured) = 1.26 W/kg

0 dB = 1.26 W/kg = 1.00 dBW/kg

08_LTE Band 7_20M_QPSK_1RB_49Offset_Edge 4_8mm_Ch21350

Communication System: UID 0, LTE-FDD (0); Frequency: 2560 MHz; Duty Cycle: 1:1

Medium: HSL 2600 Medium parameters used: f = 2560 MHz; $\sigma = 1.881$ S/m; $\varepsilon_r = 38.38$; $\rho = 1000$ kg/m³

Date: 2022/3/19

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.66, 7.66, 7.66); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (61x231x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.15 W/kg

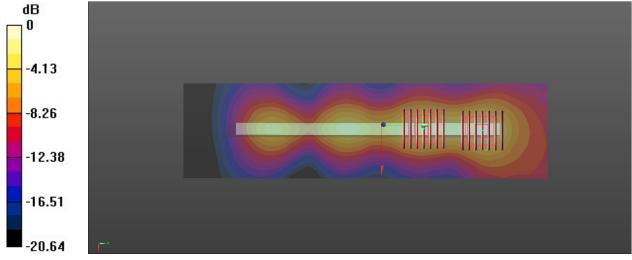
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.16 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.700 W/kg; SAR(10 g) = 0.349 W/kg

Maximum value of SAR (measured) = 1.13 W/kg


Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.16 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.696 W/kg; SAR(10 g) = 0.359 W/kg

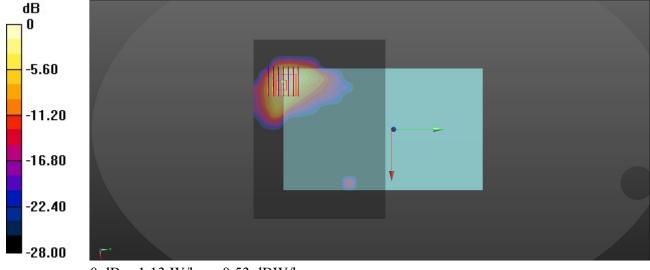
Maximum value of SAR (measured) = 1.11 W/kg

0 dB = 1.11 W/kg = 0.45 dBW/kg

09 LTE Band 38 20M QPSK 50RB 0Offset Bottom Face 0mm Ch38000

Communication System: UID 0, LTE-TDD (0); Frequency: 2595 MHz; Duty Cycle: 1:1.59 Medium: HSL_2600 Medium parameters used: f = 2595 MHz; $\sigma = 1.918$ S/m; $\epsilon_r = 38.244$; $\rho = 1000$ kg/m³

Date: 2022/3/19


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.66, 7.66, 7.66); Calibrated: 2021/4/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2021/9/21
- Phantom: ELI Phantom; Type: ELI V8.0; Serial: TP-2134
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (151x111x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 2.04 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.61 W/kg SAR(1 g) = 0.580 W/kg; SAR(10 g) = 0.253 W/kg Maximum value of SAR (measured) = 1.13 W/kg

0 dB = 1.13 W/kg = 0.53 dBW/kg