

Full

TEST REPORT

No. I18D00006-SRD05

For

Client : Lenovo(Shanghai) Electronics

Technology Co., Ltd.

Production: Portable Tablet Computer

Model Name: Lenovo TB-8504X

FCC ID: 057TB8504X

Hardware Version: Lenovo Tablet TB-8504X

Software Version: TB-8504X_RF01_170520

Issued date: 2018-02-05

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

RF Test Report

Revision Version

Report No.: I18D00006-SRD05

Report Number	Revision	Date	Memo
I18D00006-SRD05	00	2018-01-26	Initial creation of test report
I18D00006-SRD05	01	2018-02-05	Second creation of test report

East China Institute of Telecommunications Page Number : 2 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

Page Number : 3 of 58 Report Issued Date : Feb.05.2018

CONTENTS

1.	TEST L	ABORATORY	5
1.1.	TESTIN	IG LOCATION	5
1.2.	TESTIN	IG ENVIRONMENT	5
1.3.	PROJE	CT DATA	5
1.4.	SIGNAT	ΓURE	5
2.	CLIENT	INFORMATION	6
2.1.	APPLIC	CANT INFORMATION	6
2.2.	MANUF	FACTURER INFORMATION	6
3.	EQUIP	MENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1.	ABOUT	EUT	7
3.2.	INTERN	NAL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3.	INTERN	NAL IDENTIFICATION OF AE USED DURING THE TEST	7
3.4.	STATE	MENTS	7
4.	REFER	ENCE DOCUMENTS	8
4.1.	REFER	ENCE DOCUMENTS FOR TESTING	8
5.	SUMMA	ARY OF TEST RESULTS	9
6.	TEST E	QUIPMENT UTILIZED	10
7.	TEST E	NVIRONMENT	12
ANN	EX A.	MEASUREMENT RESULTS	13
ANN	EX A.1.	OUTPUT POWER	13
ANN	EX A.2.	EMISSION LIMT	22
ANN	EX A.3.	FREQUENCY STABILITY	26
ANN	EX A.4.	OCCUPIED BANDWIDTH	28
ANN	EX A.5.	EMISSION BANDWIDTH	37
ANN	EX A.6.	BAND EDGE COMPLIANCE	46

RF Test Report

ANNEX A.7.	CONDUCTED SPURIOUS EMISSION	. 53
ANNEX A.8.	PEAK-TO-AVERAGE POWER RATIO	. 55
ANNEX B.	DEVIATIONS FROM PRESCRIBED TEST METHODS	. 58

Report No.: I18D00006-SRD05

Page Number : 4 of 58 Report Issued Date : Feb.05.2018

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications		
Address:	7-8F, G Area, No. 668, Beijing East Road, Huangpu District,		
	Shanghai, P. R. China		
Postal Code:	200001		
Telephone:	(+86)-021-63843300		
Fax:	(+86)-021-63843301		

1.2. Testing Environment

Normal Temperature:	15-35°C
Extreme Temperature:	-10/+55℃
Relative Humidity:	25-75%

1.3. Project data

Project Leader:	Yu Yuting
Testing Start Date:	2018-01-09
Testing End Date:	2018-01-10

1.4. Signature

Shi Hongqi

(Prepared this test report)

Dingli

Ding Li

(Reviewed this test report)

: 5 of 58

Report Issued Date : Feb.05.2018

Page Number

Zheng Zhongbin
Director of the laboratory

(Approved this test report)

Address:

Address:

RF Test Report

2. Client Information

2.1. Applicant Information

Company Name: Lenovo(Shanghai) Electronics Technology Co., Ltd.

NO.68 BUILDING, 199 FENJU RD, China (Shanghai) Pilot Free

Report No.: I18D00006-SRD05

Trade Zone, 200131, CHINA

Postcode: N/A

Telephone: 18116117205

2.2. Manufacturer Information

Company Name: Lenovo(Shanghai) Electronics Technology Co., Ltd.

23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay,

Hong Kong

Postcode: N/A

Telephone: 18116117205

East China Institute of Telecommunications Pag TEL: +86 21 63843300 FAX: +86 21 63843301 Rep

Page Number : 6 of 58 Report Issued Date : Feb.05.2018

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

Report No.: I18D00006-SRD05

3.1. About EUT

P	
EUT Description	Portable Tablet Computer
Model name	Lenovo TB-8504X
FCC ID	O57TB8504X
Frequency	GSM850/900/1800/1900;
	WCDMA Band I/II/V/VIII
	LTE FDD1/3/5/7/8/20 TDD38/40
Extreme Temperature	-10/+55 °C
Nominal Voltage	3.85V
Extreme High Voltage	4.4V
Extreme Low Voltage	3.65V

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N07	863768030010993	Lenovo Tablet	TB-8504X_RF01_1705	2018-01-08
		TB-8504X	20	

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	RF cable	
AE2	Dummy Battery	

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. Statements

The Lenovo TB-8504X, supporting GSM/GPRS/EDGE/WCDMA/LTE/WLAN/BT/BLE/GPS, manufactured by Lenovo PC HK Limited ,which is a new product for testing.

ECIT has verified that the compliance of the tested device specified in section 5 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 5 of this test report.

East China Institute of Telecommunications Page Number : 7 of 58
TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

: 8 of 58

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 22	PUBLIC MOBILE SERVICES	2014
FCC Part 27	MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES	2014
ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards	2016
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	2014
KDB 971168 D01	Measurement Guidance for Certification of Licensed Digital Transmitters	v03

5. SUMMARY OF TEST RESULTS

LTE Band 5

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	§2.1046(a), 22.913(a)	A.1	Р
2	Emission Limit	22.917, 2.1051	A.2	Р
3	Frequency Stability	22.235, 2.1055	A.3	Р
4	Occupied Bandwidth	2.1049(h)(i)	A.4	Р
5	Emission Bandwidth	22.917(b)	A.5	Р
6	Band Edge Compliance	22.917(b)	A.6	Р
7	Conducted Spurious Emission	22.917, 2.1057	A.7	Р

LTE Band 7

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	27.50(h)(2)	A.1	Р
2	Emission Limit	27.53(m), 2.1051	A.2	Р
3	Frequency Stability	27.54, 2.1055	A.3	Р
4	Occupied Bandwidth	2.1049(h)(i)	A.4	Р
5	Emission Bandwidth	27.53(m)	A.5	Р
6	Band Edge Compliance	27.53(m)	A.6	Р
7	Conducted Spurious Emission	27.53(m), 2.1057	A.7	Р
8	Peak to Average Power Ratio	27.50(a)	A.8	Р

Page Number

: 9 of 58

Report Issued Date : Feb.05.2018

6. Test Equipment Utilized

Climate chamber

No.	Equipment	Model	Serial Number	Manufactur er	Calibration date	Cal.interval
1	Climate chamber	SH-641	92012011	ESPEC	2017-12-25	2 Year

Radiated emission test system

The test equipment and ancillaries used are as follows.

No.	Equipment	Model	Serial Number	Manufactur er	Calibration date	Cal.interval
1	Universal Radio Communicatio n Tester	CMW50	104178	R&S	2017-05-11	1 Year
2	Test Receiver	ESU40	100307	R&S	2017-05-11	1 Year
3	TRILOG Broadband Antenna	VULB9 163	VULB9163- 515	Schwarzbec k	2017-02-25	3 Year
4	Double Ridged Guide Antenna	ETS-31 17	135890	ETS	2017-01-11	3 Year
5	2-Line V-Network	ENV21 6	101380	R&S	2017-05-11	1 Year
6	Substitution A ntenna	ETS-31 17	00135890	ETS	2017-01-11	3 Year
7	RF Signal Generator	SMF10 0A	102314	R&S	2017-05-11	1 Year
8	Substitution A ntenna	VUBA9 117	9117-266	Schwarzbec k	2017-11-18	3 Year
9	Amplifier	SCU08	10146	R&S	2017-05-11	1 Year

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 10 of 58 Report Issued Date : Feb.05.2018

Conducted test system

No.	Name	Туре	SN	Manufacture	Calibratio n date	Cal.interval
1	Vector Signal Analyser	FSQ26	101096	Rohde&Schw arz	2017-05-11	1 Year
2	Wireless communication comprehensive tester	CMW500	148904	Rohde&Schw arz	2017-08-21	1 Year
3	DC Power Supply	ZUP60-1 4	LOC-220Z 006 -0007	TDL-Lambda	2017-05-11	1 Year

Report No.: I18D00006-SRD05

Page Number : 11 of 58 Report Issued Date : Feb.05.2018

Software

Name	Version
Eagle FCC LTE auto test system	V3.0
EMC32	V9.15

7. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20%, Max. = 75 %
Shielding effectiveness	> 100 dB
Ground system resistance	< 0.5 Ω

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =25 %, Max. =75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C		
Relative humidity	Min. = 25 %, Max. = 75 %		
Shielding effectiveness	> 100 dB		
Electrical insulation	> 10 kΩ		
Ground system resistance	< 0.5 Ω		
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz		
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz		
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz		

Page Number

: 12 of 58

Report Issued Date : Feb.05.2018

ANNEX A. MEASUREMENT RESULTS

ANNEX A.1. OUTPUT POWER

A.1.1. Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. In all cases, output power is within the specified limits.

A.1.2. Conducted

A.1.2.1. Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation. These measurements were done at 3 frequencies (bottom, middle and top of operational frequency range) for each bandwidth.

A.1.2.2 Measurement result LTE band 5

Bandwidth	RB size/offset	Frequency (MHz)	Power	(dBm)
Danuwiuin	RD SIZE/OIISEL	Frequency (MHZ)	QPSK	16QAM
		848.3	23.11	22.84
	1 RB high	836.5	23.28	22.29
		824.7	23.69	23.58
		848.3	23.08	22.73
	1 RB low	836.5	23.11	22.22
1.4MHz		824.7	23.72	23.36
1. 4 ⅣΠZ		848.3	23.32	23.31
	50% RB mid	836.5	23.16	23.15
		824.7	23.17	23.36 23.31 23.15 23.02 21.15 21.05 21.34 22.52
		848.3	22.16	21.15
	100% RB	836.5	22.25	21.05
		824.7	22.33	21.34
		847.5	23.08	22.52
	1 RB high	836.5	23.11	22.44
		825.5	23.45	22.19
3MHz		847.5	23.28	22.81
SIVITZ	1 RB low	836.5	23.12	22.5
		825.5	23.11	22.13
	50% RB mid	847.5	22.17	21.18
	50% KD IIIIQ	836.5	22.17	21.22

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 13 of 58 Report Issued Date : Feb.05.2018

RF Test Report

		825.5	22.2	21.13
		847.5	22.07	21.09
	100% RB	836.5	22.23	21.17
		825.5	22.2	21.34
		846.5	22.96	22.4
	1 RB high	836.5	23	21.63
		826.5	23	22.49
		846.5	22.94	22.27
	1 RB low	836.5	23.05	21.61
CNALL.		826.5	23.18	22.5
5MHz		846.5	22.13	22.24
	50% RB mid	836.5	22.21	22.22
		826.5	22.24	22.23
		846.5	22.18	21.23
	100% RB	836.5	22.2	21.43
		826.5	22.22	21.28
		844.0	23.19	22.5
	1 RB high	836.5	22.94	22.48
		829.0	22.84	22.78
		844.0	23.2	22.52
	1 RB low	836.5	23.18	22.44
10MHz		829.0	23.16	22.93
TUIVITZ		844.0	22.27	22.27
	50% RB mid	836.5	22.27	22.26
		829.0	22.26	22.26
		844.0	22.29	21.27
	100% RB	836.5	22.27	21.23
		829.0	22.26	21.32

Report No.: I18D00006-SRD05

Page Number : 14 of 58 Report Issued Date : Feb.05.2018

Page Number : 15 of 58 Report Issued Date : Feb.05.2018

LTE band 7

5 1 1 11			Power	(dBm)
Bandwidth	RB size/offset	Frequency (MHz)	QPSK	16QAM
		2502.5	21.71	21.02
	1 RB high	2535	21.79	20.19
		2567.5	21.55	20.7
		2502.5	21.69	20.91
	1 RB low	2535	21.8	20.24
CN41.1-		2567.5	21.67	21.02
5MHz		2502.5	20.81	20.81
	50% RB mid	2535	20.75	20.75
		2567.5	20.45	20.45
		2502.5	20.82	19.88
	100% RB	2535	20.74	19.98
		2567.5	20.55	19.64
		2505	22.03	21.48
	1 RB high	2535	21.82	21.03
		2565	21.84	21.22
		2505	21.86	21.35
	1 RB low	2535	21.94	21.88
10MHz		2565	21.7	21.39
TOWN 12		2505	20.9	20.9
	50% RB mid	2535	20.9	20.82
		2565	20.49	20.49
		2505	20.89	19.66
	100% RB	2535	20.84	19.81
		2565	20.62	19.7
		2507.5	21.62	21.55
	1 RB high	2535	21.75	21.33
		2562.5	21.75	20.98
		2507.5	21.99	21.37
	1 RB low	2535	21.86	21.48
15MHz		2562.5	21.87	21.19
		2507.5	20.93	20.94
	50% RB mid	2535	20.83	20.83
	OO70 RD IIIId	2562.5	20.53	20.53
	100% RB	2507.5	20.89	19.9
		2535	20.85	19.76

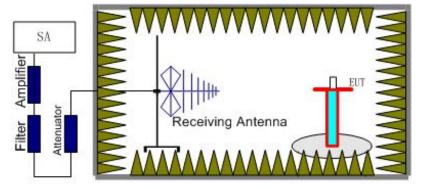
	T				
		2562.5	20.62	19.73	
		2510	22.03	20.91	
	1 RB high	2535	21.81	21.26	
		2560	21.93	20.89	
		2510	22.01	20.86	
	1 RB low	2535	21.88	21.34	
20MHz		2560	21.99	20.91 21.26 20.89 20.86 21.34 20.78 20.96 20.92 20.71 19.84 19.86	
ZUIVIIIZ		2510	20.96	20.96	
	50% RB mid	2535	20.91	20.92	
		2560	20.72	20.71	
		2510	20.95	19.84	
	100% RB	2535	20.86	19.86	
		2560	20.64	19.54	

A.1.3 Radiated

A.1.3.1 Description

This is the test for the maximum radiated power from the EUT.

Rule Part 27.50(d) specifies "Fixed, mobile, and portable (handheld) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP".


Rule Part 27.50(h)(2) specifies "Mobile stations are limited to 2.0 watts EIRP.".

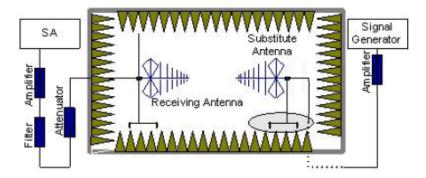
Rule Part 27.50(c) specifies "Portable stations (hand-held de-vices) are limited to 3 watts ERP.".

A.1.3.2 Method of Measurement

The measurements procedures in TIA-603E-2016 are used.

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

2. The EUT is then put into continuously transmitting mode at its maximum power level during


East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 16 of 58 Report Issued Date : Feb.05.2018

Report No.: I18D00006-SRD05

the test. And the maximum value of the receiver should be recorded as (Pr).

3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. An amplifier should be connected to the Signal Source output port. And the cable should be connected between the amplifier and the substitution antenna.

The cable loss (Pcl), the substitution antenna Gain (Ga) and the amplifier Gain (PAg) should be recorded after test.

The measurement results are obtained as described below:

Power (EIRP) =
$$P_{Mea} - P_{Ag} - P_{cl} - G_a$$

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (unit dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15.

A.1.3.3 Measurement result

LTE Band 5- ERP 22.913(a)

Limits: ≤38.45dBm (7W) LTE Band 5_1.4MHz_QPSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	ERP(dBm)	Limit(dBm)
824.70	-13.56	3.1	37	-2.87	19.62	38.45
836.50	-9.92	3.1	37	-3.11	20.87	38.45
848.30	-11.25	3.1	37	-3.11	21.69	38.45

: 17 of 58

LTE Band 5 3MHz QPSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	ERP(dBm)	Limit(dBm)
825.50	-13.14	3.1	37	-2.87	20.04	38.45
836.50	-10.18	3.1	37	-3.11	20.61	38.45
847.50	-11.35	3.1	37	-3.11	21.59	38.45

LTE Band 5_5MHz_QPSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	ERP(dBm)	Limit(dBm)
826.50	-13.18	3.1	37	-2.87	20	38.45
836.50	-10.13	3.1	37	-3.11	20.66	38.45
846.50	-11.47	3.1	37	-3.11	21.47	38.45

LTE Band 5_10MHz_QPSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	ERP(dBm)	Limit(dBm)
829.00	-13.13	3.1	37	-2.87	20.05	38.45
836.50	-10.14	3.1	37	-3.11	20.65	38.45
844.00	-11.87	3.1	37	-3.11	21.07	38.45

LTE Band 5_1.4MHz_16QAM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	ERP(dBm)	Limit(dBm)
824.70	-13.08	3.1	37	-2.87	20.1	38.45
836.50	-10.17	3.1	37	-3.11	20.62	38.45
848.30	-11.13	3.1	37	-3.11	21.81	38.45

Report No.: I18D00006-SRD05

: 19 of 58

LTE Band 5_3MHz_16QAM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Aq} (dB)	G _a Antenna	ERP(dBm)	Limit(dBm)
,	,	,	3.	Gain(dB)	, ,	` ′
825.50	-13.18	3.1	37	-2.87	20	38.45
836.50	-10.09	3.1	37	-3.11	20.7	38.45
847.50	-11.35	3.1	37	-3.11	21.59	38.45

LTE Band 5_5MHz_16QAM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	ERP(dBm)	Limit(dBm)
826.50	-13.27	3.1	37	-2.87	19.91	38.45
836.50	-10.06	3.1	37	-3.11	20.73	38.45
846.50	-11.43	3.1	37	-3.11	21.51	38.45

LTE Band 5_10MHz_16QAM

	- · · · · · · · · · · · · · · · · ·										
Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	ERP(dBm)	Limit(dBm)					
829.00	-12.84	3.1	37	-2.87	20.34	38.45					
836.50	-9.91	3.1	37	-3.11	20.88	38.45					
844.00	-11.41	3.1	37	-3.11	21.53	38.45					

 $Peak \; ERP(dBm) = P_{Mea}(-12.84dBm) + G_a(-2.87dBi) - P_{Ag}(37dB) - P_{cl} \; (3.1dB) = 20.34dBm$

LTE Band 7- EIRP 27.50(h)(2)

Limits: ≤33 dBm (2W)

LTE Band 7_5MHz_QPSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)
2502.50	-14.04	5.4	34.7	5.6	20.86	33.00
2535.00	-14.16	5.4	35.1	5.8	21.34	33.00
2567.50	-14.26	5.4	34.8	6.1	21.24	33.00

LTE Band 7_10MHz_QPSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)
2505.00	-13.56	5.4	34.7	5.6	21.34	33.00
2535.00	-14.04	5.4	35.1	5.8	21.46	33.00
2565.00	-13.88	5.4	34.8	6.1	21.62	33.00

LTE Band 7_15MHz_QPSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)
2507.50	-13.41	5.4	34.7	5.6	21.49	33.00
2535.00	-14.11	5.4	35.1	5.8	21.39	33.00
2562.50	-13.93	5.4	34.8	6.1	21.57	33.00

LTE Band 7_20MHz_QPSK

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)
2510.00	-13.36	5.4	34.7	5.6	21.54	33.00
2535.00	-14.3	5.4	35.1	5.8	21.2	33.00
2560.00	-13.75	5.4	34.8	6.1	21.75	33.00

East China Institute of Telecommunications Page Number : 20 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

RF Test Report

Report No.: I18D00006-SRD05

LTE Band 7_5MHz_16QAM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)
2502.50	-13.98	5.4	34.7	5.6	20.92	33.00
2535.00	-14.22	5.4	35.1	5.8	21.28	33.00
2567.50	-14.52	5.4	34.8	6.1	20.98	33.00

LTE Band 7_10MHz_16QAM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)
2505.00	-13.66	5.4	34.7	5.6	21.24	33.00
2535.00	-14.22	5.4	35.1	5.8	21.28	33.00
2565.00	-14.08	5.4	34.8	6.1	21.42	33.00

LTE Band 7_15MHz_16QAM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)
2507.50	-13.39	5.4	34.7	5.6	21.51	33.00
2535.00	-13.98	5.4	35.1	5.8	21.52	33.00
2562.50	-13.92	5.4	34.8	6.1	21.58	33.00

LTE Band 7_20MHz_16QAM

Frequency(MHz)	P _{Mea} (dBm)	P _{cl} (dB)	P _{Ag} (dB)	G _a Antenna Gain(dB)	EIRP(dBm)	Limit(dBm)
2510.00	-13.28	5.4	34.7	5.6	21.62	33.00
2535.00	-14.04	5.4	35.1	5.8	21.46	33.00
2560.00	-14.05	5.4	34.8	6.1	21.45	33.00

Peak EIRP(dBm) = $P_{Mea}(-13.28dBm) + G_a (5.6dBi) + P_{Ag} (34.7dB) - P_{cl} (5.4dB) = 21.62dBm$

East China Institute of Telecommunications Page Number : 21 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

ANALYZER SETTINGS:

RBW = VBW = 8MHz for occupied bandwdiths equal to or less than 5MHz.

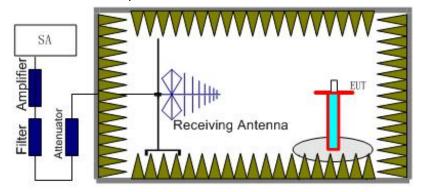
RBW = VBW = 20MHz for occupied bandwidths equal to or greater than 10MHz.

ANNEX A.2. **EMISSION LIMT**

Reference

FCC: CFR 2.1051, 22.917, 27.53(g), 27.53(h), 27.53(m).

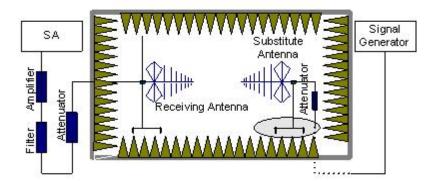
A.2.1 Measurement Method


The measurements procedures in TIA-603E-2016 are used. This measurement is carried out in fully-anechoic chamber FAC-3.

Report No.: I18D00006-SRD05

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier. The resolution bandwidth is set 1MHz as outlined in Part 22.917, Part 27.53(g), Part 27.53(h), Part 27.53(m). The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE Bands, 5,7,

The procedure of radiated spurious emissions is as follows:


1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

East China Institute of Telecommunications Page Number : 22 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.

An amplifier should be connected in for the test.

The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

Power (EIRP)= $P_{Mea} + P_{pl} + G_a$

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (unit: dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

A.2.2 Measurement Limit

Part 22.917, Part 27.53(g), Part 27.53(h), Part 27.53(m) all specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

7. Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the LTE Bands 5,7. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE Bands 5,7. into any of the other blocks. The equipment

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 23 of 58 Report Issued Date : Feb.05.2018

must still, however, meet emissions requirements with the carrier at all frequencies over

Report No.: I18D00006-SRD05

which it is capable of operating and it is the manufacturer's responsibility to verify this. The evaluated frequency range is from 30MHz to 26GHz.

LTE Band 5, 1.4MHz, QPSK, Channel 20407

Eroguanov(MHz)	D (dDm)	Path	Antenna	Peak	Limit	Margin(dD)	Polarization
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	ERP(dBm)	(dBm)	Margin(dB)	Polatization
1689.5	-49	4.4	5	-48.4	-13.00	35.40	Н
2539.230769	-41.62	5.4	5.6	-41.42	-13.00	28.42	V
3187.2	-52.73	6.1	6.8	-52.03	-13.00	39.03	V
4272	-54.32	7.1	8.9	-52.52	-13.00	39.52	V
5604.8	-53.19	8.3	10	-51.49	-13.00	38.49	V
6448	-51.23	8.9	10.4	-49.73	-13.00	36.73	Н

LTE Band 5, 1.4MHz, QPSK, Channel 20525

Fragues ov (MI I=)	D (dDm)	Path	Antenna	Peak	Limit	Margin(dB)	Polarization	
Frequency(MHz)	P _{Mea} (dBm)	Loss	Gain	ERP(dBm)	(dBm)	ivialyiii(ub)		
1672.192308	-47.42	4.4	5	-46.82	-13.00	33.82	V	
2465	-41.48	5.4	5.6	-41.28	-13.00	28.28	Н	
3181.2	-52.47	6.1	6.8	-51.77	-13.00	38.77	V	
4017.2	-54.77	6.9	8.6	-53.07	-13.00	40.07	Н	
4854.4	-53.21	7.6	9.3	-51.51	-13.00	38.51	Н	
5647.6	-53.2	8.3	10	-51.5	-13.00	38.50	V	

LTE Band 5, 1.4MHz, QPSK, Channel 20643

Frequency(MHz) P _{Mea} (dBm)	D (dDm)	Path	Antenna	Peak	Limit	Margin (dD)	Polarization
	P _{Mea} (ubiii)	Loss	Gain	ERP(dBm)	(dBm)	Margin(dB)	Polatization
1746.269231	-45.4	4.5	4.7	-45.2	-13.00	32.20	V
2541.538462	-40.13	5.4	5.6	-39.93	-13.00	26.93	V
3191.6	-52.22	6.1	6.8	-51.52	-13.00	38.52	V
4031.6	-54.19	6.9	8.6	-52.49	-13.00	39.49	V
4810.4	-51.02	7.6	9	-49.62	-13.00	36.62	Н
5701.6	-53.17	8.5	10.2	-51.47	-13.00	38.47	Н

East China Institute of Telecommunications Page Number : 24 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

LTE Band 7, 5 MHz, QPSK, Channel 20775

Frequency(M Hz)	P _{Mea} (dBm)	Path Loss	Antenn a Gain	Peak EIRP(dBm)	Limit (dBm)	Margin(dB	Polarizatio n
3833.2	-50.02	6.7	8.1	-48.62	-13.00	35.62	Н
5000.8	-48.83	7.8	9.8	-46.83	-13.00	33.83	V
7288.4	-46.92	9.6	11.4	-45.12	-13.00	32.12	V
10266.8	-39.56	11.3	12.4	-38.46	-13.00	25.46	V
12911	-32.58	13	13.1	-32.48	-13.00	19.48	Н
15196.5	-28.66	14.5	13.9	-29.26	-13.00	16.26	Н

Report No.: I18D00006-SRD05

LTE Band 7, 5 MHz, QPSK, Channel 21100

Frequency(M Hz)	P _{Mea} (dBm)	Path Loss	Antenn a Gain	Peak EIRP(dBm)	Limit (dBm)	Margin(dB	Polarizatio n
3799.2	-50.58	6.6	8	-49.18	-13.00	36.18	V
4985.6	-49.41	7.8	9.8	-47.41	-13.00	34.41	V
7559.6	-45.72	9.7	11.5	-43.92	-13.00	30.92	V
9983.2	-42.36	11.3	12.4	-41.26	-13.00	28.26	V
12562.75	-34	13	13.1	-33.9	-13.00	20.90	Н
15147.5	-29.18	14.5	13.9	-29.78	-13.00	16.78	Н

LTE Band 7, 5 MHz, QPSK, Channel 21425

Frequency(M Hz)	P _{Mea} (dBm)	Path Loss	Antenn a Gain	Peak EIRP(dBm)	Limit (dBm)	Margin(dB	Polarizatio n
3578.8	-51.89	6.4	7.9	-50.39	-13.00	37.39	Н
5050.8	-48.85	7.8	9.8	-46.85	-13.00	33.85	V
7253.6	-46.97	9.5	11.3	-45.17	-13.00	32.17	Н
10090	-41.61	11.3	12.4	-40.51	-13.00	27.51	V
12795.5	-33.44	13	13.1	-33.34	-13.00	20.34	Н
15702.25	-28.2	14.5	13.9	-28.8	-13.00	15.80	Н

Note: The maximum value of expanded measurement uncertainty for this test item is U = 4.2 dB, k = 2.

East China Institute of Telecommunications Page Number : 25 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

ANNEX A.3. FREQUENCY STABILITY

Reference

FCC: CFR Part 2.1055, 22.235, 27.54.

A.3.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

Report No.: I18D00006-SRD05

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30℃.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 5,7, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 °C decrements from +50 °C to -30 °C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to $\pm -0.5^{\circ}$ during the measurement procedure.

A.3.2 Measurement Limit

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d) (2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.65VDC and 4.4VDC, with a nominal voltage of 3.85VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. For the purposes of measuring frequency stability these voltage limits are to be used.

East China Institute of Telecommunications Page Number : 26 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

A.3.3 Measurement results

LTE Band 5, 1.4MHz bandwidth (worst case of all bandwidths)

Frequency Error vs Voltage

Voltage	Frequency	y error (Hz)	Frequency error (ppm)		
(V)	QPSK	16QAM	QPSK	16QAM	
3.65	-2.23	10.43	0.003	0.012	
3.85	-3.93	10.17	0.005	0.012	
4.4	-4.13	10.26	0.005	0.012	

Frequency Error vs Temperature

Temperature	Frequenc	y error (Hz)	Frequency e	error (ppm)
(℃)	QPSK	16QAM	QPSK	16QAM
50°	-3.85	9.8	0.005	0.012
40°	-3.39	9.36	0.004	0.011
30°	-3.33	9.63	0.004	0.012
20°	-4.72	10.97	0.006	0.013
10°	-3.92	11.82	0.005	0.014
0°	-3.6	10.6	0.004	0.013
- 10°	-2.73	9.77	0.003	0.012
- 20°	-3.3	10.57	0.004	0.013
- 30°	-3.48	10.3	0.004	0.012

LTE Band 7, 5MHz bandwidth (worst case of all bandwidths)

Frequency Error vs Voltage

_ , , ,					
Voltage	Frequency error (Hz)		Frequency error (ppm)		
(V)	QPSK	16QAM	QPSK	16QAM	
3.65	-8.14	12.02	0.003	0.005	
3.85	-5.87	11.01	0.002	0.004	
4.4	-8.91	-12.1	0.004	0.005	

Frequency Error vs Temperature

Temperature	Frequency error (Hz)		Frequency error (ppm)	
(°C)	QPSK	16QAM	QPSK	16QAM
50°	-6.04	-10.74	0.002	0.004
40°	-5.09	-11.33	0.002	0.004
30°	-7.04	9.84	0.003	0.004
20°	-8.68	9.36	0.003	0.004
10°	-6.72	-10.73	0.003	0.004
0°	-6.84	10.46	0.003	0.004
- 10°	-5.35	11.63	0.002	0.005
- 20°	-7.51	10.49	0.003	0.004
- 30°	-6.44	11.14	0.003	0.004

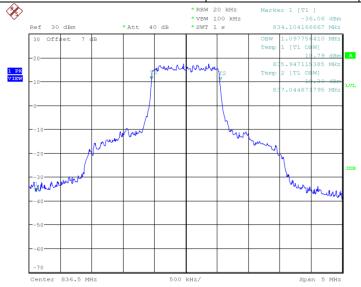
East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 27 of 58 Report Issued Date : Feb.05.2018

ANNEX A.4. OCCUPIED BANDWIDTH

Reference

FCC: CFR Part 2.1049(h)(i)

A.4.1 Occupied Bandwidth Results


Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

The measurement method is from KDB 971168 4;:

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
- d) Set the detection mode to peak, and the trace mode to max hold.
- e) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

LTE band 5, 1.4MHz (99%)

Frequency(MHz)	Occupied Bandwidth (99%)(MHz)	
836.5	QPSK	16QAM
	1.098	1.106

Date: 2.JAN.2003 05:07:31

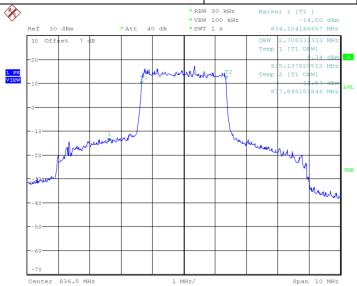
LTE band 5, 1.4MHz Bandwidth, QPSK (99% BW)

East China Institute of Telecommunications Page Number : 28 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

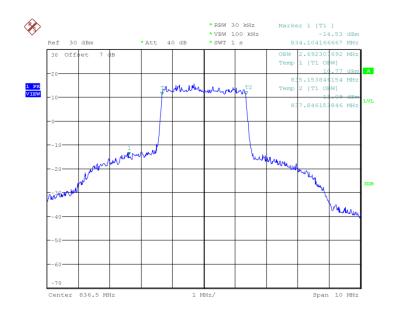
Date: 2.JAN.2003 05:07:57

LTE band 5, 1.4MHz Bandwidth, 16QAM (99% BW)

Page Number


: 29 of 58

Report Issued Date : Feb.05.2018


LTE band 5, 3MHz (99%)

Frequency(MHz)	Occupied Bandwidth (99%)(MHz)	
836.5	QPSK	16QAM
	2.708	2.692

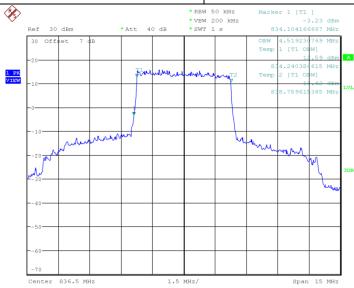
Date: 2.JAN.2003 05:08:32

LTE band 5, 3MHz Bandwidth, QPSK (99% BW)

Date: 2.JAN.2003 05:08:58

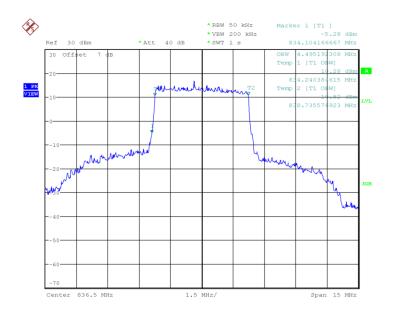
LTE band 5, 3MHz Bandwidth, 16QAM (99% BW)

LTE band 5, 5MHz (99%)



 Frequency(MHz)
 Occupied Bandwidth (99%)(MHz)

 QPSK
 16QAM

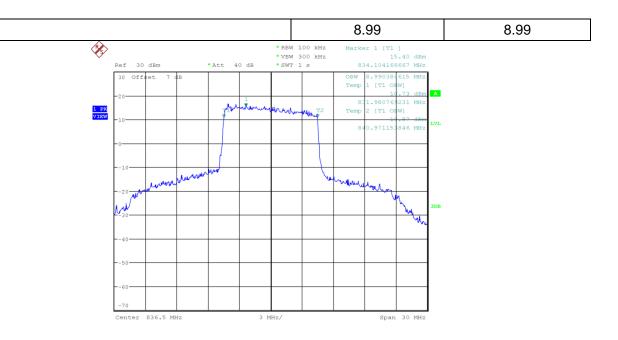

 4.519
 4.495

Report No.: I18D00006-SRD05

Date: 2.JAN.2003 05:09:33

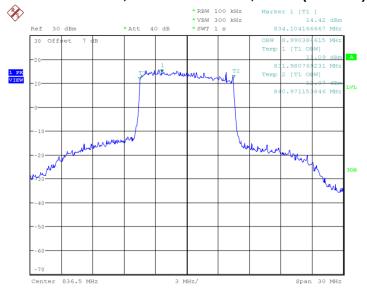
LTE band 5, 5MHz Bandwidth, QPSK (99% BW)

Date: 2.JAN.2003 05:10:00


LTE band 5, 5MHz Bandwidth,16QAM (99% BW)

LTE band 5. 10MHz (99%)

Frequency(MHz)	Occupied Bandwidth (99%)(MHz)	
836.5	QPSK	16QAM


East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 31 of 58 Report Issued Date : Feb.05.2018

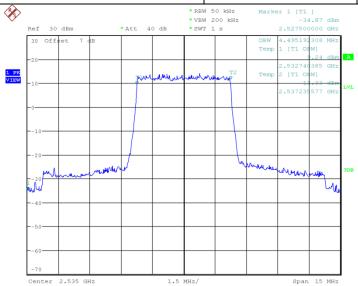
Date: 2.JAN.2003 05:10:35

LTE band 5, 10MHz Bandwidth, QPSK (99% BW)

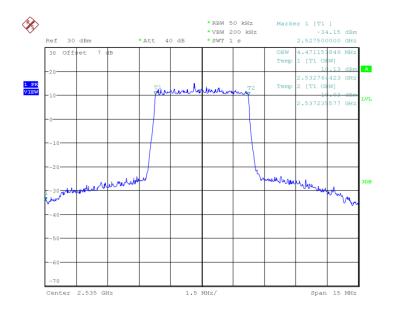
Date: 2.JAN.2003 05:11:02

LTE band 5, 10MHz Bandwidth, 16QAM (99% BW)

Page Number


: 32 of 58

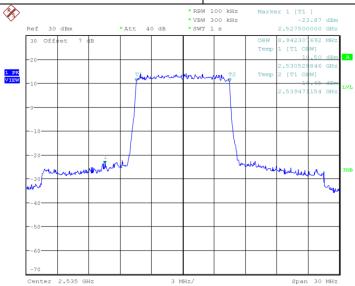
Report Issued Date : Feb.05.2018


LTE band 7, 5MHz (99%)

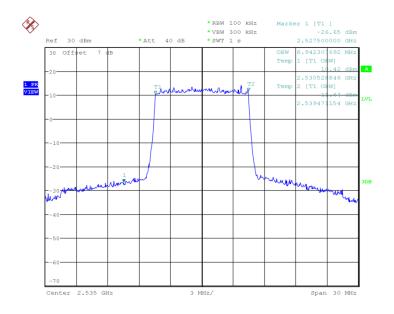
Frequency(MHz)	Occupied Bandwidth (99%)(MHz)	
2535.0	QPSK	16QAM
	4.495	4.471

Date: 2.JAN.2003 05:11:37

LTE band 7, 5MHz Bandwidth, QPSK (99% BW)


Date: 2.JAN.2003 05:12:04

LTE band 7, 5MHz Bandwidth,16QAM (99% BW)

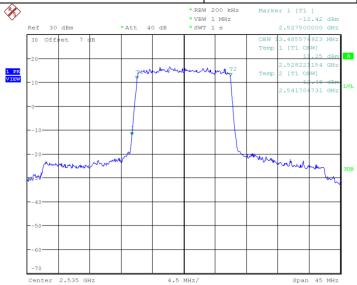

LTE band 7, 10MHz (99%)

Frequency(MHz)	Occupied Bandwidth (99%)(MHz)	
2535.0	QPSK	16QAM
	8.942	8.942

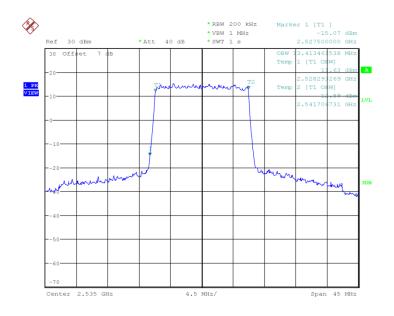
Date: 2.JAN.2003 05:12:38

LTE band 7, 10MHz Bandwidth, QPSK (99% BW)

Date: 2.JAN.2003 05:13:05


LTE band 7, 10MHz Bandwidth, 16QAM (99% BW)

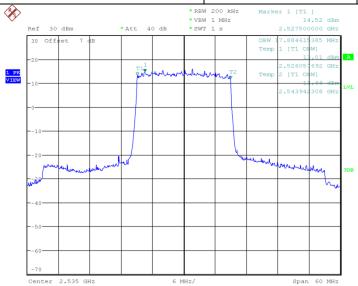
East China Institute of Telecommunications Page Number : 34 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018


LTE band 7, 15MHz (99%)

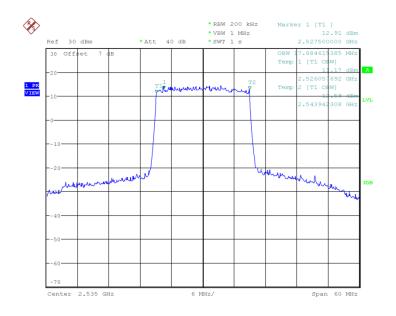
Frequency(MHz)	Occupied Bandwidth (99%)(MHz)	
2535.0	QPSK	16QAM
	13.486	13.413

Date: 2.JAN.2003 05:13:39

LTE band 7, 15MHz Bandwidth, QPSK (99% BW)


Date: 2.JAN.2003 05:14:06

LTE band 7, 15MHz Bandwidth, 16QAM (99% BW)


LTE band 7, 20MHz (99%)

Frequency(MHz)	Occupied Bandwidth (99%)(MHz)	
2535.0	QPSK	16QAM
	17.885	17.885

Date: 2.JAN.2003 05:14:40

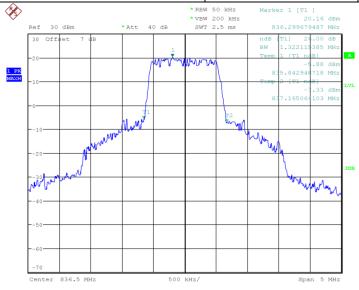
LTE band 7, 20MHz Bandwidth, QPSK (99% BW)

Date: 2.JAN.2003 05:15:07

LTE band 7, 20MHz Bandwidth, 16QAM (99% BW)

ANNEX A.5. EMISSION BANDWIDTH

Reference

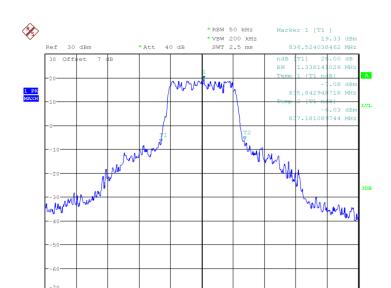

FCC: CFR Part 22.917(b), 27.53(g), 27.53(h), 27.53(m)

A.5.1Emission Bandwidth Results

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.

LTE band 5, 1.4MHz (-26dBc)

Frequency(MHz)	Occupied Bandwidth (-26dBc)(MHz)	
836.5	QPSK	16QAM
	1.322	1.338



Date: 2.JAN.2003 04:07:13

LTE band 5, 1.4MHz Bandwidth, QPSK (-26dBc BW)

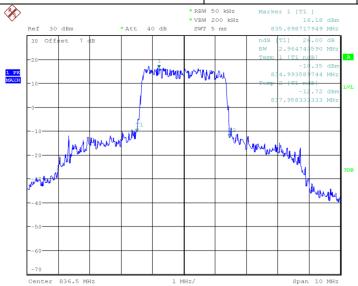
East China Institute of Telecommunications Page Number : 37 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

Date: 2.JAN.2003 04:07:27

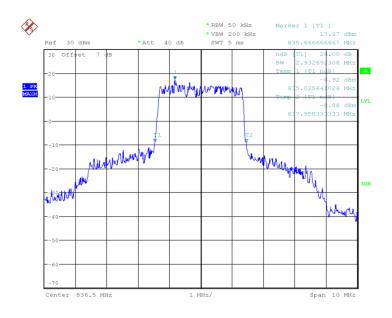
LTE band 5, 1.4MHz Bandwidth, 16QAM (-26dBc BW)

Page Number

: 38 of 58


Report Issued Date : Feb.05.2018

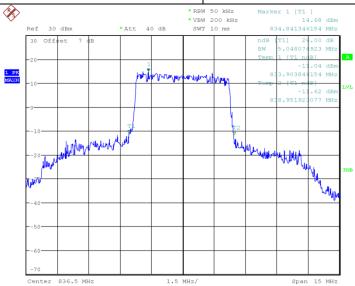
: 39 of 58


LTE band 5, 3MHz (-26dBc)

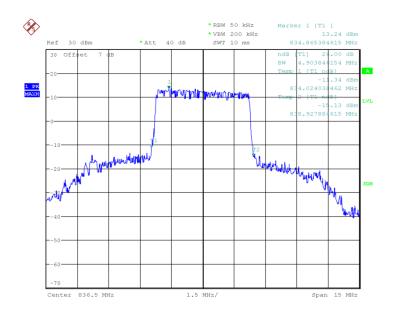
Frequency(MHz)	Occupied Bandwidth (-26dBc)(MHz)	
836.5	QPSK	16QAM
	2.964	2.933

Date: 2.JAN.2003 04:07:51

LTE band 5, 3MHz Bandwidth, QPSK (-26dBc BW)


Date: 2.JAN.2003 04:08:04

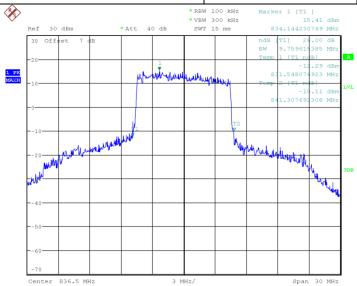
LTE band 5, 3MHz Bandwidth, 16QAM (-26dBc BW)


LTE band 5, 5MHz (-26dBc)

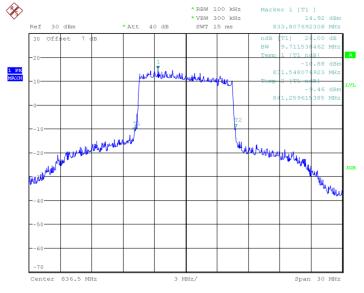
Frequency(MHz)	Occupied Bandwidth (-26dBc)(MHz)	
836.5	QPSK	16QAM
	5.048	4.904

Date: 2.JAN.2003 04:08:25

LTE band 5, 5MHz Bandwidth, QPSK (-26dBc BW)


Date: 2.JAN.2003 04:08:38

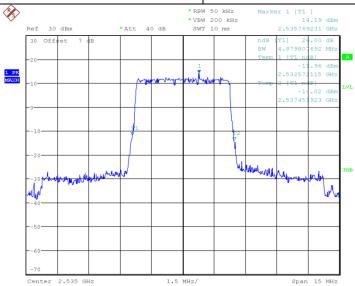
LTE band 5, 5MHz Bandwidth,16QAM (-26dBc BW)


LTE band 5, 10MHz (-26dBc)

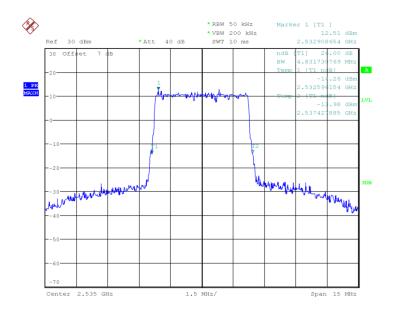
Frequency(MHz)	Occupied Bandwidth (-26dBc)(MHz)	
836.5	QPSK	16QAM
	9.760	9.712

Date: 2.JAN.2003 04:08:58

LTE band 5, 10MHz Bandwidth, QPSK (-26dBc BW)


Date: 2.JAN.2003 04:09:10

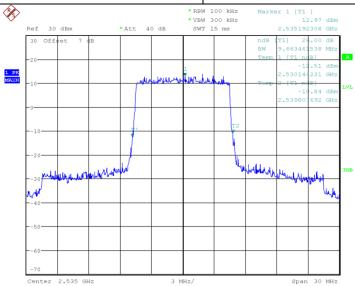
LTE band 5, 10MHz Bandwidth, 16QAM (-26dBc BW)


LTE band 7, 5MHz (-26dBc)

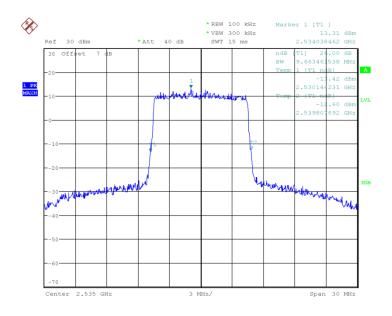
Frequency(MHz)	Occupied Bandwidth (-26dBc)(MHz)	
2535.0	QPSK	16QAM
	4.880	4.832

Date: 2.JAN.2003 04:09:31

LTE band 7, 5MHz Bandwidth, QPSK (-26dBc BW)


Date: 2.JAN.2003 04:09:44

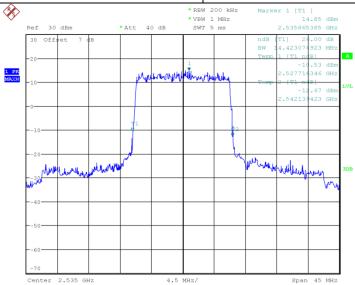
LTE band 7, 5MHz Bandwidth,16QAM (-26dBc BW)


LTE band 7, 10MHz (-26dBc)

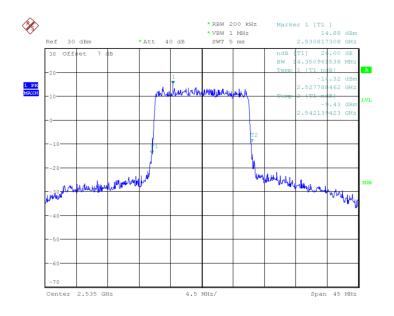
Frequency(MHz)	Occupied Bandwidth (-26dBc)(MHz)	
2535.0	QPSK	16QAM
	9.663	9.663

Date: 2.JAN.2003 04:10:04

LTE band 7, 10MHz Bandwidth, QPSK (-26dBc BW)


Date: 2.JAN.2003 04:10:16

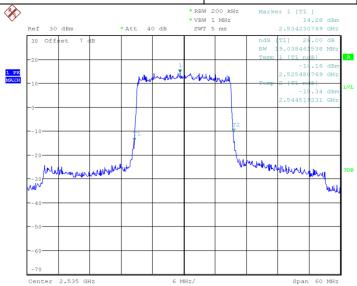
LTE band 7, 10MHz Bandwidth, 16QAM (-26dBc BW)


LTE band 7, 15MHz (-26dBc)

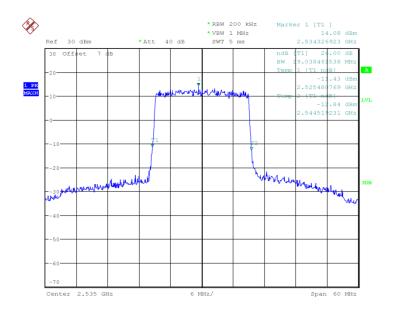
Frequency(MHz)	Occupied Bandwidth (-26dBc)(MHz)	
2535.0	QPSK	16QAM
	14.423	14.351

Date: 2.JAN.2003 04:10:36

LTE band 7, 15MHz Bandwidth, QPSK (-26dBc BW)


Date: 2.JAN.2003 04:10:49

LTE band 7, 15MHz Bandwidth, 16QAM (-26dBc BW)


LTE band 7, 20MHz (-26dBc)

Frequency(MHz)	Occupied Bandwidth (-26dBc)(MHz)	
2535.0	QPSK	16QAM
	19.038	19.038

Date: 2.JAN.2003 04:11:09

LTE band 7, 20MHz Bandwidth, QPSK (-26dBc BW)

Date: 2.JAN.2003 04:11:21

LTE band 7, 20MHz Bandwidth, 16QAM (-26dBc BW)

ANNEX A.6. BAND EDGE COMPLIANCE

Reference

FCC: CFR Part 22.917(b), 27.53(g),27.53(h), 27.53(m)

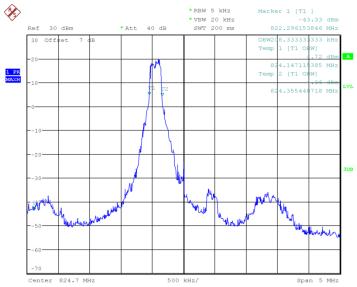
A.6.1 Measurement limit

Part 22.917(b), 27.53(g),27.53(h), 27.53(m) state that on any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

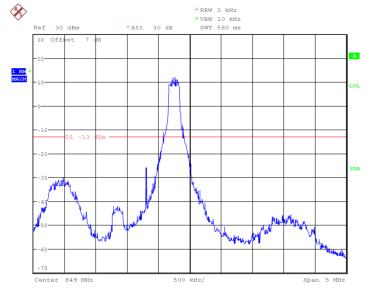
Report No.: I18D00006-SRD05

According to KDB 971168 6, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

Part 27.53(m) states that for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.


East China Institute of Telecommunications Page Number : 46 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018

A.6.2 Measurement result Only worst case result is given below


LTE band 5

OBW: 1RB-low_offset

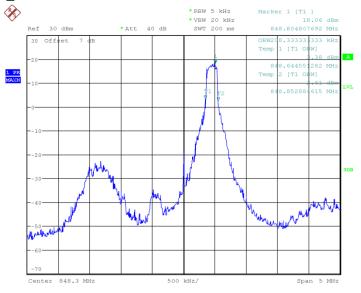
Date: 2.JAN.2003 05:21:37

LOW BAND EDGE BLOCK-1RB-low_offset

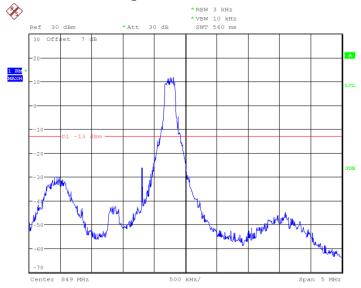
Page Number

: 47 of 58

Report Issued Date : Feb.05.2018


Date: 2.JAN.2003 04:19:48

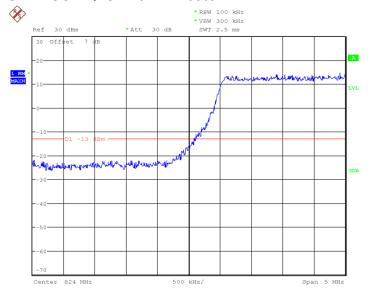
Page Number : 48 of 58


Report Issued Date : Feb.05.2018

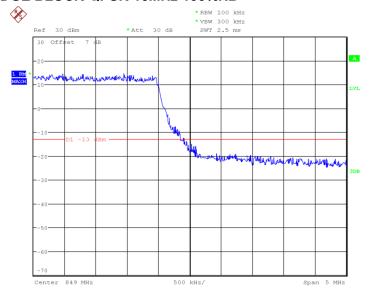
OBW: 1RB-high_offset

Date: 2.JAN.2003 05:23:01

HIGH BAND EDGE BLOCK-1RB-high_offset


Date: 2.JAN.2003 05:23:23

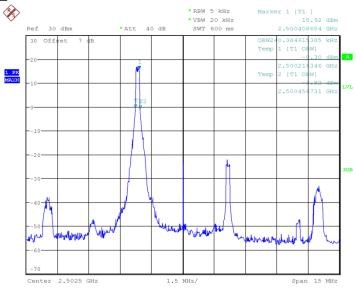
Page Number : 49 of 58


Report Issued Date : Feb.05.2018

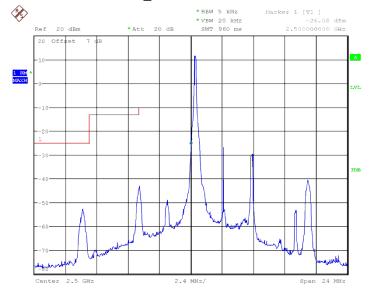
LOW BAND EDGE BLOCK-QPSK-10MHz-100%RB

Date: 2.JAN.2003 04:18:54

HIGH BAND EDGE BLOCK-QPSK-10MHz-100%RB



Date: 2.JAN.2003 04:20:17


LTE band 7

OBW: 1RB-low_offset

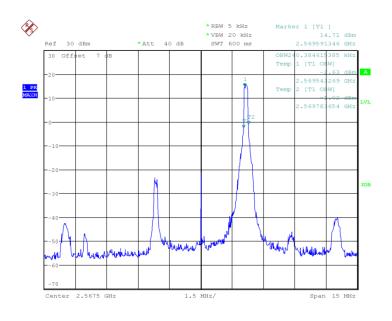
Date: 2.JAN.2003 04:20:49

LOW BAND EDGE BLOCK-1RB-low_offset

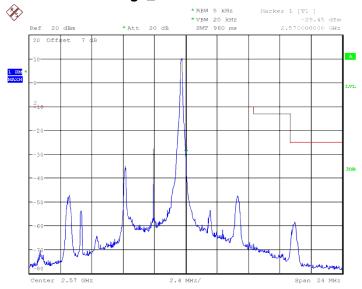
Page Number

: 50 of 58

Report Issued Date : Feb.05.2018


Date: 3.JAN.2003 01:00:57

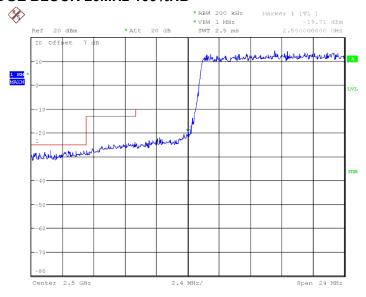
Page Number : 51 of 58


Report Issued Date : Feb.05.2018

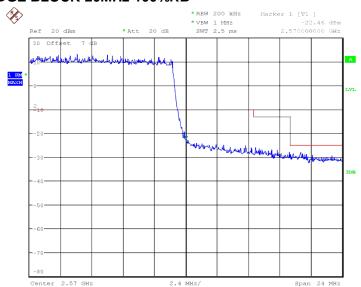
OBW: 1RB-high_offset

Date: 2.JAN.2003 04:22:12

HIGH BAND EDGE BLOCK-1RB-high_offset


Date: 3.JAN.2003 01:05:16

Page Number : 52 of 58


Report Issued Date : Feb.05.2018

LOW BAND EDGE BLOCK-20MHz-100%RB

Date: 3.JAN.2003 01:08:49

HIGH BAND EDGE BLOCK-20MHz-100%RB

Date: 3.JAN.2003 01:07:13

CONDUCTED SPURIOUS EMISSION

Report No.: I18D00006-SRD05

ANNEX A.7. Reference

FCC: CFR Part 22.917(b), 27.53(g),27.53(h), 27.53(m)

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. The number of sweep points of spectrum analyzer is set to 30001 which is greater than span/RBW.

A. 7.2 Measurement Limit

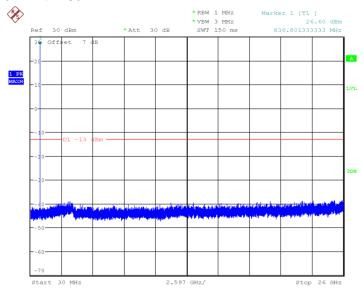
Part 22.917(b),

27.53(g),27.53(h), 27.53(m) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Part 27.53(m)(4) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

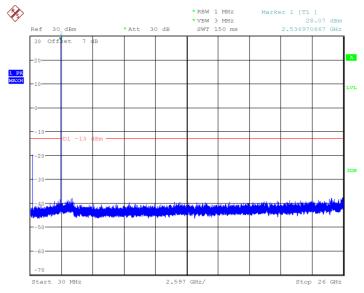
East China Institute of Telecommunications Page Number : 53 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018



A. 7.3 Measurement result

Only worst case result is given below

LTE band 5: 30MHz - 10GHz


Spurious emission limit -13dBm.

Date: 2.JAN.2003 04:40:39

LTE band 7: 30MHz - 26GHz

Spurious emission limit -13dBm.

Page Number

: 54 of 58

Report Issued Date : Feb.05.2018

Date: 2.JAN.2003 04:41:30

ANNEX A.8. PEAK-TO-AVERAGE POWER RATIO

Reference

FCC: CFR Part 22.232 (d), 27.50(a)

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

According to KDB 971168 v03 5.7:

- a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- b) Set resolution/measurement bandwidth ≥ signal' s occupied bandwidth;
- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Set the measurement interval to 1 ms
- e)Record the maximum PAPR level associated with a probability of 0.1%

A.8.1 Measurement limit

not exceed 13 dB

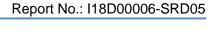
A.8.2 Measurement results

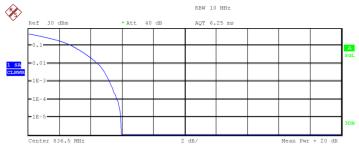
Note: only the worst case wrote in the report.

LTE band 5, 10MHz

Frequency(MHz)	PAPR(dB)	
1745.0	QPSK	16QAM
	4.46	5.19

Page Number

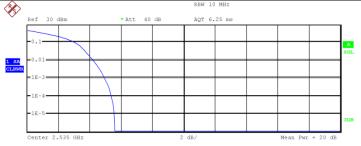

: 55 of 58


Report Issued Date : Feb.05.2018

Mean Peak Crest	17.19 22.56 5.37	dBr dBr
10 % 1 %	2.24 3.78 4.46	dB
0.1 %	1 0 1	-170

Date: 2.JAN.2003 04:52:26

Complementary Cumulative Distribution Function NOF samples: 100000, Usable BW: 11.2MHz


Trace 1
Mean 16.27 dBm
Peak 22.21 dBm
Crest 5.94 dB

10 % 2.79 dB
1 % 4.42 dB
.1 % 5.19 dB
.01 % 5.67 dB

Date: 2.JAN.2003 04:52:51

LTE band 7, 20MHz

Frequency(MHz)	PAPR(dB)	
2510.0	QPSK	16QAM
	4.49	6.25

Page Number

: 56 of 58

Report Issued Date : Feb.05.2018

Complementary Cumulative Distribution Function

Trace 1
13.86 dBm
19.45 dBm
Crest 5.59 dB

10 % 3.04 dB
1 % 4.20 dB
1 % 4.94 dB
.01 % 5.35 dB

Date: 2.JAN.2003 04:56:23

Page Number : 57 of 58

Report Issued Date : Feb.05.2018

Complementary Cumulative Distribution Function NOF samples: 100000, Usable BW: 11.2MHz

Mean Peak	12.94	dBm dBm
Crest	7.36	dB
10 % 1 % .1 %	3.33 5.16 6.25 6.99	dB dB

Date: 2.JAN.2003 04:56:47

RF Test Report

Report No.: I18D00006-SRD05

ANNEX B. Deviations from Prescribed Test Methods

No deviation from Prescribed Test Methods.
******END OF REPORT********

East China Institute of Telecommunications Page Number : 58 of 58 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.05.2018