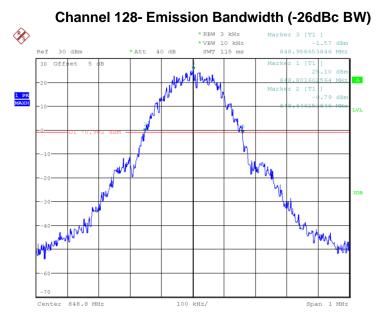
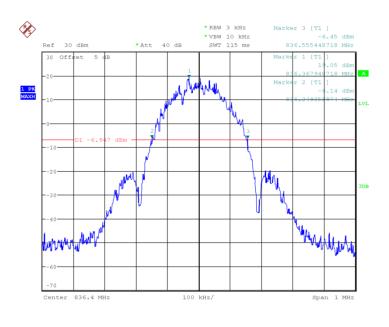
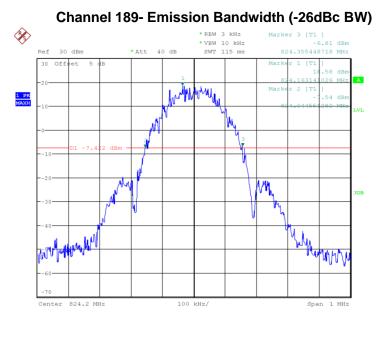

Date: 10.JAN.2018 11:21:11



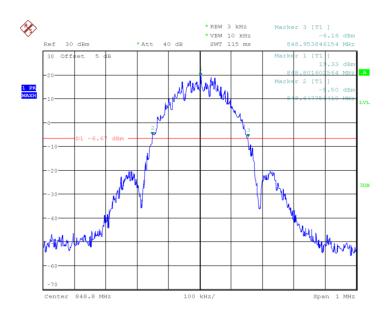
Date: 10.JAN.2018 11:28:13



Date: 10.JAN.2018 11:28:43



EDGE 850

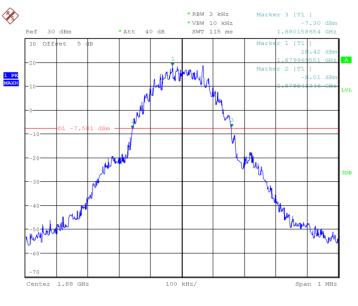

Date: 10.JAN.2018 11:31:08

Date: 10.JAN.2018 11:31:38

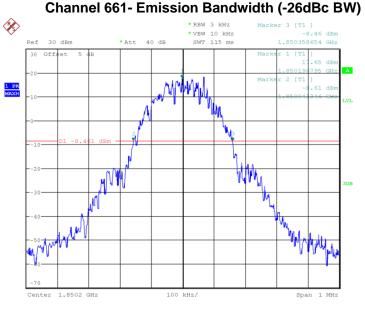
Channel 128- Emission Bandwidth (-26dBc BW)

Date: 10.JAN.2018 11:32:08

Channel 251- Emission Bandwidth (-26dBc BW)


GSM1900				
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)		
Mid 661	1880	317.308		
Low 512	1850.2	317.308		
High 810	1909.8	306.09		
	GPRS1900			
Test channel Frequency (MHz)		–26dBc Emission Bandwidth(KHz)		
Mid 661	1880	310.897		
Low 512	1850.2	312.5		
High 810	1909.8	314.103		
	EDGE1900			
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)		
Mid 661	1880	304.487		
Low 512	1850.2	304.487		
High 810	1909.8	310.897		

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

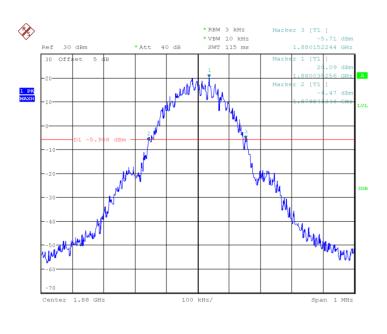

Page Number: 42 of 116Report Issued Date: Feb.07.2018

Conclusion: PASS GSM 1900

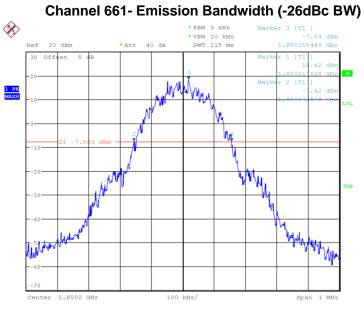

Date: 10.JAN.2018 11:34:52

Date: 10.JAN.2018 11:35:23

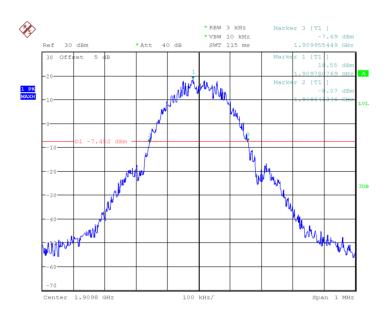
Channel512- Emission Bandwidth (-26dBc BW)



Date: 10.JAN.2018 11:35:53

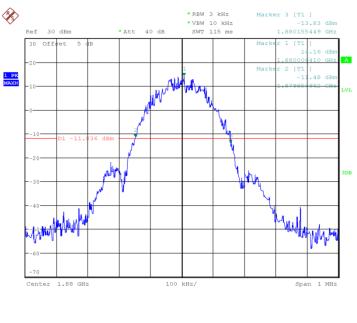

Channel 810- Emission Bandwidth (-26dBc BW)

GPRS 1900

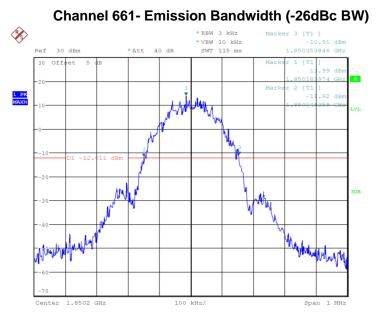

Date: 10.JAN.2018 11:38:30

Date: 10.JAN.2018 11:38:59

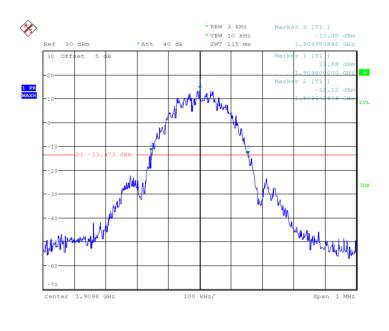
Channel512- Emission Bandwidth (-26dBc BW)



Date: 10.JAN.2018 11:39:27


Channel 810- Emission Bandwidth (-26dBc BW)

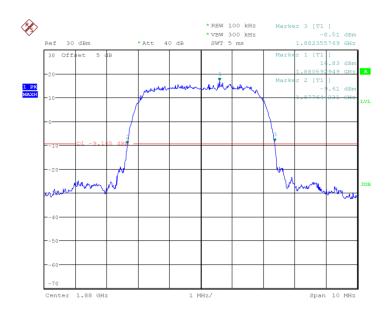
EDGE 1900


Date: 10.JAN.2018 11:41:55

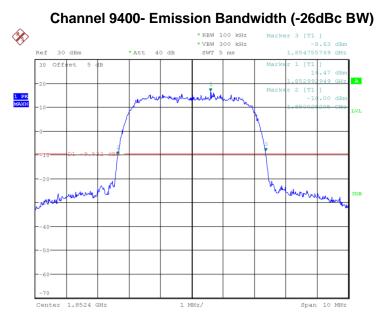
Date: 10.JAN.2018 11:42:23

Channel512- Emission Bandwidth (-26dBc BW)

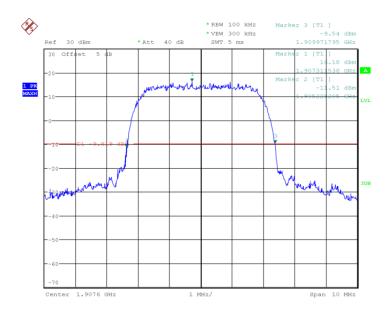
Date: 10.JAN.2018 11:42:53


Channel 810- Emission Bandwidth (-26dBc BW)

WCDMA BAND II			
Test channel Frequency (MHz)		–26dBc Emission Bandwidth(MHz)	
Mid 9400	1880	4.7	
Low 9262	1852.4	4.7	
High 9538	1907.6	4.7	


Conclusion: PASS

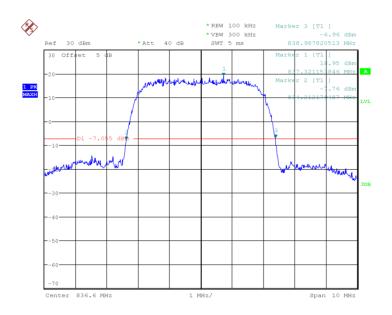
WCDMA BAND II


Date: 9.JAN.2018 08:22:21

Date: 9.JAN.2018 08:22:53

Channel 9262- Emission Bandwidth (-26dBc BW)

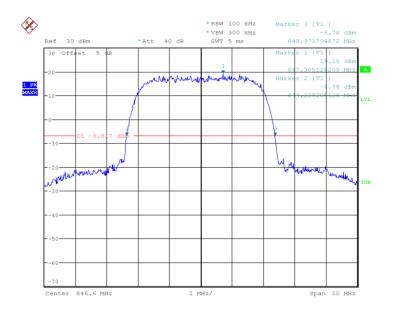
Date: 9.JAN.2018 08:23:25


Channel 9538- Emission Bandwidth (-26dBc BW)

WCDMA BAND V			
Test channel	–26dBc Emission Bandwidth(MHz)		
Mid 4183	836.6	4.8	
Low 4132	826.4	4.8	
High 4233	846.6	4.7	

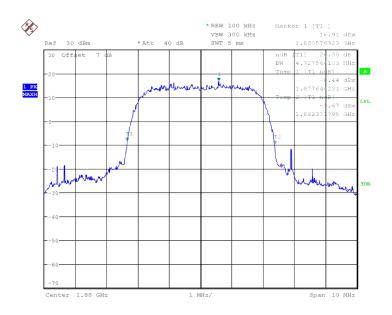
Conclusion: PASS

WCDMA BAND V

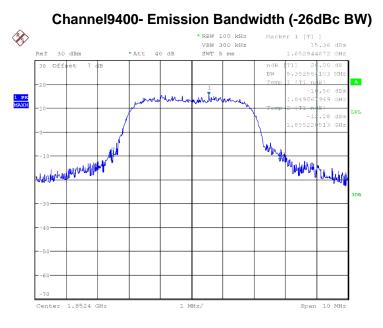

```
Date: 9.JAN.2018 08:24:05
```


Date: 9.JAN.2018 08:24:37

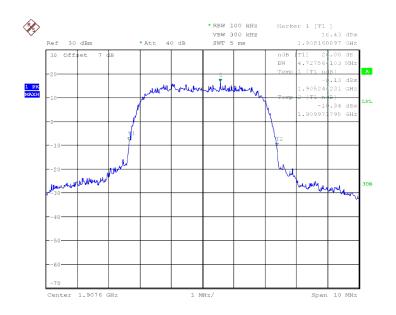
Channel4132- Emission Bandwidth (-26dBc BW)


Date: 9.JAN.2018 08:25:10

Channel 4233- Emission Bandwidth (-26dBc BW)

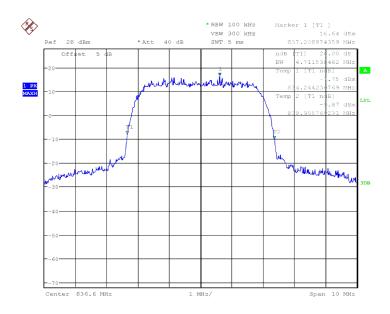

HSUPA 16QAM BAND II			
Test channel	–26dBc Emission Bandwidth(MHz)		
Mid 9400	1880	4.72	
Low 9262	1852.4	5.35	
High 9538	1907.6	4.72	

Conclusion: PASS HSUPA 16QAM BAND II

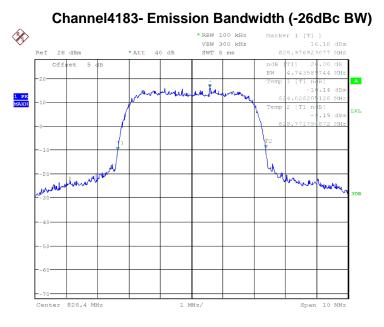

```
Date: 5.FEB.2018 14:25:38
```


Date: 5.FEB.2018 14:27:58

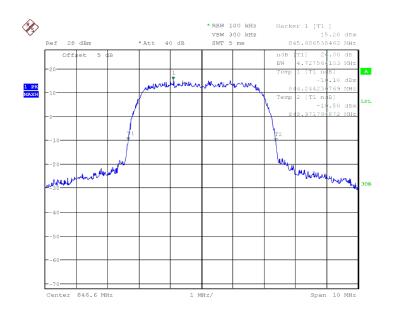
Channel9262- Emission Bandwidth (-26dBc BW)


Date: 5.FEB.2018 14:29:51

Channel9538- Emission Bandwidth (-26dBc BW)


	·		
HSUPA 16QAM BAND V			
Test channel	–26dBc Emission Bandwidth(MHz)		
Mid 4183	836.6	4.71	
Low 4132	826.4	4.74	
High 4233	846.6	4.72	

Conclusion: PASS HSUPA 16QAM BAND V


```
Date: 5.FEB.2018 14:32:19
```


Date: 5.FEB.2018 14:34:04

Channel4132- Emission Bandwidth (-26dBc BW)

Date: 5.FEB.2018 14:34:43

Channel4233- Emission Bandwidth (-26dBc BW)

ANNEX A.5. Band Edge at antenna terminals

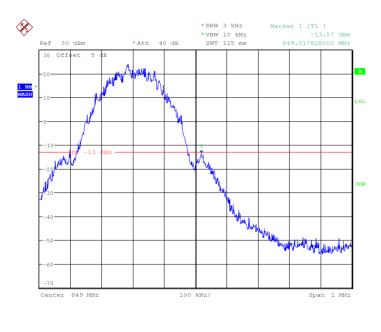
Method of test measurements please refer to KDB971168 D01 v03 clause 6

A.5.1 Limit:

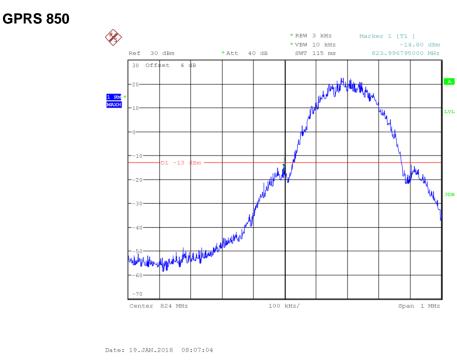
GSM 850

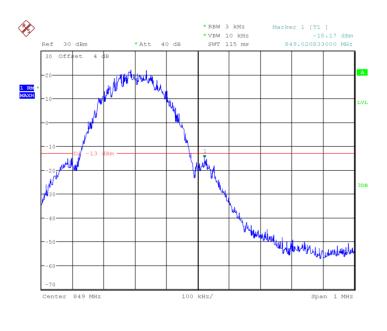
The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log (Mean power in watts) dBc below the mean power output outside a license's frequency block(-13dBm).

A.5.2 Test procedure:

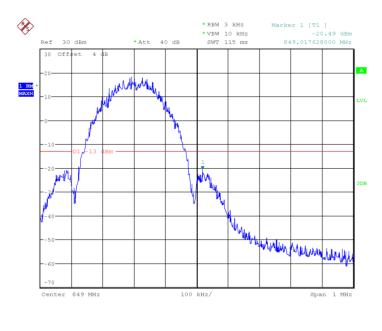

- 1. The RF output of the transceiver was connected to a signal analyzer through appropriate attenuation.
- 2. In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.
- 3. The RF fundamental frequency should be excluded against the limit line in the operating frequency band
- The limit line is derived from 43+10log(P) Db below the transmitter power P(Watts) =P(W)-[43+10log(P)](Db)
 =[30+10log(P)](dBm)-[43+10log(P)](Db)

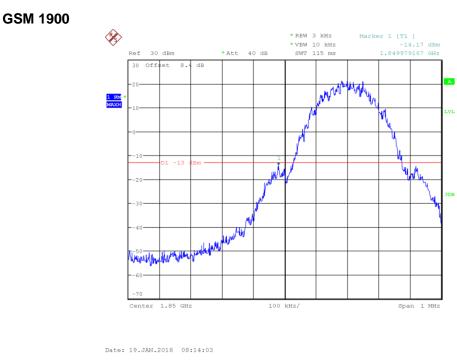
=-13dBm

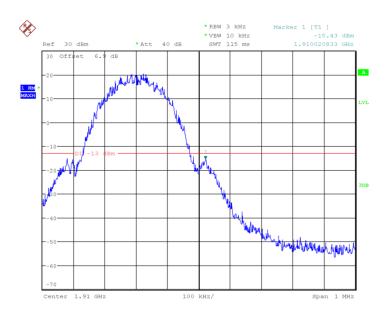

Channel 128- LOW BAND EDGE BLOCK

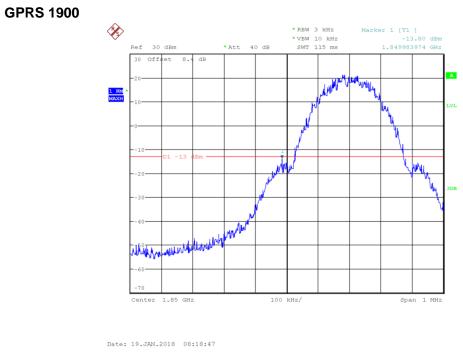

Date: 5.FEB.2018 08:33:02

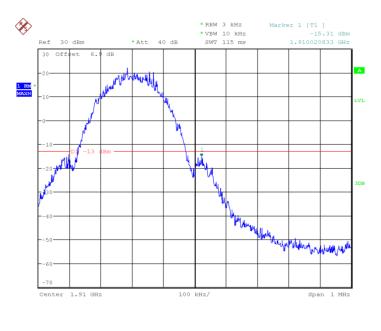



Date: 19.JAN.2018 08:07:52

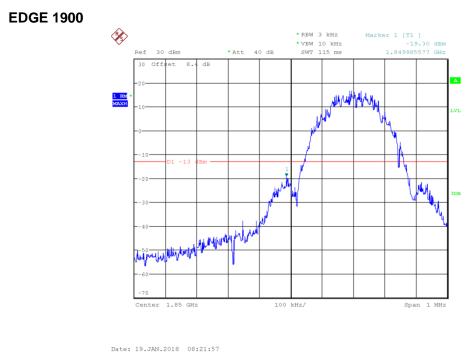


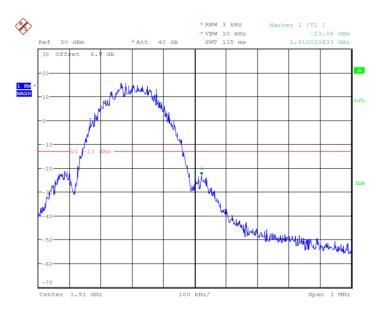

Date: 19.JAN.2018 08:12:11


Channel 512- LOW BAND EDGE BLOCK


Date: 19.JAN.2018 08:14:54

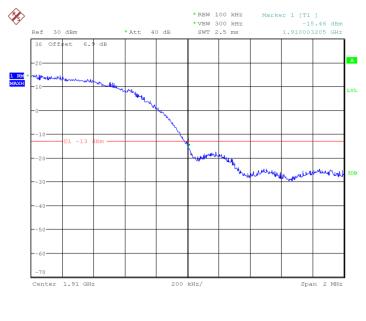
Channel 810- HIGH BAND EDGE BLOCK


Channel 512- LOW BAND EDGE BLOCK


Date: 19.JAN.2018 08:19:35

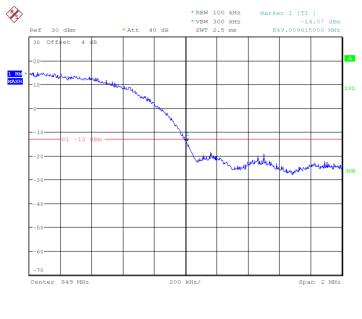
Channel 810- HIGH BAND EDGE BLOCK

Channel 512- LOW BAND EDGE BLOCK


Date: 19.JAN.2018 08:22:46

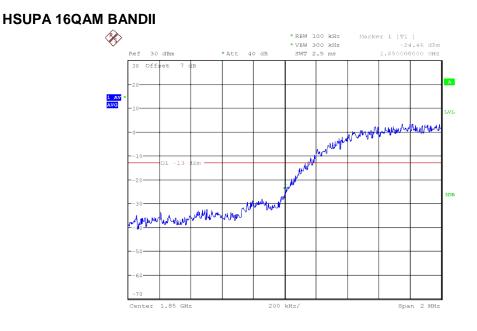
Channel 810- HIGH BAND EDGE BLOCK

Channel 9262- LOW BAND EDGE BLOCK


Date: 24.JAN.2018 05:30:52

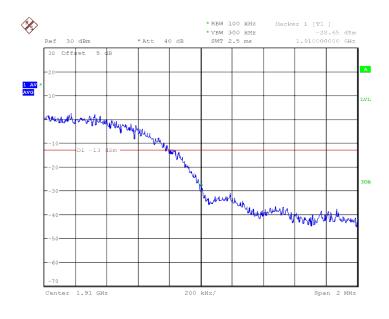
Channel 9538- HIGH BAND EDGE BLOCK

Channel 4132- LOW BAND EDGE BLOCK



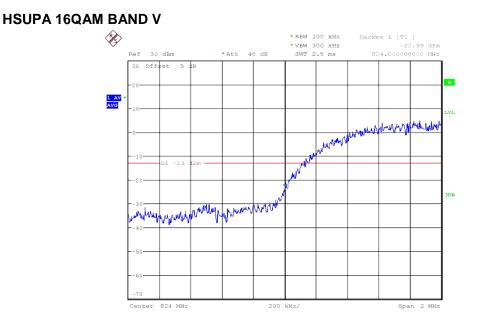
Date: 24.JAN.2018 05:32:16

Channel 4233- HIGH BAND EDGE BLOCK


Conclusion: PASS

Date: 7.FEB.2018 13:10:38

HSUPA 16QAM BANDII-Channel 9262- LOW BAND EDGE



Date: 7.FEB.2018 13:09:44

HSUPA 16QAM BANDII-Channel 9538- HIGH BAND EDGE

Conclusion: PASS

Date: 7.FEB.2018 13:09:01

HSUPA 16QAM BAND V-Channel 4132- LOW BAND EDGE

Date: 7.FEB.2018 13:08:14

HSUPA 16QAM BAND V-Channel 4233- HIGH BAND EDGE

Conclusion: PASS

ANNEX A.6. FREQUENCY STABILITY

Method of test measurements please refer to KDB971168 D01 v03 clause 9

A.5.1.Method of Measurement and test procedures

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the EUT to overnight soak at -30 $^\circ\!\mathbb{C}.$

3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

4. Repeat the above measurements at 10° C increments from -30° C to $+50^{\circ}$ C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.

6. Subject the EUT to overnight soak at +50°℃.

7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

8. Repeat the above measurements at 10 C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

9. At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure.

A.5.2. Measurement Limit

A.5.2.1. For Hand carried battery powered equipment

According to the JTC standard the GSM frequency stability of the carrier shall be accurate to within 0.1ppm of the received frequency from the base station. And the WCDMA is 2.5ppm. This accuracy is sufficient to meet Sec.24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.65VDC and 4.4VDC, with a nominal voltage of 3.85VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages was varied from 85% to 115%.

A.5.2.2. For equipment powered by primary supply voltage

According to the JTC standard the GSM frequency stability of the carrier shall be accurate to within 0.1ppm of the received frequency from the base station. And the WCDMA is 2.5ppm. This accuracy is sufficient to meet Sec.24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

A.5.3 Test results GSM850Mid Channel/fc(MHz) 189/836.4 Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.85	-30	21	2091
3.85	-20	20	2091
3.85	-10	19	2091
3.85	0	22	2091
3.85	10	24	2091
3.85	20	23	2091
3.85	30	21	2091
3.85	40	22	2091
3.85	50	20	2091

Frequency Error VS Voltage

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.65	25	23	2091
3.85	25	20	2091
4.4	25	19	2091

PCS1900 Mid Channel/fc(MHz) 661/1880

Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)	
3.85	-30	10	4700	
3.85	-20	5	4700	
3.85	-10	7	4700	
3.85	0	7	4700	
3.85	10	9	4700	
3.85	20	10	4700	
3.85	30	8	4700	
3.85	40	7	4700	
3.85	50	9	4700	
Frequency Error VS Voltage				

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.65	25	8	4700
3.85	25	6	4700
4.4	25	9	4700

٦

WCDMA BAND II Mid Channel/fc(MHz) 9400 /1880				
Frequency Error VS	Femperature			
Power Supply	Environment	- "		

Power Supply	Environment	Frequency error(Hz)	Limit
(VDc)	Temperature(℃)		(Hz)
3.85	-30	0.17	4700
3.85	-20	0.2	4700
3.85	-10	0.27	4700
3.85	0	0.08	4700
3.85	10	0.26	4700
3.85	20	0.31	4700
3.85	30	0.11	4700
3.85	40	0.56	4700
3.85	50	0.32	4700

Frequency Error VS Voltage

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.65	25	0.03	4700
3.85	25	0.02	4700
4.4	25	0.89	4700

WCDMA BAND V Mid Channel/fc(MHz) 4183/836.6

Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.85	-30	0.24	2091.5
3.85	-20	0.66	2091.5
3.85	-10	0.26	2091.5
3.85	0	0.37	2091.5
3.85	10	0.27	2091.5
3.85	20	1.4	2091.5
3.85	30	1.08	2091.5
3.85	40	0.46	2091.5
3.85	50	0.5	2091.5

Frequency Error VS Voltage

Power Supply	Environment	Fraguancy arror(Hz)	Limit
(VDc)	Temperature(°C)	Frequency error(Hz)	(Hz)
3.65	25	1.33	2091.5
3.85	25	0.53	2091.5
4.4	25	0.43	2091.5

Conclusion: PASS

HSUPA 16QAM BANDII Mid Channel/fc(MHz) 9400 /1880

Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.8	-30	-94	4700
3.8	-20	-79	4700
3.8	-10	-88	4700
3.8	0	-87	4700
3.8	10	-89	4700
3.8	20	-87	4700

3.8	30	-90	4700
3.8	40	-92	4700
3.8	50	-78	4700

Frequency Error VS Voltage

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.5	25	-81	4700
3.8	25	-88	4700
4.35	25	-89	4700

HSUPA 16QAM BANDV Mid Channel/fc(MHz) 4183/836.6

Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.8	-30	3	2091.5
3.8	-20	0	2091.5
3.8	-10	-2	2091.5
3.8	0	-1	2091.5
3.8	10	0	2091.5
3.8	20	-2	2091.5
3.8	30	2	2091.5
3.8	40	4	2091.5
3.8	50	1	2091.5

Frequency Error VS Voltage

Power Supply	Environment	Frequency error(Hz)	Limit
(VDc)	Temperature(℃)		(Hz)
3.5	25	-2	2091.5
3.8	25	0	2091.5
4.35	25	-4	2091.5

Conclusion: PASS

ANNEX A.7. CONDUCTED SPURIOUS EMISSION

A.7.1. GSM Measurement Method and test procedures

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 10 GHz.

2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; If the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give a optimal sweep time according the selected span and RBW.

3. The procedure to get the conducted spurious emission is as follows:

The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds;Get the result.

4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

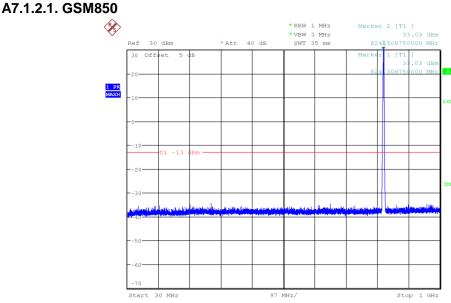
GSM 850 Transmitter

Channel	Frequency(MHz)	
128	824.2	
189	836.4	
251	848.8	

PCS 1900 Transmitter

Channel	Frequency(MHz)
512	1850.2
661	1880.0
810	1909.8

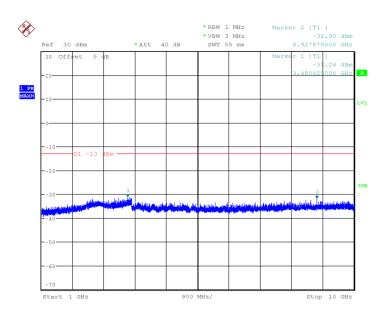
A.7.1.1. Measurement Limit

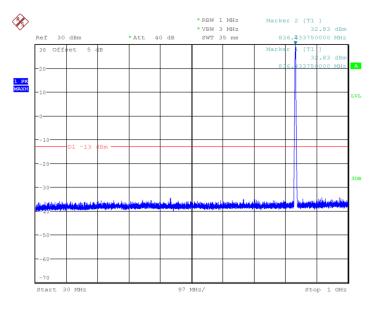

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A7.1.2. Measurement result

Spurious emission limit -13dBm.


Note: peak above the limit line is the carrier frequency.


Channel 128: 30MHz~1GHz

Start 30

Channel 128: 1GHz~10GHz

Channel 189: 30MHz~1GHz