

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			\leq 3 GHz	> 3 GHz			
Maximum distance from (geometric center of prob	closest me be sensors)	asurement point to phantom surface	$5\pm1~\mathrm{mm}$	$\frac{1}{2}\cdot\delta\cdot\ln(2)\pm0.5~\mathrm{mm}$			
Maximum probe angle fi normal at the measureme	rom probe a ent location	xis to phantom surface	30°±1°	20°±1°			
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}		on: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.				
Maximum zoom scan sp	atial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}$			
	uniform g	rid: ∆z _{Zoom} (n)	$ 5 \text{ mm} = 5 \text{ mm} = 5 - 6 \text{ GHz} \le 2 \text{ m} $				
Maximum zoom scan spatial resolution, normal to phantom surface	maded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm			
grid grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z$	Zoom(n-1)				
Minimum zoom scan volume	x, y, z	·	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm			
Note: δ is the penetration 2011 for details.	1 depth of a	plane-wave at normal inc	idence to the tissue medium; see	draft standard IEEE P1528-			

* When zoom scan is required and the <u>reported</u> SAR from the area scan based *l-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

Sub-test	$oldsymbol{eta}_{c}$	eta_{d}	eta_d (SF)	eta_c / eta_d	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 5 HSDPA Data Devices:

For Release 6 HSPA Data Devices

Sub- test	eta_{c}	$eta_{_d}$	eta_d	$eta_{_c}$ / $eta_{_d}$	$eta_{\scriptscriptstyle hs}$	$eta_{\scriptscriptstyle ec}$	$eta_{\scriptscriptstyle ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E– TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.5	1.5	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	1.5	1.5	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$eta_{ed1}{}_{:47/15}$ $eta_{ed2}{}_{:47/15}$	4	2	1.5	1.5	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	1.5	1.5	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.5	1.5	21	81

Rel.8 DC-HSDPA (Cat 24)

SAR test exclusion for Rel.8 DC-HSDPA must satisfy the SAR test exclusion requirements of Rel.5 HSDPA. SAR test exclusion for DC-HSDPA devices is determined by power measurements according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to qualify for SAR test exclusion.

9.4 SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, Rohde & Rchwarz CMW500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the CMW 500.

It is performed for conducted power and SAR based on the KDB941225 D05.

SAR is evaluated separately according to the following procedures for the different test positions in each exposure condition – head, body, body-worn accessories and other use conditions. The procedures in the following subsections are applied separately to test each LTE frequency band.

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

- QPSK with 50% RB allocation
 The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.
- 3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

9.5 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.6 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit

algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

This device uses a proximity sensor for SAR compliance. The proximity sensor is activated when the device is used in close proximity to the user. The proximity sensors trigger power reduction for all bands WLAN and Bluetooth. There is no power reduction mechanism for BT modes for SAR purposes.

11.1 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Note: the #1 is normal power- Proximity sensor not active,

the #2 is low power- Proximity sensor active.

	GSM850 #1										
		Meas	ured Power	(dBm)		Averag	ge Power (dBm)			
Confin	Tune un	CH251	CH190	CH128	Caculation	CH251	CH190	CH128			
Conng	Tune-up	848.8 MHz	836.6 MHz	824.2 MHz		848.8 MHz	836.6 MHz	824.2 MHz			
GSM Speech	33.00	32.01	31.92	31.76							
GPRS 1 Txslot	33.00	31.98	31.88	31.73	-9.03	22.95	22.85	22.70			
GPRS 2 Txslots	32.00	31.35	31.27	31.13	-6.02	25.33	25.25	25.11			
GPRS 3 Txslots	31.00	29.79	29.68	29.53	-4.26	25.53	25.42	25.27			
GPRS 4 Txslots	30.00	28.91	28.74	28.52	-3.01	25.90	25.73	25.51			
EGPRS GMSK 1 Txslot	33.00	32.07	31.97	31.82	- <mark>9.0</mark> 3	23.04	22.94	22.79			
EGPRS GMSK 2 Txslots	32.00	31.45	31.35	31.20	-6.02	25.43	25.33	25.18			
EGPRS GMSK 3 Txslots	31.00	29.88	29.77	29.60	-4.26	25.62	25.51	25.34			
EGPRS GMSK 4 Txslots	30.00	28.97	28.76	28.52	-3.01	25.96	25.75	25.51			
EGPRS 8PSK 1 Txslot	27.50	26.03	25.65	25.55	-9.03	17.00	16.62	16.52			
EGPRS 8PSK 2 Txslots	26.50	25.04	24.78	24.65	-6.02	19.02	18.76	18.63			
EGPRS 8PSK 3 Txslots	24.50	23.10	22.76	22.64	-4.26	18.84	18.50	18.38			
EGPRS 8PSK 4 Txslots	23.50	22.17	21.89	21.75	-3.01	19.16	18.88	18.74			

Table 11-1 GSM850 #1

Table 11-2 GSM850 #2

	GSM850 #2										
		Meas	ured Power	(dBm)		Avera	ge Power (dBm)			
Config	Tune un	CH251	CH190	CH128	Caculation	CH251	CH190	CH128			
Config	Tune-up	848.8 MHz	836.6 MHz	824.2 MHz		848.8 MHz	836.6 MHz	824.2 MHz			
GSM Speech	28.00	27.36	27.21	27.01							
GPRS 1 Txslot	28.00	27.37	27.22	27.03	-9.03	18.34	18.19	18.00			
GPRS 2 Txslots	25.00	24.34	24.18	23.94	-6.02	18.32	18.16	17.92			
GPRS 3 Txslots	23.00	22.57	22.38	22.19	-4.26	18.31	18.12	17.93			
GPRS 4 Txslots	22.00	21.46	21.28	21.03	-3.01	18.45	18.27	18.02			
EGPRS GMSK 1 Txslot	28.00	27.37	27.23	27.04	-9.03	18.34	18.20	18.01			
EGPRS GMSK 2 Txslots	25.00	24.35	24.18	23.93	-6.02	18.33	18.16	17.91			
EGPRS GMSK 3 Txslots	23.00	22.57	22.39	22.18	-4.26	18.31	18.13	17.92			
EGPRS GMSK 4 Txslots	22.00	21.43	21.33	21.01	-3.01	18.42	18.32	18.00			
EGPRS 8PSK 1 Txslot	22.00	21.17	20.85	20.76	-9.03	12.14	11.82	11.73			
EGPRS 8PSK 2 Txslots	19.00	18.04	17.65	17.57	-6.02	12.02	11.63	11.55			
EGPRS 8PSK 3 Txslots	17.00	16.11	15.80	15.68	-4.26	11.85	11.54	11.42			
EGPRS 8PSK 4 Txslots	15.00	14.90	14.46	14.35	-3.01	11.89	11.45	11.34			

No. I17Z61109-SEM02 Page 26 of 140

Table 11-3 PCS1900 #1

	PCS1900 #1										
		Measu	ured Power	(dBm)		Averag	je Power(dBm)			
Config	Tune-up	CH810	CH661	CH512	Caculation	CH810	CH661	CH512			
Connig		1909.8 MHz	1880 MHz	1850.2 MHz		1909.8 MHz	1880 MHz	1850.2 MHz			
GSM Speech	31.00	29.13	29.11	29.12							
GPRS 1 Txslot	31.00	29.13	29.11	29.11	-9.03	20.10	20.08	20.08			
GPRS 2 Txslots	30.00	28.54	28.50	28.49	-6.02	22.52	22.48	22.47			
GPRS 3 Txslots	28.00	27.05	26.99	26.97	-4.26	22.79	22.73	22.71			
GPRS 4 Txslots	27.00	26.01	25.91	25.86	-3.01	23.00	22.90	22.85			
EGPRS GMSK 1 Txslot	31.00	29.07	29.04	29.03	-9.03	20.04	20.01	20.00			
EGPRS GMSK 2 Txslots	30.00	28.47	28.44	28.44	-6.02	22.45	22.42	22.42			
EGPRS GMSK 3 Txslots	28.00	27.00	26.93	26.93	-4.26	22.74	22.67	22.67			
EGPRS GMSK 4 Txslots	27.00	25.95	25.86	25.81	-3.01	22.94	22.85	22.80			
EGPRS 8PSK 1 Txslot	26.50	25.80	25.72	25.73	-9.03	16.77	16.69	16.70			
EGPRS 8PSK 2 Txslots	25.50	25.02	24.88	24.89	-6.02	19.00	18.86	18.87			
EGPRS 8PSK 3 Txslots	23.50	23.34	23.08	23.20	-4.26	19.08	18.82	18.94			
EGPRS 8PSK 4 Txslots	22.50	22.25	22.13	22.13	-3.01	19.24	19.12	19.12			

Table 11-4 PCS1900 #2

PCS1900 #2											
		Measu	ared Power	(dBm)		Averag	e Power 🔇	dBm)			
Config	Tune un	CH810	CH661	CH512	Caculation	CH810	CH661	CH512			
Conng	Tune-up	1909.8 MHz	1880 MHz	1850.2 MHz		1909.8 MHz	1880 MHz	1850.2 MHz			
GSM Speech	25.00	24.53	24.38	24.27							
GPRS 1 Txslot	25.00	24.54	24.38	24.27	-9.03	15.51	15.35	15.24			
GPRS 2 Txslots	22.00	21.55	21.40	21.38	-6.02	15.53	15.38	15.36			
GPRS 3 Txslots	20.00	19.83	19.67	19.65	-4.26	15.57	15.41	15.39			
GPRS 4 Txslots	19.00	18.49	18.35	18.32	-3.01	15.48	15.34	15.31			
EGPRS GMSK 1 Txslot	25.00	24.54	24.39	24.28	-9.03	15.51	15.36	15.25			
EGPRS GMSK 2 Txslots	22.00	21.56	21.40	21.39	-6.02	15.54	15.38	15.37			
EGPRS GMSK 3 Txslots	20.00	19.82	19.67	19.66	-4.26	15.56	15.41	15.40			
EGPRS GMSK 4 Txslots	19.00	18.50	18.34	18.32	-3.01	15.49	15.33	15.31			
EGPRS 8PSK 1 Txslot	22.00	21.36	21.25	21.25	-9.03	12.33	12.22	12.22			
EGPRS 8PSK 2 Txslots	19.00	18.41	18.25	18.29	-6.02	12.39	12.23	12.27			
EGPRS 8PSK 3 Txslots	17.00	16.58	16.49	16.57	-4.26	12.32	12.23	12.31			
EGPRS 8PSK 4 Txslots	16.00	15.21	15.12	15.22	-3.01	12.20	12.11	12.21			

NOTES:

Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for 850MHz and 1900MHz in normal power. And 4Txslots for 850MHz and 3Txslots for 1900MHz in lower power.

11.2 WCDMA Measurement result

Table 11-5 WCDMA1900-BII #1

WCDMA1900-BII #1									
			Measured Power (dBm)						
ltom		Tune un	CH9538	CH9400	CH9262				
nem		Tune-up	1907.6 MHz	1880 MHz	1852.4 MHz				
WCDMA	RMC	23.00	22.50	22.66	22.64				
	subtest1	21.00	20.46	20.12	20.01				
	subtest2	21.00	19.96	20.03	19.93				
HSUPA	subtest3	21.00	20.98	21.00	20.95				
	subtest4	21.00	19.45	19.58	19.41				
	subtest5	22.00	21.94	22.00	21.90				
HSPA+	1	22.00	21.58	21.54	21.51				
	subtest1	23.00	22.01	22.02	22.02				
DC-HSDPA	subtest2	23.00	21.97	21.98	22.01				
	subtest3	23.00	21.46	21.48	21.49				
	subtest4	23.00	21.49	21.52	21.51				

Table 11-6 WCDMA1900-BII #2

WCDMA1900-BII #2									
			Measu	ured Power	(dBm)				
Itom		Tuno un	CH9538	CH9400	CH9262				
item		Tune-up	1907.6 MHz	1880 MHz	1852.4 MHz				
WCDMA	RMC	17.50	16.99	17.09	17.07				
	subtest1	17.00	15.94	15.44	15.38				
	subtest2	17.00	15.41	15.42	15.38				
HSUPA	subtest3	17.00	16.44	16.46	16.38				
	subtest4	16.00	14.87	14.93	14.84				
	subtest5	18.00	17.42	17.43	17.35				
HSPA+	١	18.00	17.04	17.05	17.01				
	subtest1	18.00	17.52	17.54	17.55				
	subtest2	18.00	17.35	17.51	17.51				
DC-NSDFA	subtest3	18.00	16.96	16.97	16.97				
	subtest4	18.00	16.95	16.98	16.98				

Table 11-7 WCDMA850-BV #1

	WCDMA850-BV #1									
			Meas	ured Power	(dBm)					
lte m		Tune un	CH4233	CH4182	CH4132					
item		Tune-up	846.6 MHz	835.4 MHz	826.4 MHz					
WCDMA	RMC	23.00	22.91	22.97	22.99					
	subtest1	21.00	19.41	19.92	19.96					
	subtest2	21.00	19.94	19.94	19.93					
HSUPA	subtest3	21.00	20.92	20.96	20.96					
	subtest4	21.00	19.38	19.42	19.41					
	subtest5	22.00	21.90	21.95	21.95					
HSPA+	Ν	22.00	21.58	21.53	21.52					
	subtest1	23.00	22.05	21.92	21.98					
DC-HSDPA	subtest2	23.00	22.06	21.94	21.95					
	subtest3	23.00	21.54	21.45	21.44					
	subtest4	23.00	21.52	21.46	21.48					

Table 11-8 WCDMA850-BV #2

	WCDMA850-BV #2									
			Meas	ured Power	(dBm)					
Itom		Tuno un	CH4233	CH4182	CH4132					
nem		Tune-up	846.6 MHz	835.4 MHz	826.4 MHz					
WCDMA	RMC	18.00	17.41	17.52	17.54					
	subtest1	17.00	15.78	15.34	15.32					
	subtest2	17.00	15.31	15.34	15.31					
HSUPA	subtest3	17.00	16.30	16.32	16.31					
	subtest4	16.00	14.77	14.79	14.75					
	subtest5	18.00	17.28	17.35	17.29					
HSPA+	1	18.00	16.96	16.96	16.94					
	subtest1	18.00	17.47	17.38	17.37					
	subtest2	18.00	17.43	17.37	17.38					
DC-NODEA	subtest3	18.00	16.84	16.85	16.85					
	subtest4	18.00	16.88	16.86	16.88					

11.3 LTE Measurement result

Table 11-9 LTE2500-FDD7 #1

		LTE	2500-FDD7 #	#1			
				Me	asured Pow	er (dBm) & M	PR
				QP	SK	160	AM
BandWidth	RB No./Start	Channel	Tune-up	Measured	MDD	Measured	MDD
				Power	MPR	Power	MPR
		21425	24	22.23	0	21.09	1
	1H	21100	24	22.35	0	21.21	1
		20775	24	22.47	0	21.32	1
		21425	24	22.37	0	21.19	1
	1M	21100	24	22.44	0	21.28	1
		20775	24	22.58	0	21.20	1
		21/25	24	22.00	0	21.71	1
	11	21423	24	22.37	0	21.21	1
	12	20775	24	22.39	0	21.25	1
		20115	24	22.00	0	21.42	1
EN AL LE	1011	21425	24	21.31	1	20.34	2
DIVIHZ	12H	21100	24	21.44	1	20.43	2
		20775	24	21.69	1	20.65	2
		21425	24	21.35	1	20.36	2
	12M	21100	24	21.45	1	20.44	2
		20775	24	21.71	1	20.70	2
		21425	24	21.37	1	20.40	2
	12L	21100	24	21.43	1	20.43	2
		20775	24	21.72	1	20.69	2
		21425	24	21.27	1	20.23	2
	25	21100	24	21.38	1	20.31	2
		20775	24	21.64	1	20.54	2
		21400	24	22.38	0	21.66	1
	1H	21100	24	22.48	0	21.36	1
		20800	24	22.58	0	21.98	1
		21400	24	22.48	0	21.79	1
	1M	21100	24	22.51	0	21.42	1
		20800	24	22.71	0	22.07	1
		21400	24	22.51	0	21.92	1
	11	21100	24	22.01	0	21.02	1
		20800	24	22.78	0	22.12	1
		21400	24	21.10	1	20.20	2
10MHz	2514	21100	24	21.41	1	20.33	2
1011112	2011	20900	24	21.50	1	20.42	2
		20000	24	21.00	1	20.03	2
	0514	21400	24	21.30	1	20.49	2
	20101	21100	24	21.39	1	20.46	2
		20800	24	21.00	1	20.67	2
	0.51	21400	24	21.50	1	20.43	2
	25L	21100	24	21.36	1	20.43	2
		20800	24	21.67	1	20.71	2
		21400	24	21.25	1	20.40	2
	50	21100	24	21.38	1	20.38	2
		20800	24	21.63	1	20.61	2
		21375	24	22.47	0	21.71	1
	1H	21100	24	22.55	0	21.75	1
		20825	24	22.34	0	21.87	1
		21375	24	22.57	0	21.96	1
	1M	21100	24	22.60	0	21.80	1
		20825	24	22.62	0	21.63	1
		21375	24	22.64	0	22.04	1
	1L	21100	24	22.50	0	21.76	1
		20825	24	22.78	0	22.11	1
		21375	24	21.62	1	20.47	2
15MHz	36H	21100	24	21.63	1	20.49	2
		20825	24	21.66	1	20.54	2
		21375	24	21,59	1	20.53	2
	36M	21100	24	21.63	1	20.50	2
	00171	20825	24	21.75	1	20.60	2
		21375	24	21.67	1	20.60	2
	361	21373	24	21.07	1	20.00	2
	JUL	20825	24	21.07	1	20.40	2
		20020	24	21.00	1	20.00	2
	75	213/0	24	21.00	1	20.00	2
	15	21100	24	21.02	1	20.52	2
L		20825	24	21.74	1	20.62	2

©Copyright. All rights reserved by CTTL.

No. I17Z61109-SEM02 Page 30 of 140

		21350	24	22.50	0	21.62	1
	1H	21100	24	22.57	0	21.93	1
		20850	24	22.45	0	21.67	1
		21350	24	22.64	0	21.81	1
	1M	21100	24	22.57	0	21.98	1
		20850	24	22.60	0	21.79	1
		21350	24	22.69	0	21.88	1
	1L	21100	24	22.46	0	21.92	1
		20850	24	22.74	0	21.91	1
		21350	24	21.43	1	20.42	2
20MHz	50H	21100	24	21.52	1	20.46	2
		20850	24	21.46	1	20.41	2
		21350	24	21.48	1	20.50	2
	50M	21100	24	21.46	1	20.41	2
		20850	24	21.50	1	20.44	2
		21350	24	21.55	1	20.55	2
	50L	21100	24	21.44	1	20.39	2
		20850	24	21.60	1	20.54	2
		21350	24	21.51	1	20.52	2
	100	21100	24	21.48	1	20.45	2
		20850	24	21.53	1	20.48	2

No. I17Z61109-SEM02 Page 31 of 140

Table 11-10 LTE2500-FDD7 #2

		LTE	2500-FDD7 #	# 2			
				Me	asured Powe	er (dBm) & M	PR
				QP	SK	160	AM
BandWidth	RB No./Start	Channel	Tune-up	Measured		Measured	
				Power	MPR	Power	MPR
		21425	18	16.86	0	16.76	0
	1H	21100	18	16.76	0	16.86	0
		20775	10	16.70	0	16.71	0
		20115	10	10.79	0	10.71	0
		21425	18	10.90	0	10.85	0
	IM	21100	18	16.82	0	16.89	0
		20775	18	16.89	0	16.78	0
		21425	18	16.98	0	16.88	0
	1L	21100	18	16.74	0	16.83	0
		20775	18	16.89	0	16.77	0
		21425	18	16.96	0	16.98	0
5MHz	12H	21100	18	16.85	0	16.89	0
		20775	18	16.86	0	16.90	0
		21425	18	16.97	0	17.00	0
	12M	21100	18	16.86	0	16.88	0
		20775	18	16.88	0	16.92	0
		21425	18	16.00	0	17.01	0
	10	21425	10	16.70	0	16.94	0
	12L	20775	10	16.00	0	16.04	0
		20110	10	10.00	0	10.92	0
		21425	18	16.90	U	16.83	U
	25	21100	18	16.79	U	16.73	0
L		20775	18	16.81	0	16.75	0
		21400	18	16.88	0	17.42	0
	1H	21100	18	16.83	0	16.84	0
		20800	18	16.75	0	17.33	0
		21400	18	16.96	0	17.54	0
	1M	21100	18	16.84	0	16.86	0
		20800	18	16.81	0	17.38	0
		21400	18	17.04	0	17.61	0
	11	21100	18	16 74	0	16.76	0
		20900	10	16.02	0	17.20	0
		20000	10	10.03	0	16.00	0
101411-	0511	21400	18	10.91	0	10.98	0
TOMHZ	25H	21100	18	16.81	0	16.89	0
		20800	18	16.81	0	16.88	0
		21400	18	16.94	0	17.02	0
	25M	21100	18	16.79	0	16.87	0
		20800	18	16.81	0	16.90	0
		21400	18	16.98	0	17.06	0
	25L	21100	18	16.75	0	16.82	0
		20800	18	16.82	0	16.89	0
		21400	18	16.94	0	16.96	0
	50	21100	18	16.77	0	16.80	0
		20800	18	16.81	0	16.83	0
		21375	18	16.86	0	17.41	0
	1H	21100	18	16.85	0	17.23	0
		20825	18	16.61	0	17.21	0
		21275	19	17.00	0	17.57	0
	114	21373	10	16.94	0	17.00	0
	1 IVI	21100	10	10.04	0	17.23	0
		20825	18	10.71	0	17.28	0
		21375	18	17.05	0	17.63	0
	٦L	21100	18	16./6	U	17.16	U
		20825	18	16.78	0	17.35	0
		21375	18	17.05	0	17.01	0
15MHz 36	36H	21100	18	16.87	0	16.84	0
		20825	18	16.89	0	16.85	0
		21375	18	17.08	0	17.05	0
	36M	21100	18	16.88	0	16.85	0
		20825	18	16.75	0	16.73	0
		21375	18	17.14	0	17.12	0
	36L	21100	18	16.83	0	16.80	0
		20825	18	16.79	0	16.75	0
		21375	18	17.12	0	17.09	0
	75	21100	18	16.91	0	16.89	0
		20825	18	16.76	0	16.74	0
L							

		21350	18	17.07	0	17.34	0
	1H	21100	18	17.00	0	17.54	0
		20850	18	16.72	0	17.01	0
		21350	18	17.15	0	17.44	0
	1M	21100	18	16.88	0	17.43	0
		20850	18	16.76	0	17.06	0
		21350	18	17.18	0	17.47	0
	1L	21100	18	16.76	0	17.33	0
		20850	18	16.87	0	17.15	0
	50H	21350	18	17.05	0	17.02	0
20MHz		21100	18	16.92	0	16.89	0
		20850	18	16.68	0	16.66	0
		21350	18	17.08	0	17.05	0
	50M	21100	18	16.86	0	16.83	0
		20850	18	16.72	0	16.68	0
		21350	18	17.11	0	17.09	0
	50L	21100	18	16.80	0	16.77	0
		20850	18	16.78	0	16.76	0
		21350	18	17.08	0	17.08	0
	100	21100	18	16.85	0	16.84	0
		20850	18	16.74	0	16.74	0

11.4 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

Table 11-11 Bluetooth Power

Bluetooth Power							
Mode	Channel Frequence		Tune-up	Measured			
	78	2480 MHz	5	4.01			
GFSK	39	2441 MHz	5	4.71			
	0	2402 MHz	5	4.59			
	78	2480 MHz	4	2.93			
EDR2M-4_DQPSK	39	2441 MHz	4	3.64			
	0	2402 MHz	4	3.52			
	78	2480 MHz	4	3.11			
EDR3M-8DPSK	39	2441 MHz	4	3.8			
	0	2402 MHz	4	3.63			

The average conducted power for Wi-Fi is as following:

Table 11-12 WLAN2450 #1

		WLAN24	150 #1			
Band	Mode	Channel	Frequence	Data Rate	Tune-up	Measured
		11	2462 MHz		16.20	15.74
		6	2437 MHz	1Mbps	16.20	16.12
		1	2407 MHz	Thisps	16.20	15.94
		11			10.20	15.54
				OMbaa	/	/
		6	2437 MHZ	Zivibps	16.20	16.10
	802.11b	1	2412 MHZ		1	/
		11	2462 MHz		/	/
		6	2437 MHz	5.5Mbps	16.20	16.08
		1	2412 MHz		/	/
		11	2462 MHz		/	/
		6	2437 MHz	11Mbps	16.20	15.71
		1	2412 MHz		/	/
		11	2462 MHz		16.20	15.17
		6	2437 MHz	6Mbps	16.20	15.49
		1	2412 MHz	omopo	13.00	12 79
		11	2462 MHz		/	/
		6	2402 MHZ	OMboo	16.20	15.40
		0		aivibha	10.20	15.42
		1			/	/
		11	2462 MHZ	101	16.20	15.28
		6	2437 MHz	12Mbps	16.20	15.55
		1	2412 MHz		13.00	12.82
		11	2462 MHz		/	/
		6	2437 MHz	18Mbps	16.20	15.46
	902.11a	1	2412 MHz		/	/
	802.11g	11	2462 MHz		/	/
		6	2437 MHz	24Mbps	16.20	15.17
		1	2412 MHz	1 '	/	/
		11	2462 MHz		1	1
		6	2437 MHz	36Mbps	16.20	14 58
		1	2407 MHz	00111000	/	/
WLAN 2.4G		11			/	/
20M				1014600	/	/
		6	2437 MHZ	481VIDPS	16.20	14.85
		1	2412 MHZ		1	/
		11	2462 MHz		/	/
		6	2437 MHz	54Mbps	16.20	14.52
		1	2412 MHz		/	/
		11	2462 MHz		16.20	15.12
		6	2437 MHz	MCS0	16.20	15.46
		1	2412 MHz		13.00	12.79
		11	2462 MHz		/	/
		6	2437 MHz	MCS1	16 20	15 34
		1	2412 MH7	1	/	/
		11	2462 MH-		/	/
				MCS2	16.00	15.07
		6	2437 IVIHZ	1010-32	10.20	15.27
		1	2412 MHZ		/	/
		11	2462 MHz		/	/
		6	2437 MHz	MCS3	16.20	14.74
	802.11n	1	2412 MHz		/	/
20M	11	2462 MHz		/	/	
	6	2437 MHz	MCS4	16.20	15.03	
		1	2412 MHz]	/	/
		11	2462 MH7		/	/
		6	2437 MH7	MC.85	16 20	, 14 60
		1			/	/
		1			/	/
		11		MOOO	/	/
		6	2437 MHz	IVICS6	16.20	14.88
		1	2412 MHz		/	/
		11	2462 MHz		/	/
		6	2437 MHz	MCS7	16.20	14.83
		1	2412 MHz]	/	/

©Copyright. All rights reserved by CTTL.

	-	-				_
		11	2462 MHz		15.00	14.42
		6	2437 MHz	MCS0	15.00	14.40
		1	2412 MHz		15.00	14.58
		11	2462 MHz		/	/
		6	2437 MHz	MCS1	/	/
		1	2412 MHz		15.00	13.94
		11	2462 MHz		/	/
		6	2437 MHz	MCS2	/	/
		1	2412 MHz		15.00	13.80
		11	2462 MHz		/	/
		6	2437 MHz	MCS3	/	/
WLAN 2.4G	802.11n	1	2412 MHz		15.00	14.08
40M	40M	11	2462 MHz		/	/
		6	2437 MHz	MCS4	/	/
		1	2412 MHz		15.00	13.87
		11	2462 MHz		/	/
		6	2437 MHz	MCS5	/	/
		1	2412 MHz		13.00	12.01
		11	2462 MHz		/	/
		6	2437 MHz	MCS6	/	/
		1	2412 MHz		13.00	11.69
		11	2462 MHz		/	/
		6	2437 MHz	MCS7	/	/
		1	2412 MHz		13 00	11.57

12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions						
Mode Front Rear Left edge Right edge Top edge Bottom edge						
Main antenna No Yes Yes No No Yes						Yes
WLAN No Yes Yes No Yes No						

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

			SAR test	RF output power		
Band/Mode	F(GHz)	Position	exclusion threshold (mW)	dBm	mW	SAR test exclusion
Bluetooth	2.441	Head	9.60	5	3.16	Yes
		Body	19.20	5	3.16	Yes
2.4GHz WLAN 802.11 b	2.45	Head	9.58	16.2	41.69	No
	2.45	Body	19.17	16.2	41.69	No

Table 12.1: Standalone SAR test exclusion considerations

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported				
SAR value for	Right hand, Touch cheek	0.10	0.75	0.85
Head				
Highest reported				
SAR value for	Rear 0mm	0.64	0.92	1.56
Body				

Table 13.2: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	BT	Sum
Maximum reported	Laft hand Touch shock	0.15	0.12	0.28
SAR value for Head	Leit Hand, Touch cheek	0.15	0.15	0.20
Maximum reported	Boor Omm	0.64	0.07	0 71
SAR value for Body		0.04	0.07	0.71

[1] - Estimated SAR for Bluetooth (see the table 13.3)

Table 13.3:	Estimated	SAR for	Bluetooth
-------------	-----------	---------	-----------

Mode/Pand		Position	Distance	Upper limit	of power *	Estimated _{1g}
WODE/Band	г (Gпz)	FUSILION	(mm)	dBm	mW	(W/kg)
Bluetooth	2.441	Head	5	5	3.16	0.13
Bluetooth	2.441	Body	10	5	3.16	0.07

* - Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 0/19 mm and just applied to the condition of body worn accessory. It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

14.1 SAR results for Fast SAR

GSM850 #1 Head									
Ambient Temperature:			22.	8		Liquid Temperature:		22.4	
Mode	Device orientation	SAR	Measured SAR [W/kg]			Reported SAR [W/kg]			
		measurement	CH251	CH190	CH128	CH251	CH190	CH128	
			848.8 MHz	836.6 MHz	824.2 MHz	848.8 MHz	836.6 MHz	824.2 MHz	
	lur	ne-up	33.00 33.00 33.00		Scaling factor*				
	Slot Average Power [dBm]		32.01	31.92	31.76	1.26	1.28	1.33	
		1g SAR		0.041			0.05		
	Left Cheek	10g SAR		0.028			0.04		
		Deviation		-0.05			-0.05		
	Left Tilt	1g SAR		0.024			0.03		
		10g SAR		0.016			0.02		
GSM		Deviation		0.02			0.02		
	Right Cheek	1g SAR	0.076	0.052	0.041	0.10	0.07	0.05	
		10g SAR	0.057	0.036	0.028	0.07	0.05	0.04	
		Deviation	0.18	-0.02	-0.08	0.18	-0.02	-0.08	
		1g SAR		0.03			0.04		
	Right Tilt	10g SAR		0.019			0.02		
		Deviation		-0.09			-0.09		
GSM SKU8		1g SAR	0.043			0.05			
	Right Cheek	10g SAR	0.029			0.04			
		Deviation	-0.06			-0.06			

Table 14-1 GSM850 #1 Head

Table 14-2 GSM850 #1 Body

GSM850 #1 Body									
Ambient Te	emperature:	22.8				Liquid Temperature:		22.4	
Mode	Device SAR		Measured SAR [W/kg]			Reported SAR [W/kg]			
	orientation	measurement	CH251	CH190	CH128	CH251	CH190	CH128	
	Unertation	measurement	848.8 MHz	836.6 MHz	824.2 MHz	848.8 MHz	836.6 MHz	824.2 MHz	
	Tune-up		30.00	30.00	30.00		Scaling factor*		
	Slot Average Power [dBm]		28.91	28.74	28.52	1.29	1.34	1.41	
	Left edge 19mm	1g SAR		0.1			0.13		
		10g SAR		0.031			0.04		
GPRS 4		Deviation		0.04			0.04		
Tyslots	Rear 19mm	1g SAR		0.127			0.17		
1231013		10g SAR		0.088			0.12		
		Deviation		0.11			0.11		
	Bottom edge 19mm	1g SAR		0.112			0.15		
		10g SAR		0.054			0.07		
		Deviation		0.06			0.06		

Table 14-3 GSM850 #2 Body

GSM850 #2 Body									
Ambient Te	emperature:	22.8				Liquid Temperature:		22.4	
Mode	Device orientation	SAR measurement	Measured SAR [W/kg]			Reported SAR [W/kg]			
			CH251	CH190	CH128	CH251	CH190	CH128	
			848.8 MHz	836.6 MHz	824.2 MHz	848.8 MHz	836.6 MHz	824.2 MHz	
	Tune-up		22.00	22.00	22.00		*		
	Slot Average Power [dBm]		21.46	21.28	21.03	1.13	1.18	1.25	
		1g SAR	0.35	0.306	0.262	0.40	0.36	0.33	
	Rear 0mm	10g SAR	0.185	0.158	0.141	0.21	0.19	0.18	
CDDC 4		Deviation	0.16	0.05	0.04	0.16	0.05	0.04	
GFR34	Bottom edge 0mm	1g SAR		0.156			0.18		
IXSIOTS		10g SAR		0.082			0.10		
		Deviation		0.14			0.14		
	Left edge 0mm	1g SAR		0.026			0.03		
		10g SAR		0.015			0.02		
		Deviation		0.12			0.12		
	Tu	ne-up	22.00	22.00	22.00	Scaling factor*			
EGPRS	Slot Average	e Power [dBm]	21.43	21.33	21.01	1.14	1.17	1.26	
GMSK 4		1g SAR	0.341			0.39			
Txslots	Rear 0mm	10g SAR	0.178			0.20			
		Deviation	0.03			0.03			
GPRS 4	Rear 0mm	1g SAR	0.338			0.38			
Txslots		10g SAR	0.174			0.20			
SKU8		Deviation	0.05			0.05			

Table 14-4 PCS1900 #1 Head

PCS1900 #1 Head									
Ambient Temperature:			22.	8		Liquid Temperature:		22.4	
Mode	Device orientation	SAR	Measured SAR [W/kg]			Reported SAR [W/kg]			
		measurement	CH810	CH661	CH512	CH810	CH661	CH512	
		measurement	1909.8	1880 MHz	1850.2	1909.8	1880 MHz	1850.2	
	Tune-up		31.00 31.00 31.00		Scaling factor*				
	Slot Average Power [dBm]		29.13	29.11	29.12	1.54	1.54	1.54	
		1g SAR	0.098	0.072	0.069	0.15	0.11	0.11	
	Left Cheek	10g SAR	0.063	0.043	0.042	0.10	0.07	0.06	
GSM		Deviation	0.06	0.14	0.02	0.06	0.14	0.02	
	Left Tilt	1g SAR		0.056			0.09		
		10g SAR		0.031			0.05		
		Deviation		-0.09			-0.09		
	Right Cheek	1g SAR		0.065			0.10		
		10g SAR		0.039			0.06		
		Deviation		0.13			0.13		
	Right Tilt	1g SAR		0.057			0.09		
		10g SAR		0.033			0.05		
		Deviation		0.05			0.05		
GSM SKU8		1g SAR	0.077			0.12			
	Left Cheek	10g SAR	0.046			0.07			
		Deviation	-0.07			-0.07			

Table 14-5 PCS1900 #1 Body

PCS1900 #1 Body									
Ambient Te	emperature:	22.8				Liquid Temperature:		22.4	
Mode	Device	SAR	Meas	ured SAR [W/kg]		Reported SAR [W/kg]			
	orientation	measurement	CH810	CH661	CH512	CH810	CH661	CH512	
	onentation	measurement	1909.8	1880 MHz	1850.2	1909.8	1880 MHz	1850.2	
	Tune-up		27.00 27.00 27.00			Scaling factor*			
	Slot Average Power [dBm]		26.01	25.91	25.86	1.26	1.28	1.30	
	Left edge 19mm	1g SAR		0.056			0.07		
		10g SAR		0.035			0.04		
CPRS 4		Deviation		0.05			0.05		
Typelote	Rear 19mm	1g SAR		0.142			0.18		
123013		10g SAR		0.088			0.11		
		Deviation		0.16			0.16		
	Bottom edge 19mm	1g SAR		0.159			0.20		
		10g SAR		0.098			0.13		
		Deviation		0.04			0.04		