

DYNAMIC FREQUENCY SELECTION

DFS Test Report

APPLICANT	:	Lenovo(Shanghai) Electronics Technology Co., Ltd.
EQUIPMENT	:	Portable Tablet Computer
BRAND NAME	:	Lenovo
MODEL NAME	:	TB570FU
FCC ID	:	O57TB570FU
STANDARD	:	FCC Part 15 Subpart E
CLASSIFICATION	:	(NII) Unlicensed National Information Infrastructure
TEST DATE(S)	:	Nov. 02, 2022 ~ Nov. 17, 2022

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the procedures and shown to be compliant with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

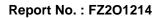

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISION	I HISTORY	3
SU	MMAR	Y OF DYNAMIC FREQUENCY SELECTION TEST	4
1	GENE	RAL DESCRIPTION	5
	 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. 1.8. 	Applicant Manufacturer Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Site Applied Standards Support Unit used in test configuration and system	5 5 6 6
2	REQU	IREMENTS AND PARAMETERS FOR DFS TEST	7
	 2.1. 2.2. 2.3. 2.4. 2.5. 	Summary of Dynamic Frequency Selection Test Applicability of DFS Requirements Interference Threshold values, Master or Client incorporating In-Service Monitoring DFS Response requirement values Short Pulse Radar Test Waveforms	8 9 9
3	CALIE	BRATION SETUP AND DFS TEST RESULTS	11
	3.1. 3.2.	Calibration of Radar Waveform In-Service Monitoring: Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period	13
4	LIST	OF MEASURING EQUIPMENT	20

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FZ2O1214	Rev. 01	Initial issue of report	Dec. 09, 2022

SUMMARY OF DYNAMIC FREQUENCY SELECTION TEST

UNII	Bandwidth and Channel	Description	Measured	Limit	Result
		Channel Move Time	480.416ms	10 sec	Pass
U-NII-2A	160MHz (CH50) 5250MHz	Channel Closing Transmission time	<200ms + 3.6ms (aggregate)	200 ms + aggregate of 60 ms over remaining 10 s period	Pass
	Non-Occupancy Period and Client Beacon Test		No transmission or Beacons occurred	30 minutes	Pass
		Channel Move Time	520.417ms	10 sec	Pass
U-NII-2C	160MHz (CH114) 5570MHz	Channel Closing Transmission time	<200ms + 4ms (aggregate)	200 ms + aggregate of 60 ms over remaining 10 s period	Pass
		Non-Occupancy Period and Client Beacon Test	No transmission or Beacons occurred	30 minutes	Pass

Note: Since the product is client without radar detection function, only Channel Move Time, Channel

Closing Transmission Time and Non-Occupancy Period Test are required to be performed.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1. Applicant

Lenovo(Shanghai) Electronics Technology Co., Ltd.

Section 304-305, Building No. 4, # 222, Meiyue Road, China (Shanghai) Pilot Free Trade Zone

1.2. Manufacturer

Lenovo PC HK Limited

23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong, China

1.3. Feature of Equipment Under Test

Product Feature		
Equipment	Portable Tablet Computer	
Brand Name	Lenovo	
Model Name	TB570FU	
FCC ID	O57TB570FU	
SN	HA192AC0035	
HW Version	TB570FU	
SW Version	TB570FU_RF01_20221124	
EUT Stage	Identical Prototype	

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description
- 2. The device support 802.11ax but not support channel puncturing function.

1.4. Product Specification of Equipment Under Test

Product Specification subjective to this standard			
DFS Function Client without radar detection function			
Tx/Rx Channel Frequency Range	5260 MHz ~ 5320 MHz		
TX/RX Channel Frequency Range	5500 MHz ~ 5720 MHz		
	802.11a/n HT20/HT40		
EUT support WLAN function	802.11ac VHT20/VHT40/VHT80/VHT160		
	802.11ax HE20/HE40/HE80/HE160		
Type of Medulation	802.11a/n/ac/ax : OFDM (BPSK / QPSK / 16QAM / 64QAM /		
Type of Modulation	256QAM / 1024QAM)		

1.5. Modification of EUT

No modifications are made to the EUT during all test items.

1.6. Testing Site

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)			
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158			
Test Site No.	FAX : +86-512-579009 Sporton Site No.	58 FCC Designation No.	FCC Test Firm Registration No.	
	DFS01-KS	CN1257	314309	

1.7. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02
- FCC KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r02

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

1.8. Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	HW / FW Version	Power Cord
1.	WLAN AP	Cisco	Air-CAP3072E-A-K9	I DK102087	HW:NA FW: 15.2(4)JB6	Unshielded, 1.8 m
2.	Notebook	Lenovo	Edge E335	PPD-AR5B95	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2 Requirements and Parameters for DFS Test

2.1. Summary of Dynamic Frequency Selection Test

Bandwidth and Channel Test Items		Limit			
	160MHz 5250MHz (CH50)				
	Channel Move Time	10 sec			
160MHz (CH50) 5250MHz	Channel Closing Transmission time	200 ms + aggregate of 60 ms over remaining 10 s period			
	Non-Occupancy Period and Client Beacon Test	30 minutes			
	160MHz 5570MHz (CH114)				
	Channel Move Time	10 sec			
160MHz (CH114) 5570MHz	Channel Closing Transmission time	200 ms + aggregate of 60 ms over remaining 10 s period			
	Non-Occupancy Period and Client Beacon Test	30 minutes			

2.2. Applicability of DFS Requirements

EUT is client and operates as client without radar detection function.

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode			
Requirement	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master	Client Without Radar Detection	Client With Radar Detection	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	Yes	
Client Beacon Test	N/A	Yes	Yes	

	Operational Mode		
Additional requirements for devices with multiple bandwidth modes	Master or Client With Radar Detection	Client Without Radar Detection	
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link	
All other tests	Any single BW mode	Not required	

Note

Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

2.3. Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (see notes 1 and 2)				
≥ 200 milliwatt	-64 dBm				
< 200 milliwatt -62 dBm					
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.					
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the					
test transmission waveforms to account for variations in measurement equipment. This will ensure					
that the test signal is at or above the detection threshold level to trigger a DFS response.					

The radar *Detection Threshold*, lowest antenna gain is the parameter of Interference radar DFS detection threshold, The Interference *Detection Threshold* is the (-62dBm) + (0) [dBi]+ 1 dB= -61 dBm.

2.4. DFS Response requirement values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over
	remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth
	See Note 3.

Note 1: The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

• For the Short pulse radar Test Signals this instant is the end of the Burst.

• For the Frequency Hopping radar Test Signal, this instant is the end of the last radar *Burst* generated.

• For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate *Channel* changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

2.5. Short Pulse Radar Test Waveforms

As the EUT is a Client Device with no Radar Detection, only one type radar pulse is required for the testing. Radar Pulse type 0 was used in the evaluation of the Client device for the purpose of measuring the Channel Move Time and the Channel Closing Transmission Time.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	60%	30
1	1	Test A Test B	$\operatorname{Roundup} \begin{cases} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \operatorname{sec}}}\right) \end{cases}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)			80%	120	

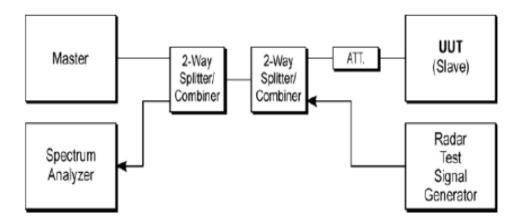
Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms.

If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

3 Calibration Setup and DFS Test Results

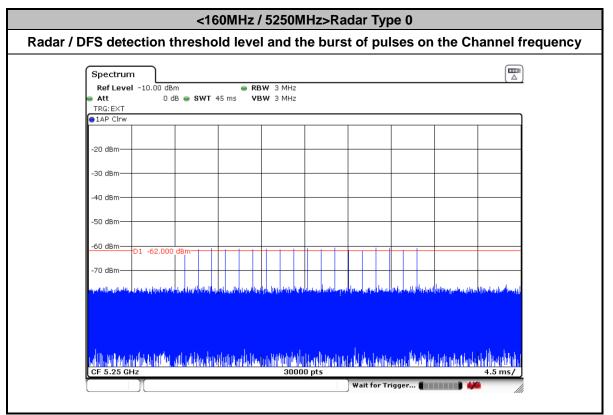

3.1. Calibration of Radar Waveform

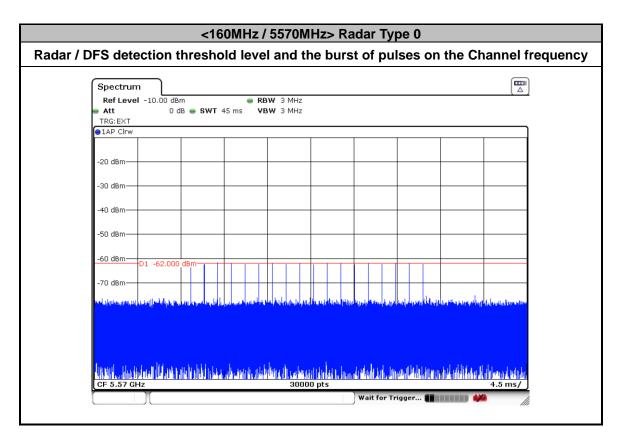
3.1.1 Radar Waveform Calibration Procedure

The Interference **Radar Detection Threshold Level** is (-62dBm) + (0) [dBi]+ 1 dB= -61dBm that had been taken into account the output power range and antenna gain. The following equipment setup was used to calibrate the radiated Radar Waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) at the frequency of the Radar Waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz to measure the type 0 radar waveform. The spectrum analyzer had offset to compensate and RF cable loss. The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was (-62dBm) + (0) [dBi]+ 1 dB= -61 dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

3.1.2 Test Setup

Conducted Test Setup




3.1.3 Calibration Deviation

There is no deviation with the original standard.

3.1.4 Radar Waveform Calibration Result

Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID : O57TB570FU

3.2. In-Service Monitoring: Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

3.2.1 Limit of In-Service Monitoring

The EUT has In-Service Monitoring function to continuously monitor the radar signals, If radar is detected, it must leave the channel (Shutdown). The Channel Move Time to cease all transmissions on the current Channel upon detection of a Radar Waveform above the DFS Detection Threshold within 10 sec. The total duration of *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate *Channel* changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Non-Occupancy Period time is 30 minute during which a Channel will not be utilized after a Radar Waveform is detected on that Channel. The non-associated Client Beacon Test is during the 30 minutes observation time. The EUT should not make any transmissions in the DFS band after EUT power up.

3.2.2 Test Procedures

- 1. The radar pulse generator is setup to provide a pulse at frequency that the Master and Client are operating. A type 0 radar pulse with a 1us pulse width and a 1428 us PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pulses) at a level of approximately -62dBm at the antenna of the Master device.
- 3. A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. A U-NII device operating as a Client Device will associate with the Master at Channel. The MPEG file "TestFile.mpg" specified by the FCC is streamed from the "file computer" through the Master to the Client Device and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.
- 5. When a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device. At time T0 the Radar Waveform generator sends a Burst of pulse of the radar waveform at Detection Threshold + 1dB.
- 6. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). One 12 seconds plot is reported for the Short Pulse Radar Types 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type.
- 7. Measurement of the aggregate duration of the Channel Closing Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.4ms)= S (12000ms) / B (30000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.4 ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.
- 8. Measure the EUT for more than 30 minutes following the channel move time to verify that no transmissions or beacons occur on this Channel.

3.2.3 Test Setup

UUT is a Client without Radar detection and Radar Test Waveforms are injected into the Master.

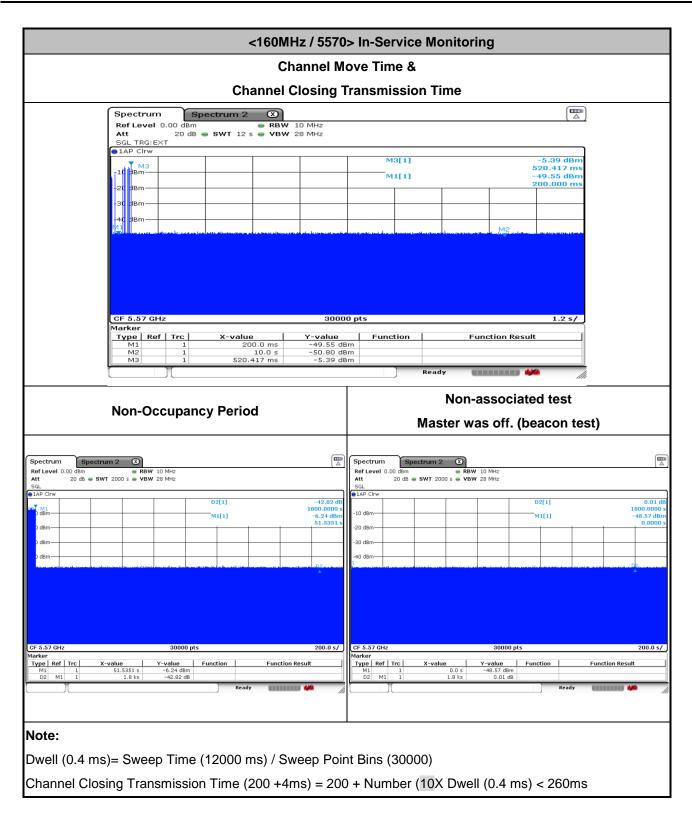
Conducted Test Setup

3.2.4 Test Deviation

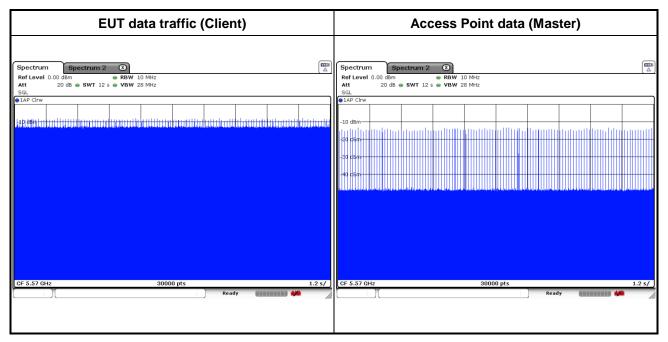
There is no deviation with the original standard.

3.2.5 Result of Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period for Client Beacon Test

Test Mode :	Client without radar detection	Temperature :	22.1℃	22.1°C	
Test Engineer : Eloise Relative Humidity : 46%					
BW / Channel	Test Item	Test Result	est Result Limit		
	Channel Move Time	480.416ms	< 10s	Pass	
160MHz / 5250MH	Iz Channel Closing Transmission Time	200ms + 3.6ms	< 260ms	Pass	
	Non-Occupancy Period	≥ 30	≥ 30 min	Pass	
	Channel Move Time	520.417ms	< 10s	Pass	
160MHz / 5570MH	Iz Channel Closing Transmission Time	200ms +4ms	< 260ms	Pass	
	Non-Occupancy Period	≥ 30	≥ 30 min	Pass	


Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

3.2.6 Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period for Client Beacon Test Plots


			5250> In-Service	Monitoring	
			el Move Time &	Time	
			ing Transmission		۵
	Ref Level 0.00 dBm	ectrum 2 🕑			_
	Att 20 dB SGL TRG:EXT 1AP Clrw	● SWT 12 s ● VBW 28 MH	12		ı
	-10 dBm		M3[1]	-7.09 dBm 480.416 ms -50.07 dBm	1
	-2D dBm		M1[1]	200.000 ms	5
	-ED dBm				-
	-40 dBm		and the second descent the film on structure day, the price of a	M2	-
	CF 5.25 GHz		30000 pts	1.2 s/	
	Marker Type Ref Trc		value Function	Function Result	Î
	M1 1 M2 1 M3 1	10.0 s -4	0.07 dBm 9.61 dBm 7.09 dBm		
			Re	eady 🗰 👘	
				Non-associated test	t
	Non-Occupancy	y Period	M	laster was off. (beacon	test)
				Υ.	,
pectrum Spectru tef Level 0.00 dBm	m 3 (X) RBW 10 MHz		Spectrum Ref Level 0.00 dBm	RBW 10 MHz	(
Att 20 dB 👄 SW SGL	■ NBW 10 MH2 T 2000 s ■ VBW 28 MH2		Att 20 dB e SV SGL	VT 2000 s • VBW 28 MHz	
1AP Clrw 1 0 dBm		180	●1AP Clrw +0.91 dB 0.0000 s -10 dBm	D2[1]	-0.35 1800.000
0 dBm		M1[1] -7 4	-20 dBm -20 dB	M1[1]	-48.36 d 0.000
0 dBm			-30 dBm		
0 dBm			-40 dBm		
F 5.25 GHz arker	30000 pts	2	00.0 s/ CF 5.25 GHz Marker	30000 pts	200.0
Ype Ref Trc X- M1 1 1 1 D2 M1 1 1	value Y-value Fu 43.0014 s -7.82 dBm -7.82 dBm 1.8 ks -40.91 dB -40.91 dB	nction Function Result	Type Ref Trc > M1 1	Y-value Function 0.0 s -48.36 dBm 1.8 ks -0.35 dB	Function Result
		Ready 🗰		Rea	dy 🗰
ote:					
)= Sweep Time (1	12000 ms) / Sweep	Point Bins (30000))	

3.2.7 Data Traffic and Noise Floor Plots

	Noise Floor (No transmission)	
Spectrum Ref Level 0. Att SGL	(-)	
●1AP Clrw		
-10 dBm		
-30 dBm		
CF 5.57 GHz	z 30000 pts 1.2 s/) Ready	

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum	R&S	FSV7	101632	10Hz~7GHz	lan 05 2022	Nov. 02, 2022~	lon 04 2022	DFS
Analyzer	R&S	F3V7	101632	32 10HZ~7GHZ Jan. 05, 202	Jan. 05, 2022	Nov. 17, 2022	Jan. 04, 2023	(DFS01-KS)
Signal		NELOOD	N/(50050004		May 04, 0000	Nov. 02, 2022~	May 00, 0000	DFS
Generator	KEYSIGHT	N5182B	MY53050604	9KHz~6GHz	Iz~6GHz May 24, 2022	Nov. 17, 2022	May 23, 2023	(DFS01-KS)
Quartinan	MTJ	MT 17440	N1/A		NOD	Nov. 02, 2022~	NOD	Conducted
Combiner	Cooperation	MTJ7112	N/A	0.4-6GHz	NCR	Nov. 17, 2022	NCR	(DFS01-KS)

NCR: No Calibration Required

----- THE END ------