Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Kunshan City

Certificate No. D2450V2-1095_Feb24

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:1095

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

February 08, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24
DAE4	SN: 601	30-Jan-24 (No. DAE4-601_Jan24)	Jan-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	tant)
Approved by:	Sven Kühn	Technical Manager	

Issued: February 9, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-1095_Feb24

Report No.: FA480207

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-1095_Feb24 Page 2 of 7

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-1095_Feb24

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω + 6.1 jΩ	
Return Loss	- 24.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.147 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-1095_Feb24 Page 4 of 7

Appendix C Report No.: FA480207

DASY5 Validation Report for Head TSL

Date: 08.02.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1095

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 03.11.2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.01.2024

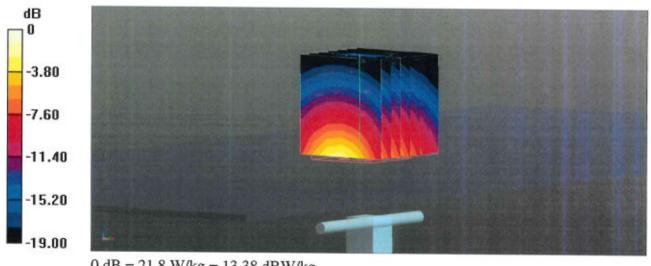
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

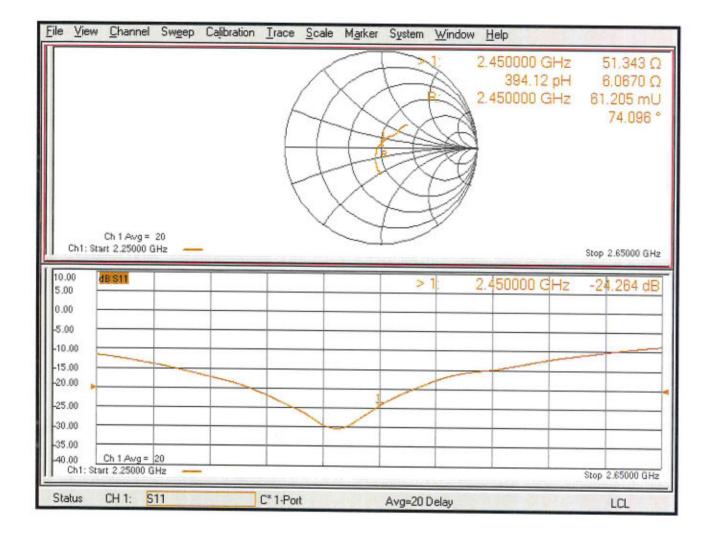
Reference Value = 116.2 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.27 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 50.6%


Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dBW/kg

Certificate No: D2450V2-1095_Feb24

Impedance Measurement Plot for Head TSL

Appendix: Transfer Calibration at Four Validation Locations on SAM Head1

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
---------	------------------	-----------------------------

SAR result with SAM Head (Top ≅ C0)

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	56.1 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth ≅ F90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	57.2 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Neck ≅ H0)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	53.9 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Ear \cong D90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	34.5 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

Certificate No: D2450V2-1095_Feb24

Additional assessments outside the current scope of SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

Sporton

Certificate No: D5GHzV2-1113_Sep22

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1113

Calibration procedure(s)

QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date:

September 23, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 3503	08-Mar-22 (No. EX3-3503_Mar22)	Mar-23
DAE4	SN: 601	31-Aug-22 (No. DAE4-601_Aug22)	Aug-23
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seef Alex-
Approved by:	Sven Kühn	Technical Manager	5/

Issued: September 26, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Report No.: FA480207

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,v,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- · Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1113_Sep22 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

- A - A - A - A - A - A - A - A - A - A	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1113_Sep22

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.0 Ω - 6.2 jΩ	
Return Loss	- 23.9 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.2 Ω - 2.4 jΩ	
Return Loss	- 25.3 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	54.1 Ω - 1.1 jΩ	
Return Loss	- 27.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1113_Sep22 Page 5 of 8

Appendix C Report No.: FA480207

DASY5 Validation Report for Head TSL

Date: 23.09.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1113

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.6$ S/m; $\epsilon_r = 35.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.95$ S/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.11$ S/m; $\epsilon_r = 34.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.87 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.35 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 70.5%

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.04 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 8.30 W/kg; SAR(10 g) = 2.38 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 67.9%

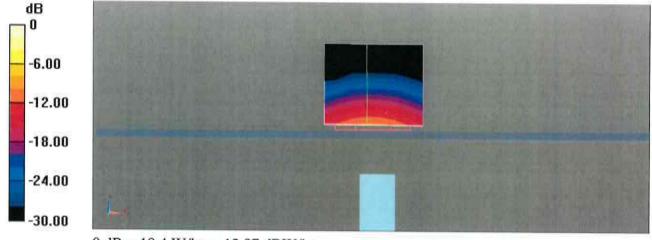
Maximum value of SAR (measured) = 19.3 W/kg

Certificate No: D5GHzV2-1113_Sep22 Page 6 of 8

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

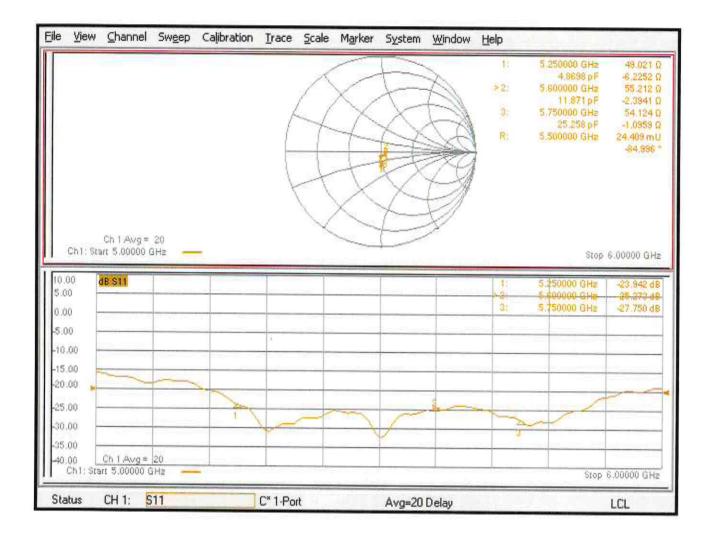
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.94 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.32 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm


Ratio of SAR at M2 to SAR at M1 = 66%

Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.87 dBW/kg

Impedance Measurement Plot for Head TSL

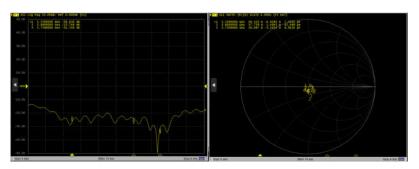
D5GHzV2, Serial No. 1113 Extended Dipole Calibrations

If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D5GHzV2 – serial no. 1113						
	5250 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2022/9/23	-23.942		49.021		-6.2252	
2023/9/22	-26.63	11.23	46.533	2.488	-4.0285	-2.1967

D5GHzV2 – serial no. 1113						
	5600 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2022/9/23	-25.273		55.212		-2.3941	
2023/9/22	-23.746	-6.04	57.759	-2.547	1.4943	-3.8884

D5GHzV2 – serial no. 1113						
5750 Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2022/9/23	-27.750		54.124		-1.0959	
2023/9/22	-31.350	12.97	50.097	4.027	-3.1053	2.0094


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Page: 16/105

Dipole Verification Data> D5GHzV2, serial no. 1113 5250MHz&5600MHz&5750MHz - Head - 2023.9.22

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: D6.5GHzV2-1031 Feb23

CALIBRATION CERTIFICATE

Object D6.5GHzV2 - SN:1031

Calibration precedure(s) QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: February 22, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor R&S NRP33T	SN: 100967	01-Apr-22 (No. 217-03526)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Mismatch combination	SN: 84224 / 360D	26-Apr-22 (No. 217-03545)	Apr-23
Reference Probe EX3DV4	SN: 7405	02-Jun-22 (No. EX3-7405_Jun22)	Jun-23
DAE4	SN: 908	27-Jun-22 (No. DAE4-908_Jun22)	Jun-23

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator Anapico APSIN20G	SN: 827	18-Dec-18 (in house check Dec-21)	In house check: Dec-23
Network Analyzer Keysight E5063A	SN:MY54504221	31-Oct-19 (in house check Oct-22)	In house check: Oct-25

Name Function

Calibrated by: Leif Klysner Laboratory Technician

Approved by: Niels Kuster Quality Manager

Signature

Issued: February 24, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory,

Certificate No: D6.5GHzV2-1031_Feb23

Page 1 of 6

Report No.: FA480207

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1031_Feb23

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	6.15 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	suic	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	29.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	297 W/kg ± 24.7 % (k=2)

SAR averaged over 8 cm ³ (8 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.72 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.9 W/kg ± 24.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.8 W/kg ± 24.4 % (k=2)

Certificate No: D6.5GHzV2-1031_Feb23

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.3 Ω - 4.9 jΩ	
Return Loss	- 25.5 dB	

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	296 W/m ²
APD measured	normalized to 1W	2960 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	134 W/m ²
APD measured	normalized to 1W	1340 W/m ² ± 28.9 % (k=2)

^{*}The reported APD values have been derived using the psSAR1g and psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D6.5GHzV2-1031_Feb23

DASY6 Validation Report for Head TSL

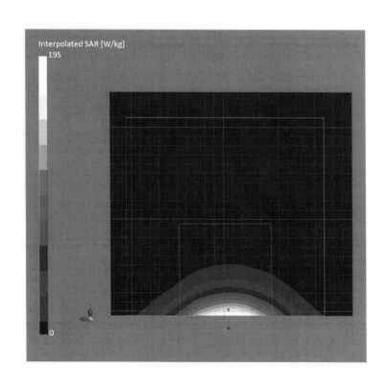
Measurement Report for D6.5GHz-1031, UID 0 -, Channel 6500 (6500.0MHz)

Device under Test Properties

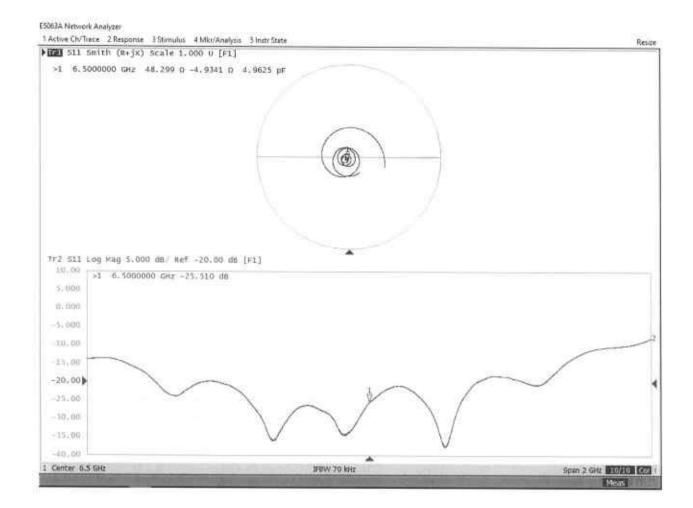
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
D6.5GHz	16.0 x 6.0 x 300.0	SN: 1031	0.00

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.50	6.15	33.8


Hardware Setup

Phantom	TSL	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center - 1182	HBBL600-10000V6	EX3DV4 - SN7405, 2022-06-02	DAE4 5n908, 2022-06-27

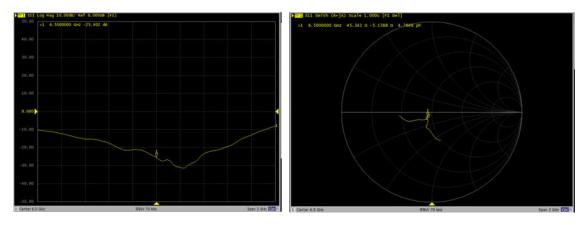

Measurement Results

Scan Setup

		medadi ement neatits	
	Zoom Scan		Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2023-02-22, 11:41
Grid Steps [mm]	3.4 x 3.4 x 1.4	psSAR1g [W/Kg]	29,8
Sensor Surface [mm]	1.4	psSAR8g [W/Kg]	6.72
Graded Grid	Yes	psSAR10g [W/Kg]	5.51
Grading Ratio	1.4	Power Drift [dB]	0.00
MAIA.	N/A	Power Scaling	Disabled
Surface Detection	VMS + 6p	Scaling Factor [dB]	
Scan Method	Measured	TSL Correction	No correction
		M2/M1 [%]	49.5
		Dist 3dB Peak [mm]	4.8

Impedance Measurement Plot for Head TSL

D6.5GV2, Serial No. 1031 Extended Dipole Calibrations


If dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary anothe calibration interval can be extended.

D6.5GV2 – serial no. 1031						
	6500 Head					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2023.2.22	-25.510		48.299		-4.9341	
2024.2.21	-25.402	-0.42	45.342	2.957	-5.1388	0.2047

<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data> D6.5GV2, serial no. 1031 6500MHz – Head - 2024.2.21

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton Kunshan City Certificate No. 5G-Veri-10-2005_Nov23/2

CALIBRATION CERTIFICATE (Replacement of No: 5G-Veri10-2005_Nov23)

Object

5G Verification Source 10 GHz - SN: 2005

Calibration procedure(s)

QA CAL-45.v4

Calibration procedure for sources in air above 6 GHz

Calibration date:

November 20, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Reference Probe EUmmWV3	SN: 9374	22-May-23 (No. EUmm-9374_May23)	May-24
DAE4ip	SN: 1602	08-Nov-23 (No. DAE4ip-1602_Nov23)	Nov-24
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMF100A	SN: 100184	19-May-22 (in house check Nov-22)	In house check: Nov-23
Power sensor R&S NRP18S-10	SN: 101258	31-May-22 (in house check Nov-22)	In house check: Nov-23
Network Analyzer Keysight E5063A	SN: MY54504221	31-Oct-19 (in house check Oct-22)	In house check: Oct-25

Calibrated by:

Name

Function

Laboratory Technician

Signature

Approved by:

Sven Kühn

Joanna Lleshai

Technical Manager

Issued: December 1, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-2005_Nov23/2

Page 1 of 8

Report No.: FA480207

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-2005_Nov23/2

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg (psPDn+, psi	er Density PDtot+, psPDmod+) /m²)	Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	138	277	1.27 dB	204	162	1.28 dB

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	psPDn+, psPDt	Density tot+, psPDmod+ /m²)	Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	138	277	1.27 dB	203, 203, 205	160, 160, 165	1.28 dB

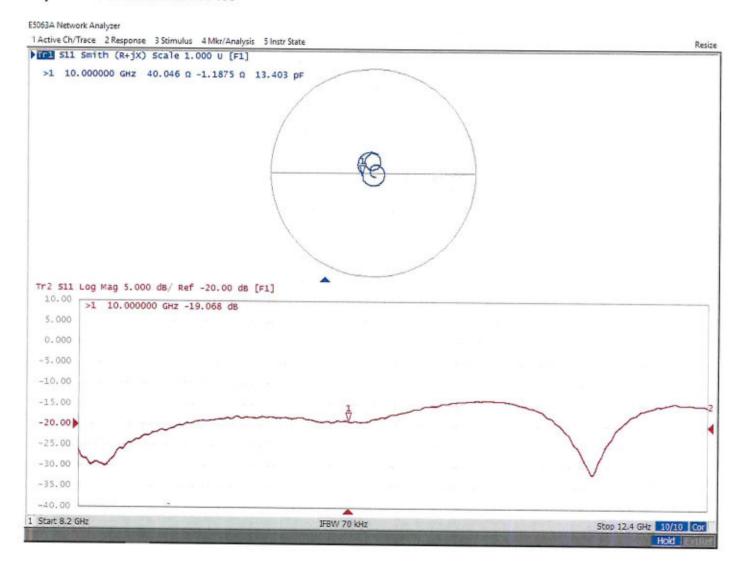
Square Averaging

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg (psPDn+, psl	er Density PDtot+, psPDmod+) /m ²)	Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	138	277	1.27 dB	204	161	1.28 dB

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	psPDn+, psPDt	Density tot+, psPDmod+ /m²)	Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	138	277	1.27 dB	203, 203, 205	159, 160, 164	1.28 dB

Max Power Density

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m²)	Uncertainty (k = 2)
10 mm	138	277	1.27 dB	221, 221, 221	1.28 dB


 $^{^{\}mathrm{1}}$ Assessed ohmic and mismatch loss plus numerical offset: 0.60 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	40.0 Ω - 1.2 jΩ	
Return Loss	- 19.1 dB	

Impedance Measurement Plot

2023-11-08

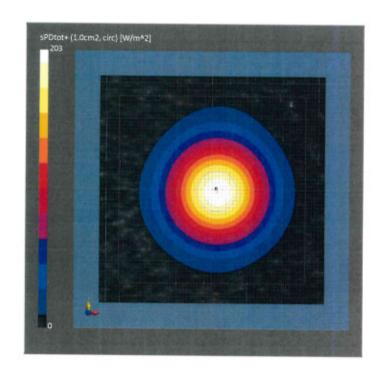
DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer Dimensions [mm] IME **DUT Type** 5G Verification Source 10 GHz 100.0 x 100.0 x 100.0 SN: 2005

Exposure Conditions


Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0,	1.0

Hardware Setup			
Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374 F1-55GHz.	DAF4in Sn1602

Scan Setup

	5G Scan		5G Scan
Sensor Surface [mm]	10.0	Date	2023-11-20, 11:08
MAIA	MAIA not used	Avg. Area [cm ²]	1.00
		Avg. Type	Circular Averaging
		psPDn+ [W/m²]	203
		psPDtot+ [W/m ²]	203
		psPDmod+ [W/m ²]	205
		Max(Sn) [W/m ²]	221
		Max(Stot) [W/m ²]	221
		Max(Stot) [W/m ²]	221
		E _{max} [V/m]	277
		Power Drift [dB]	0.01

2023-05-22

DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Band

Device under Test Properties

Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 100.0

IMEI SN: 2005 **DUT Type**

Exposure Conditions

Phantom Section

Position, Test Distance

Group,

Frequency [MHz], Channel Number

Conversion Factor

5G -

[mm] 10.0 mm

Validation band CW

10000.0,

1.0

Hardware Setup

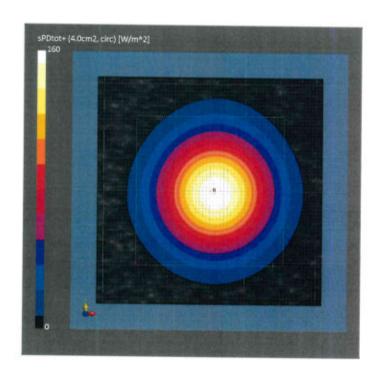
Phantom

mmWave Phantom - 1002

Medium

Air

Probe, Calibration Date


EUmmWV3 - SN9374_F1-55GHz, 2023-05-22 DAE, Calibration Date DAE4ip Sn1602, 2023-11-08

Scan Setup

Sensor Surface [mm] MAIA 5G Scan 10.0

MAIA not used

	5G Scan
Date	2023-11-20, 11:08
Avg. Area [cm ²]	4.00
Avg. Type	Circular Averaging
psPDn+ [W/m²]	160
psPDtot+ [W/m²]	160
psPDmod+ [W/m ²]	165
Max(Sn) [W/m²]	221
Max(Stot) [W/m ²]	221
Max(Stot) [W/m ²]	221
E _{max} [V/m]	277
Power Drift [dB]	0.01

DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Band

Device under Test Properties

Name, Manufacturer 5G Verification Source 10 GHz

Dimensions [mm] 100.0 x 100.0 x 100.0 IMEI SN: 2005 **DUT Type**

Exposure Conditions

Phantom Section

Position, Test Distance

Group,

Frequency [MHz], Channel Number

Conversion Factor

5G -

[mm] 10.0 mm

Validation band

CW

10000.0, 10000 1.0

Hardware Setup

Phantom

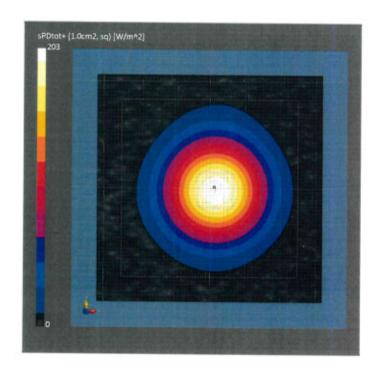
mmWave Phantom - 1002

Medium

Air

Probe, Calibration Date

EUmmWV3 - SN9374_F1-55GHz,


2023-05-22

DAE, Calibration Date DAE4ip Sn1602, 2023-11-08

Scan Setup

Sensor Surface [mm] MAIA 5G Scan 10.0 MAIA not used

	5G Scan
Date	2023-11-20, 11:08
Avg. Area [cm ²]	1.00
Avg. Type	Square Averaging
psPDn+ [W/m²]	203
psPDtot+ [W/m²]	203
psPDmod+ [W/m ²]	205
Max(Sn) [W/m ²]	221
Max(Stot) [W/m ²]	221
Max(Stot) [W/m ²]	221
E _{max} [V/m]	277
Power Drift [dB]	0.01

DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Band

Device under Test Properties

Name, Manufacturer 5G Verification Source 10 GHz

Dimensions [mm] 100.0 x 100.0 x 100.0 IMEI SN: 2005 **DUT Type**

Exposure Conditions

Phantom Section

Position, Test Distance

Group,

Frequency [MHz], Channel Number

Conversion Factor

5G -

[mm] 10.0 mm

Validation band CW

10000.0, 10000 1.0

Hardware Setup

Phantom

mmWave Phantom - 1002

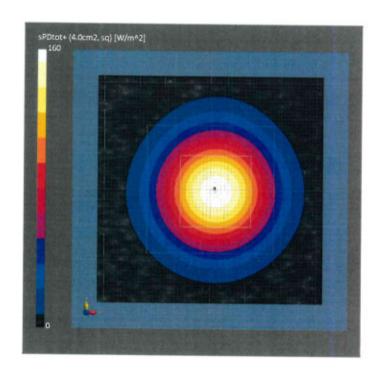
Medium

Air

Probe, Calibration Date

EUmmWV3 - SN9374_F1-55GHz,

2023-05-22


DAE, Calibration Date DAE4ip Sn1602, 2023-11-08

Scan Setup

Sensor Surface [mm] MAIA 5G Scan 10.0

MAIA not used

	5G Scan
Date	2023-11-20, 11:08
Avg. Area [cm ²]	4.00
Avg. Type	Square Averaging
psPDn+ [W/m²]	159
psPDtot+ [W/m²]	160
psPDmod+ [W/m²]	164
Max(Sn) [W/m ²]	221
Max(Stot) [W/m ²]	221
Max(Stot) [W/m ²]	221
E _{max} [V/m]	277
Power Drift [dB]	0.01

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

06.10.2023

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

S

Client

Sporton

Kunshan City

Certificate No: DAE4-1691_Apr24

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BO - SN: 1691

Calibration procedure(s)

QA CAL-06.v30

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

April 19, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	29-Aug-23 (No:37421)	Aug-24
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	23-Jan-24 (in house check)	In house check: Jan-25
Calibrator Box V2.1	SE UMS 006 AA 1002	23-Jan-24 (in house check)	In house check: Jan-25

Calibrated by:

Name

Function

Adrian Gehring

Laboratory Technician

Approved by:

Sven Kühn

Technical Manager

Issued: April 19, 2024

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1691_Apr24

Page 1 of 5

Page: 34/105

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

information used in DASY system to align probe sensor X to the robot Connector angle

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- · Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1691_Apr24

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	405.065 ± 0.02% (k=2)	404.831 ± 0.02% (k=2)	404.918 ± 0.02% (k=2)
Low Range	3.99914 ± 1.50% (k=2)	3.99325 ± 1.50% (k=2)	3.99420 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	329.0 ° ± 1 °
---	---------------

Certificate No: DAE4-1691_Apr24 Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (μV)	Error (%)
Channel X + Inj	out	199998.80	0.74	0.00
Channel X + Inp	out	20007.00	1.01	0.01
Channel X - Inp	ut	-19994.42	3.86	-0.02
Channel Y + Inp	out	199999.48	1.04	0.00
Channel Y + Inp	out	20005.03	-1.07	-0.01
Channel Y - Inp	ut	-19998.44	-0.33	0.00
Channel Z + Inp	out	199998.69	0.99	0.00
Channel Z + Inp	ut	20004.73	-1.29	-0.01
Channel Z - Inp	ut	-19999.23	-1.09	0.01

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2004.46	-0.44	-0.02
Channel X	+ Input	205.51	0.47	0.23
Channel X	- Input	-195.20	-0.40	0.21
Channel Y	+ Input	2005.77	0.75	0.04
Channel Y	+ Input	204.74	-0.48	-0.24
Channel Y	- Input	-195.71	-1.14	0.59
Channel Z	+ Input	2004.89	-0.07	-0.00
Channel Z	+ Input	204.83	-0.36	-0.18
Channel Z	- Input	-195.23	-0.57	0.29

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-19.62	-21.62
	- 200	23.85	21.46
Channel Y	200	-0.40	-0.48
	- 200	-1.68	-2.19
Channel Z	200	-7.73	-8.28
	- 200	6.85	6.79

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	0.88	-2.14
Channel Y	200	6.61	-	3.27
Channel Z	200	9.41	4.12	-

Certificate No: DAE4-1691_Apr24

Page: 38/105

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16261	14033
Channel Y	16073	16630
Channel Z	15954	16769

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.56	-0.58	2.95	0.46
Channel Y	-0.24	-2.80	1.21	0.65
Channel Z	-0.39	-1.36	0.87	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Certificate No: DAE4-1691_Apr24 Page 5 of 5

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton **Kunshan City**

Certificate No: DAE4-1358_May24

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BN - SN: 1358

Calibration procedure(s)

QA CAL-06.v30

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

May 23, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	29-Aug-23 (No:37421)	Aug-24
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	23-Jan-24 (in house check)	In house check: Jan-25
	05 11110 000 11 1000	23-Jan-24 (in house check)	In house check: Jan-25

Calibrated by:

Name

Function

Adrian Gehring

Laboratory Technician

Approved by:

Sven Kühn

Technical Manager

Issued: May 23, 2024

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1358_May24

Page 1 of 5