

 Compliance Certification Services Inc.

 Report No: C130726E02-RPW
 FCC ID: O57S6000LF
 Date of Issue :July 27.

 FCC ID: O57S6000LF
 Date of Issue :July 27, 2013

 IC:10407A-S6000LF

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Product Name: Lenovo S6000L Brand Name: Lenovo Model No.: 60049; Z0AN; Lenovo S6000L-F FCC ID:O57S6000LF IC:10407A-S6000LF Test Report Number: C130726E02-RPW

Issued for

Lenovo (Shanghai) Electronics Technology Co., Ltd.

No. 68 Building, 199 Fenju Road, Wai Gao Qiao FTZ , Shanghai , China

Issued by

Compliance Certification Services Inc.

Kun shan Laboratory No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Page 1 of 41

Compliance Certification Services Inc.Report No: C130726E02-RPWFCC ID: O57S6000LFDate of Issue :July 27, 2013IC:10407A-S6000LF

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	4
2.	EUT DESCRIPTION	5
3.	TEST METHODOLOGY	6
	EUT CONFIGURATION	
3.3.	GENERAL TEST PROCEDURES	6
3.4.	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
4.	INSTRUMENT CALIBRATION	8
4.1.	MEASURING INSTRUMENT CALIBRATION	8
5.	FACILITIES AND ACCREDITATIONS 1	0
5.2.	FACILITIES	0
	LABORATORY ACCREDITATIONS AND LISTING	-
6.	SETUP OF EQUIPMENT UNDER TEST 1	2
6.1. 6.2.	SETUP CONFIGURATION OF EUT	
7.	FCC PART 15.247 REQUIREMENTS 1	3
	6DB AND 99% BANDWIDTH MEASUREMENT	17
7.4.	CONDUCTED BAND EDGES AND SPURIOUS EMISSION	25
7.6.	POWERLINE CONDUCTED EMISSIONS	39

Compliance Certification Services Inc.Report No: C130726E02-RPWFCC ID: O57S6000LFDate of Issue :July 27, 2013IC:10407A-S6000LF

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result
3.1	15.247(a)(2)	RSS-210 A8.2(a)	6dB Bandwidth	≥ 0.5MHz	Pass
3.1	-	RSS-Gen 4.6.1	99% Bandwidth	-	Pass
3.2	15.247(b)(1)	RSS-210 A8.1(b)	Peak Output Power	≤ 30dBm	Pass
3.5	15.247(e)	RSS-210 A8.2(b)	Power Spectral Density	≤ 8dBm	Pass
3.4	15.247(d)	RSS-210 A8.5	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass
3.5	15.247(d)	RSS-210 A8.5	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass
3.6	15.207	RSS-210 Gen 7.2.2	AC Conducted Emission	15.207(a)	Pass
3.7	15.203 & 15.247(b)	RSS-210 A8.4	Antenna Requirement	N/A	Pass

Report No: C130726E02-RPW

FCC ID: O57S6000LF IC:10407A-S6000LF

6000LF Date of Issue :July 27, 2013

1. TEST RESULT CERTIFICATION

Product Name:	Lenovo S6000L
Brand Name:	Lenovo
Model Name.:	60049; Z0AN; Lenovo S6000L-F
Applicant Discrepancy:	Initial
Device Category:	PORTABLE DEVICES
Date of Test:	July 22, 2013- July 26, 2013
Applicant: Lenovo (Shanghai) Electronics Technology Co., Ltd. No. 68 Building, 199 Fenju Road, Wai Gao Qiao FTZ , Shanghai , Cl	
Manufacturer: Lenovo PC HK Limited 23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay	
Application Type:	Certification

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 15 Subpart C	No non-compliance noted			
Canada RSS-210 Issue 8	No non-compliance noted			
Canada RSS-Gen Issue 3	No non-compliance noted			

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Wi.Li

Hui.Li RF Manager Compliance Certification Service Inc.

Tested by:

Blent.U

Blent.Wang Test Engineer Compliance Certification Service Inc.

Compliance Certification Services Inc.Report No: C130726E02-RPWFCC ID: O57S6000LFDate of Issue :July 27

FCC ID: O57S6000LF Date of Issue :July 27, 2013

IC:10407A-S6000LF

2. EUT DESCRIPTION

Product Name:	Lenovo S6000L		
Brand Name:	Lenovo		
Model Name:	60049; Z0AN; Lenovo S6000L-F		
Model Discrepancy:	Only for market segment		
Power Adapter Power Rating :	Power supply and ADP (rating): Brand: HuntKey Model: HKA00905015-2C INPUT: 100 - 240 50/60Hz 0.25A Vac OUTPUT: 5 Vdc, 1.5 A Battery(rating): Model Name:L11C2P32 Capacitance: 6340mAh Rated Voltage: 3.7 V Charging Limit: 4.2 V		
Frequency Range:	2402 ~ 2480 MHz		
Transmit Power:	Bluetooth v4.0-LE:-0.08dBm (0.98mW)		
Modulation Technique:	Bluetooth v4.0-LE:GFSK		
Number of Channels:	40 Channels		
Antenna Specification:	Fixed Internal Antenna		

Remark:

- The sample selected for test was engineering sample that approximated to production 1. product and was provided by manufacturer.
- This submittal(s) (test report) is intended for FCC ID: O57S6000LF filing to comply with 2. Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- This submittal(s) (test report) is intended for <u>*IC:10407A-S6000LF*</u> filing to comply with Canada RSS-210 Issue 8 and Canada RSS-Gen Issue 3 Rules. 3.

Report No: C130726E02-RPW

FCC ID: 057S6000LF Date of Issue :July 27, 2013

IC:10407A-S6000LF

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 2003and FCC CFR 47 15.207, 15.209 ,15.247, RSS-210 and RSS-Gen.

3.1. EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2. EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3. GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 2003 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4 2003.

Compliance Certification Services Inc. Report No: C130726E02-RPW

FCC ID: 057S6000LF Date of Issue :July 27, 2013

IC:10407A-S6000LF

3.4. FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110 ¹ 0.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2
4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225	73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138	1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300	9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5
8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293	149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2	2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339	15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8
12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	240 - 285 322 - 335.4	3345.8 - 3358 3600 - 4400	36.43 - 36.5 (²)

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Compliance Certification Services Inc. Report No: C130726E02-RPW FCC ID: O57S6000LF Date of Issue :July 27

Date of Issue :July 27, 2013

IC:10407A-S6000LF

4. INSTRUMENT CALIBRATION

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Equipment Used for Emissions Measurement

	Conducted Emissions Test Site				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	RS	FSU26	200789	2014-6-30	
OSCILLOSCOPE	Agilent	DSO6104A	MY44002585	2014-3-14	
Peak and Avg Power Sensor	Agilent	E9327A	US40441788	2014-3-14	
EPM-P Series Power Meter	Agilent	E4416A	GB41292714	2014-3-14	
Power SPLITTER	Mini-Circuits	ZN2PD-9G	SF078500430	N.C.R	
DC POWER SUPPLY	AGILENT	E3632A	MY50340053	2014-3-14	
Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	2014-1-24	
Test Software		EZ	Z-EMC		

	977 Chamber				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY44020154	2014-4-16	
Pre-Amplfier	MITEQ	JS41-00101800-32-10P	1675713	2013-10-8	
Pre-Amplfier	MITEQ	NSP400-NF	870731	2014-4-26	
Bilog Antenna	Sunol Sciences	JB1	A062604	2014-5-2	
Horn-antenna	SCHWARZBECK	BBHA9120D	D:267	2014-4-28	
Turn Table	СТ	CT123	4165	N.C.R	
Antenna Tower	СТ	CTERG23	3256	N.C.R	
Controller	СТ	CT100	95637	N.C.R	
Test Software		EZ-EMO	C		

Compliance Certification Services Inc. Report No: C130726E02-RPW FCC ID: O57S6000LF Date of Issue :July 27, IC:10407A-S6000LF Date of Issue :July 27,

Date of Issue :July 27, 2013

	Conducted Emission					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI TEST RECEIVER	R&S	ESCI3	100781	2014-3-14		
V (V-LISN)	Schwarzbeck	NNLK 8129	8129-143	2014-3-14		
LISN (EUT)	FCC	FCC-LISN-50/250-50-2-02	SN:05012	2014-3-14		
TRANSIENT LIMITER	SCHAFFNER	CFL9206	1710	2014-3-14		
Test Software	EZ-EMC					

Remark: The measurement uncertainty is less than +/- 2.81dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Expanded Uncertainty (95% CONFIDENCE INTERVAL): K=2

Report No: C130726E02-RPW

FCC ID: O57S6000LF Date of Issue :July 27, 2013

IC:10407A-S6000LF

5. FACILITIES AND ACCREDITATIONS

5.1. FACILITIES

All measurement facilities used to collect the measurement data are located at CCS China Kunshan Lab at 10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone

Kunshan city JiangSu, (215300), CHINA.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 2003 and CISPR Publication 22.

5.2. EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3. LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 200581-0 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC5743 for 10m chamber 10m, IC5743 for 10m chamber 3m.

Compliance Certification Services Inc. Report No: C130726E02-RPW FCC ID: 057S6000LF Date of Issue :July 27, IC:10407A-S6000LF Date of Issue :July 27,

Date of Issue :July 27, 2013

5.4. TABLE OF ACCREDITATIONS AND LISTINGS

J.4. TABLE OF ACCILEDITATIONS AND LISTINGS				
Country	Agency	Scope of Accreditation	Logo	
USA	A2LA	47 CFR FCC Part 15/18 (using ANSI C63.4 :2003); VCCI V3; CNS 13438; CNS 13439; CNS 13803; CISPR 11; EN 55011; CISPR 13; EN 55013; CISPR 22:2005; CISPR 22:1997 +A1 :2000+A2 :2002; EN 55022:2006; EN55022 :1998 +A1 :2001+A2 :2003; EN 61000-6-3 (excluding discontinuous interference); EN 61000-6-4; AS/NZS CISPR 22; CAN/CSA-CEI/IEC CISPR 22; EN 61000-3-2; EN 61000-3-3; EN550024; EN 61000-4-2; EN 61000-4-3; EN61000-4-4; EN 61000-4-5; EN 61000-4-6; IEC 61000-4-8; EN 61000-4-5; EN 61000-4-6; IEC 61000-4-8; EN 61000-4-5; IEC 61000-4-3; IEC 61000-4-4; IEC 61000-4-5; IEC 61000-4-6; IEC 61000-4-8; IEC 61000-4-5; IEC 61000-4-6; IEC 61000-4-8; IEC 61000-4-11; EN 300 220-3; EN 300 328; EN 300 330-2; EN 300 440-1; EN 300-440-2; EN 300 893; EN 301 489-01; EN 301 489-3; EN 301 489-07; EN 301 489-17; 47 CFR FCC Part 15, 22, 24	ACCREDITED TESTING CERT #2541.01	
USA	FCC	3/10 meter Sites to perform FCC Part 15/18 measurements	FC 93105, 90471	
Japan	VCCI	3/10 meter Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-1600 C-1707 G-216	

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

Compliance Certification Services Inc.Report No: C130726E02-RPWFCC ID: O57S6000LFDate of Issue :July 27,

Date of Issue :July 27, 2013

IC:10407A-S6000LF

6. SETUP OF EQUIPMENT UNDER TEST

6.1. SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2. SUPPORT EQUIPMENT

N	lo.	Device Type	Brand	Model	Series No.	FCC ID
1	۱.	N/A	N/A	N/A	N/A	N/A

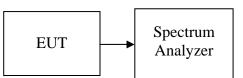
Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Compliance Certification Services Inc. Date of Issue :July 27, 2013

Report No: C130726E02-RPW

FCC ID: 057S6000LF IC:10407A-S6000LF


7. FCC PART 15.247 REQUIREMENTS

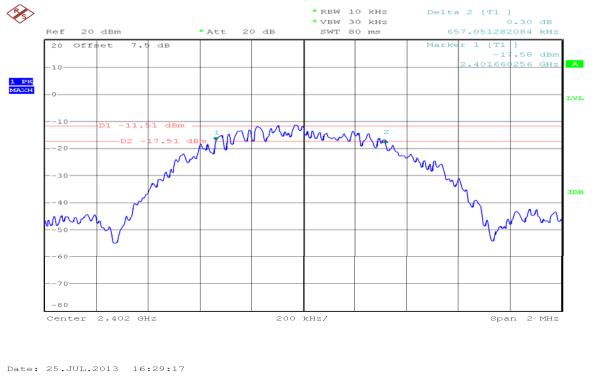
7.1. 6DB AND 99% BANDWIDTH MEASUREMENT

7.1.1. limit

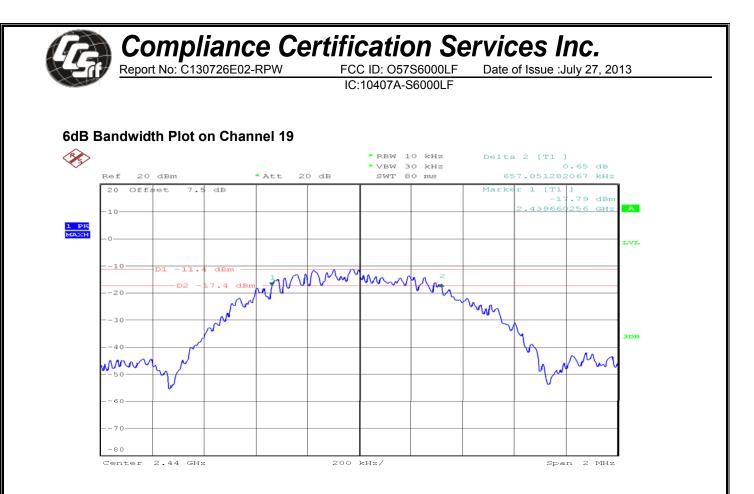
According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

7.1.2. Test Configuration

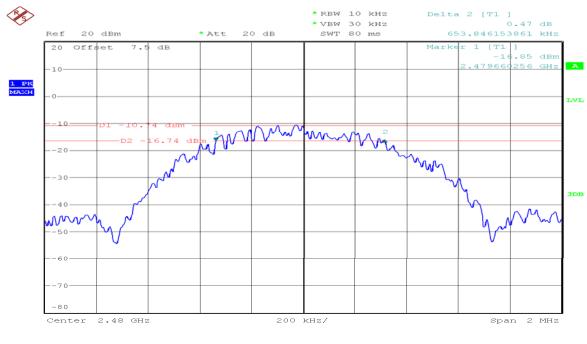
7.1.3. test procedure


KDB 558074 D01 DTS Measurement Guidance V03r01 dated 09-04-2013.

Test Data


7.1.4. Test Result of 6dB Bandwidth

Bluetooth 4.0 - LE mode Frequency **Bandwidth** Limit Channel Result (MHz) (kHz) (MHz) Low 2402 0.657 PASS Mid 2440 >500 PASS 0.657 High 2480 0.654 PASS


6dB Bandwidth Plot on Channel 00

Page 13 of 41

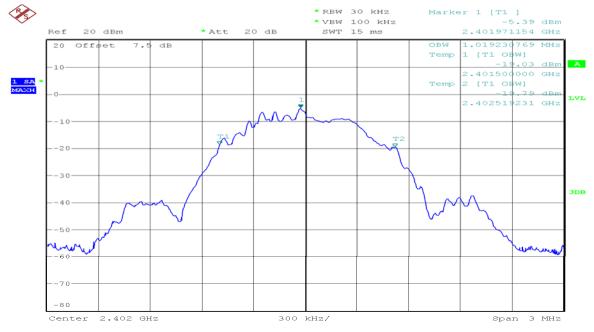
Date: 25.JUL.2013 16:31:38

6dB Bandwidth Plot on Channel 39

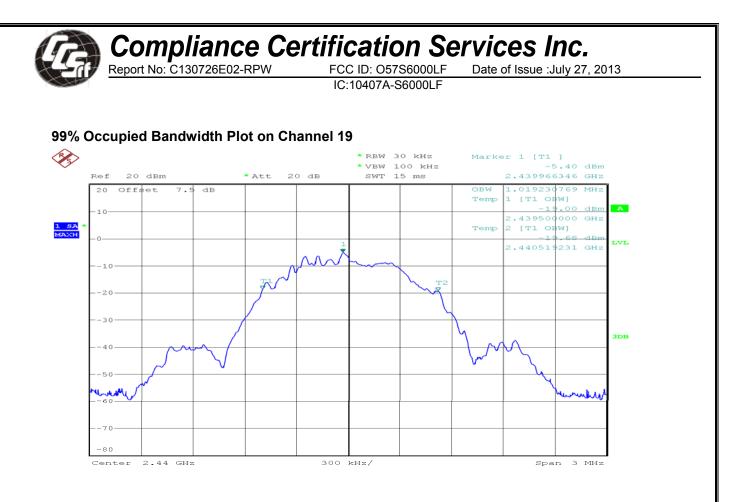
Date: 25.JUL.2013 16:33:31

Compliance Certification Services Inc.Report No: C130726E02-RPWFCC ID: 057S6000LFDate of Issue :July 27,

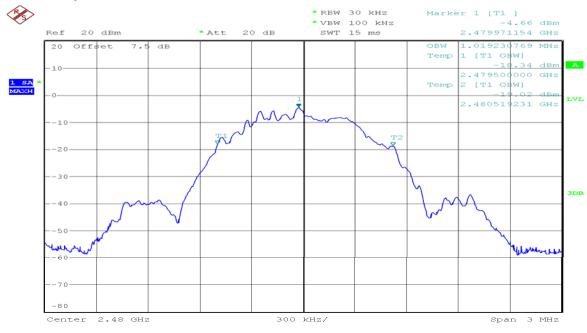
IC:10407A-S6000LF


Date of Issue :July 27, 2013

7.1.5. Test Result of 99% Occupied Bandwidth


Bluetooth 4.0 - LE mode

Channel	Frequency (MHz)	Bluetooth 4.0 - LE 99% Occupied Bandwidth(MHz)
Low	2402	1.019
Mid	2440	1.019
High	2480	1.019


99% Occupied Bandwidth Plot on Channel 00

Date: 25.JUL.2013 16:37:35

Date: 25.JUL.2013 16:38:44

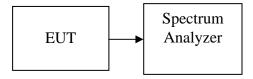
99% Occupied Bandwidth Plot on Channel 39

Date: 25.JUL.2013 16:39:33

Report No: C130726E02-RPW

FCC ID: 057S6000LF Date of Issue :July 27, 2013

IC:10407A-S6000LF


7.2. OUTPUT POWER MEASUREMENT

7.2.1. limit

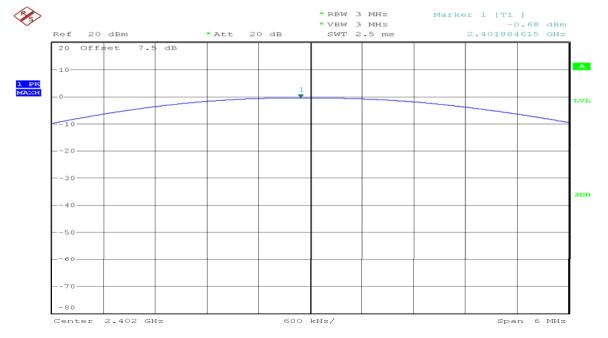
The maximum peak output power of the intentional radiator shall not exceed the following:

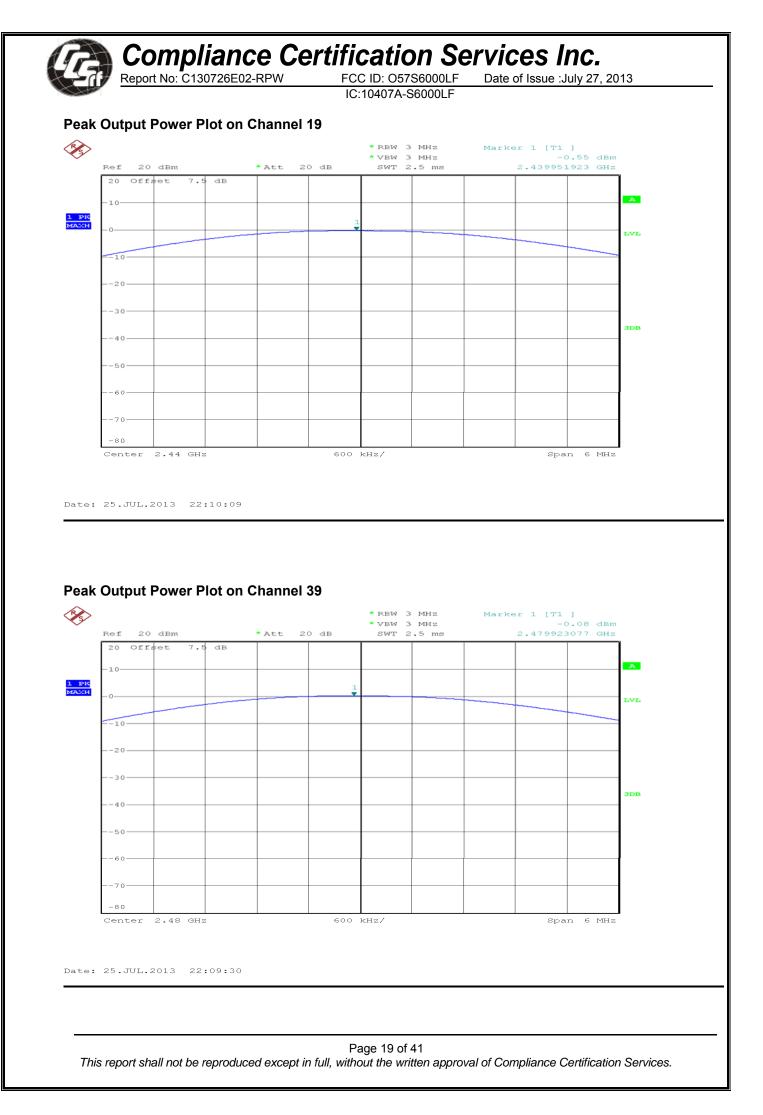
- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.2.2. Test Configuration

7.2.3. test procedure

KDB 558074 D01 DTS Measurement Guidance V03r01 dated 09-04-2013.


Compliance Certification Services Inc.Report No: C130726E02-RPWFCC ID: O57S6000LFDate of Issue :July 27,IC:10407A-S6000LF Date of Issue :July 27, 2013


7.2.4. Test Result of Peak Output Power

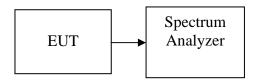
Channel	Frequenc y (MHz)	Output Power (dBm)	Output Power (mw)	Limit	Result
Low	2402	-0.68	0.86		PASS
Mid	2440	-0.55	0.88	30dBm	PASS
High	2480	-0.08	0.98		PASS

Peak Output Power Plot on Channel 00

Date: 25.JUL.2013 22:10:33

Report No: C130726E02-RPW

FCC ID: O57S6000LF Date of Issue :July 27, 2013

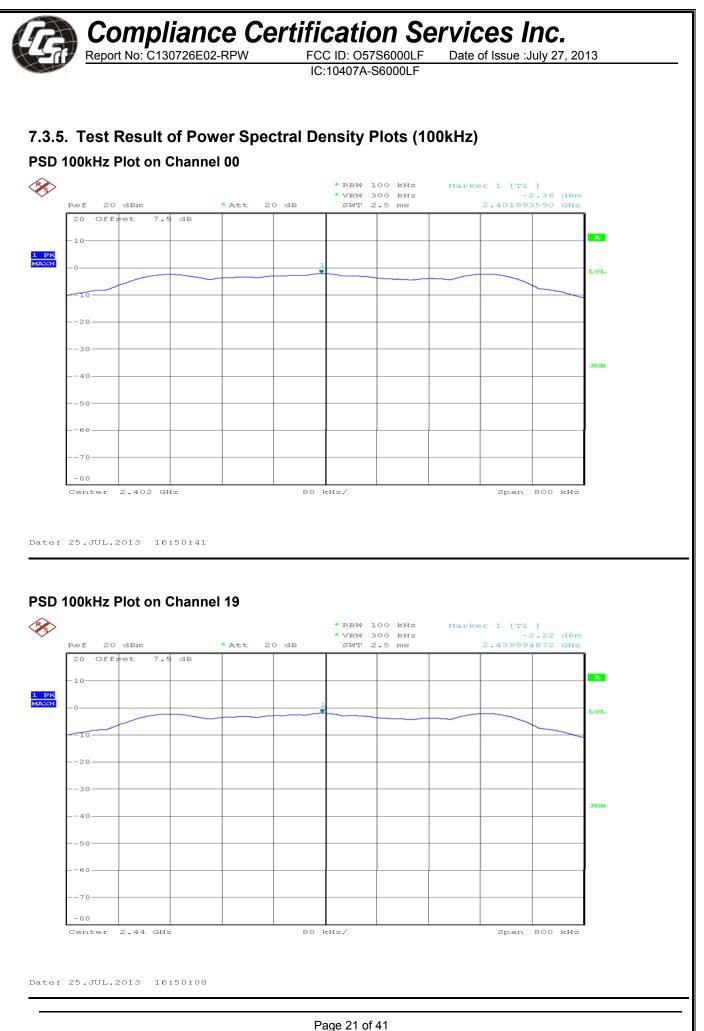

IC:10407A-S6000LF

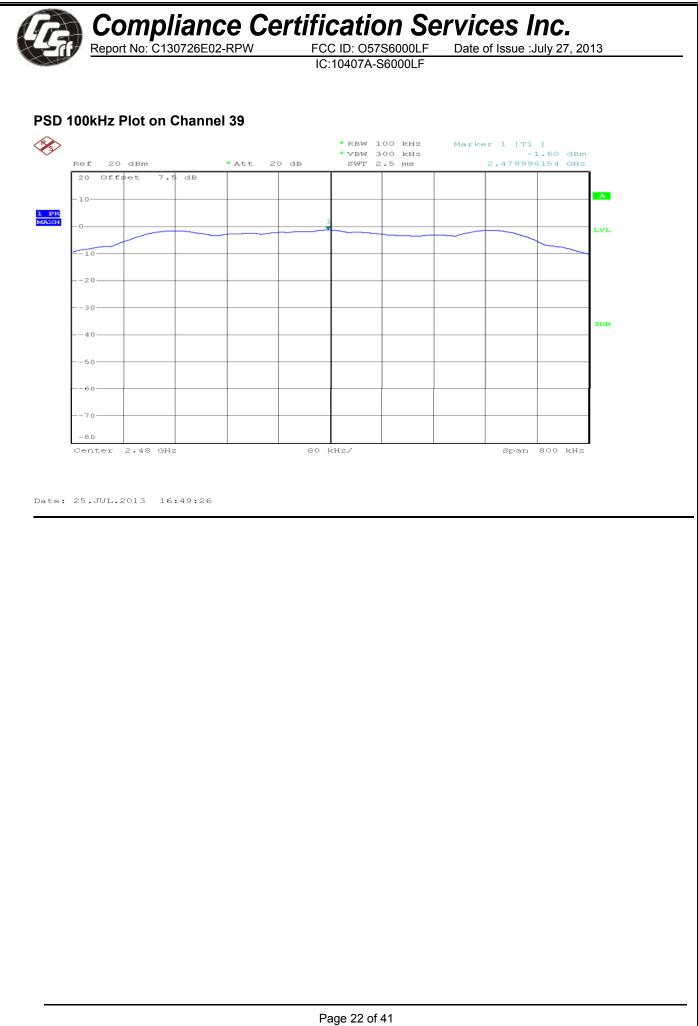
7.3. PEAK POWER SPECTRAL DENSITY

7.3.1. limit

- 1. According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
- 2. According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

7.3.2. Test Configuration




7.3.3. test procedure

KDB 558074 D01 DTS Measurement Guidance V03r01 dated 09-04-2013.


7.3.4. Test Result of Power Spectral Density

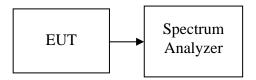
Channel	Frequenc y (MHz)	PPSD(100 kHz) (dBm)	PPSD(3kH z) (dBm)	Limit (dBm)
Low	2402	-2.36	-16.67	8
Mid	2440	-2.22	-16.56	8
High	2480	-1.6	-15.97	8

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Page 23 of 41

Report No: C130726E02-RPW

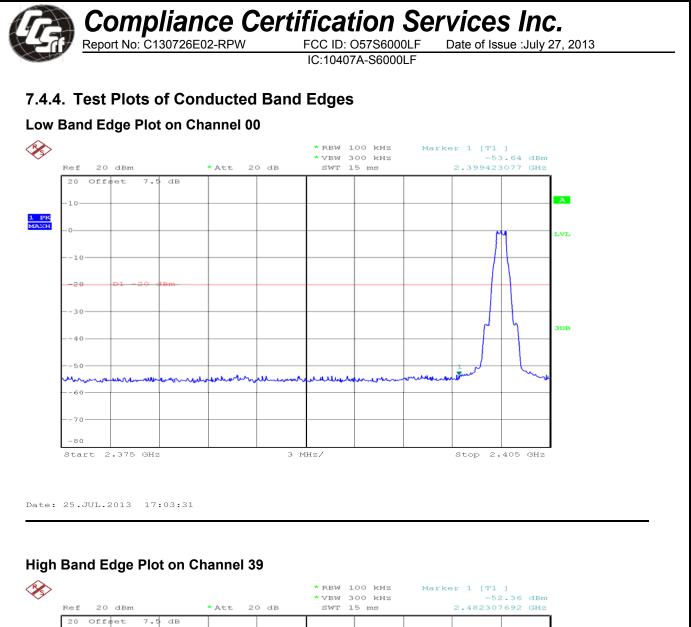
FCC ID: O57S6000LF IC:10407A-S6000LF Date of Issue :July 27, 2013

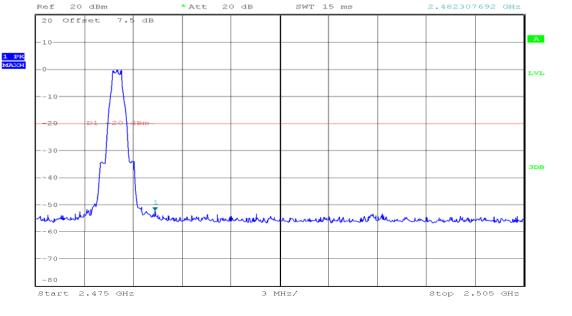

7.4. CONDUCTED BAND EDGES AND SPURIOUS EMISSION

7.4.1. limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

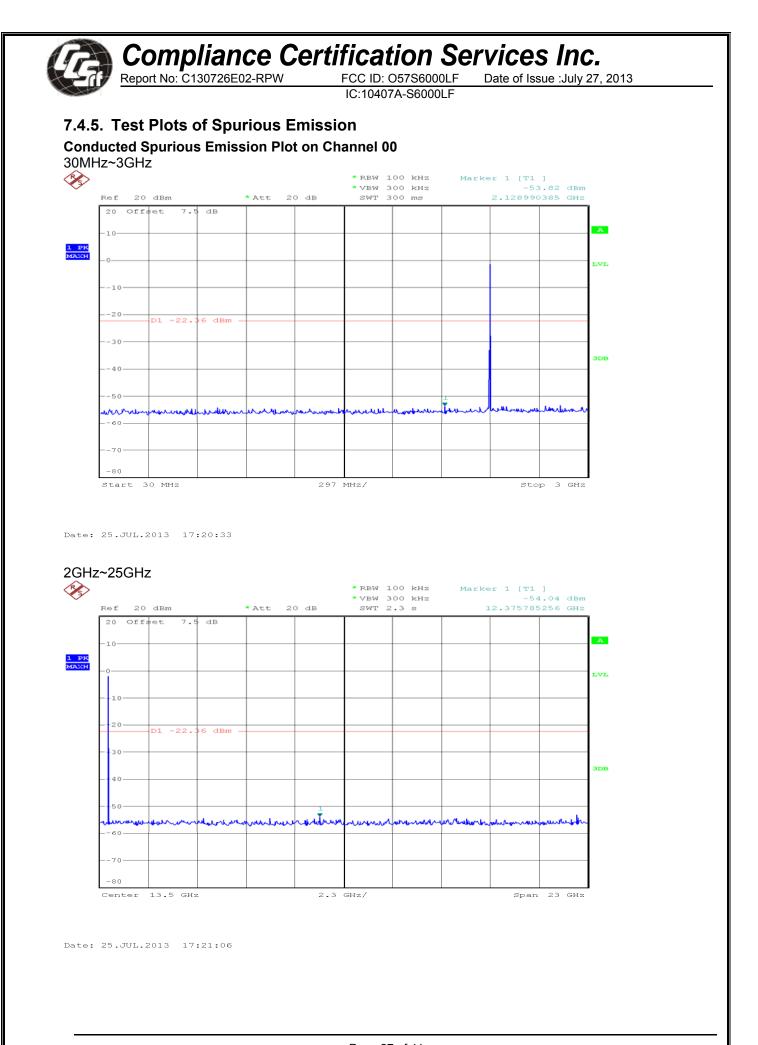
Conducted power was measured based on the use of RMS averaging over a time interval, therefore the required attenuntion is 30 dB.

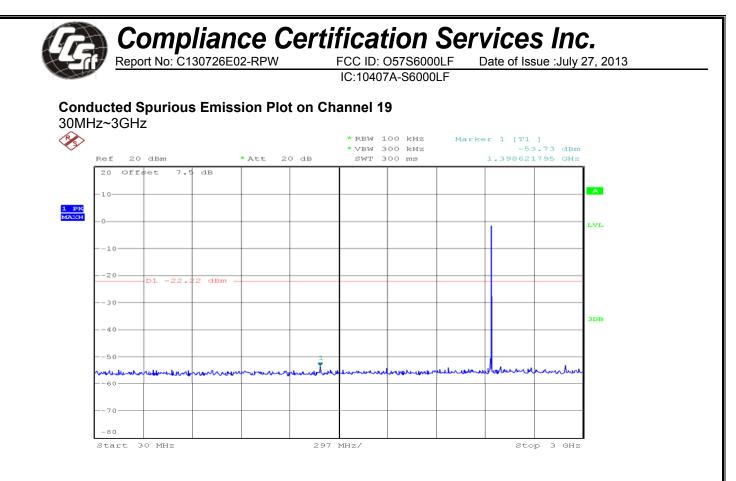

7.4.2. Test Configuration



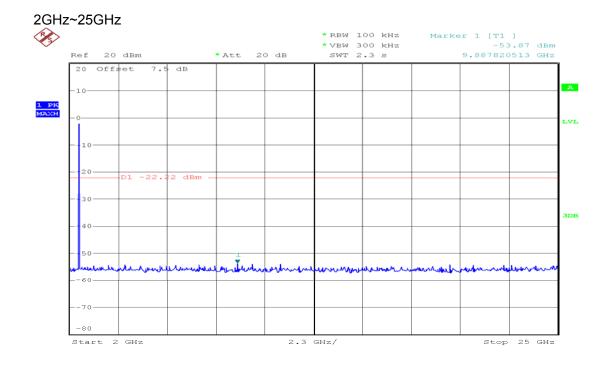
7.4.3. test procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

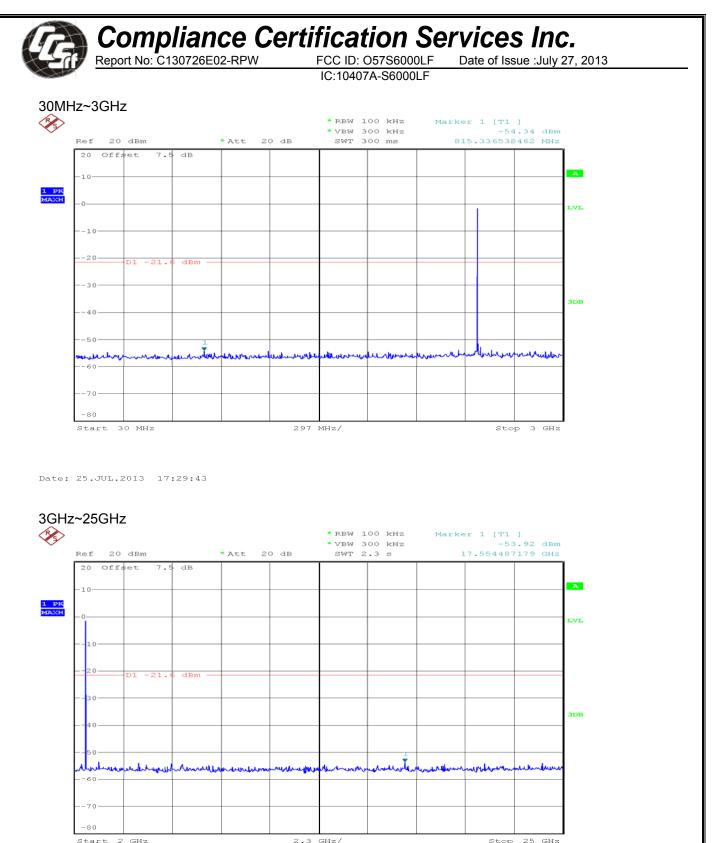

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.



Date: 25.JUL.2013 17:04:55


Page 26 of 41

Page 27 of 41 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.



Date: 25.JUL.2013 17:28:09

Date: 25.JUL.2013 17:28:51

Conducted Spurious Emission Plot on Channel 39

Start 2 GHz

Date: 25.JUL.2013 17:30:11

Report No: C130726E02-RPW

FCC ID: O57S6000LF Date of Issue :July 27, 2013

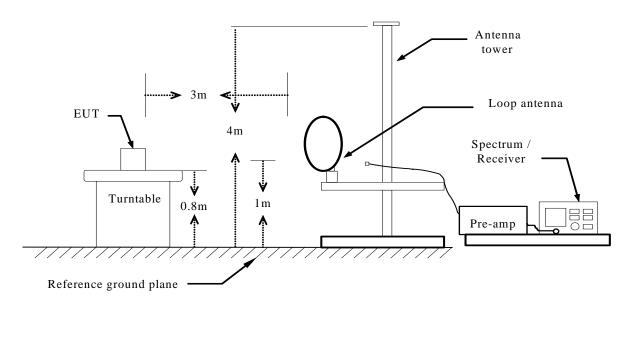
IC:10407A-S6000LF

7.5. RADIATED EMISSIONS

7.5.1. limit

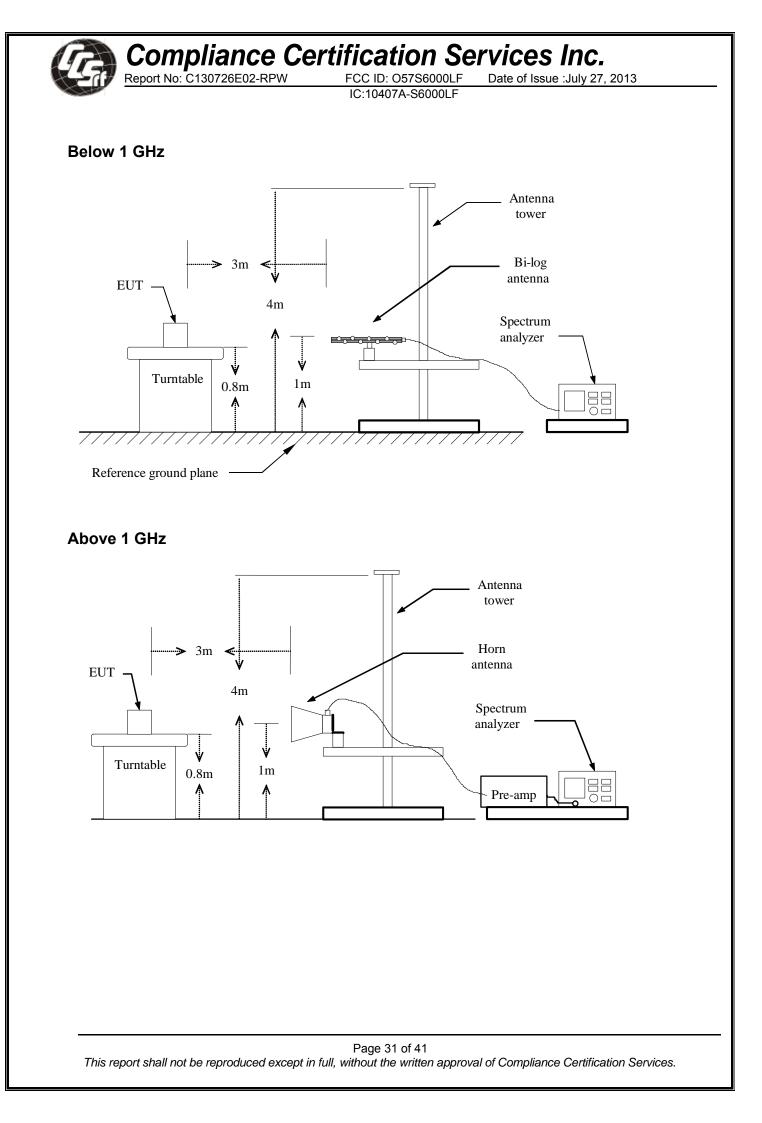
1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3


Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54


7.5.2. Test Configuration

Below 30MHz

Page 30 of 41

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Report No: C130726E02-RPW

FCC ID: 057S6000LF Date of Issue :July 27, 2013 IC:10407A-S6000LF

IC:10407A-

7.5.3. test procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

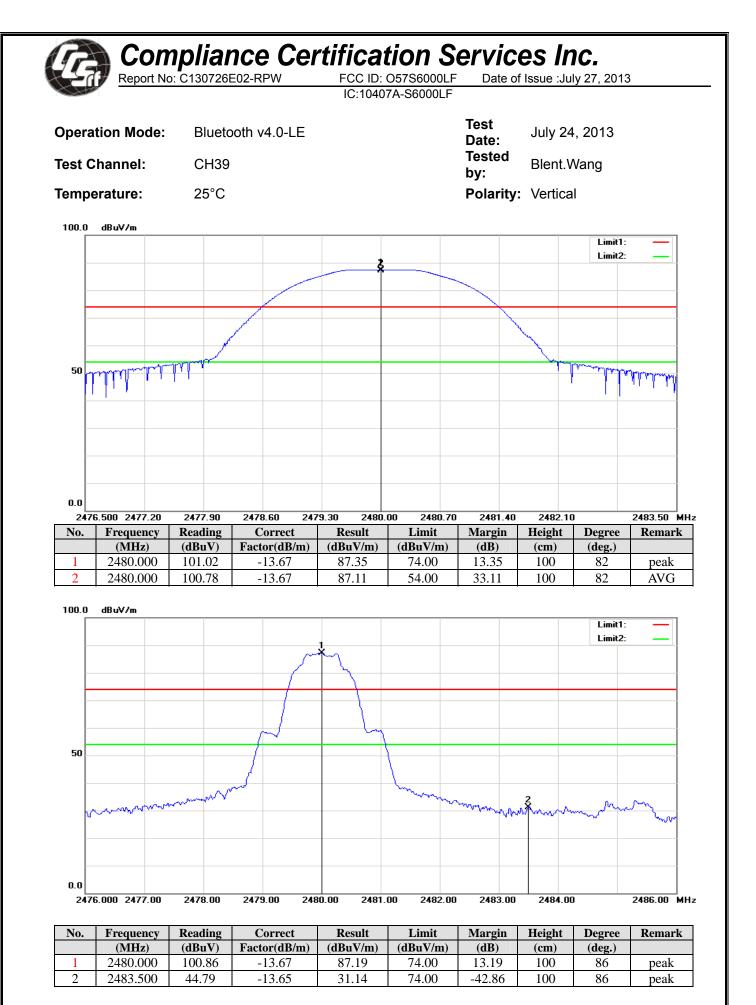
7. Repeat above procedures until the measurements for all frequencies are complete.

 Compliance Certification Services Inc.

 Report No: C130726E02-RPW
 FCC ID: 057S6000LF
 Date of Issue :July 27,

 IC:10407A-S6000LF
 Date of Issue :July 27,
 Date of Issue :July 27, 2013

7.5.4. Test Result of Radiated Band Edges


Operation Mode:	Bluetooth v4.0-LE	Test Date:	July 24, 2013
Test Channel:	CH00	Tested by:	Blent.Wang
Temperature:	25°C	Polarity:	Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390.000	V	45.66	-14.28	31.38	74.00	-42.62	PEAK
2390.000	V	35.32	-14.28	21.04	54.00	-32.96	AVG
2390.000	Н	45.72	-14.28	31.44	74.00	-42.56	PEAK
2390.000	Н	35.33	-14.28	21.05	54.00	-32.95	AVG

Operation Mode:	Bluetooth v4.0-L	E	Т	est Date:	July 24, 201	3
Test Channel:	CH39		т	ested by:	Blent.Wang	
Temperature:	25°C		F	Polarity:	Ver. / Hor.	

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.500	V	57.89	-13.65	44.24	74.00	-29.76	PEAK
2483.500	V	38.42	-13.65	24.77	54.00	-29.23	AVG
2483.192	Н	50.06	-13.65	36.41	74.00	-37.59	PEAK
2483.500	Н	35.65	-13.65	22.00	54.00	-32.00	AVG

Test Cha Tempera	annel:	: Bluetoo CH39 25°C	oth v4.0-LE	2		Test Dat Tested b Polarity:	y: Bler	24, 2013 nt.Wang izontal Limit1: Limit2:	3
	ature:			2			-	izontal	
		25°C					-	izontal	
	<u>u</u> ₩7m			ķ					
50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							Limit2:	
50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					\geq			
50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					\rightarrow			
50									
50	t-rot								
	t-odu			+			- toward		
								and the second s	month
0.0 2476.500	0 2477.20	2477.90	2478.60 247	79.30 2480.	.00 2480.70	2481.40	2482.10		2483.50 MH
	requency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Degree (deg.)	Remark
1 24	480.000 480.000	100.96 100.66	-13.67 -13.67	87.29 86.99	74.00 54.00	13.29 32.99	100 100	86 86	peak AVG
<u> </u>	400.000	100.00	-13.07	00.77	34.00	32.77	100	00	AVU
00.0 dBu	uV/m							Limit1:	_
				Ĵ.				Limit2:	
				m -					
			$ \rightarrow $	<u> </u>	<u> </u>				
50									
			M		hu.				
			1 I I I I I I I I I I I I I I I I I I I		and a series of the series of	war when shares	2 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	many	why a
	www.www	man							54 M M
	mananan	www							
	www.m	www							
0.0	იკორიორი D 2477.00	2478.00	2479.00 248	80.00 2481.	.00 2482.00	2483.00	2484.00		2486.00 MF
0.0 2476.000 No. Fr	0 2477.00	2478.00 Reading	Correct	Result	Limit M		2484.00	Degree (deg.)	2486.00 Mi Remark

Page 35 of 41 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

 Compliance Certification Services Inc.

 Report No: C130726E02-RPW
 FCC ID: O57S6000LF
 Date of Issue :July 27

Date of Issue :July 27, 2013

IC:10407A-S6000LF

7.5.5. Test Result of Radiated Emission

30MHz-1GHz

Operation Mode:	Bluetooth v4.0-LE	Test Date:	July 24, 2013
Test Channel:	CH39	Tested by:	Blent.Wang
Temperature:	25°C	Polarity:	Ver. / Hor.

				Horizor	ntal				
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.9700	14.87	22.03	36.90	40.00	-3.10	100	325	peak
2	487.8400	16.15	19.29	35.44	46.00	-10.56	201	0	peak
3	642.0700	15.08	21.98	37.06	46.00	-8.94	100	97	peak
4	759.4400	16.12	23.04	39.16	46.00	-6.84	100	92	peak
5	864.2000	15.91	25.21	41.12	46.00	-4.88	100	0	peak
6	945.6800	17.06	25.59	42.65	46.00	-3.35	100	31	peak

				Vertic	al				
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.0000	14.35	22.71	37.06	40.00	-2.94	100	93	peak
2	120.2100	14.24	15.19	29.43	43.50	-14.07	100	183	peak
3	596.4800	16.35	20.52	36.87	46.00	-9.13	204	216	peak
4	678.9300	15.62	21.98	37.60	46.00	-8.40	204	231	peak
5	845.7700	15.50	25.25	40.75	46.00	-5.25	100	67	peak
6	945.6800	17.07	25.59	42.66	46.00	-3.34	200	145	peak

Notes:

- 1. Measuring frequencies from 9 KHz to the 1GHz, No emission found between lowest internal used/generated frequency to 30 MHz.
- 2. Radiated emissions measured in frequency range from 9 KHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Compliance Certification Services Inc.Report No: C130726E02-RPWFCC ID: O57S6000LFDate of Issue :July 27, 2013IC:10407A-S6000LF

Above1GHz

Operation Mode:	Bluetooth v4.0-LE	Test Date:	July 24, 2013
Test Channel:	CH00	Tested by:	Blent.Wang
Temperature:	25°C	Polarity:	Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2402.000	V	46.06	-14.27	31.79	74.00	-42.21	PEAK
4804.000	V	44.74	-8.05	36.69	74.00	-37.31	PEAK
7206.000	V	43.42	-0.57	42.85	74.00	-31.15	PEAK
2402.000	Н	46.17	-14.27	31.90	74.00	-42.10	PEAK
4804.000	Н	44.87	-8.05	36.82	74.00	-37.18	PEAK
7206.000	Н	43.89	-0.57	43.32	74.00	-30.68	PEAK

Operation Mode: B	luetooth v4.0-LE
-------------------	------------------

Test Channel: CH19

Temperature: 25°C Test Date: July 24, 2013 Tested by: Blent.Wang Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2440.000	V	46.13	-13.98	32.15	74.00	-41.85	PEAK
4880.000	V	44.13	-7.66	36.47	74.00	-37.53	PEAK
7320.000	V	42.50	-0.83	41.67	74.00	-32.33	PEAK
2440.000	Н	47.27	-13.98	33.29	74.00	-40.71	PEAK
4880.000	Н	44.31	-7.66	36.65	74.00	-37.35	PEAK
7320.000	Н	42.63	-0.83	41.80	74.00	-32.20	PEAK

Report No: C130726E02-RPW

FCC ID: O57S6000LF Date of Issue :July 27, 2013 IC:10407A-S6000LF

Operation Mode:	Bluetooth v4.0-LE	Test Date:	July 24, 2013
Test Channel:	CH39	Tested by:	Blent.Wang
Temperature:	25°C	Polarity:	Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2480.000	V	46.82	-13.67	33.15	74.00	-40.85	PEAK
4960.000	V	44.89	-7.58	37.31	74.00	-36.69	PEAK
7440.000	V	44.18	-0.51	43.67	74.00	-30.33	PEAK
2480.000	Н	47.07	-13.67	33.40	74.00	-40.60	PEAK
4960.000	Н	44.89	-7.58	37.31	74.00	-36.69	PEAK
7440.000	Н	44.35	-0.51	43.84	74.00	-30.16	PEAK

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Report No: C130726E02-RPW

FCC ID: 057S6000LF Date of Issue :July 27, 2013

IC:10407A-S6000LF

7.6. POWERLINE CONDUCTED EMISSIONS

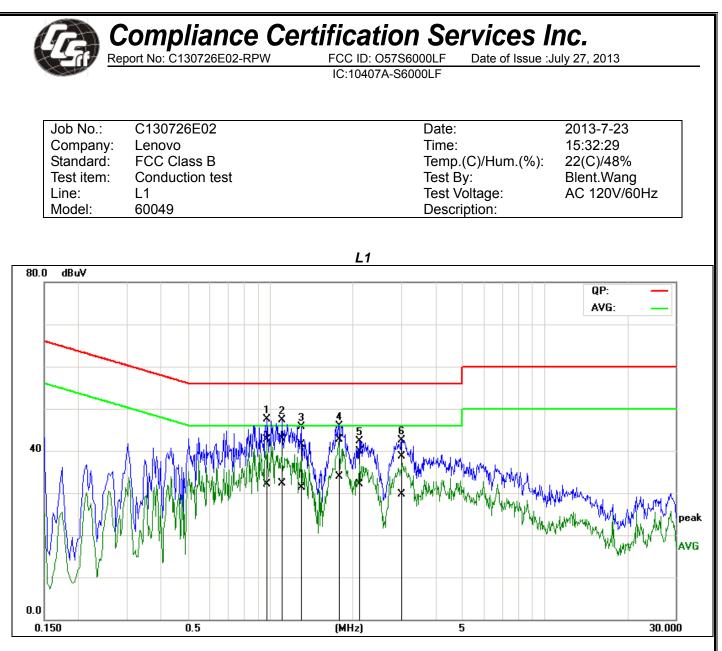
7.6.1. limit

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Limits (dBµV)					
(11112)	Quasi-peak	Average				
0.15 to 0.50	66 to 56*	56 to 46*				
0.50 to 5	56	46				
5 to 30	60	50				

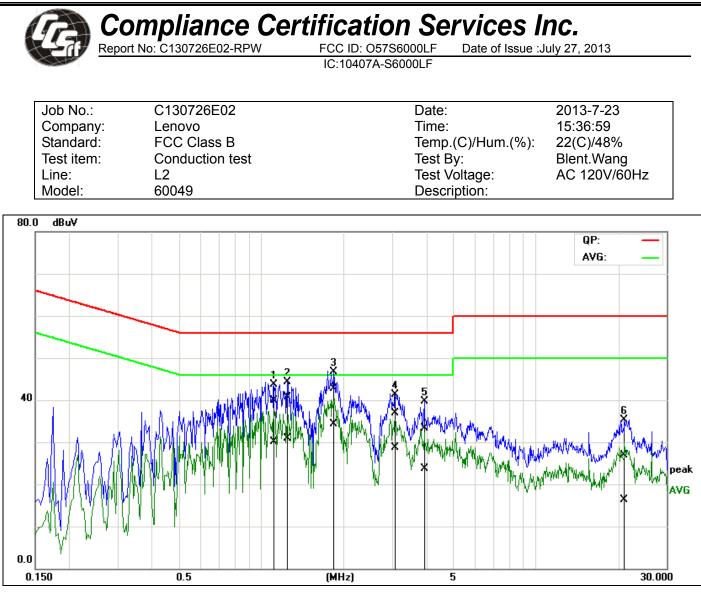
* Decreases with the logarithm of the frequency.

7.6.2. Test Configuration


See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

7.6.3. TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.


7.6.4. test result of AC Conducted Emission

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.9752	32.75	22.05	9.98	42.73	32.03	56.00	46.00	-13.27	-13.97	Pass
2	1.1060	32.82	22.29	9.99	42.81	32.28	56.00	46.00	-13.19	-13.72	Pass
3	1.3020	31.41	21.21	10.01	41.42	31.22	56.00	46.00	-14.58	-14.78	Pass
4	1.7974	32.69	23.80	10.07	42.76	33.87	56.00	46.00	-13.24	-12.13	Pass
5*	2.1182	29.80	21.95	10.10	39.90	32.05	56.00	46.00	-16.10	-13.95	Pass
6	3.0189	28.56	19.58	10.21	38.77	29.79	56.00	46.00	-17.23	-16.21	Pass

Note: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	1.1183	30.00	20.15	9.98	39.98	30.13	56.00	46.00	-16.02	-15.87	Pass
2	1.2460	30.62	20.81	10.00	40.62	30.81	56.00	46.00	-15.38	-15.19	Pass
3	1.8148	32.53	24.23	10.10	42.63	34.33	56.00	46.00	-13.37	-11.67	Pass
4	3.0972	26.71	18.44	10.24	36.95	28.68	56.00	46.00	-19.05	-17.32	Pass
5	3.9429	23.03	13.34	10.33	33.36	23.67	56.00	46.00	-22.64	-22.33	Pass
6*	21.0777	15.73	5.24	11.09	26.82	16.33	60.00	50.00	-33.18	-33.67	Pass

Remark:

1. The measuring frequencies range between 0.15 MHz and 30 MHz.

2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.

3."---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.

4.The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz.

END OF REPORT

Page 41 of 41