

FCC RF Test Report

APPLICANT	: Lenovo (Shanghai) Electronics Technology Co., Ltd.
EQUIPMENT	: Tablet PC
BRAND NAME	: Lenovo
MODEL NAME	:Lenovo Miix 630-12Q35; 81F1
FCC ID	: O57MIIX630
STANDARD	: FCC 47 CFR Part 2, 27D
CLASSIFICATION	: PCS Licensed Transmitter (PCB)

The product was received on Dec. 12, 2017 and completely tested on Mar. 13, 2018. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI/TIA-603-E and shown compliance with the applicable technical standards.

This report contains data that were produced under subcontract by Laboratory SPORTON INTERNATIONAL INC.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Journes Huang

TESTING NVLAP LAB CODE 600155-0

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc.

No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1.	Applicant	5
	1.2.	Manufacturer	5
	1.3.	Product Feature of Equipment Under Test	5
	1.4.	Modification of ELIT	5 6
	1.6.	Maximum Frequency Tolerance and Emission Designator and Conducted power	6
	1.7.	Testing Site	7
	1.8.	Applied Standards	8
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	9
	21	Test Mode	g
	2.2	Connection Diagram of Test System	10
	2.3	Support Unit used in test configuration and system	10
	2.4	Measurement Results Explanation Example	10
	2.5	Frequency List of Low/Middle/High Channels	11
3	CON	DUCTED TEST ITEMS	12
	3.1	Measuring Instruments	12
	3.2	Test Setup	12
	3.3	Test Result of Conducted Test	12
	3.4	Conducted Output Power Measurement	13
	3.5 3.6	FIRP Power Density	14
	3.7	Occupied Bandwidth	15
	3.8	Conducted Band Edge Measurement	17
	3.9	Conducted Spurious Emission Measurement	18
	3.10	Frequency Stability Measurement	19
4	RADI	ATED TEST ITEMS	20
	4.1	Measuring Instruments	20
	4.2	Test Setup	20
	4.3	Test Result of Radiated Test	20
	4.4	Radiated Spurious Emission Measurement	21
5	LIST	OF MEASURING EQUIPMENT	22
6	UNCE	RTAINTY OF EVALUATION	23
AP	PEND	X A. TEST RESULTS OF CONDUCTED TEST	
AP	PEND	X B. TEST RESULTS OF RADIATED TEST	

APPENDIX C. TEST SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FG7D1210C	Rev. 01	Initial issue of report	Apr. 16, 2018

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Result	Remark	
3.4	§2.1046	Conducted Output Power	Reporting Only	PASS	-
3.5	-	Peak-to-Average Ratio	<13dB	N/A	Reporting only
3.6	§27.50 (a)(3)	EIRP Power Density	EIRP < 250mW/5MHz	PASS	-
3.7	§2.1049	Occupied Bandwidth	Reporting Only	PASS	-
3.8	§2.1051 §27.53 (a)(4)	Conducted Band Edge Measurement	Refer standard	PASS	-
3.9	§2.1051 §27.53 (a)(4)	Conducted Spurious Emission	< 70+10log ₁₀ (P[Watts])	PASS	-
3.10	§2.1055 §27.54	Frequency Stability Temperature & Voltage	Within the band	PASS	-
4.4	§2.1053 §27.53 (a)(4)	Radiated Spurious Emission	< 70+10log ₁₀ (P[Watts])	PASS	Under limit 4.55 dB at 9216.000 MHz

1 General Description

1.1. Applicant

Lenovo (Shanghai) Electronics Technology Co., Ltd. NO.68 BUILDING, 199 FENJU RD, China (Shanghai) Pilot Free Trade Zone, 200131, CHINA

1.2. Manufacturer

Lenovo PC HK Limited

23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong

1.3. Product Feature of Equipment Under Test

Product Feature						
Equipment	Tablet PC					
Brand Name	Lenovo					
Model Name	Lenovo Miix 630-12Q35; 81F1					
FCC ID	O57MIIX630					
EUT supports Radios application	WCDMA/HSPA/HSPA+(16QAM uplink is not supported)/ DC-HSDPA/LTE WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80 Bluetooth v3.0 + EDR/Bluetooth v4.0 LE/ Bluetooth v4.1 LE / Bluetooth v 4.2 LE					
IMEI Code	Conducted: N/A Radiation: N/A					
HW Version	81835_1_14					
SW Version	16299.192 windows 10S					
EUT Stage	Identical Prototype					

1.4. Product Specification of Equipment Under Test

Product Feature						
Tx Frequency	LTE Band 30 : 2307.5 MHz ~ 2312.5 MHz					
Rx Frequency	LTE Band 30 : 2352.5 MHz ~ 2357.5 MHz					
Bandwidth	5MHz / 10MHz					
Maximum Output Power to Antenna	LTE Band 30 : 23.53 dBm					
Antenna Type/Gain	Monopole Antenna / -3.80dBi					
Type of Modulation	QPSK / 16QAM / 64QAM					

1.5. Modification of EUT

2307.5 ~ 2312.5

2310.0

5

10

No modifications are made to the EUT during all test items.

4M51W7D

8M99W7D

1.6. Maximum Frequency Tolerance and Emission Designator and Conducted power

Ľ	TE Band 30		QPSK		16QAM		
BW (MHz)	Frequency Range (MHz)	Emission Designator (99%OBW)	Frequency Tolerance (ppm)	Maximum Conducted power(W)	Emission Designator (99%OBW)	Frequency Tolerance (ppm)	Maximum Conducted power(W)
5	2307.5 ~ 2312.5	4M51G7D	-	0.2223	4M51W7D	-	0.1871
10	2310.0	9M03G7D	0.0017	0.2254	8M99W7D	-	0.1884
Ľ	TE Band 30		64QAM				
BW (MHz)	Frequency Range (MHz)	Emission Designator (99%OBW)	Frequency Tolerance (ppm)	Maximum Conducted power(W)			

0.1368

0.1435

-

-

1.7. Testing Site

Sporton International (Kunshan) Inc. is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600155-0) and the FCC designation No. is CN5013.

Test Site	Sporton International (Kunshan) Inc.					
Test Site Location	No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China TEL : +86-512-57900158 FAX : +86-512-57900958					
Toot Site No	Sporton Site No.	FCC Test Firm Registration No.				
Test Site No.	TH01-KS	630927				

Note: The test site complies with ANSI C63.4 2014 requirement.

SPORTON INTERNATIONAL INC. is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and under the FCC-recognized accredited testing laboratories by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site		SPORTON INTERNATIONAL INC.						
Teet	Sito	No.52, Huaya 1st Rd., Guishan Dist. Taoyuan City Taiwan						
lest 3	Sile	Tel: 886-3-327-3456						
Location		FAX: +886-3-327-0978						
Test Site No.		Sporton Site No	FCC designation	FCC Test Firm				
		Sporton Site No.	No.	Registration No.				
		03CH07-HY	TW1190	553509				

Note:

- 1. The test site complies with ANSI C63.4 2014 requirement.
- 2. Test data subcontracted: Radiated spurious emission in section 4.4 of this report.

1.8. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 2, Part 27(D)
- ANSI/TIA-603-E
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- **2.** This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03 with maximum output power.

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes to find the maximum emission.

Conducted	Dand	Bandwidth (MHz)				Modulation			RB #			Test Channel				
Test Cases	Band	1.4	3	5	10	15	20	QPSK	16QAM	64QAM	1	Half	Full	L	М	Н
Max. Output	30	-	-	v		-	-	v	v	v	v	v	v	v	v	v
Power	50	-	-		v	-	-	v	v	v	v	v	v		v	
Peak-to-Average Ratio	30	-	-		v	-	-	v	v	v	v		v		v	
E.I.R.P PSD	30	-	-	v		-	-	v	v	v	v			v	v	v
		-	-		v	-	-	v	V	V	V				v	
26dB and 99%	20	-	-	v		-	-	v	v	v			v	۷	v	v
Bandwidth	50	-	-		v	-	-	v	v	v			v		v	
Conducted		-	-	v		-	-	v	v	v	v		v	v		v
Band Edge	30	-	-		v	-	-	v	V	v	v		v		v	
Conducted		-	-	v		-	-	v	v	v	v			v	v	v
Spurious Emission	30	-	-		v	-	-	v	v	v	v				v	
Frequency Stability	30	-	-		v	-	-	v					v		v	
Radiated		-	-	v		-	-	v			v			v	v	v
Spurious	30															
Emission					v			v			۷				V	
1. The mark "v " means that this configuration is chosen for testing																
	2. T	he ma	rk "-"	mean	s that	this b	andwi	dth is n	ot suppor	rted.						
Note	з Т	he dev	vice is	inves	stinate	d fron	n 30M	Hz to 1() times o	f fundam	ental	sianal	for rad	liated	souri	0116
	<u></u> . Г	nissio	n test	unde	r diffe	rent R	'B size	/offset	and mod	ulations i	n exn	lorator	v test	Subs	eque	ntlv
		nlv the	wors	t case	e emis	sions	are re	ported				1010101	, 1001.	Subb	oquoi	iciy,

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	DC Power Supply	GW INSTEK	GPS-3030D	N/A	N/A	Unshielded, 1.8 m
3.	Earphone	Lenovo	SH100	N/A	Unshielded,1.2m	N/A

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

The following shows an offset computation example with RF cable loss 5.5dB.

Example :

Offset(dB) = RF cable loss(dB).

= 5.5 (dB)

2.5 Frequency List of Low/Middle/High Channels

LTE Band 30 Channel and Frequency List									
BW [MHz]	Channel/Frequency(MHz)	Highest							
10	Channel	-	27710	-					
	Frequency	-	2310	-					
5	Channel	27685	27710	27735					
	Frequency	2307.5	2310	2312.5					

3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.

3.2 Test Setup

3.2.1 Conducted Output Power

3.2.2 Peak-to-Average Ratio, Occupied / 26dB Bandwidth ,Band-Edge and Conducted Spurious Emission

3.2.3 Frequency Stability

3.3 Test Result of Conducted Test

Please refer to Appendix A.

3.4 Conducted Output Power Measurement

3.4.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.4.2 Test Procedures

- 1. The transmitter output port was connected to base station.
- 2. Set EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different modulation.

3.5 Peak-to-Average Ratio

3.5.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.5.2 Test Procedures

- 1. The testing follows FCC KDB 971168 D01 v03 Section 5.7.1.
- 2. The EUT was connected to spectrum and system simulator via a power divider.
- 3. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 4. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 5. Record the deviation as Peak to Average Ratio.

3.6 **EIRP Power Density**

3.6.1 Description of EIRP Power Density

For mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, *except that* for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. For mobile and portable stations using time division duplexing (TDD) technology, the duty cycle must not exceed 38 percent in the 2305-2315 MHz and 2350-2360 MHz bands. Mobile and portable stations using FDD technology are restricted to transmitting in the 2305-2315 MHz band. Power averaging shall not include intervals in which the transmitter is off.

3.6.2 Test Procedures

- 1. Set instrument center frequency to OBW center frequency.
- 2. Set span to at least 1.5 times the OBW.
- 3. Set the RBW to the specified reference bandwidth (often 1 MHz).
- 4. Set $VBW \ge 3 \times RBW$.
- 5. Detector = RMS (power averaging).
- 6. Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- 7. Sweep time = auto couple.
- 8. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level within the reference bandwidth (PSD).

3.7 Occupied Bandwidth

3.7.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26dB occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal 26 dB.

The 26 dB emission bandwidth(EBW) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.7.2 Test Procedures

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The 26dB and 99% occupied bandwidth (BW) of the middle channel for the highest RF powers with full RB sizes were measured.

3.8 Conducted Band Edge Measurement

3.8.1 Description of Conducted Band Edge Measurement

27.53 (a)(4)

For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(i) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2328 MHz and 2328 and 2337 MHz;

(ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;

(iii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.

3.8.2 Test Procedures

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- The band edges of low and high channels were measured with RBW ≥ 1% EBW set in Spectrum Analyzer, while the EUT was transmitting under maximum power.
- 3. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)
 = P(W)- [43 + 10log(P)] (dB) = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB) = -13dBm.

3.9 Conducted Spurious Emission Measurement

3.9.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $70 + 10 \log (P) dB$.

It is measured by means of a calibrated spectrum analyzer and scanned from 30MHz up to a frequency including its 10th harmonic.

3.9.2 Test Procedures

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. The limit line is derived from 70 + 10log(P)dB below the transmitter power P(Watts)

= P(W) - [70 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [70 + 10log(P)] (dB)

= -40dBm.

3.10 Frequency Stability Measurement

3.10.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

3.10.2 Test Procedures for Temperature Variation

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.10.3 Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

4 Radiated Test Items

4.1 Measuring Instruments

See list of measuring instruments of this test report.

4.2 Test Setup

4.2.1 For radiated test from 30MHz to 1GHz

4.2.2 For radiated test above 1GHz

4.3 Test Result of Radiated Test

Please refer to Appendix B.

4.4 Radiated Spurious Emission Measurement

4.4.1 Description of Radiated Spurious Emission

The radiated spurious emission was measured by substitution method according to ANSI/TIA-603-E. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 70 + 10 log (P) dB.

4.4.2 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from 70 + 10log(P)dB below the transmitter power P(Watts)

- = P(W)- [70 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [70 + 10log(P)] (dB)

= -40dBm.

11. EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 08, 2017	Jan. 07, 2018	Aug. 07, 2018	Conducted (TH01-KS)
Radio communication analyzer	Anritsu	MT8820C	6201300652	2G/3G/LTE_ full band	Aug. 08, 2017	Jan. 07, 2018	Aug. 07, 2018	Conducted (TH01-KS)
Thermal Chamber	Ten Billion	TTC-B3S	TBN-960502	-40~+150°C	Oct. 12, 2017	Jan. 07, 2018	Oct. 11, 2018	Conducted (TH01-KS)
Bilog Antenna	TESEQ	CBL 6111D&008	35419&03	30MHz to 1GHz	Dec. 18, 2017	Jan. 16, 2018 ~ Mar. 13, 2018	Dec. 17, 2018	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Aug. 23, 2017	Jan. 16, 2018 ~ Mar. 13, 2018	Aug. 22, 2018	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-00 101800-30-	1590075	1GHz ~ 18GHz	Apr. 25, 2017	Jan. 16, 2018 ~ Mar. 13, 2018	Apr. 24, 2018	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz-1GHz	Mar. 14, 2017	Jan. 16, 2018 ~ Mar. 13, 2018	Mar. 13, 2018	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~ 26.5GHz	Oct. 30, 2017	Jan. 16, 2018 ~ Mar. 13, 2018	Oct. 29, 2018	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9010A	MY53470118	10Hz~44GHz	Apr. 17, 2017	Jan. 16, 2018 ~ Mar. 13, 2018	Apr. 16, 2018	Radiation (03CH07-HY)
Controller	ChainTek	Chaintek 3000	N/A	Control Turn table	NCR	Jan. 16, 2018 ~ Mar. 13, 2018	NCR	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	NCR	Jan. 16, 2018 ~ Mar. 13, 2018	NCR	Radiation (03CH07-HY)
Amplifier	MITEQ	TTA1840-35 -HG	1871923	18GHz~40GHz,VS WR : 2.5:1 max	Jul. 18, 2017	Jan. 16, 2018 ~ Mar. 13, 2018	Jul. 17, 2018	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA917025 1	18GHz- 40GHz	Nov. 10, 2017	Jan. 16, 2018 ~ Mar. 13, 2018	Nov. 09, 2018	Radiation (03CH07-HY)

NCR: No Calibration Required

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Confidence of 95% (U = 2Uc(y))	Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	3.1 dB
--------------------------------	--	--------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	2 4 dB
Confidence of 95% (U = 2Uc(y))	5.4 dB

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	4 0 dB
Confidence of 95% (U = 2Uc(y))	4.0 UB

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power)

		Ľ	FE Band 3	0 Maximum Average	Maximum Average Power [dBm]				
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest			
5	1	0		23.47	23.37	23.37			
5	1	12		23.29	23.32	23.22			
5	1	24		23.32	23.20	23.22			
5	12	0	QPSK	22.50	22.39	22.37			
5	12	7		22.36	22.41	22.28			
5	12	13		22.33	22.35	22.25			
5	25	0		22.36	22.35	22.28			
5	1	0		22.72	22.63	22.61			
5	1	12		22.57	22.61	22.48			
5	1	24		22.56	22.45	22.45			
5	12	0	16-QAM	21.51	21.41	21.39			
5	12	7		21.38	21.40	21.30			
5	12	13		21.32	21.36	21.26			
5	25	0		21.38	21.35	21.25			
5	1	0		21.30	21.34	21.36			
5	1	12		21.29	21.28	21.25			
5	1	24		21.26	21.27	21.25			
5	12	0	64QAM	20.18	20.16	20.15			
5	12	7		20.21	20.20	20.18			
5	12	13		20.17	20.13	20.10			
5	25	0		20.15	20.11	20.08			

FCC RF Test Report

Report No. : FG7D1210C

10	1	0			23.53	
10	1	25			23.33	
10	1	49			23.18	
10	25	0	QPSK		22.40	
10	25	12			22.39	
10	25	25			22.23	
10	50	0			22.37	
10	1	0			22.75	
10	1	25			22.59	
10	1	49			22.41	
10	25	0	16-QAM	-	21.41	-
10	25	12			21.38	
10	25	25			21.25	
10	50	0			21.39	
10	1	0			21.57	
10	1	25			21.52	
10	1	49			21.40	
10	25	0	64QAM		20.18	
10	25	12			20.17	
10	25	25			20.14	
10	50	0			20.17	

Peak-to-Average Ratio

Mode					
Mod.	QP	SK	160	Limit: 13dB	
RB Size	1RB	Full RB	1RB	Full RB	Result
Lowest CH	-	-	-	-	
Middle CH	4.2	4.81	4.93	5.86	PASS
Highest CH	-	-	-	-	
Mod.	640	QAM	Limit: 13dB		
RB Size	1RB	Full RB	Result		
Lowest CH					
Middle CH	5.1	5.83	PASS		
Highest CH					

EIRP Power Density

Mode		LTE Band 30 : Conducted Power Density (dBm/5MHz)												
BW	5MHz		10MHz		5MHz		10MHz							
Mod.	QPSK	16QAM	QPSK	16QAM	64QAM		64QAM							
Lowest CH	24.41	23.98			23.95									
Middle CH	24.45	24.22	24.4	23.86	23.94		23.04							
Highest CH	24.69	23.94			23.94									

Mode		LTE Band 30 : EIRP Power Density (dBm/5MHz)											
BW	5MHz 10MHz 5MHz 10MHz												
Mod.	QPSK	16QAM	QPSK	16QAM	64QAM		64QAM						
Lowest CH	20.61	20.18			20.15								
Middle CH	20.89	20.89 20.14 20.6 20.06 20.14 19.24											
Highest CH	20.65	20.42			20.14								
Antenna Gain						-3.8	dBi						
Limit		250mW / 5MHz = 24dBm / 5MHz											
Result						Pa	ISS						

Report No. : FG7D1210C

								LTE	E Ban
М	iddle	e Cha	anne	el / 10	MHz	/ 1RE	30 / 6	4QA	M
Spectrun Ref Leve Att SGL Count	n 1 35.50 dBn 40 dB 100/100	Offset SWT	5.50 dB 🖷 1 ms 🖷	RBW 5 MH VBW 10 MH	2 Z Mode /	uto Sweep	6		B
 1Rm AvgP 30 dBm 	MI MI				M	1(1)		2.30	23-04 dBm 52680 GHz
20.dBm	ment	······		ma	in the second se				
0 d8m			-			n's			
-10 dBm							1		
-30 dBm								and a	
-40 dBm									
-60 dBm									
CF 2.31 G	Hz			691	pts	Read	y ERR	Spar	15.0 MHz

26dB Bandwidth

Mode		LTE Band 30 : 26dB BW(MHz)												
BW	5MHz		10MHz		5MHz		10MHz							
Mod.	QPSK	16QAM	QPSK	16QAM	64QAM		64QAM							
Lowest CH	4.865	4.955	-	-	4.845							-		
Middle CH	4.945	4.835	9.79	9.71	4.915		9.83					-		
Highest CH	4.915	4.905	I	-	4.855							-		

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID : O57MIIX630 Page Number: A12 of A27Report Issued Date: Apr. 16, 2018Report Version: Rev. 01

Occupied Bandwidth

Mode		LTE Band 30 : 99%OBW(MHz)												
BW	5MHz		10MHz		5MHz		10MHz							
Mod.	QPSK	16QAM	QPSK	16QAM	64QAM		64QAM							
Lowest CH	4.51	4.48	-	-	4.51					-	-	-		
Middle CH	4.48	4.51	9.03	8.99	4.48		8.99		-	-	-	-		
Highest CH	4.47	4.48	-	-	4.48				-	-	-	-		

Conducted Band Edge

Conducted Spurious Emission

LTE Band 30 / 5MHz												
Lowest Channel / 64QAM						Middle Channel / 64QAM						
Spectrum Ref Level 20.00 dB	n Offset 5.50 dB	Mode Au	ita Sweep			Spectrum Ref Level 20.00 dt	Sm Offset 5.50 a	18 Mode A	uto Sweep			
AvgPwr Limit theck	1	PARS				AvgPwr Limit dheck	1	PARS	1 1			
10 dBmo_cruntou	LINE_ABE_	PASS				10 dBme_fruntou	IR_LINE_ABE_	PASS				
0 dBm -10 dBm						0 dBm						
-20 dBm					_	-20 dBm					_	
-30 dBm	8				-	-30 dBm	5				-	
-50 dBm					-	-50 d8m			· ·····			
-60 dBm-			and a construction of the			-60 dBm				8		
-70 dBm						-70 dBm						
Start 30.0 MHz Spurious Emissions		4900	8 pts	S	top 24.0 GHz	Start 30.0 MHz Spurious Emissions	;	4900	18 pts	8	top 24.0 GHz	
Range Low 30.000 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 861.11694 MHz	-53.37 dBm	∆Limit -13.37 dB	Range Low 30.000 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 890.68716 MHz	-53.35 dBm	∆Limit -13.35 dB	
1.000 GHz 2.328 GHz 3.000 GHz 7.000 GHz 10.000 GHz 14.000 GHz 18.000 GHz	2.292 GHz 3.000 GHz 7.000 GHz 10.000 GHz 14.000 GHz 18.000 GHz 24.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	2.28533 GHz 2.43295 GHz 6.85627 GHz 9.16739 GHz 11.93601 GHz 16.34746 GHz 20.13357 GHz	-53.28 dBm -50.93 dBm -47.76 dBm -50.29 dBm -49.41 dBm -47.07 dBm -46.35 dBm	-13.28 dB -10.93 dB -7.76 dB -10.29 dB -9.41 dB -7.07 dB -6.35 dB	1.000 GHz 2.328 GHz 3.000 GHz 7.000 GHz 10.000 GHz 14.000 GHz 18.000 GHz	2.292 GHz 3.000 GHz 7.000 GHz 10.000 GHz 14.000 GHz 18.000 GHz 24.000 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz	1.81821 GHz 2.43496 GHz 6.86027 GHz 9.16889 GHz 12.37445 GHz 16.62692 GHz 20.14007 GHz	-53.27 dBm -48.74 dBm -47.71 dBm -50.14 dBm -49.41 dBm -47.03 dBm -46.11 dBm	-13.27 dB -8.74 dB -7.71 dB -10.14 dB -9.41 dB -7.03 dB -6.11 dB	
	High	est Char	nnel / 64QA	M								
Spectrum Ref Level 20.00 dB	m Offset 5.50 dB	Mode Au	ito Sweep]						
AvgPwr Limit Check	1 1	PASS										
10 dBine_cruntou	LINE_ABE_	PASS										
-10 dBm												
-20 dBm												
-30 dBm SPURIOUS_LINE_ABS	2											
-50 dBm		menne	······									
-60 dBm												
-70 dBm												
Start 30.0 MHz Spurious Emissions		4900	8 pts	S	top 24.0 GHz	l						
Range Low 30.000 MHz	Range Up 1.000 GHz	RBW 1.000 MHz	Frequency 936.73913 MHz	Power Abs -53.35 dBm	<u>ΔLimit</u> -13.35 dB							
1.000 GHz 2.328 GHz	2.292 GHz 3.000 GHz	1.000 MHz 1.000 MHz	2.27069 GHz 2.99479 GHz	-53.43 dBm -52.21 dBm	-13.43 dB -12.21 dB							
3.000 GHz 7.000 GHz	10.000 GHz	1.000 MHz 1.000 MHz	9.15889 GHz	-47.71 dBm -50.11 dBm	-7.71 dB -10.11 dB							
14.000 GHz 14.000 GHz 18.000 GHz	14.000 GHz 18.000 GHz 24.000 GHz	1.000 MHz 1.000 MHz	12.39445 GHz 16.62142 GHz 20.14057 GHz	-46.78 dBm -46.25 dBm	-6.78 dB							
	entres dire		Read		1/4							
Date: 7.JAN.2018 09:31:	14											
						I						

Frequency Stability

Test (Conditions	LTE Band 30 (QPSK) / Middle Channel				
		BW 10MHz				
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result			
50	Normal Voltage	0.0007				
40	Normal Voltage	0.0002				
30	Normal Voltage	0.0016				
20(Ref.)	Normal Voltage	0.0000				
10	Normal Voltage	0.0013				
0	Normal Voltage	0.0017				
-10	Normal Voltage	0.0016	PASS			
-20	Normal Voltage	0.0003				
-30	Normal Voltage	0.0001				
20	Maximum Voltage	0.0017				
20	Normal Voltage	0.0000				
20	Battery End Point	0.0015				

Note:

- **1.** Normal Voltage =11.58 V. ; Battery End Point (BEP) =9 V. ; Maximum Voltage =13 V.
- 2. Note: The frequency fundamental emissions stay within the authorized frequency block.

Appendix B. Test Results of Radiated Test

Radiated Spurious Emission

LTE Band 30 / 5MHz / QPSK / RB Size 1 Offset 0											
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)		
	4608	-53.02	-40	-13.02	-76.41	-59.82	2.11	8.92	Н		
	6918	-49.28	-40	-9.28	-76.43	-57.36	2.62	10.70	Н		
Lowest	9216	-45.27	-40	-5.27	-75.83	-55.35	2.53	12.61	Н		
Lowest	4608	-52.85	-40	-12.85	-76.25	-59.65	2.11	8.92	V		
	6918	-48.78	-40	-8.78	-76.03	-56.86	2.62	10.70	V		
	9216	-44.55	-40	-4.55	-75.66	-54.63	2.53	12.61	V		
	4614	-52.90	-40	-12.90	-76.41	-59.71	2.11	8.93	Н		
	6924	-50.02	-40	-10.02	-77.25	-58.11	2.62	10.71	Н		
Middle	9234	-45.50	-40	-5.50	-76.09	-55.57	2.53	12.61	Н		
wilddie	4614	-52.74	-40	-12.74	-76.12	-59.55	2.11	8.93	V		
	6924	-49.55	-40	-9.55	-76.64	-57.64	2.62	10.71	V		
	9234	-45.08	-40	-5.08	-76.08	-55.15	2.53	12.61	V		
Highest	4620	-52.80	-40	-12.80	-76.22	-59.62	2.12	8.94	Н		
	6930	-49.66	-40	-9.66	-76.84	-57.76	2.61	10.72	Н		
	9234	-44.70	-40	-4.70	-75.26	-54.77	2.53	12.61	Н		
	4620	-52.80	-40	-12.80	-76.29	-59.62	2.12	8.94	V		
	6930	-49.14	-40	-9.14	-76.42	-57.24	2.61	10.72	V		
	9234	-44.95	-40	-4.95	-76.03	-55.02	2.53	12.61	V		

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

LTE Band 30 / 10MHz / QPSK / RB Size 1 Offset 0										
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)	
Middle	4608	-52.88	-40	-12.88	-76.37	-59.68	2.11	8.92	Н	
	6918	-49.49	-40	-9.49	-76.57	-57.57	2.62	10.70	Н	
	9216	-45.15	-40	-5.15	-75.76	-55.23	2.53	12.61	Н	
	4608	-52.71	-40	-12.71	-76.11	-59.51	2.11	8.92	V	
	6918	-48.24	-40	-8.24	-75.37	-56.32	2.62	10.70	V	
	9216	-45.98	-40	-5.98	-76.01	-56.06	2.53	12.61	V	

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.