

FCC Test Report

APPLICANT	:	Lenovo (Shanghai) Electronics Technology Co., Ltd.
EQUIPMENT	:	dtab Compact
BRAND NAME	:	NTT docomo
MODEL NAME	:	ELF-8605L
FCC ID	:	O57ELF8605L
STANDARD	:	47 CFR Part 15 Subpart B
CLASSIFICATION	:	Certification

The product was received on May 09, 2020 and testing was completed on Jul. 30, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Joimes Muang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	.3
SU	MMAR	Y OF TEST RESULT	.4
1.	GENE	RAL DESCRIPTION	
	1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7.	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Test Location Test Software	.5 .6 .7 .7
2.	 1.8. TEST 2.1. 2.2. 2.3. 2.4. 	Applicable Standards CONFIGURATION OF EQUIPMENT UNDER TEST Test Mode Connection Diagram of Test System	8 8 10 11
3.	TEST 3.1. 3.2.	RESULT 1 Test of AC Conducted Emission Measurement 1 Test of Radiated Emission Measurement 1	13
4. 5.		OF MEASURING EQUIPMENT2	

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FC050909	Rev. 01	Initial issue of report	Aug. 25, 2020

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
					Under limit
3.1	15.107	AC Conducted Emission	< 15.107 limits	PASS	6.72 dB at
					0.570 MHz
		5.109 Radiated Emission	< 15.109 limits	PASS	Under limit
3.2	15.109				6.26 dB at
					167.74 MHz

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1. General Description

1.1. Applicant

Lenovo (Shanghai) Electronics Technology Co., Ltd.

Section 304-305, Building No. 4, # 222, Meiyue Road, China (Shanghai) Pilot Free Trade Zone

1.2. Manufacturer

Lenovo PC HK Limited

23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong, P.R.China

1.3. Product Feature of Equipment Under Test

	Product Feature
Equipment	dtab Compact
Brand Name	NTT docomo
Model Name	ELF-8605L
FCC ID	O57ELF8605L
	WCDMA/LTE
	WLAN 2.4GHz 802.11b/g/n HT20/HT40
EUT ournerte Dedice emplication	WLAN 5GHz 802.11a/n HT20/HT40
EUT supports Radios application	WLAN 5GHz 802.11ac VHT20/VHT40/VHT80
	Bluetooth BR/EDR/LE
	FM Receiver and GNSS
	Conduction:
	860775040008126 for Sample 1
IMEI Code	860775040049732 for Sample 2
	Radiation:
	860775040008118 for Sample 1
	860775040049732 for Sample 2
HW Version	Tablet ELF-8605L
SW Version	ELF-8605L_RF04_20200813
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4.	Product S	pecification	of Eau	uipment	Under	Test

Standards-related Product Specification				
Tx Frequency	WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 5 : 824.7 MHz ~ 848.3 MHz LTE Band 38 : 2572.5 MHz ~ 2617.5 MHz LTE Band 41 : 2537.5 MHz ~ 2652.5 MHz 802.11b/g/n: 2412 MHz ~ 2462 MHz 802.11a/n/ac: 5180 MHz ~ 5240 MHz; 5260 MHz ~ 5320 MHz; 5500 MHz ~ 5720 MHz 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz			
Rx Frequency	WCDMA Band V: 871.4 MHz ~ 891.6 MHz LTE Band 5 : 869.7 MHz ~ 893.3 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz LTE Band 41 : 2537.5 MHz ~ 2652.5 MHz 802.11b/g/n: 2412 MHz ~ 2462 MHz 802.11a/n/ac: 5180 MHz ~ 5240 MHz; 5260 MHz ~ 5320 MHz; 5500 MHz ~ 5720 MHz 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz GNSS : 1559 MHz ~ 1610 MHz FM : 88 MHz ~ 108 MHz			
Antenna Type	WWAN : FPC Antenna WLAN : FPC Antenna Bluetooth : FPC Antenna GNSS: FPC Antenna FM : External Earphone Antenna			
Type of Modulation	WCDMA : BPSK HSPA : QPSK LTE: QPSK / 16QAM / 64QAM 802.11b : DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n/ac : OFDM (BPSK / QPSK / 16QAM / 64QAM /256QAM) Bluetooth LE : GFSK Bluetooth (1Mbps) : GFSK Bluetooth (2Mbps) : π /4-DQPSK Bluetooth (3Mbps) : 8-DPSK GNSS : BPSK FM: FM			

GNSS = GLONASS + GPS

1.5. Modification of EUT

No modifications are made to the EUT during all test items.

1.6. Test Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.					
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone					
Test Site Location	Jiangsu Province 215300	People's Republic of Chi	na			
	TEL : +86-512-57900158					
	FAX : +86-512-57900958					
			FCC Test Firm			
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.			
	CO01-KS 03CH02-KS	CN1257	314309			

1.7. Test Software

Item Site		Manufacture	Name	Version
1.	03CH02-KS	AUDIX	E3	6.2009-8-24a
2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart B
- ANSI C63.4-2014

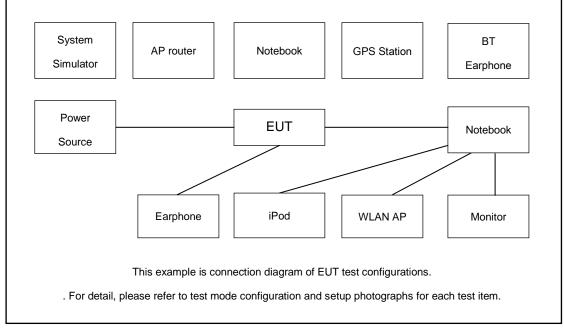
Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2. Test Configuration of Equipment Under Test

2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items	Function Type
	Mode 1: WCDMA Band V Rx (Middle) + Bluetooth Idle + WLAN (2.4G) Idle + Camera(Rear) + Earphone + Battery + Adapter With Cradle for Sample 1
	Mode 2: LTE Band 5 Rx (Low)+Bluetooth Idle+WLAN (5G) Idle+Camera(Front) + Earphone + Battery + Adapter With Cradle for Sample 1
	Mode 3: LTE Band 38 Rx + Bluetooth Idle + WLAN (2.4G) Idle + MPEG4(Run Color Bar) + Earphone + Battery + Adapter With Cradle for Sample 1
AC Conducted Emission	Mode 4: LTE Band 41 Rx + Bluetooth Idle + WLAN (5G) Idle + FM Rx(98MHz) + Earphone + Battery + Adapter With Cradle for Sample 1
	Mode 5: WCDMA Band V Rx (High) + Bluetooth Idle + WLAN (2.4G) Idle + GNSS Rx + Earphone + Battery + USB Link With NB (Type-c Port) for Sample 1
	Mode 6: LTE Band 5 Rx (Low)+Bluetooth Idle+WLAN (5G) Idle+Camera(Front) + Earphone + Battery + USB Cable (Charging from Adapter)(Type-c Port) for Sample 1
	Mode 7: LTE Band 5 Rx (Low)+Bluetooth Idle+WLAN (5G) Idle+Camera(Front) + Earphone + Battery + Adapter With Cradle for Sample 2



Radiated Emissions		Mode 1: WCDMA Band V Rx (Middle) + Bluetooth Idle + WLAN (2.4G) Idle + Camera(Rear) + Earphone + Battery + Adapter With Cradle for Sample 1	
		Mode 2: LTE Band 5 Rx (Low)+Bluetooth Idle+WLAN (5G) Idle+Camera(Front) + Earphone + Battery + Adapter With Cradle for Sample 1	
		Mode 3: LTE Band 38 Rx + Bluetooth Idle + WLAN (2.4G) Idle + MPEG4(Run Color Bar) + Earphone + Battery + Adapter With Cradle for Sample 1	
		Mode 4: LTE Band 41 Rx + Bluetooth Idle + WLAN (5G) Idle + FM Rx(88MHz) + Earphone + Battery + Adapter With Cradle for Sample 1	
		Mode 5: WCDMA Band V Rx (High) + Bluetooth Idle + WLAN (2.4G) Idle + GNSS Rx + Earphone + Battery + USB Link With NB (Type-c Port) for Sample 1	
		Mode 6: WCDMA Band V Rx (High) + Bluetooth Idle + WLAN (2.4G) Idle + GNSS Rx + Earphone + Battery + USB Cable (Charging from Adapter)(Type-c Port) for Sample 1	
		Mode 7: WCDMA Band V Rx (High) + Bluetooth Idle + WLAN (2.4G) Idle + Camera(Front) + Earphone + Battery + USB Link With NB (Type-c Port) for Sample 2	
		Mode 8: WCDMA Band V Rx (High) + Bluetooth Idle + WLAN (2.4G) Idle + GNSS Rx + Earphone + Battery + USB Link With NB (Type-c Port) for Sample 2	
Rema	rk:		
1. The worst case of AC is mode 2; only the test data of this mode is reported.			
2.	. The worst	case of RE is mode 8; only the test data of this mode is reported.	
3.	3. Data Link with Notebook means data application transferred mode between EUT a		
	Notebook.		
4	Pre-scanned Low/Middle/High channel for WCDMA Band V/LTE Band 5, the worst channe		

4. Pre-scanned Low/Middle/High channel for WCDMA Band V/LTE Band 5, the worst channel was recorded in this report.

2.2.Connection Diagram of Test System

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application

2.3. Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritus	MT8821C	N/A	N/A	Unshielded,1.8m
2.	Base Station	R&S	CMU 200	N/A	N/A	Unshielded,1.8m
3.	LTE Base Station	Anritus	MT8820C	N/A	N/A	Unshielded,1.8m
4.	Signal Generator	R&S	SMBV100A	N/A	N/A	Unshielded,1.8m
5.	Vector Signal Generator	R&S	SMBV100A	258305	N/A	N/A
6.	WLAN AP	TP-Link	TL-WDR5600	N/A	N/A	Unshielded,1.8m
7.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
8.	Bluetooth Earphone	Xiaomi	LYEJ02LM	N/A	N/A	N/A
9.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
10.	Notebook	Lenovo	V130-141K B001	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
11.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
12.	SD Card	SanDisk	Uitra	N/A	N/A	N/A
13.	SD Card	Kingston	8GB	N/A	N/A	N/A
14.	Hard Disk	Lenovo	F310	DoC	Shielded, 1.2m	N/A
15.	Hard disk	KINGSHARE	KSP6120G	Fcc DoC	Shielded, 1.2m	N/A
16.	USB Cable	N/A	N/A	N/A	N/A	Shielded, 0.8 m
17.	Adaptor	N/A	N/A	N/A	N/A	N/A
18.	Earphone	N/A	N/A	N/A	N/A	Unshielded, 1.2 m

2.4. EUT Operation Test Setup

The EUT was in WCDMA or LTE idle mode during the testing. The EUT was synchronized to the BCCH, and is in continuous receiving mode by setting system simulator's paging reorganization.

At the same time, the EUT was attached to the Bluetooth earphone or WLAN AP, and the following programs installed in the EUT were programmed during the test.

- 1. Data application is transferred between notebook and EUT via USB cable.
- 2. Turn on camera to capture images.
- 3. Turn on MPEG4 function.
- 4. Turn on FM receiver function to make the EUT receive continuous signals from FM station.
- 5. Turn on GNSS function to make the EUT receive continuous signals from GNSS station.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

3.1.1 Limits of AC Conducted Emission

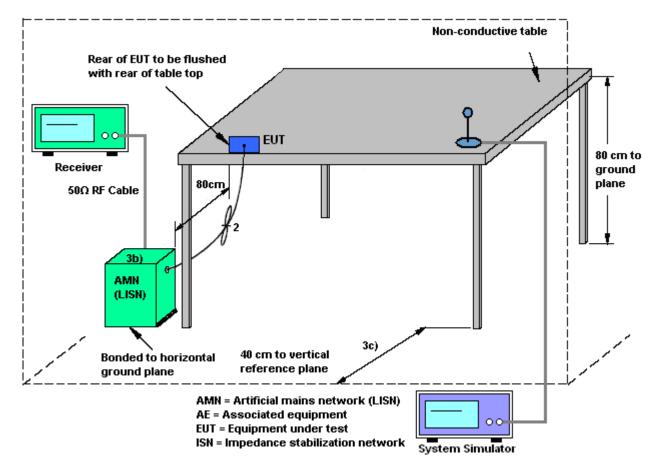
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

<Class B Limit>

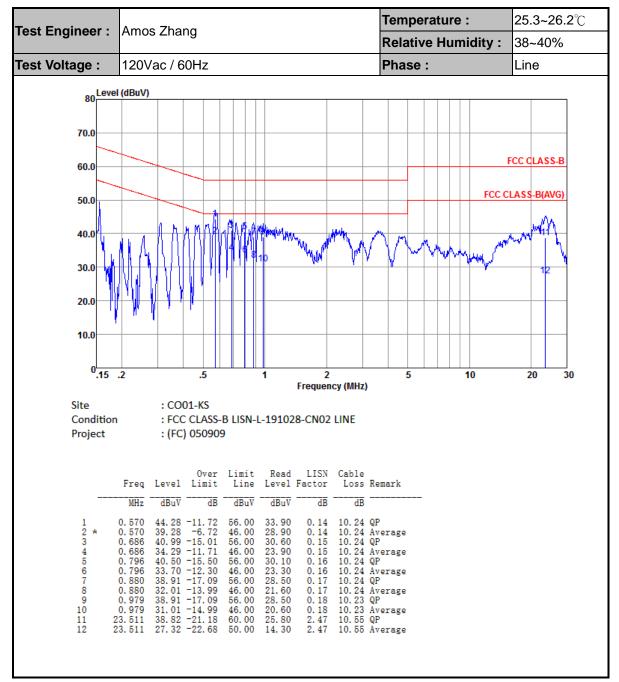
Frequency of emission	Conducted	limit (dBuV)
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

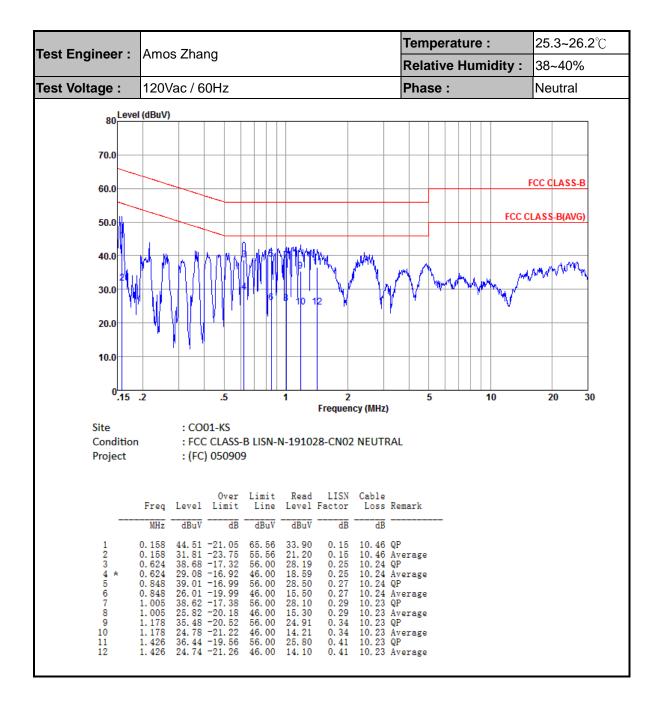
3.1.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure


- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test Setup



3.1.5 Test Result of AC Conducted Emission

Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dBµV) Limit Line(dBµV)

3.2. Test of Radiated Emission Measurement

3.2.1. Limit of Radiated Emission

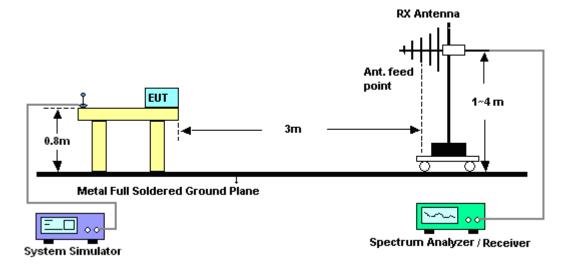
The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

<Class B Limit>

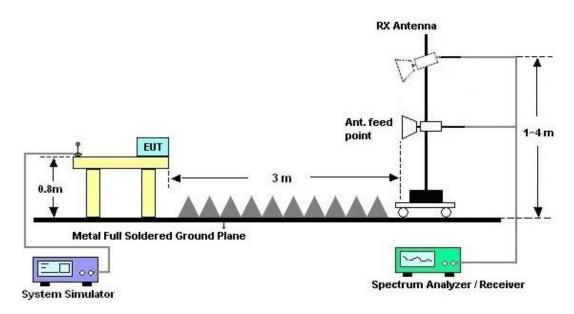
Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.2.3. Test Procedures

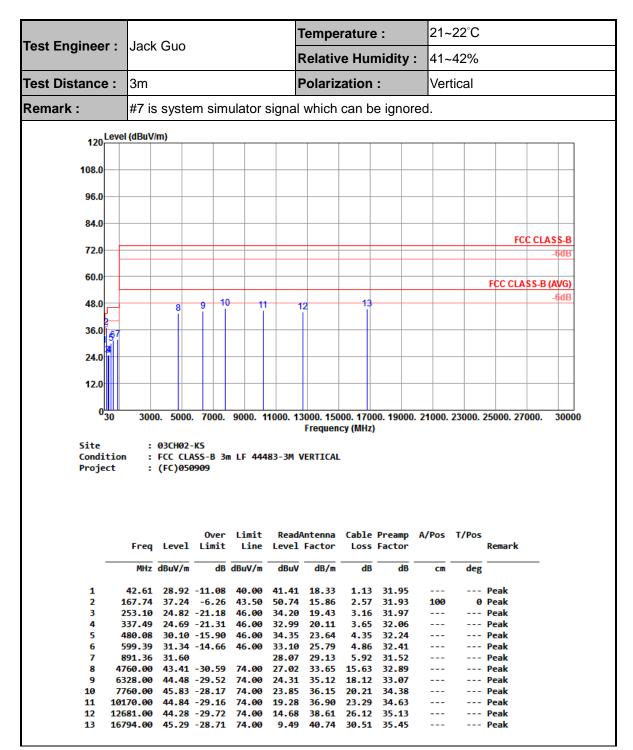
- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level



3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz



3.2.5. Test Result of Radiated Emission

loot Engineer	le el·	Jack Guo					Temperature :			21~22°C 41~42%		
est Engineer :	Jack					Relative Humidity :						
est Distance :	3m	3m Polarization :					:	Horizontal				
Remark :	#7 is system simulator signa				signal	al which can be ignored.						
120 Lev	el (dBuV/	m)										
120												
108.0												
96.0												
84.0												
04.0											EC	C CLASS
72.0												-60
60.0												
00.0											FCC CLA	SS-B (AV
48.0		9		10 11	12	13						-60
3 -7 36.0 <mark>85</mark> 1	8											
50.046												
24.0												
12.0										_		
	300	0. 5000	. 7000.	9000, 1	1000. 13	3000, 150	00, 170	0. 19000	. 21000.	23000.	25000, 27	000. 30
12.0 0 ₃₀	300	0. 5000	. 7000.	9000. 1	1000. 13	3000. 150 Frequen			. 21000.	23000.	25000. 27	000. 30
0 ₃₀ Site	:	03CH02-	KS			Frequen	cy (MHz)		. 21000.	23000. 3	25000. 27	000. 30
030 Site Conditio	: n :	03CH02- FCC CL4	-KS ASS-B 3m				cy (MHz)		. 21000.	23000.	25000. 27	000. 30
0 ₃₀ Site	: n :	03CH02-	-KS ASS-B 3m			Frequen	cy (MHz)		. 21000.	23000. 2	25000. 27	000. 30
030 Site Conditio	: n :	03CH02- FCC CL4	-KS ASS-B 3m			Frequen	cy (MHz)		. 21000.	23000.	25000. 27	000. 30
030 Site Conditio	: n :	03CH02- FCC CL4	-KS ASS-B 3m			Frequen	cy (MHz)		. 21000.	23000.	25000. 27	000. 30
030 Site Conditio	: n :	03CH02- FCC CL4	-KS ASS-B 3n 9909		183-3M H	Frequen	CY (MHZ) AL				25000. 27	000. 30
030 Site Conditio	: n : :	03CH02- FCC CL4	-KS ASS-B 3n 0909 Over	Limit	183-3M H Read/	Frequen	Cy (MHz) AL Cable)			25000. 27	000. 30
030 Site Conditio	n : : Freq	03CH02- FCC CLA (FC)050	-KS (SS-B 3m (9909) Over Limit	Limit	183-3M H Read/	Frequen HORIZONT Antenna	Cy (MHz) AL Cable	Preamp				000. 30
0 ₃₀ Site Conditio Project	: n : Freq MHz	03CH02- FCC CLA (FC)056 Level dBuV/m	KS VSS-B 3m 1909 Over Limit dB	Limit Line dBuV/m	Read/ Level dBuV	Frequen HORIZONT Antenna Factor dB/m	Cy (MHz) AL Cable Loss dB	Preamp Factor dB	A/Pos 	T/Pos deg	Remark	000. 30
0 ₃₀ Site Conditio Project	: n : Freq MHz 42.61 167.74	03CH02- FCC CL/ (FC)050 Level dBuV/m 19.12 33.11	-KS SS-B 3m 9909 Over Limit -20.88 -10.39	Limit Limit dBuV/m 40.00 43.50	Read/ Level dBuV 31.61 46.61	Frequen HORIZONT Antenna Factor dB/m 18.33 15.86	Cable Cable Loss dB 1.13 2.57	Preamp Factor dB 31.95 31.93	A/Pos	T/Pos deg 	Remark Peak Peak	000. 30
0 ₃₀ Site Conditio Project	: Freq MHz 42.61 167.74 232.73	03CH02- FCC CL/ (FC)056 Level dBuV/m 19.12 33.11 37.77	KS S5-B 3n 9909 Over Limit dB -20.88 -10.39 -8.23	Limit Limit dBuV/m 40.00 43.50 46.00	Read/ Level dBuV 31.61 46.61 49.95	Frequen HORIZONT Antenna Factor dB/m 18.33 15.86 16.73	Cy (MHZ) TAL Cable Loss dB 1.13 2.57 3.03	Preamp Factor dB 31.95 31.93 31.94	A/Pos cm 100	T/Pos deg 0	Remark Peak Peak Peak	000. 30
0 ₃₀ Site Conditio Project	: Freq MHz 42.61 167.74 232.73	03CH02- FCC CL/ (FC)056 Level dBuV/m 19.12 33.11 37.77 31.15	KS SS-B 3n 9909 Over Limit -20.88 -10.39 -8.23 -14.85	Limit Limit dBuV/m 40.00 43.50 46.00	Read/ Level dBuV 31.61 46.61 49.95 40.09	Frequen KORIZONT Antenna Factor dB/m 18.33 15.86 16.73 19.85	Cy (MHz) FAL Cable Loss dB 1.13 2.57 3.03 3.18	Preamp Factor dB 31.95 31.93 31.94 31.97	A/Pos 	T/Pos deg 0	Remark Peak Peak	000. 30
0 ₃₀ Site Conditio Project	: Freq HHz 42.61 167.74 232.73 256.01	03CH02- FCC CL/ (FC)056 Level dBuV/m 19.12 33.11 37.77 31.15 33.48	KS ASS-B 3m 19909 Over Limit dB -20.88 -10.39 -8.23 -14.85 -12.52	Limit Limit dBuV/m 40.00 43.50 46.00	Read/ Level dBuV 31.61 46.61 49.09 37.73	Frequen IORIZONT INTERNA Factor I8.33 15.86 16.73 19.85 23.64	Cable Cable Loss dB 1.13 2.57 3.03 3.18 4.35 4.58	Preamp Factor dB 31.95 31.93 31.94 31.97 32.24 32.31	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak	000. 30
0 ₃₀ Site Conditio Project	Freq HHz 42.61 167.74 232.73 256.01 480.08 532.46 891.36	03CH02- FCC CL/ (FC)056 Level dBuV/m 19.12 33.11 37.77 31.15 33.48 30.45 36.67	KS SS-B 3m 9909 Over Limit -20.88 -10.39 -8.23 -14.85 -12.52 -15.55	Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00	Read/ Level dBuV 31.61 46.61 49.95 40.09 37.73 33.27 33.14	Frequen IORIZONT INTENNA Factor dB/m 18.33 15.86 16.73 19.85 23.64 24.91 29.13	Cable Loss 	Preamp Factor dB 31.95 31.93 31.94 31.97 32.24 32.31 31.52	A/Pos 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	000. 30
0 ₃₀ Site Conditio Project	: Freq HHz 42.61 167.74 232.73 256.01 480.08 532.46 891.36 256.00	03CH02- FCC CL/ (FC)056 Level dBuV/m 19.12 33.11 37.77 31.15 33.48 30.45 36.67 38.73	KS SS-B 3m 9909 Over Limit dB -20.88 -10.39 -8.23 -14.85 -12.52 -15.55 -35.27	Limit Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00	Read/ Level dBuV 31.61 46.61 49.95 40.09 37.73 33.27 33.14 26.71	Frequen IORIZONT Antenna Factor dB/m 18.33 15.86 16.73 19.85 23.64 24.91 29.13 32.84	Cable Cable Loss dB 1.13 2.57 3.03 3.18 4.55 4.58 5.92 12.88	Preamp Factor dB 31.95 31.93 31.94 31.97 32.24 32.31 31.52 33.70	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	000. 30
0 ₃₀ Site Conditio Project	Freq HHz 42.61 167.74 232.73 256.01 480.08 532.46 891.36 256.00 480.00	03CH02- FCC CL/ (FC)056 Level dBuV/m 19.12 33.11 37.77 31.15 33.48 30.45 36.67 38.73 43.63	KS SS-B 3m 9909 Over Limit dB -20.88 -10.39 -8.23 -14.85 -12.52 -15.55 -35.27 -30.37	Limit Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 74.00	Read/ Level dBuV 31.61 46.61 49.95 40.09 37.73 33.27 33.14 26.71 25.08	Frequen IORIZONT INTERNA Factor IB.33 15.86 16.73 19.85 23.64 24.91 29.13 32.84 34.51	Cable Cable Loss dB 1.13 2.57 3.03 3.18 4.35 4.35 4.35 4.28 5.92 12.88 16.83	Preamp Factor 31.95 31.93 31.94 31.97 32.24 32.31 31.52 33.70 32.79	A/Pos 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	000. 30
0 ₃₀ Site Conditio Project	Freq HHz 42.61 167.74 232.73 256.01 480.08 532.46 891.36 256.00 480.00	03CH02- FCC CL/ (FC)056 Level dBuV/m 19.12 33.11 37.77 31.15 33.48 30.45 36.67 38.73 43.63 43.63 47.09	KS ASS-B 3m 19909 Over Limit dB -20.88 -10.39 -8.23 -14.85 -12.52 -15.55 -35.27 -30.37 -26.91	Limit Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 46.00 74.00 74.00 74.00	Read/ Level dBuV 31.61 46.61 49.99 37.73 33.27 33.14 26.71 25.08 23.54	Frequen IORIZONT Antenna Factor dB/m 18.33 15.86 16.73 19.85 23.64 24.91 29.13 32.84	Cable Loss dB 1.13 2.57 3.03 3.18 4.35 4.58 5.92 12.88 16.83 21.71	Preamp Factor dB 31.95 31.93 31.94 31.97 32.24 32.31 31.52 33.70 32.79 34.43	A/Pos cm 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
0 ₃₀ Site Conditio Project	Freq 42.61 167.74 232.73 256.01 480.08 \$32.46 891.36 256.00 480.00 880.00 123.00	03CH02- FCC CL/ (FC)056 Level dBuV/m 19.12 33.11 37.77 31.15 33.48 30.45 36.67 38.73 43.63 47.09 45.68 45.68	KS SS-B 3m 9909 Over Limit -20.88 -10.39 -8.23 -14.85 -12.52 -15.55 -35.27 -30.37 -26.91 -28.32 -28.32	Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00 74.00 74.00 74.00 74.00 74.00	Read/ Level dBuV 31.61 46.61 49.95 40.09 37.73 33.27 33.14 26.71 25.08 23.54 20.62 16.71	Frequen IORIZONT INTERNA Factor I8.33 15.86 16.73 19.85 23.64 24.91 29.13 32.84 34.51 36.27	Cable Loss (MHz) Cable Loss (1,13 2,57 3,03 3,18 4,35 4,58 5,92 12,88 16,83 21,71 22,74 25,43	Preamp Factor dB 31.95 31.93 31.94 31.97 32.24 32.31 31.52 33.70 32.79 34.43 34.54 35.14	A/Pos 100 	T/Pos deg 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	

Note:

- Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB) Preamp Factor(dB)
- 2. Over Limit(dB) = Level(dBµV/m) Limit Line(dBµV/m)

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz;Ma x 30dBm	Oct, 18, 2019	Jul. 30, 2020	Oct. 17,2020	Radiation (03CH02-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55370528	10Hz-44G,MAX 30dB	Oct. 18, 2019	Jul. 30, 2020	Oct. 17, 2020	Radiation (03CH02-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 30, 2019	Jul. 30, 2020	Dec. 29, 2020	Radiation (03CH02-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Nov. 10, 2019	Jul. 30, 2020	Nov. 09, 2020	Radiation (03CH02-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 10, 2019	Jul. 30, 2020	Nov. 09, 2020	Radiation (03CH02-KS)
Amplifier	MITEQ	EM18G40GGA	060728	18~40GHz	Jan. 08, 2020	Jul. 30, 2020	Jan. 07, 2021	Radiation (03CH02-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Aug. 06, 2019	Jul. 30, 2020	Aug. 05, 2020	Radiation (03CH02-KS)
Amplifier	Keysight	83017A	MY53270316	500MHz~26.5G Hz	Oct. 18, 2019	Jul. 30, 2020	Oct.17, 2020	Radiation (03CH02-KS)
AC Power Source	Chroma	61601	61601000247 3	N/A	NCR	Jul. 30, 2020	NCR	Radiation (03CH02-KS)
Turn Table	MF	MF7802	N/A	0~360 degree	NCR	Jul. 30, 2020	NCR	Radiation (03CH02-KS)
Antenna Mast	MF	MF7802	N/A	1 m~4 m	NCR	Jul. 30, 2020	NCR	Radiation (03CH02-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 14, 2020	Jul. 21, 2020	Apr. 13, 2021	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 18, 2019	Jul. 21, 2020	Oct. 17, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Oct. 28, 2019	Jul. 21, 2020	Oct. 27, 2020	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP0000008 11	AC 0V~300V, 45Hz~1000Hz	Oct. 18, 2019	Jul. 21, 2020	Oct. 17, 2020	Conduction (CO01-KS)

NCR: No Calibration Required.

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.908

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.9dB
--	-------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B