

FCC Radio Test Report

FCC ID: 057C640RTL8852

Project No.		2007T046B
Equipment		Notebook Computer
Brand Name		Lenovo
Test Model	:	Yoga 6 13ARE05
Series Model	÷	Yoga 6 13ARE05********, Yoga 6 13ALC6, Yoga 6 13ALC6*******
Series would	•	(*=0~9, A~z, "_" or blank)
Applicant	:	Lenovo (Shanghai) Electronics Technology Co., Ltd.
Address	:	Section 304-305, Building No. 4, # 222, Meiyue Road, China (Shanghai) Pilot Free Trade Zone
Manufacturer	:	Lenovo PC HK Limited
Address	:	23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong, P.R.China
Date of Receipt	:	
Date of Test	:	Apr. 13, 2021 ~ May 04, 2021
Issued Date	:	May 12, 2021
Report Version	:	R00
Standard(s)	:	FCC Part15, Subpart C (15.247) ANSI C63.10-2013 FCC KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Welly zhou

Prepared by : Welly Zhou

Phan Na

Approved by : Ethan Ma

Certificate #5123.02

Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town,Dongguan, Guangdong, China. Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REVISON HISTORY	4
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
1.3 TEST ENVIRONMENT CONDITIONS	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4 SUPPORT UNITS	9
3 . AC POWER LINE CONDUCTED EMISSIONS TEST	10
3.1 LIMIT	10
3.2 TEST PROCEDURE	10
3.3 DEVIATION FROM TEST STANDARD	10
3.4 TEST SETUP	11
3.5 EUT OPERATION CONDITIONS	11
3.6 TEST RESULTS	11
4 . RADIATED EMISSIONS TEST	12
4.1 LIMIT	12
4.2 TEST PROCEDURE	13
4.3 DEVIATION FROM TEST STANDARD	13
4.4 TEST SETUP	14
4.5 EUT OPERATION CONDITIONS	16
4.6 TEST RESULTS - 30 MHZ TO 1000 MHZ	16
4.7 TEST RESULTS - ABOVE 1000 MHZ	16
5 . MEASUREMENT INSTRUMENTS LIST	17
6 . EUT TEST PHOTO	18
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	21
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	26
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ	29

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-3-2007T046	R00	Original Report.	Aug. 28, 2020
BTL-FCCP-3-2007T046A	R00	 Added Series models. Added CPU. Added a new appearance without cover. Changed adapter. 	Mar. 23, 2021
BTL-FCCP-3-2007T046B	R00	 Added Realtek / RTL8852AE module card. Added adapter * 2. 	May 12, 2021

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part15, Subpart C (15.247)						
Standard(s) Section	Test Item	Test Result	Judgment	Remark		
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS			
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C	PASS			

Note:

- (1) "N/A" denotes test is not applicable to this device.
- (2) This is to request a Class II permissive change for FCC ID: 057C640RTL8852.

This FCC ID: O57C640RTL8852 is change ID based Realtek Semiconductor Corp., the original application information follow as model: RTL8852AE, FCC ID: TX2-RTL8852AE, approved on 10/16/2020)

Thus, only conducted emissions and radiated spurious emissions were evaluated and recorded in this report. For the test results of all other test items please refer to module test report as below table:

RF Module model	Report Number	Module Function
RTL8852AE	RF200522E04	WLAN 2.4G
RTL8852AE	RF200522E04-1	RLAN 5G Band 1~4
RTL8852AE	RF200522E04-2	Bluetooth EDR
RTL8852AE	RF200522E04-3	Bluetooth LE

(3) Based on the RF module the antennas for this Notebook Computer were updated as below table:

Antenna information						
	Manufacturer	AWAN				
	Antenna Type	Main: PIFA Antenna	Aux: PIFA Antenna			
	Part number	AUF6Y-100025 (DC33002GC00)	AUF6Y-100026 (DC33002GC10)			
Antenna 1		Main Antenna :	Aux Antenna :			
(WLAN combo)	Peak gain	WLAN(2.4G):1.14dBi	WLAN(2.4G):-1.53dBi			
		WLAN(5G B1-3):-1.73dBi WLAN(5G B4):-2.83dBi	WLAN(5G B1-3):-2.43dBi WLAN(5G B4):-1.54dBi			

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.60

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		9kHz ~ 30MHz	V	3.79
		9kHz ~ 30MHz	Н	3.57
	CISPR	30MHz ~ 200MHz	V	4.88
		30MHz ~ 200MHz	Н	4.14
DG-CB03		200MHz ~ 1,000MHz	V	4.62
DG-CD03		200MHz ~ 1,000MHz	Η	4.80
		1GHz ~ 6GHz	-	4.58
		6GHz ~ 18GHz	-	5.18
		18GHz ~ 26.5GHz	-	3.62
		26.5GHz ~ 40GHz	-	4.00

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	24°C	73%	AC 120V/60Hz	Kwok Guo
Radiated Emissions-30 MHz to 1GHz	26°C	52%	AC 120V/60Hz	Kwok Guo
Radiated Emissions-Above 1000 MHz	26°C	52%	AC 120V/60Hz	Kwok Guo

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Notebook Computer
Brand Name	Lenovo
Test Model	Yoga 6 13ARE05
Series Model	Yoga 6 13ARE05*******, Yoga 6 13ALC6, Yoga 6 13ALC6******** (*=0~9,
Series Model	A~z, "_" or blank)
Model Difference(s)	Differ in marketing purpose.
Hardware Version	LA-K211P
Software Version	19041.329
RF Module Model	RTL8852AE
EUT Power Rating	20Vdc 2.25A
Power Adapter Power Rating	 Brand: Acbel (Lenovo) M/N: ADLX45YAC3D I/P: 100-240V~1.2A 50-60Hz O/P: 20.0Vdc 2.25A 45.0W/15.0Vdc 3.0A/9.0Vdc 2.0A/5.0Vdc 2.0A 10.0W Brand: Chicony (Lenovo) M/N: ADLX45YCC3G I/P: 100-240V~1.3A 50-60Hz O/P: 20.0Vdc 2.25A 45.0W / 15Vdc 3A / 9Vdc 2A / 5.0Vdc 2.0A 10.0W Brand: Delta (Lenovo) M/N: ADLX45YDC3D I/P: 100-240V~1.2A 50-60Hz O/P: 20.0Vdc 2.25A 45.0W / 15.0Vdc 3.0A / 9.0Vdc 2.0A / 5.0Vdc 2.0A 10.0W
Power Adapter	 Acbel (Lenovo) / ADLX45YAC3D Chicony (Lenovo) / ADLX45YCC3G Delta (Lenovo) / ADLX45YDC3D
Operation Frequency	2412 MHz ~ 2472 MHz
Modulation Type	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM IEEE 802.11ax: OFDMA
Bit Rate of Transmitter	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 150 Mbps IEEE 802.11ax: up to 433.3 Mbps
Maximum Output Power (Reference module report)	IEEE 802.11ax (HEW20): 25.18 dBm (0.32961 W)

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. This is a supplement report of BTL-FCCP-3-2007T046, BTL-FCCP-3-2007T046A report. The differences compared with original report are
 - a. Added Realtek / RTL8852AE module card.
 - b. Added adapter * 2.
 - After evaluated, the changes with respect to the original one, all tests need to re-test.
- 3. Channel List:

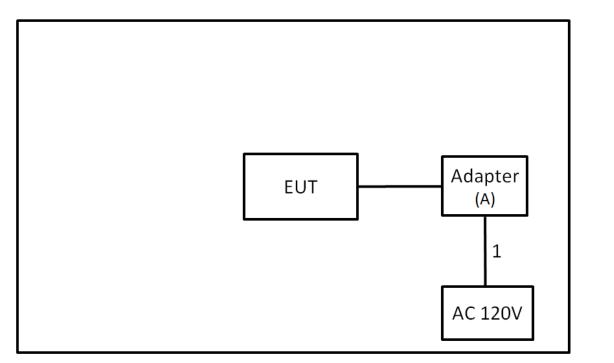
Onannor Elot.					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	06	2437	11	2462
02	2417	07	2442	12	2467
03	2422	08	2447	13	2472
04	2427	09	2452		
05	2432	10	2457		

2.2 DESCRIPTION OF TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	TX Mode_IEEE 802.11b	06	-
	TX Mode_IEEE 802.11b		Bandedge
	TX Mode_IEEE 802.11g	01/11/12/13	
Transmitter Radiated Emissions	TX Mode_IEEE 802.11n (HT20)	01,11,12,10	
(above 1GHz)	TX Mode_IEEE 802.11ax (HEW20)		
	TX Mode_IEEE 802.11n (HT40)	03/09/10/11	
	TX Mode_IEEE 802.11ax (HEW40)		
	TX Mode_IEEE 802.11b		
Transmitter Radiated Emissions	TX Mode_IEEE 802.11g	01/06/11/12/13	
(above 1GHz)	TX Mode_IEEE 802.11n (HT20)		Harmonic
	TX Mode_IEEE 802.11n (HT40)	03/06/09/10/11	

NOTE:

(1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.


(2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.

(3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

(4) There were no emissions found below 30 MHz within 20 dB of the limit.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
A	Adapter	Delta	ADLX45YDC3D	N/A
Item	Cable Type	Shielded Type	Ferrite Core	Length
1	Power Cable	NO	NO	0.9m

3. AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency of Emission (MHz)	Limit (dBµV)					
Frequency of Emission (MHZ)	Quasi-peak	Average				
0.15 - 0.5	66 to 56*	56 to 46*				
0.5 - 5.0	56	46				
5.0 - 30.0	60	50				

NOTE:

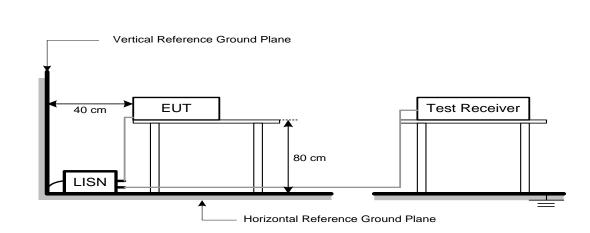
(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

3.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

4. RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Band edge/ at 3m (dB		Harmonic at 1.5m (dBµV/m)			
	Peak	Average	Peak	Average		
Above 1000	74	54	80 (Note 5)	60(Note 5)		

NOTE:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

1

(5)

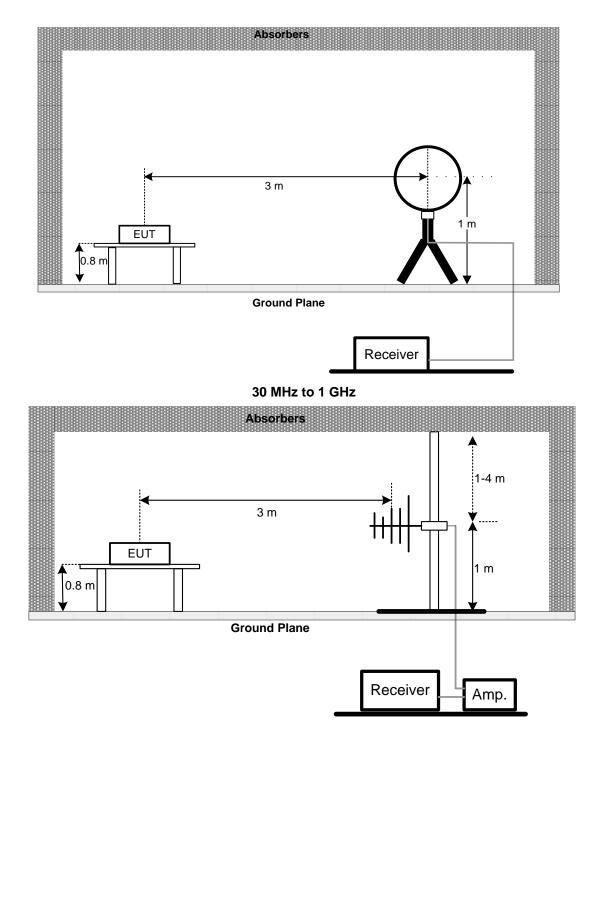
$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

20log d limit/d measure=20log 3/1.5=6 dB.

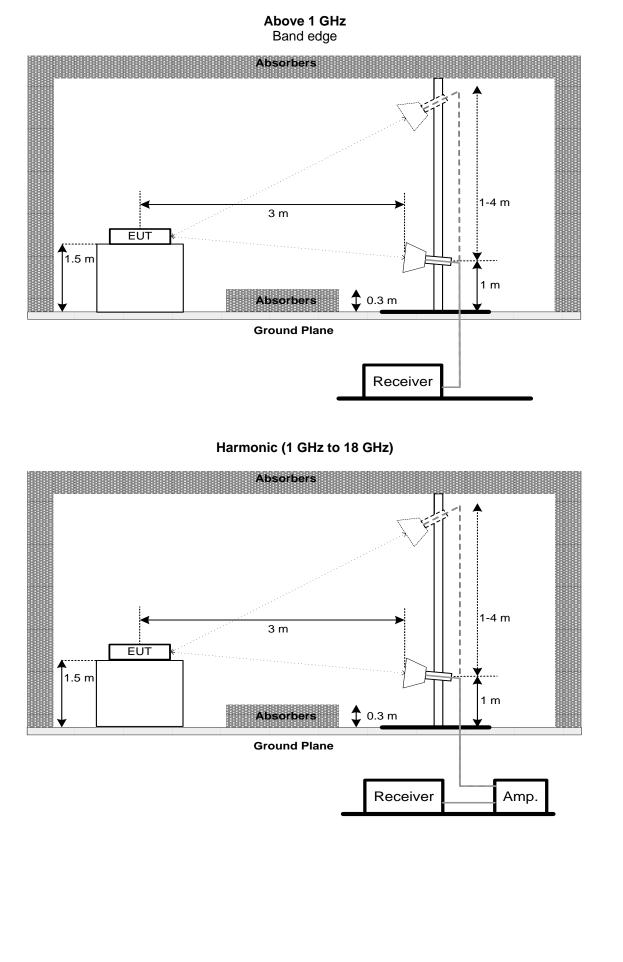
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for Peak,
(Emission in restricted band)	1 MHz / 1/T for Average
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector

4.2 TEST PROCEDURE

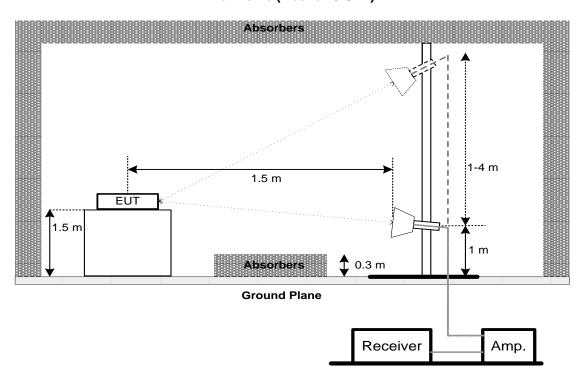
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m or 1.5m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.


4.3 DEVIATION FROM TEST STANDARD

No deviation



4.4 TEST SETUP



Harmonic (Above 18 GHz)

4.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX B.

4.7 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX C.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. MEASUREMENT INSTRUMENTS LIST

		AC Power L	ine Conducted Emis	sions	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EMI Test Receiver	R&S	ESCI	100382	Feb. 28, 2022
2	LISN	EMCO	3816/2	52765	Feb. 27, 2022
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	Feb. 27, 2022
4	50Ω Terminator	SHX	TF5-3	15041305	Feb. 27, 2022
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
6	Cable	N/A	RG223	12m	Mar. 09, 2022
7	643 Shield Room	ETS	6*4*3m	N/A	N/A

		Radiated Em	nissions - 30 MHz to	1 GHz		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 15, 2022	
2*	Amplifier	HP	8447D	2944A08742	Feb. 28, 2022	
3	Receiver	Agilent	N9038A	MY52130039	Jul. 25, 2021	
4	Cable	emci	LMR-400(30MHz-1 GHz)(8m+5m)	N/A	May 22, 2021	
5	Controller	СТ	SC100	N/A	N/A	
6	Controller	MF	MF-7802	MF780208416	N/A	
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
8	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2021	

		Radiated E	missions - Above 1	GHz	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Double Ridged Guide Antenna	ETS	3115	75789	May 12, 2021
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jul. 07, 2021
3	Amplifier	Agilent	8449B	3008A02584	Jul. 25, 2021
4	Microwave Preamplifier With Adaptor	Preamplifier With INSTRUMENT EMC2654045		980039 & HA01	Feb. 28, 2022
5	Receiver	Agilent	N9038A	MY52130039	Jul. 25, 2021
6	Controller	СТ	SC100	N/A	N/A
7	Controller	MF	MF-7802	MF780208416	N/A
8	Cable	N/A	EMC104-SM-SM-6 000	N/A	Oct. 16, 2021
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
10	Filter	STI	STI15-9912	N/A	Jul. 25, 2021
11	966 Chambe Room	RM	9*6*6m	N/A	Jul. 25, 2021

Remark: "N/A" denotes no model name, serial no. or calibration specified.

"*" calibration period of equipment list is three year.

Except * item, all calibration period of equipment list is one year.

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

st Mode)	Normal						Tested Date	2021/4/28
st Frequ		-						Phase	Line
100.0 90	dBu∀								
80									
70									
60									
50	1								
40 30	× 3 × 5 × 5	2							
20	2 × 4 × 6	×				9 X	×		
10 0.0	×	8 X				11 X			
0.15	0		0.5		(MHz)		5		30.000
o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
1 *	MHz	dBu∨	dB	dBu∨	dBuV	dB	Detector	Comment	
1	0.1836	39.82	0.01	39.83	64.32 54.32	-24.49	QP AVG		
2 3	0.1836	18.04 34.94	0.01	18.05 34.95	54.32 63.26	-36.27	QP		
3 4	0.2085	13.22	0.01	13.23	53.26	-40.03	AVG		
4 5	0.2005	31.07	0.01	31.09	61.94	-40.03	 		
5 6	0.2445	10.07	0.02	10.09	51.94	-41.85	AVG		
7	0.2445	25.16	0.02	25.19	60.04	-41.00	 		
8	0.3074	4.83	0.03	4.86	50.04	-45.18	AVG		
9	3.7995	18.31	0.00	18.42	56.00	-40.10	 		
0	3.7995	4.93	0.11	5.04	46.00	-40.96	AVG		

6.2452

6.2452

11

12

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

0.16

0.16

19.02

9.27

60.00

50.00

-40.98

-40.73

QΡ

AVG

18.86

st Mode		Normal						Tested Date	2021/4/28
st Freque		-						Phase	Neutral
	, IBuV								
90									
80									
70									
60									
50									
40 ×	< 35 ××								
20	××	7 X				9 X	11		
10	2 < 4 6 × ×						. X 12 0 X		
0.0	<u> </u>	8 X				×	Ś.		
0.150			.5		(MHz)		5		30.000
o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1 *	0.1815	37.13	0.01	37.14	64.42	-27.28	QP		
2	0.1815	13.74	0.01	13.75	54.42	-40.67	AVG		
3	0.2108	29.71	0.01	29.72	63.17	-33.45	QP		
4	0.2108	8.31	0.01	8.32	53.17	-44.85	AVG		
5	0.2445	29.16	0.02	29.18	61.94	-32.76	QP		
6	0.2445	9.16	0.02	9.18	51.94	-42.76	AVG		
7	0.3030	23.16	0.03	23.19	60.16	-36.97	QP		
8	0.3030	1.04	0.03	1.07	50.16	-49.09	AVG		

9

10

11

12

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

0.11

0.11

0.15

0.15

21.46

5.32

18.79

9.34

56.00

46.00

60.00

50.00

-34.54

-40.68

-41.21

-40.66

QΡ

AVG

QΡ

AVG

21.35

5.21

18.64

9.19

3.9660

3.9660

6.0450

			al -									Teste	Deta		24/4/00
Test Mode Idle												Testec			21/4/28
Test Frequency -												Phase	•	Lin	е
100.0	dBu∖	,													
Г															
90						_				-					_
80															
70															
60			_							-					
50		_													
40	1 X			_						_					
30	Ŷ	3 X													
		!	5 X	7					9		11				
20	2 X			×					X		X				
10	x	4 ×	6	8					10		12 X				_
0.0	50			×	0.5			(MHz)	X		5				0.000
0.1	50		Pa	ading		prrect	Measure-	(1112)			5				0.000
No. Mk.	. F	req.		evel		actor	ment	Limit	Over						
		/Hz		æu∨		dB	dBu∨	dBu∨	dB		etector	Comr	rent		
1 *		815		6.51		0.01	36.52	64.42	-27.90		ЭР				
2		815		2.20		0.01	12.21	54.42	-42.21		AVG				
3		2445 2445		0.27		0.02	30.29	61.94	-31.65		QP AVG				
4		2445 2805		3.42 1.84		1.02 1.03	8.44 21.87	51.94 60.80	-43.50 -38.93		AVG QP				
6		2805		3.05		1.03	3.08	50.80	-30.93		ar AVG				
7		.000 682		9.68		0.03	19.71	58.54	-38.83		 ДР				
8				1.81		0.03	1.84	48.54	-46.70		AVG				
9		440		6.65		1.10	16.75	56.00	-39.25		ЭР				
10	3.4	440	2	2.51	C	1.10	2.61	46.00	-43.39	A	٩VG				
11	5.7	862	1	8.56	C	.15	18.71	60.00	-41.29	C	ΩP				

5.7862

12

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

0.15

8.66

50.00

-41.34

AVG

est Mo	de		Idle									Test	ed Date	2021/4/28
est Fre	quen	су	-									Pha	se	Neutral
100.0) dBu	v												
90														
80			_											
70														
60														
50														
40	1 X	3												
30		x	5 X	7) 1 [.]			
20	2 X	4 X		×						`````````````````````````````````	× ×			
10		^		8						1	0 X			
0.0	150		6 X	x		.5			(MHz)	•	5			30.000
U.	100			1					(MDZ)		5			30.000
No. Mk	к. F	Freq.		eadi _eve			rect ctor	Measure- ment	Limit	Over				
		MHz		dBu∖	/	d	В	dBu∨	dBu∨	dB	Detecto	r Cor	nment	
1 *	0.	1836		37.4:	3	0.	D1	37.44	64.32	-26.88	QP			
2	0.	1836		15.8	3	0.	D1	15.84	54.32	-38.48	AVG			
3	0.	2490		29.2	8	0.	02	29.30	61.79	-32.49	QP			
4	0.	2490		12.2	7	0.	02	12.29	51.79	-39.50	AVG			
5	0.	3030		22.64	4	0.	03	22.67	60.16	-37.49	QP			
6	0.	3030		0.78	;	0.	03	0.81	50.16	-49.35	AVG			
7	0.	3750		18.94	4	0.	03	18.97	58.39	-39.42	QP			
8	0.	3750		4.11		0.	03	4.14	48.39	-44.25	AVG			

9

10

11

12

3.9322

3.9322

5.8132

5.8132

(1) Measurement Value = Reading Level + Correct Factor.

0.11

0.11

0.15

0.15

19.37

5.21

18.51

9.04

56.00

46.00

60.00

50.00

-36.63

-40.79

-41.49

-40.96

QΡ

AVG

QP

AVG

(2) Margin Level = Measurement Value - Limit Value.

19.26

5.10

18.36

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

Test Mo	de	IEEE 802	.11b		٦	est Date	e	2021/4/28	3
Test Fre	quency	CH06: 24	37 MHz		F	Polarizati	ion	Vertical	
80.0) dBuV/m								
40		Ž		3X				5x	6×
0.0 30	.000 127.1	00 224.00	321.00	418.00	515.00	612.00	709.0	0 806.00	1000.00 MHz
No. Mł	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 *	70.740	48.14	-16.37	31.77	40.00	-8.23	QP		
2	166.770	39.30	-12.51	26.79	43.50	-16.71	peak		
3	399.570	36.52	-8.78	27.74	46.00	-18.26	peak		
4	599.390	33.64	-4.57	29.07	46.00	-16.93	peak		
5	788.540	34.88	-0.97	33.91	46.00	-12.09	peak		
6	942.770	33.17	1.58	34.75	46.00	-11.25	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

st Mode IEEE 802.11b Test Date 2021/4/28 st Frequency CH06: 2437 MHz Polarization Horizontal 80.0 dbuV/m ddbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m d0 dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV/m dbuV dbuV/m dbuV/m			1									
80.0 dBuV/m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 68.800 45.18 -15.97 29.21 40.00 1 68.800 45.18 -15.97 29.21 40.00 1 68.800 45.18 -15.97 29.21 40.00 1 68.800 45.18 -15.97 29.21 40.00 10.00 41.99 11 51.00 27.99 31 162.890 40.11 4 557.680 34.48 -5.70 28.78 46.00 -17.22 peak 5 787.570 38.48 -0.99	Test Mo	de	IEEE 802	.11b		T	est Date	e	202	1/4/28		
Image: state of the system	Test Fre	quency	CH06: 24	37 MHz		F	Polarizat	ion	Hor	izontal		
1 2 3 - - 4 -	80.0) dBuV/m										
30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz No. Mk. Freq. Level Factor Measurement Limit Margin Margin Margin MHz 480.00 45.18 -15.97 29.21 40.00 -10.79 peak 9.00 1000.00 MHz 1 68.800 45.18 -15.97 29.21 40.00 -10.79 peak 9.00 1000.00 10.00	40	1 2 X 2 X	3 X				4		\$	6×		
No. Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dB Detector Comment 1 68.800 45.18 -15.97 29.21 40.00 -10.79 peak 2 110.510 42.99 -15.00 27.99 43.50 -15.51 peak 3 162.890 40.11 -12.44 27.67 43.50 -15.83 peak 4 557.680 34.48 -5.70 28.78 46.00 -17.22 peak 5 * 787.570 38.48 -0.99 37.49 46.00 -8.51 peak		1.000 127.1	00 224.00	321.00	418.00	515.00	612.00	709.0	0 806.00	D	1000.00	MHz
1 68.800 45.18 -15.97 29.21 40.00 -10.79 peak 2 110.510 42.99 -15.00 27.99 43.50 -15.51 peak 3 162.890 40.11 -12.44 27.67 43.50 -15.83 peak 4 557.680 34.48 -5.70 28.78 46.00 -17.22 peak 5 * 787.570 38.48 -0.99 37.49 46.00 -8.51 peak	No. Mł	k. Freq.					Margin					
2 110.510 42.99 -15.00 27.99 43.50 -15.51 peak 3 162.890 40.11 -12.44 27.67 43.50 -15.83 peak 4 557.680 34.48 -5.70 28.78 46.00 -17.22 peak 5 * 787.570 38.48 -0.99 37.49 46.00 -8.51 peak		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment			
3 162.890 40.11 -12.44 27.67 43.50 -15.83 peak 4 557.680 34.48 -5.70 28.78 46.00 -17.22 peak 5 * 787.570 38.48 -0.99 37.49 46.00 -8.51 peak	1	68.800	45.18	-15.97	29.21	40.00	-10.79	peak				
4 557.680 34.48 -5.70 28.78 46.00 -17.22 peak 5 * 787.570 38.48 -0.99 37.49 46.00 -8.51 peak	2	110.510	42.99	-15.00	27.99	43.50	-15.51	peak				
5 * 787.570 38.48 -0.99 37.49 46.00 -8.51 peak	3	162.890	40.11	-12.44	27.67	43.50	-15.83	peak				
	4	557.680	34.48	-5.70	28.78	46.00	-17.22	peak				
6 898.150 35.12 0.24 35.36 46.00 -10.64 peak	5*	787.570	38.48	-0.99	37.49	46.00	-8.51	peak				
	6	898.150	35.12	0.24	35.36	46.00	-10.64	peak				

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ

Test Mo	ode	IEEE 802	2.11b		Т	est Date	9	2021/	4/22
Test Fre	equency	CH01: 24	412 MHz		F	Polarizat	ion	Horizo	ontal
130.	0 dBu¥/m								
70				1 X X			Marth_rimen		5
10.0									
2	312.000 2332				2412.00	2432.0	0 2452.	.00 2472.00	2512.00 MHz
No. M		Reading Level	g Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2386.947			58.56	74.00	-15.44	peak		
1 2	2386.947 2386.947			58.56 49.18	74.00 54.00	-15.44 -4.82	peak AVG		
		41.93	3 7.25				•	No Limit	
2	2386.947	41.93	3 7.25) 7.26	49.18	54.00	-4.82	AVG	No Limit No Limit	
2 3 X	2386.947 2412.000	41.93 100.40 96.98	3 7.25 0 7.26 3 7.26	49.18 107.66	54.00 74.00	-4.82 33.66	AVG peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo	ode	IEEE 80)2.11b		1	Fest Date	;	2021/4/2	22
Test Fre	equency	CH11: 2	462 MHz		F	Polarizati	on	Horizont	al
130.	0 dBu¥/m								
70	rd, daener	1 1 2 2 X	<u>م</u>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 ************************************	
10.0 2	362.000 2382	.00 2402	2.00 2422	.00 2442.00	2462.00	2482.00) 2502	.00 2522.00	2562.00 MHz
No. M	k. Freq.	Readir Level	ng Corre Facto	ct Measure or ment	- Limit	Margin			
	MHz	dBuV		dBuV/m	dBuV/m	dB	Detector	Comment	
1	2384.520				74.00	-17.23	peak		
2	2384.520				54.00	-20.20	AVG		
3 X	2462.000	97.6	8 7.25	5 104.93	74.00	30.93	peak	No Limit	
					54.00	47.59	AVG	No Limit	
4 *	2462.000	94.3	4 7.25	5 101.59	54.00	47.59	/~		
4 * 5	2462.000 2522.147				74.00	-15.87	peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		1							
Test Mo	de	IEEE 802.	.11b		-	Test Date	e	2021/4	4/22
Test Fre	equency	CH12: 24	67 MHz		1	Polarizat	ion	Horizo	ontal
130.0	0 dBuV/m								
70	1 5, d,			understand and an and a second	*	6 ×	Planulyhaun nudy		
10.0	367.000 2387	.00 2407.0	0 2427.00	2447.00	2467.00) 2487.0	0 2507.	.00 2527.00	2567.00 MHz
No. M		Reading Level	Correct Factor	Measure- ment	Limit	Margin			2307.00 MH2
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2376.313	49.20	7.26	56.46	74.00	-17.54	peak		
2	2376.313	26.92	7.26	34.18	54.00	-19.82	AVG		
3 X	2467.000	95.47	7.25	102.72	74.00	28.72	peak	No Limit	
4 *	2467.000	92.13	7.25	99.38	54.00	45.38	AVG	No Limit	
5	2483.607	51.60	7.25	58.85	74.00	-15.15	peak		
6	2483.607	40.11	7.25	47.36	54.00	-6.64	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 80)2.11b		Т	est Date)	2021/4	/22
Test Fre	quency	CH13: 2	472 MH	z	F	Polarizati	on	Horizor	ntal
130.0) dBuV/m								
70	1 		Approximation	and the second sec		5 America 6 X			
10.0	372.000 2392	.00 2412	00 242	2.00 2452	.00 2472.00	2492.00) 2512.	00 2532.00	2572.00 MHz
No. MI		Readir Level	ng Corre	ect Measu	ure-	Margin	. 2312.		2372.00 MH2
	MHz	dBu∨	dB	dBu₩	m dBuV/m	dB	Detector	Comment	
1	2379.380	50.1	8 7.2	6 57.44	4 74.00	-16.56	peak		
2	2379.380	26.2	9 7.2	6 33.55	5 54.00	-20.45	AVG		
3 X	2472.000	91.6	1 7.2	5 98.80	5 74.00	24.86	peak	No Limit	
4 *	2472.000	88.3	8 7.2	5 95.63	3 54.00	41.63	AVG	No Limit	
5	2485.673	51.7	1 7.2	5 58.96	6 74.00	-15.04	peak		
6	2485.673	38.9	15 7.2	5 46.20	54.00	-7.80	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		r							
Test Mo	de	IEEE 802	2.11g		-	Test Date)	2021/4/2	2
Test Fre	equency	CH01: 24	12 MHz			Polarizati	ion	Horizont	al
130.0	0 dBuV/m								
70			1 X X 2 X	400-160 MM With W	**************************************				5
10.0 2'	312.000 2332	.00 2352.0	00 2372.00	2392.00	2412.00) 2432.00) 2452.	.00 2472.00	2512.00 MHz
No. M	k. Freq.	Reading Level) Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2375.913			57.61	74.00	-16.39	peak		
2	2375.913			44.83	54.00	-9.17	AVG		
3 X	2412.000	99.19	7.26	106.45	74.00	32.45	peak	No Limit	
4 *	2412.000	89.54	7.26	96.80	54.00	42.80	AVG	No Limit	
5	2510.880	50.42	7.29	57.71	74.00	-16.29	peak		
6	2510.880	28.19	7.29	35.48	54.00	-18.52	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		í.							
Test Mo	de	IEEE 802	2.11g			Test Date	9	2021/4	/22
Test Fre	quency	CH11: 24	462 MHz			Polarizati	ion	Horizo	ntal
130.1) dBu∀/m								
70	1 			nynanum ternfellell	**************************************	6 ×	And maken to		1
10.0									
	362.000 2382	Reading	g Correct	2442.00 Measure-	2462.00			00 2522.00	2562.00 MHz
No. MI		Level	Factor	ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2373.973			57.05	74.00	-16.95	peak		
2	2373.973			33.88	54.00	-20.12	AVG		
3 X	2462.000			105.93	74.00	31.93	peak	No Limit	
4 *	2462.000			96.16	54.00	42.16	AVG	No Limit	
5	2483.560	53.07	7.25	60.32	74.00	-13.68	peak		
6	2483.560	37.73	3 7.25	44.98	54.00	-9.02	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 80	2.11g			Test Dat	е	2021	/4/22
Test Fre	quency	CH12: 24	467 MHz			Polarizat	tion	Horiz	contal
130.0) dBuV/m								
70					4 ×	55 56 X	4.4610.40.40		
10.0									
2:	367.000 2387	.00 2407. Readin		0 2447.00 Measure-	2467.0	0 2487.0)0 2507.	00 2527.00	2567.00 MHz
No. Mi		Level	Factor	ment	Limit	Margir	1		
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2385.033	50.42	2 7.25	57.67	74.00	-16.33	peak		
2	2385.033	26.50	0 7.25	33.75	54.00	-20.25	AVG		
3 X	2467.000	96.31	1 7.25	103.56	74.00	29.56	peak	No Limit	
4 *	2467.000	86.36	6 7.25	93.61	54.00	39.61	AVG	No Limit	
5	2484.227	54.14	4 7.25	61.39	74.00	-12.61	peak		
6	2484.227	36.77	7 7.25	44.02	54.00	-9.98	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		r							
Test Mo	de	IEEE 80)2.11g			Test Date	•	2021	/4/22
lest Fre	equency	CH13: 2	2472 MH	Z	ł	Polarizati	ion	Horiz	ontal
130.0	D dBu¥/m								
70		-uhes, commenced	Januar Marine Marine A		33 4 ×				
10.0									
23	372.000 2392	.00 2412	2.00 243	2.00 2452.0	0 2472.00	2492.0	0 2512.	.00 2532.00	2572.00 MHz
No. MI	k. Freq.	Readir Level	-		1	Margin			
	MHz	dBu∨		dBuV/m	dBuV/m	dB	Detector	Comment	
1	2387.620			5 57.07	74.00	-16.93	peak		
2	2387.620	26.3	30 7.2	5 33.55	54.00	-20.45	AVG		
3 X	2472.000	95.9	3 7.2	5 103.18	74.00	29.18	peak	No Limit	
4 *	2472.000	86.2	24 7.2	5 93.49	54.00	39.49	AVG	No Limit	
5	2489.440	54.0	02 7.2	4 61.26	74.00	-12.74	peak		
6	2489.440	40.9	94 7.2	4 48.18	54.00	-5.82	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		1										
Test Mo	de	IEEE 80)2.11n	(HT20))		Test Date	е	20	21/4/22		
Test Fre	quency	CH01: 2	2412 M	Hz			Polarizat	tion	Ho	orizontal		
130.0) dBuV/m											
70					1 	**************************************		hurtherne	the start and a start and a start a sta		5	
10.0	312.000 2332	.00 235	200 2	372.00	2392.00	2412.0	0 2432.0	10 2452.	.00 2472	00	2512.00 MH	4-2
No. Mł	k. Freq.	Readir Level	ng Co Fa	rrect ictor	Measure ment)- Limit	Margin	1			2012.00 MI	
	MHz	dBuV		IB	dBuV/m	dBuV/m	dB	Detector	Commen	t		
1	2387.320			.25	58.70	74.00	-15.30	peak				
2	2387.320			.25	45.08	54.00	-8.92	AVG				
3 X	2412.000	98.4	2 7	.26	105.68	74.00	31.68	peak	No Limit			
4 *	2412.000	87.6	6 7	.26	94.92	54.00	40.92	AVG	No Limit			
5	2496.453	51.0)3 7	.24	58.27	74.00	-15.73	peak				
6	2496.453	28.1		.24	35.43	54.00	-18.57	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		1								
Test Mode		IEEE 802.11n (HT20)				Test Date	9	2021/4	2021/4/23	
Test Frequency		CH11: 2462 MHz				Polarizati	ion	Horizoi	Horizontal	
130.	0 dBu¥/m									
70		·	per l'ar de site a seg	-o-ah+-hiweek.ek/heed	* *	5 6 X	hatthewaling	set for the set of the		
10.0										
 No. M	362.000 2382 k. Freq. MHz	.00 2402 Readir Level dBuV	ig Corre	ct Measure	2462.00 - Limit dBu∀/m	0 2482.00 Margin dB		.00 2522.00	2562.00 MHz	
1	2383.087	49.7			74.00	-17.01	peak			
2	2383.087				54.00	-20.17	AVG			
3 X	2462.000				74.00	31.16	peak	No Limit		
4 *	2462.000				54.00	40.51	AVG	No Limit		
5	2485.373			5 63.82	74.00	-10.18	peak			
0										

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		1				1						
Test Mo	de	IEEE 80)2.11n (HT20)			Test Da	te	20	21/4/23		
Test Fre	quency	CH12: 2	2467 MH	łz			Polariza	ation	Ho	orizontal		
130.0) dBuV/m											
70	2 X		er-astractersta			**************************************	6 X	u-www.edg.ee.oo		eyh. Liheotha jai Majalea		
10.0												
23	867.000 2387			27.00	2447.00	2467.0	0 2487.	00 2507	.00 2527	.00	2567.00 MHz	
No. Mł		Readir Level	- Fa	tor	Measure- ment	Limit	Margi	n				
	MHz	dBu∨			dBuV/m	dBuV/m		Detector	Commen	t		
1	2386.813			25	57.58	74.00	-16.42	1				
2	2386.813			25	33.48	54.00	-20.52	AVG				
3 X	2467.000	96.3	<u>5</u> 7.	25 ⁻	103.60	74.00	29.60	peak	No Limit			
4 *	2467.000	84.8	337.	25	92.08	54.00	38.08	AVG	No Limit			
5	2483.507	55.3	57.	25	62.60	74.00	-11.40	peak				
6	2483.507	37.5	67.	25	44.81	54.00	-9.19	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		r							
Test Mo	de	IEEE 80)2.11n (H	T20)		Test Date	e	2021/4/	/23
Test Fre	quency	CH13: 2	472 MH	z		Polarizat	tion	Horizor	ntal
130.0	D dBu∀/m								
70	1 	a, dra og fi betom til	waraa kii yaa arake		4 X	5 	hanna	renntedationeterstratingelinger	ingenerativesticational fundationeness
10.0	372.000 2392	.00 2412	243	2.00 245	2.00 2472.	00 2492.0	10 2512	.00 2532.00	2572.00 MHz
No. M	k. Freq.	Readir Level	ng Corre Fact	oct Meas or me	sure- nt Limi	t Margir	1		2312.00 1112
	MHz	dBuV	dB	dBu\			Detector	Comment	
1	2384.240						peak		
2	2384.240						AVG		
3 X	2472.000						peak	No Limit	
4 *	2472.000						AVG	No Limit	
5	2493.633	52.3	1 7.2	4 59.5	55 74.00	-14.45	peak		
6	2493.633	40.4	2 7.2	4 47.6	66 54.00	-6.34	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		1								
Test Mo	de	IEEE 8	02.1	1n (HT40	D)		Test Date	e	20	21/4/23
lest Fre	quency	CH03:	2422	2 MHz			Polarizat	ion	Ho	orizontal
130.0) dBuV/m									
70						Munit 4 ×				
	town warden the			n saihten birten b	2 X		herrengen	-selv-margarentes	8 ××××××××××××××××××××××××××××××××××××	
10.0										
22	222.000 2262	.00 23)2.00	2342.00	2382.00	2422.0	0 2462.0	0 2502.	.00 2542	2.00 2622.00 MHz
No. Mi	k. Freq.	Read Leve		Correct Factor	Measure- ment	Limit	Margin	I		
	MHz	dBuʻ		dB	dBuV/m	dBuV/m		Detector	Commen	t
1	2389.320			7.26	57.63	74.00	-16.37	peak		
2	2389.320			7.26	44.48	54.00	-9.52	AVG		
3 X	2422.000	93.	61	7.26	100.87	74.00	26.87	peak	No Limit	
4 *	2422.000			7.26	89.73	54.00	35.73	AVG	No Limit	
5	2524.200	50.	84	7.34	58.18	74.00	-15.82	peak		
6	2524.200	28.	87	7.34	36.21	54.00	-17.79	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 80)2.11n (HT40)			Test Dat	е	20	21/4/23		
Test Fre	quency	CH09: 2	2452 MI	łz			Polariza	tion	Ho	orizontal		
130.0) dBu¥/m											
70				1 2 X		3 ////////////////////////////////////		heliyullususeyine		5.000 (UNIO)	4, m, 10 m, 11 m, 12 m,	
10.0												
22	252.000 2292	.00 233	2.00 23	72.00	2412.00	2452.0	0 2492.0	0 2532.	.00 2572	2.00	2652.00 MH	lz
No. Mł	k. Freq.	Readir Level	-	rect N xtor	leasure- ment	Limit	Margir	ו				
	MHz	dBu∨			dBuV/m	dBuV/m		Detector	Commen	t		
1	2386.373	49.8	39 7.	25	57.14	74.00	-16.86	peak				
2	2386.373	26.8	32 7.	25	34.07	54.00	-19.93	AVG				
3 X	2452.000	92.0	01 7.	25	99.26	74.00	25.26	peak	No Limit			
4 *	2452.000	81.2	25 7.	25	88.50	54.00	34.50	AVG	No Limit			
5	2487.613	53.1	7 7.	24	60.41	74.00	-13.59	peak				
6	2487.613	37.0	0 7.	24	44.24	54.00	-9.76	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo		IEEE 8		•	40)		Test Da			21/4/23	
Test Fre	quency	CH10:	2457	7 MHz			Polariza	ition	Ho	rizontal	
130.0) dBu¥/m										
70		1 	6		utbre, co-northod	puertie ×		(here Mille Academic	nyudahawkata	مىلى بەر يېرى	
10.0		2 X									
22	257.000 2297		37.00	2377.0	0 2417.	00 2457.0	00 2497.	00 2537	.00 2577.	.00	2657.00 MHz
No. MI	-	Readi Leve		Correct Factor	men	t Limit	Ū				
	MHz	dBu∖		dB	dBuV/r			Detector	Comment		
1	2328.813			7.27	57.13						
2	2328.813			7.27	33.65			AVG			
3 X	2457.000			7.26	98.81		24.81	peak	No Limit		
4 *	2457.000			7.26	87.56				No Limit		
5	2486.493			7.25	59.29	74.00		•			
6	2486.493	36.	63	7.25	43.88	54.00	-10.12	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		r										
Test Mo	de	IEEE 80)2.11ı	ר (HT40))		Test Dat	е	202	21/4/23		
Test Fre	St Frequency C	CH11: 2	2462 I	MHz			Polarizat	tion	Но	rizontal		
130.0) dBuV/m											
70	2	auk ak distrementeka				3 4 ×		a, jarren y senara a	(5 5 7 7 6 X	
22	262.000 2302			2382.00	2422.00	2462.0	0 2502.0	0 2542.	.00 2582.	.00	2662.00 M	Hz
No. Mł	k. Freq.	Readir Leve		orrect Factor	Measure- ment	Limit	Margir	ı				
		dBu∨		dB	dBuV/m	dBuV/m		Detector	Comment	t		
1				7.27	57.07	74.00	-16.93	peak				
2	2287.507	26.3	36	7.27	33.63	54.00	-20.37	AVG				
3 X	2462.000	90.5	59	7.25	97.84	74.00	23.84	peak	No Limit			
4 *	2462.000	79.9	95	7.25	87.20	54.00	33.20	AVG	No Limit			
5	2622.640	51.7	'9	7.72	59.51	74.00	-14.49	peak				
6	2622.640	35.6	58	7.72	43.40	54.00	-10.60	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 80)2.11a	x (HE)	W20)		Test Da	te	20	21/4/23		
Test Fre	quency	CH01: 2	2412 N	/Hz			Polariza	ation	Ho	orizontal		
130.0) dBuV/m											
70		, conto data da guerra que	م مونایی مالید می	. Align party of	1 ////////////////////////////////////	×		Mundhaland	igh Theorem Maging Per	nott ke donator "ster	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
10.0												
23	312.000 2332	.00 235	2.00	2372.00	2392.	00 2412.0	0 2432.	00 2452	.00 2472	2.00	2512.00 M	Hz
No. Mł	k. Freq.	Readir Leve		orrect actor	Measu men	1	Margi	n				
	MHz	dBu∨		dB	dBuV/r			Detector	Commer	nt		
1	2386.367	55.3	35	7.25	62.60) 74.00	-11.40	peak				
2	2386.367	37.7	'9 	7.25	45.04	54.00	-8.96	AVG				
3 X	2412.000	99.2	24	7.26	106.50) 74.00	32.50	peak	No Limit			
4 *	2412.000	87.4	9	7.26	94.75	5 54.00	40.75	AVG	No Limit			
5	2493.973	50.9	92	7.24	58.16	5 74.00	-15.84	peak				
6	2493.973	37.1	8	7.24	44.42	2 54.00	-9.58	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 80)2.11a	ix (HE\	N20)		Test Dat	е	202	21/4/23		
Fest Fre	equency	CH11: 2	.462 N	/Hz			Polarizat	tion	Но	rizontal		
130.0	D dBu¥/m											
70			anara	.Aucodes.Au	Noting	mm ⁴		5 ⁵ ¹⁰⁰ /w~~nth.w~/we 6 ×	Ally and showing	ykynhykunet metrolog		
10.0												
2:	362.000 2382			2422.00	2442.0		0 2482.0)0 2502.	.00 2522	.00	2562.00 M	Hz
No. M		Readir Level	- F	orrect actor	Measu ment	Limit	Ū					
	MHz	dBuV		dB	dBuV/m			Detector	Commen	t		
1	2371.187			7.27	56.59	74.00	-17.41	peak				
2	2371.187			7.27	34.05		-19.95	AVG				
3 X	2462.000			7.25	105.60	74.00	31.60	peak	No Limit			
4 *	2462.000	86.7	'5	7.25	94.00	54.00	40.00	AVG	No Limit			
5	2485.920	53.1	2	7.25	60.37	74.00	-13.63	peak				
6	2485.920	40.0	15	7.25	47.30	54.00	-6.70	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

					1				
Test Mo	de	IEEE 80	2.11ax (I	HEW20)		Test Date	Э	2021/4	4/23
Test Fre	equency	CH12: 2	467 MHz	<u>z</u>		Polarizat	ion	Horizo	ontal
130.1	D dBuV/m								
70			whe had reception	an a		5		**************************************	
10.0	367.000 2387	.00 2407	.00 242	7.00 2447	7.00 2467.0	0 2487.0	0 2507.	.00 2527.00	2567.00 MHz
No. MI		Readin Level		ct Meas	ure-	Margin			2307.00 MHZ
	MHz	dBu∨	dB	dBuV.		dB	Detector	Comment	
1	2374.353					-17.42	peak		
2	2374.353	26.7	2 7.2	7 33.9	9 54.00	-20.01	AVG		
3 X	2467.000	96.8	8 7.2	5 104.1	3 74.00	30.13	peak	No Limit	
4 *	2467.000	86.0	6 7.2	5 93.3	1 54.00	39.31	AVG	No Limit	
5	2483.887	58.3	5 7.2	5 65.6	0 74.00	-8.40	peak		
6	2483.887	38.5	8 7.2	5 45.8	3 54.00	-8.17	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 80)2.11a	x (HE\	N20)		Test Dat	е	20	21/4/23	
est Fre	equency	CH13: 2	2462 N	2432.00 2452.00 2472.00 2492.00 2512.00 2532.00 2572.00 Correct Measure-Factor ment Limit Margin 4 4 4 dB dBuV/m dB Detector Comment 7.25 56.61 74.00 -17.39 peak 7.25 103.67 74.00 29.67 peak No Limit							
130.0	D dBu¥/m										
70					inerce The Marian	Å ×	Ь	Mayredormen	hermitendel.aprotect	puter constant of	
10.0											
23	372.000 2392						0 2492.0	JO 2512.	.00 2532		2572.00 MHz
No. MI		Readir Level	Γ Fa	actor	ment	Limit					
	MHz	dBu∨							Commen	t	
1	2381.787							•			
2	2381.787					54.00		AVG			
3 X	2472.000	96.4	-2	7.25	103.67	74.00	29.67	peak	No Limit		
4 *	2472.000	84.8	34	7.25	92.09	54.00	38.09	AVG	No Limit		
5	2483.927	63.2	29 7	7.25	70.54	74.00	-3.46	peak			
6	2483.927	40.9	14 -	7.25	48.19	54.00	-5.81	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 80)2.11ax	(HEV	V40)		Test Da	ate	20	21/4/23		
Test Fre	quency	CH03: 2	2422 MI	Ηz			Polariz	ation	Ho	orizontal		
130.0) dBu¥/m											
						WWW	~~~					
70	quelenten state que que	test verfek war af se	n la a gingle and a	ana Nan sana	a Jacoba de La contra		hogony	withmanyours	al and the second and the second s	ay top to the the state of the source of the	yr Dinteritterer	
					2 X						6 ×	
10.0												
22	222.000 2262	.00 2302	2.00 23	42.00	2382.00	2422.0	0 2462	2.00 2502	2.00 254	2.00	2622.00 MI	łz
No. Mł	k. Freq.	Readir Level		rect ctor	Measure- ment	Limit	Marg	jin				
	MHz	dBu∨			dBuV/m	dBuV/m		Detector	r Commer	nt		
1	2385.440	50.2		25	57.50	74.00	-16.5	•				
2	2385.440	37.2		25	44.50	54.00	-9.50					
3 X	2422.000	93.6	6 7	26	100.92	74.00	26.92	2 peak	No Limit			
4 *	2422.000	81.6	58 7	26	88.94	54.00	34.94	4 AVG	No Limit			
5	2596.267	50.9	7 7	62	58.59	74.00	-15.4	1 peak				
6	2596.267	27.7	37	62	35.35	54.00	-18.6	5 AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 80)2.11ax	(HEW	40)		Test Date	e	20)21/4/23		
Fest Fre	quency	CH09: 2	2452 MH	łz			Polarizat	ion	H	orizontal		
130.0) dBu∀/m											
						3 	~					
70		1 1 4, the base of the second secon	where as we define	mapettareshina	hoge were to see the second	enterfront and a						
			2	2								
10.0												
22	252.000 2292	.00 2332	2.00 23	72.00	2412.00	2452.0	0 2492.0	0 2532.	.00 257	2.00	2652.00 MH	łz
No. Mł	k. Freq.	Readir Level		rect N stor	1easure- ment	Limit	Margin	1				
	MHz	dBu∨			dBuV/m	dBuV/m	dB	Detector	Comme	nt		
1	2366.333				57.38	74.00	-16.62	peak				
2	2366.333				35.26	54.00	-18.74	AVG				
3 X	2452.000	94.0)6 7.	25 1	01.31	74.00	27.31	peak	No Limit			
4 *	2452.000				90.66	54.00	36.66	AVG	No Limit			
5	2485.840	55.1	1 7.	25	62.36	74.00	-11.64	peak				
6	2485.840	40.7	'9 7.	25	48.04	54.00	-5.96	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 80)2.11a	(HE	N40)		Test Dat	е	2021	/4/23
fest Fre	quency	CH10: 2	2457 N	Hz			Polarizat	tion	Horiz	zontal
130.0) dBu∀/m									
70	1 	مريانا مريون مريانا مريون مريانا مريون			<u></u>		5 5 5 5 5 8 ×			
10.0	257.000 2297	.00 2337	7 00	2377.00	2417.00	2457.0	0 2497.0	10 2527	00 2577.00	0 2657.00 MHz
		Readir	ng Co	rrect	Measure		Margir		.00 2577.00	0 2657.00 MHz
No. MI	<. Freq. MHz	Level dBuV		actor dB	ment dBuV/m	dBuV/m		Detector	Comment	
1	2275.973			.27	56.72	74.00	-17.28	peak	Comment	
2	2275.973			7.27	33.89	54.00	-20.11	AVG		
	2457.000			7.26	99.72	74.00	25.72	 peak	No Limit	
4 *	2457.000			7.26	88.05	54.00	34.05	AVG	No Limit	
5	2437.000			7.25	59.84	74.00	-14.16	peak		
6	2485.280			7.25	45.62	54.00	-8.38	AVG		
U	2400.200	30.3	97 - P	.20	40.02	04.00	-0.30	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_		I				ī					
Test Mo	de	IEEE 80)2.11ax	(HEW40)		Test Date	e	202	21/4/23	
Test Fre	quency	CH11: 2	462 M⊦	z			Polarizat	ion	Ho	rizontal	
130.0) dBu¥/m										
70	aykadydwa a ddfara	2 ×	mylaara.myr.vir.et	· · · · · · · · · · · · · · · · · · ·	Autor Manuel A	A X			La de característica de característica de característica de característica de característica de característica		
10.0											
22	262.000 2302	.00 234	2.00 23	82.00 2	422.00	2462.0	0 2502.0	0 2542.	00 2582	.00 2662.00 M	Hz
No. MI	k. Freq.	Readir Level			asure- ient	Limit	Margin				
	MHz	dBu∨	dE		lu∨/m	dBuV/m	dB	Detector	Commen	t	
1	2335.587				7.60	74.00	-16.40	peak			
2	2335.587				3.83	54.00	-20.17	AVG			
3 X	2462.000	92.8	87.	25 100	D.13	74.00	26.13	peak	No Limit		
4 *	2462.000	81.0	13 7.	25 88	3.28	54.00	34.28	AVG	No Limit		
5	2499.120	53.8	87.	24 6	1.12	74.00	-12.88	peak			
6	2499.120	37.7	47.	24 44	1.98	54.00	-9.02	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

st Mode		IEEE 80				Test Da		2021/4/23	21/4/23		
st Freq	uency	CH01: 2	2412 MHz			Polariz	ation	١	/ertical		
407 -											
130.0	dBu¥/m										1
_											{
_											-
_											
70											4
		3									-
		X									
											1
10.0											1
).000 3550	0.00 610	0.00 865).00 1120	00.00 137	50.00 163	00.00 188	50.00 21	1400.00	26500.00	_)MHz
		Readir				it More					
o. Mk.	Freq. MHz	Leve dBuV		or mei dBuV			giri Detecto	r Comm	t		
1 4	1824.000								ient		
	824.000										
MARK	S:										

est Mo	de	IEEE 802.1	1b		T	est Date	9	2021/4/2	23
est Fre	equency	CH01: 241	2 MHz		Р	olarizati	ion	Horizont	
130.	0 dBuV/m								
70									
		1 X							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.0	00 18850).00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4824.000		4.45	41.60	74.00	-32.40	peak		
2*	4824.000	34.54	4.45	38.99	54.00	-15.01	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mc	de	IEEE 802.1	1b		Te	est Date		2021/4/2	3
est Fre	equency	CH06: 243	7 MHz		P	olarizatio	on	Vertical	
130.	0_dBuV/m_	•							
70									
		ð X							
		*							
10.0									
10.0 1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.00	D 18850	.00 21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. M		Level	Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m		Detector	Comment	
1	4874.000		4.58	52.46	74.00	-21.54	peak		
2 *	4874.000	45.75	4.58	50.33	54.00	-3.67	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.11b			Т	est Date	9	2021/4/2	3
est Fre	equency	CH06: 243	7 MHz		Р	olarizat	ion	Horizont	al
130.	.0 dBuV/m								
70									
		1							
		××							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.	00 18850	0.00 21400.00	26500.00 MHz
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4874.000	42.22	4.58	46.80	74.00	-27.20	peak		
2*	4874.000	38.26	4.58	42.84	54.00	-11.16	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.7	l1b		Т	est Date	9	2021/4/2	23
est Fre	equency	CH11: 246	2 MHz		Ρ	olarizati	ion	Vertical	
130.	.0 dBuV/m								
70)								
		2 X X							
		×							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.	00 18850	.00 21400.00	26500.00 MHz
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000		4.71	47.81	74.00	-26.19	peak		
2*	4924.000	39.68	4.71	44.39	54.00	-9.61	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.	11b		Т	est Date		2021/4/23	3
est Fre	equency	CH11: 246	2 MHz		Р	olarizatio	on	Horizonta	l
130.	0_dBuV/m								
70									
		1 2 X							
		x							
10.0									
1	000.000 3550			11200.00	13750.00	16300.0	0 18850.0	0 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000	40.22	4.71	44.93	74.00	-29.07	peak		
2*	4924.000	33.96	4.71	38.67	54.00	-15.33	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 802.	11b		Т	est Date		2021/4/2	3
Test Fre	equency	CH12: 246	7 MHz		Ρ	olarizatio	on	Vertical	
130.	0 dBuV/m								
70									
10									
		1							
		1 2 X							
10.0									
1	000.000 3550).00 6100.00	8650.00	11200.00	13750.00) 16300.0	0 18850.	.00 21400.00	26500.00 MHz
	k Eraa	Reading	Correct	Measure-	Limit	Margin			
No. M	k. Freq. MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Comment	
1	4934.000		4.74	43.89	74.00	-30.11	peak	Comment	
2 *			4.74	38.52		-15.48	AVG		
Ζ *	4934.000	0 33.18	4.14	30.9Z	54.00	-15.48	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.	11b		Te	est Date		2021/4/23	3
est Fre	equency	CH12: 246	7 MHz		P	olarizatio	on	Horizonta	al
130.	0 dBuV/m								
70									
		1 X							
		2 X							
		<u> </u>							
10.0									
1	000.000 3550			11200.00	13750.00	16300.0	0 18850.	00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4934.000	39.32	4.74	44.06	74.00	-29.94	peak		
2*	4934.000	29.80	4.74	34.54	54.00	-19.46	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mod	de	IEEE 802. ²	11b		Te	est Date		2021/4/23	3
est Fre	quency	CH13: 247	2 MHz		P	olarization	l	Vertical	
130.0	dBuV/m								
70									
-		1 X							
		2 X							
10.0									
L	00.000 3550	.00 6100.00	8650.00	11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. Mk			Factor	ment	Limit	Margin			
1								nment	
1	MHz 4944.000 4944.000		dB 4.77 4.77	dBuV/m 43.79 34.51		-30.21 p	etector Cor Deak AVG	nment	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 802.11b		Т	est Date		2021/4/23		
Test Fre	equency	CH13: 247	2 MHz		Ρ	olarizati	on	Horizonta	
130.	0dBuV/m								
70									
		1 X							
		2 X							
		^							
10.0 1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00	16300.0	0 18850.0	0 21400.00	26500.00 MHz
	000.000 3330				13730.00	10500.0	10050.0	21400.00	20300.00 MHZ
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4944.000	38.68	4.77	43.45	74.00	-30.55	peak		
2 *	4944.000	27.73	4.77	32.50	54.00	-21.50	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.1	1g		Te	est Date		2021/4/23	3
est Fre	equency	CH01: 241			P	olarizatio	n	Vertical	
130.	0_dBuV/m_								
70									
		1							
		1 X							
		2 X							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00	16300.00	18850.0	0 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m			Comment	
1	4824.000		4.45	42.70	74.00	-31.30	peak		
2*	4824.000	28.12	4.45	32.57	54.00	-21.43	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	st Mode	IEEE 802.2	l1g		Т	est Date	e	2021/4/2	23
est Fre	equency	CH01: 241			P	olarizat	ion	Horizont	al
130.	.0 dBuV/m								
70									
		1 X							
		2 X							
		×							
10.0 1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.1	00 18850).00 21400.00	26500.00 MHz
	000.000 0000				10100.00	10000.			20000.00 Mile
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4824.000	39.27	4.45	43.72	74.00	-30.28	peak		
2 *	4824.000	27.55	4.45	32.00	54.00	-22.00	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	l1g		Т	est Date	;	2021/4/2	23
est Fre	equency	CH06: 243	7 MHz		P	olarizati	on	Vertical	
130.	0_dBuV/m								
70									
		1 X							
		2 X							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.0	00 18850	0.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4874.000	38.92	4.58	43.50	74.00	-30.50	peak		
2*	4874.000	28.02	4.58	32.60	54.00	-21.40	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mo	ode	IEEE 802.2	l1g		T	est Date	;	2021/4/2	23
est Fre	equency	CH06: 243	7 MHz		P	olarizati	ion	Horizon	tal
130.	0_dBuV/m								
70									
		1							
		1 2 X							
		×							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.	00 18850	.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4874.000		4.58	42.91	74.00	-31.09	peak		
2*	4874.000	28.38	4.58	32.96	54.00	-21.04	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Fest Mo	ode	IEEE 802.7	l1g		Т	est Date	•	2021/4/23	3
Fest Fre	equency	CH11: 246			P	olarizati	on	Vertical	
130	.0 dBuV/m								
70)								
		1 X							
		2 X							
10.0									
	, 000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.0	0 18850	.00 21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. M	lk. Freq.		Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000		4.71	43.20	74.00	-30.80	peak		
2*	4924.000	27.86	4.71	32.57	54.00	-21.43	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mo	ode	IEEE 802.	11g		Т	est Date)	2021/4/2	3
Test Fre	equency	CH11: 246	2 MHz		P	olarizati	ion	Horizonta	al
130	.0 dBuV/m	-			_				
70)								
		1 X							
		2 X							
		X							
10.0									
1	000.000 3550			11200.00	13750.00) 16300.0	00 18850	.00 21400.00	26500.00 MHz
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000	39.01	4.71	43.72	74.00	-30.28	peak		
2*	4924.000	28.25	4.71	32.96	54.00	-21.04	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mc	de	IEEE 802.1	1g		Т	est Date		2021/4/2	23
est Fre	equency	CH12: 246			Ρ	olarizati	on	Vertical	
130.	0 dBuV/m								
70									
		1 X							
		2 X							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.0	0 18850).00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4934.000	38.77	4.74	43.51	74.00	-30.49	peak		
2*	4934.000	28.30	4.74	33.04	54.00	-20.96	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.	11g		Т	est Date		2021/4/23	3
est Fre	equency	CH12: 246	7 MHz		Ρ	olarizatio	on	Horizonta	I
130.	0 dBuV/m								
70									
		1 X							
		2 X							
10.0					10750.00	10000.0			
	000.000 3550			11200.00	13750.00) 16300.0	0 18850.0	0 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4934.000	40.19	4.74	44.93	74.00	-29.07	peak		
2*	4934.000	29.77	4.74	34.51	54.00	-19.49	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.1	1g		T	est Date		2021/4/23	3
est Fre	equency	CH13: 247	2 MHz		P	olarizatio	on	Vertical	
130.	0 dBuV/m								
70									
		1 X							
		2 X							
10.0									
1	000.000 3550	0.00 6100.00	8650.00	11200.00	13750.00) 16300.00	D 18850.	00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4944.000	38.96	4.77	43.73	74.00	-30.27	peak		
2*	4944.000	27.77	4.77	32.54	54.00	-21.46	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Fest Mo	ode	IEEE 802.	11g		Т	est Date)	2021/4/23	3
Fest Fre	equency	CH13: 247	2 MHz		Р	olarizati	on	Horizonta	l
130	.0 dBuV/m	-							
70									
		1 X							
		2 X							
10.0									
	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.0	00 18850	.00 21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. M			Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4944.000		4.77	44.09	74.00	-29.91	peak		
2*	4944.000	28.05	4.77	32.82	54.00	-21.18	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

ost Mo	t Mode	IEEE 802.1	1n (HT2)))	Т	est Date		2021/4/23	3
	equency	CH01: 241		,		olarizati		Vertical	0
130.									
70	 								
		1 X							
		2 X							
10.0									
	000.000 3550).00 6100.00	8650.00	11200.00	13750.0	D 16300.0	00 18850.	.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4824.000	38.09	4.45	42.54	74.00	-31.46	peak		
2 *	4824.000	28.30	4.45	32.75	54.00	-21.25	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mc	nde	IEEE 802.1	1n (HT20))	Т	est Date	2	2021/4/23	
	equency	CH01: 241		<i>,</i>)		olarizati		Horizonta	
130.							-		
70									
		1 X							
		2 X							
		-							
10.0	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.0	00 18850.	00 21400.00	26500.00 MHz
	000.000 3000				13750.0	J 16300.0	JU 1885U.	00 21400.00	26500.00 MH2
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4824.000	38.33	4.45	42.78	74.00	-31.22	peak		
2 *	4824.000	27.78	4.45	32.23	54.00	-21.77	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	1n (HT20))	Т	est Date	9	2021/4/2	3
est Fre	equency	CH06: 243			P	olarizat	ion	Vertical	
130.	0dBuV/m								
70									
		1 X							
		2 X							
10.0									
	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00	16300.	00 18850	.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4874.000		4.58	43.14	74.00	-30.86	peak		
2*	4874.000	28.18	4.58	32.76	54.00	-21.24	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mo	st Mode	IEEE 802.1	1n (HT20))	Т	est Date	9	2021/4/23	
	equency	CH06: 243		,		olarizati		Horizontal	
130).0 dBuV/m	•							
70	0								
		1 X							
		2 X							
		<u> </u>							
10.0 1	0 1000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.0	0 18850.0	00 21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. M	1k. Freq.		Factor	ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4874.000	39.56	4.58	44.14	74.00	-29.86	peak		
2 *	4874.000	28.16	4.58	32.74	54.00	-21.26	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	1n (HT20))	Т	est Date	9	2021/4/2	3
	equency	CH11: 246		,		olarizat		Vertical	
130	.0 dBuV/m								
70)								
		1 X							
		2							
		×							
10.0)								
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.	00 18850	.00 21400.00	26500.00 MHz
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	l		
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000	39.40	4.71	44.11	74.00	-29.89	peak		
2*	4924.000	28.16	4.71	32.87	54.00	-21.13	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mo	st Mode	IEEE 802.1	1n (HT20))	Т	est Date	į	2021/4/2	3
	equency	CH11: 246		~)		olarizati		Horizonta	
130.									
70									
		1							
		1 X							
		2 X							
10.0									
1	000.000 3550).00 6100.00	8650.00	11200.00	13750.00	D 16300.	00 18850.	00 21400.00	26500.00 MHz
		Reading	Correct	Measure-	Linnik	Manaia			
No. M			Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000	39.54	4.71	44.25	74.00	-29.75	peak		
2*	4924.000	28.28	4.71	32.99	54.00	-21.01	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	st Mode	IEEE 802.1	1n (HT20))	Т	est Date	į	2021/4/23	3
	equency	CH12: 246		- /		olarizati		Vertical	-
130.	0 dBuV/m								
70									
		1 X							
		2 X							
10.0									
	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00	0 16300.0	00 18850.	00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4934.000		4.74	43.66	74.00	-30.34	peak		
2*	4934.000	28.40	4.74	33.14	54.00	-20.86	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.1	1n (HT20))	Т	est Date	;	2021/4/2	3
est Fre	equency	CH12: 246		,	Р	olarizati	on	Horizonta	al
130.	0 dBuV/m								
70									
		1 X							
		2							
		×							
10.0 1	000.000 3550).00 6100.00	8650.00	11200.00	13750.00	16300.1	00 18850	.00 21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. M	k. Freq.		Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4934.000		4.74	44.96	74.00	-29.04	peak		
2*	4934.000	28.18	4.74	32.92	54.00	-21.08	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mc	ode	IEEE 802.1	1n (HT20))	Т	est Date	9	2021/4/2	3
	equency	CH13: 247		,		Polarizat		Vertical	
130.	0 dBuV/m								
70									
70									
		1 X							
		2 X							
10.0	1								
	000.000 3550	.00 6100.00	8650.00	11200.00	13750.0	0 16300.	.00 18850.	.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin)		
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4944.000		4.77	43.84	74.00	-30.16	peak		
2*	4944.000	28.76	4.77	33.53	54.00	-20.47	AVG		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

Fest M	st Mode	IEEE 802.1	1n (HT2())	т	est Date	2	2021/4/23		
	requency	CH13: 247		<i>,</i>)		olarizat		Horizontal		
	30.0 dBuV/m	1								
	70									
		1								
		1 X 2								
		x								
10	D. O									
	1000.000 3550	.00 6100.00	8650.00	11200.00	13750.00	D 16300.	00 18850.0	0 21400.00	26500.00 MHz	
No.	Mk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		Comment		
1	4944.000		4.77	43.73	74.00	-30.27	peak			
2 *			4.77	33.13	54.00	-20.87	AVG			

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est Mo	st Mode	IEEE 802.1	1n (HT4())	Т	est Date	3	2021/4/2	3
	equency	CH03: 242		/		olarizat		Vertical	
130.	0 dBuV/m								
70									
		1 X							
		2 X							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.	00 18850	.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4844.000		4.51	42.34	74.00	-31.66	peak		
2*	4844.000	28.17	4.51	32.68	54.00	-21.32	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	st Mode	IEEE 802.1	1n (HT40))	Г	est Date	Э	2021/4	/23
	equency	CH03: 242		,		Polarizat		Horizo	
130.	.0 dBuV/m								
70									
70	J								
		1							
		1 X 2							
		x							
10.0	b								
1	000.000 3550	0.00 6100.00	8650.00	11200.00	13750.0	0 16300.	.00 18850	0.00 21400.00	26500.00 MHz
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir)		
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4844.000	37.98	4.51	42.49	74.00	-31.51	peak		
2*	4844.000	28.32	4.51	32.83	54.00	-21.17	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 802.1	1n (HT40))	Т	est Date	е	2021/4/23	8
	equency	CH06: 243		,		Polarizat		Vertical	
130.	0 dBuV/m								
70									
		1 X 2							
		x							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.0	0 16300.	.00 18850.0	00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1		
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4874.000		4.58	42.99	74.00	-31.01	peak		
2*	4874.000	28.14	4.58	32.72	54.00	-21.28	AVG		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est Mo	st Mode	IEEE 802.1	1n (HT4())	Т	est Date	<i>;</i>	2021/4/23	3
	equency	CH06: 243		/		olarizat		Horizonta	
130.	0 dBuV/m								
70									
		1 X							
		2 X							
10.0									
	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.	00 18850.	.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4874.000	38.29	4.58	42.87	74.00	-31.13	peak		
2*	4874.000	28.38	4.58	32.96	54.00	-21.04	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	nde	IEEE 802.1	1n (HT4())	Т	est Date	د	2021/4/2	3
	equency	CH09: 245		·)		olarizati		Vertical	
130.									
70									
		1 X							
		2							
		×							
10.0									
1	000.000 3550	0.00 6100.00	8650.00	11200.00	13750.00	D 16300.	00 18850	.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4904.000	37.36	4.66	42.02	74.00	-31.98	peak		
2*	4904.000	27.74	4.66	32.40	54.00	-21.60	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	1n (HT4())	Т	est Date	ć	2021/4/23	
	equency	CH09: 245		<i>,</i>)		olarizati		Horizonta	
130.									
70)								
		1 X							
		2 X							
10.0									
1	000.000 3550	0.00 6100.00	8650.00	11200.00	13750.00	D 16300.0	00 18850.	00 21400.00	26500.00 MHz
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4904.000	38.73	4.66	43.39	74.00	-30.61	peak		
2*	4904.000	28.86	4.66	33.52	54.00	-20.48	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.1	1n (HT40))	Т	est Date	•	2021/4/23	3
		CH10: 245		,		olarizati		Vertical	
130.									
70									
		1 X							
		2 X							
		<u>^</u>							
10.0									
	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.0)0 18850	.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4914.000		4.69	43.57	74.00	-30.43	peak		
2*	4914.000	27.65	4.69	32.34	54.00	-21.66	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est M	ode	IEEE 802.1	1n (HT40))	Т	est Date		2021/4/23	
	requency	CH10: 245		<i>,</i>)		olarizati		Horizontal	
	0.0 dBuV/m								
7	70								
		1							
		1 X							
		2 X							
10.	0								
	1000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.0	0 18850.00	21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. N	vlk. Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector C	comment	
1	4914.000	37.29	4.69	41.98	74.00	-32.02	peak		
2 *	4914.000	27.84	4.69	32.53	54.00	-21.47	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mc	ode	IEEE 802.1	1n (HT40))	Т	est Date	9	2021/4/2	3
		CH11: 246		,		olarizat		Vertical	-
130.	0 dBuV/m	•							
70									
		1							
		X							
		2 X							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.0	D 16300.	00 18850	.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000		4.71	43.91	74.00	-30.09	peak		
2*	4924.000	26.94	4.71	31.65	54.00	-22.35	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	1n (HT40))	Т	est Date	;	2021/4/23	
	equency	CH11: 246		,		Polarizati		Horizonta	
130.	0 dBuV/m								
70									
		1 X 2							
		2 X							
10.0 1	000.000 3550).00 6100.00	8650.00	11200.00	13750.0	0 16300.0	00 18850.0	0 21400.00	26500.00 MHz
	000.000 0000				10100.0	10500.		50 21400.00	2000.00 1112
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000	37.61	4.71	42.32	74.00	-31.68	peak		
2 *	4924.000	29.34	4.71	34.05	54.00	-19.95	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mc	de	IEEE 802.1	1ax (HE\	V20)	Т	est Date	Э	2021/4/2	23
est Fre	equency	CH01: 241			Р	olarizat	ion	Vertical	
130.	0 dBuV/m								
70									
		1 X							
		2 X							
10.0									
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.	00 18850	.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4824.000		4.45	43.47	74.00	-30.53	peak		
2*	4824.000	28.24	4.45	32.69	54.00	-21.31	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Fest Mo	de	IEEE 802.1	1ax (HE\	W20)	Т	est Date	9	2021/4	4/23
		CH01: 241		,		olarizat		Horizo	
130.	0 dBu∀/m								
70									
		1 X							
		2 X							
10.0									
	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00	D 16300.	00 18850).00 21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. M			Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4824.000		4.45	42.78	74.00	-31.22	peak		
2*	4824.000	28.56	4.45	33.01	54.00	-20.99	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est M	ode	IEEE 802.1	1ax (HE\	V20)	Te	est Date		2021/4/2	23
est Fr	requency	CH06: 243	7 MHz		Ρ	olarizati	on	Vertical	
130).0dBu∀/m								
7	0								
		1 X							
		2 X							
10.	0 1000.000 3550).00 6100.00	8650.00	11200.00	13750.00	16300.0)0 18850).00 21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. N	/lk. Freq.		Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4874.000	38.60	4.58	43.18	74.00	-30.82	peak		
2 *	4874.000	28.20	4.58	32.78	54.00	-21.22	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est M	ode	IEEE 802.1	1ax (HE\	W20)	Т	est Date	9	2021/4/	/23
		CH06: 243				olarizat		Horizor	
130).0 dBu∀/m	-							
7	0								
		1							
		1 X 2							
		x							
10.									
	1000.000 3550		8650.00	11200.00	13750.00) 16300.	00 18850).00 21400.00	26500.00 MHz
No. N	/lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4874.000	38.06	4.58	42.64	74.00	-31.36	peak		
2 *	4874.000	28.16	4.58	32.74	54.00	-21.26	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mo	de	IEEE 802.1	1ax (HE\	V20)	Т	est Date	e	2021/4/23	3
Test Fre	equency	CH11: 246		,	F	Polarizat	tion	Vertical	
130.	0 dBuV/m								
70									
		1 X							
		2 X							
10.0									
	000.000 3550	.00 6100.00	8650.00	11200.00	13750.0	0 16300	.00 18850.	00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	ו		
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000		4.71	42.79	74.00	-31.21	peak		
2*	4924.000	28.40	4.71	33.11	54.00	-20.89	AVG		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	1ax (HE)	V20)	Т	est Date	è	2021/4/23	1
	equency	CH11: 246				Polarizat		Horizonta	
130.	0 dBuV/m	•							
70									
		1 X							
		2 X							
		~							
10.0 1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.0	0 16300.	00 18850.	00 21400.00	26500.00 MHz
	000.000 0000				10100.0			00 21100.00	2000.00 1112
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	I		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000	37.46	4.71	42.17	74.00	-31.83	peak		
2 *	4924.000	28.48	4.71	33.19	54.00	-20.81	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.1	1ax (HE)	V20)	Т	est Date	į	2021/4/23	3
	equency	CH12: 246				olarizati		Vertical	-
130.	0 dBuV/m								
70									
		1 X							
		2 X							
		^							
10.0 1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.0	0 16300.0	00 18850.	.00 21400.00	26500.00 MHz
	000.000 0000				10100.0			21100.00	20000.00 1112
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4934.000	38.03	4.74	42.77	74.00	-31.23	peak		
2 *	4934.000	27.91	4.74	32.65	54.00	-21.35	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	1ax (HE\	V20)	Т	est Date	9	2021/4/2	3
	equency	CH12: 246		,	F	olarizat	ion	Horizonta	
130.	.0 dBuV/m	-							
70									
		1 X							
		2 X							
10.0									
10.0 1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.0	D 16300.	00 18850	.00 21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. M	lk. Freq.		Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4934.000	38.19	4.74	42.93	74.00	-31.07	peak		
2*	4934.000	28.03	4.74	32.77	54.00	-21.23	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.1	1ax (HEV	V20)	Т	est Date	;	2021/4/	/23
	equency	CH13: 246		,		olarizati		Vertical	
130.	0 dBu∀/m	- 							
70									
		1 X							
		2 X							
		×							
10.0		00 0100 00	0050.00	11000.00	10750.00	10000	00 1005	00 01400 00	20500.00.111
1	000.000 3550		8650.00	11200.00	13750.00) 16300.0	00 18850).00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4944.000	38.61	4.77	43.38	74.00	-30.62	peak		
2 *	4944.000	27.57	4.77	32.34	54.00	-21.66	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.1	1ax (HE\	V20)	Т	est Date	Э	2021/4/2	23
	equency	CH13: 246		,		Polarizat		Horizon	
130.	0 dBuV/m								
70									
70									
		1 X							
		2 X							
10.0									
	000.000 3550	.00 6100.00	8650.00	11200.00	13750.0	0 16300.	00 18850	0.00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1		
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4944.000		4.77	43.35	74.00	-30.65	peak		
2*	4944.000	28.29	4.77	33.06	54.00	-20.94	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est M	ode	IEEE 802.1	1ax (HE\	W40)	Te	est Date)	2021/4/	23
est Fr	equency	CH03: 242		·	P	olarizati	ion	Vertical	
130).0 dBuV/m								
7	0								
		1 X							
		2							
		×							
10.									
	1000.000 3550		8650.00	11200.00	13750.00	16300.	00 18850	.00 21400.00	26500.00 MHz
No. N	/lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4844.000		4.51	42.00	74.00	-32.00	peak		
2 *	4844.000		4.51	32.82	54.00	-21.18	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.1	1ax (HE)	V40)	Т	est Date	e	2021/4/2	3
	equency	CH03: 242		,		olarizat		Horizont	
130.	0 dBuV/m								
70									
		1×							
		2 X							
		×							
10.0	000.000 3550	.00 6100.00	8650.00	11200.00	13750.0	0 16300.	00 18850	.00 21400.00	26500.00 MHz
•	000.000 3330				13730.0	0 10500.	00 10050		20300.00 M112
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4844.000	38.14	4.51	42.65	74.00	-31.35	peak		
2*	4844.000	27.29	4.51	31.80	54.00	-22.20	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	1ax (HE)	W40)	Т	est Date	9	2021	/4/23	
est Fre	equency	CH06: 243		,	Р	olarizat	ion	Verti	cal	
130.	.0 dBuV/m									
70)									
		1 X								
		2 X								
10.0										
	' 000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.	00 1885	D.00 21400.0	0 26500.00	Hz
		Reading	Correct	Measure-						
No. M			Factor	ment	Limit	Margin				
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1	4874.000		4.58	42.82	74.00	-31.18	peak			
2*	4874.000	28.30	4.58	32.88	54.00	-21.12	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.2	11ax (HE\	W40)	Те	est Date	9	2021	2021/4/23		
est Fr	equency	CH06: 243		,	Р	olarizat	ion	Horiz	ontal		
130	.0 dBuV/m										
										_	
										_	
										_	
7(_	
	,										
		1 ×									
		2 X									
		×								_	
										_	
10.0)										
1	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00	16300.	00 18850	0.00 21400.0	0 26500.	.00 MHz	
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin					
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment			
1	4874.000	37.77	4.58	42.35	74.00	-31.65	peak				
2*	4874.000	28.60	4.58	33.18	54.00	-20.82	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	1ax (HE\	W40)	Т	est Date)	2021/4	4/23
est Fre	equency	CH09: 245		-	Ρ	olarizat	ion	Vertica	al
130.	0_dBuV/m								
70									
		1 X							
		2 X							
		^							
10.0									
	000.000 3550	0.00 6100.00	8650.00	11200.00	13750.00) 16300.	00 18850).00 21400.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4904.000		4.66	41.62	74.00	-32.38	peak		
2*	4904.000	27.74	4.66	32.40	54.00	-21.60	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	I1ax (HEV	V40)	Те	est Date	•	2021/-	4/23
est Fr	equency	CH09: 245			P	olarizat	ion	Horizo	ontal
130	.0 dBuV/m								
7(0								
		1							
		1 2 X							
10.0	D 1000.000 3550	.00 6100.00	8650.00	11200.00	13750.00	16300.	00 18850).00 21400.00	26500.00 MHz
	1000.000 0000				13730.00	10300.	00 1000	21400.00	20300.00 MH2
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4904.000	37.42	4.66	42.08	74.00	-31.92	peak		
2 *	4904.000	28.87	4.66	33.53	54.00	-20.47	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.1	1ax (HE\	V40)	Te	est Date	;	2021/4/	23
est Fre	equency	CH10: 245	7 MHz		Ρ	olarizati	on	Vertical	
130.	00								
70									
		1 X							
		2 X							
10.0									
	000.000 3550).00 6100.00	8650.00	11200.00	13750.00	16300.	00 18850).00 21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. M		Level	Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4914.000		4.69	43.25	74.00	-30.75	peak		
2*	4914.000	27.60	4.69	32.29	54.00	-21.71	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	ode	IEEE 802.1	1ax (HEV	V40)	Т	est Date		2021/4/2	3
est Fre	equency	CH10: 245			Р	olarizati	on	Horizonta	
130.	0 dBuV/m								
70									
		1 X							
		2 X							
		0							
10.0									
	000.000 3550).00 6100.00	8650.00	11200.00	13750.00) 16300.0	0 18850	0.00 21400.00	26500.00 MHz
		Reading	Correct	Measure-					
No. M	k. Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4914.000	39.09	4.69	43.78	74.00	-30.22	peak		
2*	4914.000	27.68	4.69	32.37	54.00	-21.63	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	IEEE 802.1	1ax (HE\	V40)	Т	est Date		2021/4/23	3
est Frequency		CH11: 246	Polarization			Vertical	Vertical		
130.	0 dBuV/m								
70									
		1×							
		2							
		×							
10.0	000.000 3550	.00 6100.00	8650.00	11200.00	13750.00) 16300.0	0 18850	.00 21400.00	26500.00 MHz
•	000.000 3330				13730.00	J 16300.0	0 10030	.00 21400.00	26300.00 MH2
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4924.000	39.01	4.71	43.72	74.00	-30.28	peak		
2*	4924.000	28.26	4.71	32.97	54.00	-21.03	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mode est Frequency		IEEE 802.11ax (HEW40) CH11: 2462 MHz				Test Date			2021/4/23	
						Polarizat	ion	Ho	Horizontal	
130.0	0 dBuV/m									
130.1										
70										
		1 X								
		2 X								
10.0 11	000.000 3550	.00 6100).00 8650).00 11200.00) 13750.0	0 16300.	.00 1885	0.00 214	00.00	26500.00 MHz
		Readir								
No. MI	k. Freq.				Limit	Margir	ו			
	MHz	dBu∨		dBuV/m	dBuV/m	dB	Detector	Comme	nt	
1	4924.000				74.00	-31.07	peak			
2*	4924.000	28.7	2 4.7	1 33.43	54.00	-20.57	AVG			

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

End of Test Report