

APPLICANT : Lenovo (Shanghai) Electronics Technology Co., Ltd.

EQUIPMENT: Portable Tablet Computer

BRAND NAME : lenovo

MODEL NAME : Lenovo A3300-GV MARKETING NAME : Lenovo A3300-GV

FCC ID : 057A3300GV

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

This is a variant report which is only valid together with the original test report. The product was testing completed on Apr. 23, 2014. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Eric Huang / Deputy Manager

Este man

Approved by: Jones Tsai / Manager

lac-MRA

Report No. : FA3N2302-02

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 101, Complex Building C, Guanlong Village, Xili Town, Nanshan District, Shenzhen, Guangdong, P.R.C.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 1 of 39

Report Issued Date: May 05, 2014
Report Version: Rev. 01

Table of Contents

1. Statement of Compilance	4
2. Administration Data	5
2.1 Testing Laboratory	5
2.2 Applicant	5
2.3 Manufacturer	5
2.4 Application Details	5
3. General Information	6
3.1 Description of Equipment Under Test (EUT)	6
3.2 Maximum RF output power among production units	7
3.3 Applied Standard	8
3.4 Device Category and SAR Limits	8
3.5 Test Conditions	8
4. Specific Absorption Rate (SAR)	
4.1 Introduction	
4.2 SAR Definition	
5. SAR Measurement System	
5.1 E-Field Probe	
5.2 Data Acquisition Electronics (DAE)	
5.3 Robot	
5.4 Measurement Server	
5.5 Phantom	
5.6 Device Holder	
5.7 Data Storage and Evaluation	
5.8 Test Equipment List	
6. Tissue Simulating Liquids	
7. System Verification Procedures	20
7.1 Purpose of System Performance check	
7.2 System Setup	20
7.3 SAR System Verification Results	
8. EUT Testing Position	
9. Measurement Procedures	
9.1 Spatial Peak SAR Evaluation	
9.3 Area & Zoom Scan Procedures	
9.4 Volume Scan Procedures	
9.5 SAR Averaged Methods	
9.6 Power Drift Monitoring.	
10. Bluetooth Exclusions Applied	
11. Conducted RF Output Power (Unit: dBm)	26
12. SAR Test Results	
12.1 Head SAR	
12.2 Body SAR	
12.3 Repeated SAR Measurement	
12.4 Highest SAR Plot	
13. Simultaneous Transmission Analysis	34
13.1 Head Exposure Conditions	35
13.2 Tablet Body Exposure Conditions	35
13.3 SPLSR Evaluation and Analysis	
14. Uncertainty Assessment	
15. References	39
Appendix A. Plots of System Performance Check	
Appendix B. Plots of SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	
Appendix E. Product Equality Declaration	

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV

: Rev. 01

Report Version

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA3N2302-02	Rev. 01	This is a variant report for Lenovo A3300-GV. The product equality declaration could be referred to Appendix E. Based on the similarity between two models, only the worst cases from original test report (Sporton Report Number FA3N2302) were verified.	May 05, 2014

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV

: 3 of 39 Page Number Report Issued Date: May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Lenovo (Shanghai) Electronics Technology Co., Ltd. DUT: Portable Tablet Computer, Brand Name: lenovo, Model Name: Lenovo A3300-GV are as follows.

<Highest SAR Summary>

Exposure Position	Frequency Band	Reported 1g-SAR (W/kg)	Equipment Class	Highest Reported 1g-SAR (W/kg)	
	GSM850	0.93	PCE	0.93	
Head	GSM1900	0.80	PCE	0.93	
	WLAN 2.4GHz Band	0.22	DTS	0.22	
	GSM850	1.04	PCE	1.18	
Body(0cm Gap)	GSM1900	1.18	PCE	1.10	
	WLAN 2.4GHz Band	1.02	DTS	1.02	

<Highest Simultaneous transmission SAR>

Frequency Band	Equipment Class	Exposure Position	Highest Reported Simultaneous Transmission 1g-SAR (W/kg)
GSM1900	PCE	Bottom Face	1.18
WLAN 2.4GHz	DTS	Bollom Face	1.18

Frequency Band	Equipment Class	Exposure Position	Highest Reported Simultaneous Transmission 1g-SAR (W/kg)
GSM1900	PCE	Bottom Face	1.29
Bluetooth	DSS	Bollom Face	1.29

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 4 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

2. Administration Data

2.1 Testing Laboratory

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.
Test Site Location	No. 101, Complex Building C, Guanlong Village, Xili Town, Nanshan District, Shenzhen, Guangdong, P.R.C. TEL: +86-755-8637-9589 FAX: +86-755-8637-9595

2.2 Applicant

Company Name	Lenovo (Shanghai) Electronics Technology Co., Ltd.
Address	No. 68 Building, 199 Fenju Road, Wai Gao Qiao FTZ, Shanghai, China

2.3 Manufacturer

Company Name	Lenovo PC HK Limited
Address	23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong

2.4 Application Details

Date of Start during the Test	Apr. 23, 2014
Date of End during the Test	Apr. 23, 2014

SPORTON INTERNATIONAL (SHENZHEN) INC.

FAX: 86-755-8637-9595 FCC ID: O57A3300GV

TEL: 86-755-8637-9589

Page Number : 5 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

3. General Information

3.1 Description of Equipment Under Test (EUT)

	Product Feature & Specification			
EUT	Portable Tablet Computer			
Brand Name	lenovo			
Model Name	Lenovo A3300-GV			
Marketing Name	Lenovo A3300-GV			
FCC ID	O57A3300GV			
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz			
Mode	GSM/GPRS/EGPRS 802.11b/g/n HT20/HT40 Bluetooth v3.0+EDR Bluetooth v4.0			
Antenna Type	WWAN: PIFA Antenna WLAN: PIFA Antenna Bluetooth: PIFA Antenna			
HW Version	A977_MB_PCB_V3.0			
SW Version	A3300T_A422_01_02_131014_CN			
EUT Stage	Pre-Production			
Domark:				

Remark:

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 6 of 39
Report Issued Date : May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Voice function is supported.

^{3.} This device supports GPRS/EGPRS operation up to class12.

3.2 Maximum RF output power among production units

Band	GSM850 (Burst Average Power) (dBm)	GSM1900 (Burst Average Power) (dBm)
GSM (GMSK, 1 Tx slot)	32.5	29
GPRS (GMSK, 1 Tx slot)	32.5	29
GPRS (GMSK, 2 Tx slots)	29.5	26
GPRS (GMSK, 3 Tx slots)	27.5	24
GPRS (GMSK, 4 Tx slots)	26.5	23
EDGE (8PSK, 1 Tx slot)	28	27
EDGE (8PSK, 2 Tx slots)	26.5	26
EDGE (8PSK, 3 Tx slots)	25	24
EDGE (8PSK, 4 Tx slots)	23.5	23

Maximum Target Average Power for Production Unit (dBm)			
Mode / Band IEEE 802.11			
WLAN 2.4GHz Band	11b 11g 11n-HT20		
Channel 01	13	11	11
Channel 06	12.5	11	11
Channel 11	12.5	11	11

Maximum Target Average Power for Production Unit (dBm)					
Mode / Band IEEE 802.11					
WLAN 2.4GHz Band 11n-HT40					
Channel 03	9.5				
Channel 06	10				
Channel 09	6				

Bluetooth average power (dBm)							
Mode	BT4.0 LE (GFSK)						
Tune Up Limit	4	2	2	-4			

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 7 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

3.3 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2003
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
- FCC KDB 865664 D02 SAR Reporting v01r01
- FCC KDB 447498 D01 General RF Exposure Guidance v05r02
- FCC KDB 248227 D01 SAR meas for 802 11abg v01r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r01
- FCC KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE v01

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 Test Conditions

3.5.1 Ambient Condition

Ambient Temperature	20 to 24 ℃	
Humidity	< 60 %	

3.5.2 Test Configuration

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT.

During WLAN SAR testing EUT is configured with the WLAN continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting

For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

SPORTON INTERNATIONAL (SHENZHEN) INC.

FAX: 86-755-8637-9595 FCC ID: O57A3300GV

TEL: 86-755-8637-9589

Page Number : 8 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 9 of 39
Report Issued Date : May 05, 2014

Report No.: FA3N2302-02

Report Version : Rev. 01

5. SAR Measurement System

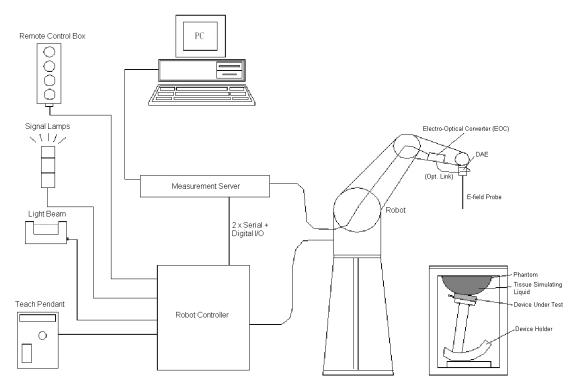


Fig 5.1 SPEAG DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- \triangleright A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- **>** Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Component details are described in in the following sub-sections.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV

: 10 of 39 Page Number Report Issued Date: May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

5.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB		
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)		Ţ
Dynamic Range	10 μW/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g)		1
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm		
		Fig 5.2	Photo of EX3DV4

5.1.2 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

5.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Report No. : FA3N2302-02

Fig 5.3 Photo of DAE

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 11 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

5.3 <u>Robot</u>

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Fig 5.4 Photo of DASY5

5.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Fig 5.5 Photo of Server for DASY5

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 12 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

5.5 Phantom

<SAM Twin Phantom>

VOAN TWIITT Hantoniz		
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	The same of the sa
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	T ', '
Measurement Areas	Left Hand, Right Hand, Flat Phantom	Fig 5.6 Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

LLIT I Halltolli>		
Shell Thickness	2 ± 0.2 mm (sagging: <1%)	/ and agree to the same of the
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	Fig 5.7 Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 13 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

5.6 <u>Device Holder</u>

<Device Holder for SAM Twin Phantom>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig 5.8 Device Holder

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Fig 5.9 Laptop Extension Kit

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 14 of 39
Report Issued Date : May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

Device parameters:

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

 $\begin{array}{lll} \text{- Conversion factor} & \text{ConvF}_i \\ \text{- Diode compression point} & \text{dcp}_i \\ \text{- Frequency} & \text{f} \end{array}$

- Crest factor cf

Media parameters: - Conductivity σ
- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

SPORTON INTERNATIONAL (SHENZHEN) INC.

FAX: 86-755-8637-9595 FCC ID: O57A3300GV

TEL: 86-755-8637-9589

Page Number : 15 of 39
Report Issued Date : May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

The formula for each channel can be given as :

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Report No. : FA3N2302-02

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes : $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

H-field Probes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

with V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Page Number

Report Version

: 16 of 39

: Rev. 01

Report Issued Date: May 05, 2014

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV

5.8 Test Equipment List

Manufacturer	Name of Faviore and	True o /M o el o l	Serial Number	Calibration		
Wanutacturer	Name of Equipment	ent Type/Model		Last Cal.	Due Date	
SPEAG	835MHz System Validation Kit	D835V2	4d091	Nov. 18, 2011	Nov. 14, 2014	
SPEAG	1900MHz System Validation Kit	D1900V2	5d118	Nov. 21, 2011	Nov. 14, 2014	
SPEAG	2450MHz System Validation Kit	D2450V2	908	Mar. 26. 2013	Mar. 24. 2015	
SPEAG	Data Acquisition Electronics	DAE4	910	Dec.17, 2013	Dec. 16, 2014	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3819	Nov. 27, 2013	Nov. 26, 2014	
SPEAG	SAM Twin Phantom	QD 000 P40 CD	TP-1670	NCR	NCR	
SPEAG	ELI4 Phantom	QD OVA 002 AA	1149	NCR	NCR	
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR	
Agilent	Wireless Communication Test Set	E5515C	MY50267224	Oct. 10, 2013	Oct. 09, 2014	
R&S	Network Analyzer	ZVB8	100106	Nov. 07, 2013	Nov. 06, 2014	
SPEAG	Dielectric Assessment KIT	DAK-3.5	1032	NCR	NCR	
Agilent	Power Meter	ML2495A	1218010	Mar. 03. 2014	Mar. 02. 2015	
Anritsu	Power Sensor	MA2411B	1207253	Mar. 03. 2014	Mar. 02. 2015	
R&S	Spectrum Analyzer	FSP7	101230	Jun. 13, 2013	Jun. 12, 2014	
Agilent	Dual Directional Coupler	778D	50422	Note 4		
Woken	Attenuator 1	WK0602-XX	N/A	Note 4		
PE	Attenuator 2	PE7005-10	N/A	Note 4		
PE	Attenuator 3	PE7005- 3	N/A	Note 4		
AR	Power Amplifier	5S1G4M2	328767	No	te 5	

Table 5.1 Test Equipment List

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. Referring to KDB 865664 D01v01r03, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The justification data of dipole D835V2, SN: 4d091, D1900V2, SN: 5d118, D2450V2, SN: 908, can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior
- 4. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it
- Attenuator 1 insertion loss is calibrated by the network Analyzer, which the calibration is valid, before system check.

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589

FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 17 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

Report No. : FA3N2302-02

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2.

Fig 6.1 Photo of Liquid Height for Head SAR

Fig 6.2 Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity		
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(ε _r)		
	For Head									
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5		
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0		
2450	55.0	0	0	0	0	45.0	1.80	39.2		
	For Body									
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2		
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3		
2450	68.6	0	0	0	0	31.4	1.95	52.7		

Table 6.1 Recipes of Tissue Simulating Liquid

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 18 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SPEAG DAK-3.5 Dielectric Probe Kit and an R&S Network Analyzer.

The following table shows the measuring results for simulating liquid.

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
835	Head	22.6	0.912	42.045	0.90	41.50	1.33	1.31	±5	2014/4/23
1900	Head	22.8	1.422	40.315	1.40	40.00	1.57	0.79	±5	2014/4/23
2450	Head	22.7	1.823	37.961	1.80	39.20	1.28	-3.16	±5	2014/4/23
835	Body	22.8	0.972	53.975	0.97	55.20	0.21	-2.22	±5	2014/4/23
1900	Body	22.7	1.542	53.532	1.52	53.30	1.45	0.44	±5	2014/4/23
2450	Body	22.7	1.949	51.667	1.95	52.70	-0.05	-1.96	±5	2014/4/23

Table 6.2 Measuring Results for Simulating Liquid

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 19 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

7. System Verification Procedures

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

7.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

7.2 System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

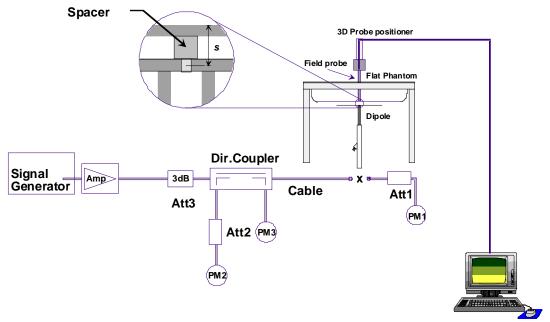


Fig 7.1 System Setup for System Evaluation

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 20 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- Power Meter
- 5. Calibrated Dipole

Fig 7.2 Photo of Dipole Setup

7.3 SAR System Verification Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Table 7.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured SAR (W/kg)	Targeted SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
2014/4/23	835	Head	250	4d091	3819	910	2.46	9.40	9.84	4.68
2014/4/23	1900	Head	250	5d118	3819	910	9.44	40.30	37.76	-6.30
2014/4/23	2450	Head	250	908	3819	910	13.50	54.00	54	0.00
2014/4/23	835	Body	250	4d091	3819	910	2.21	9.42	8.84	-6.16
2014/4/23	1900	Body	250	5d118	3819	910	10.40	41.80	41.6	-0.48
2014/4/23	2450	Body	250	908	3819	910	13.40	50.40	53.6	6.35

Table 7.1 Target and Measurement SAR after Normalized

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 21 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

8. EUT Testing Position

This EUT was tested at worst positions of original application . They are right Cheek, left Cheek, bottom-face of tablet PC. Please refer to Appendix D for the test setup photos.

8.1 SAR Testing for Tablet

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v05r02 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV

: 22 of 39 Page Number Report Issued Date: May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

9. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA3N2302-02

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 23 of 39

 TEL: 86-755-8637-9589
 Report Issued Date
 : May 05, 2014

 FAX: 86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID: O57A3300GV

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r03 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

		≤3 GHz	> 3 GHz	
		5 ± 1 nm	½-8·ln(2) ± 0.5 mm	
		30° ± 1°	20° ± 1°	
		≤ 2 GHz: ≤ 15 mm 2 − 3 GHz: ≤ 12 mm	$3 - 4 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$	
itial resoluti	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of to measurement plane orientation measurement resolution must be dimension of the test device with point on the test device.	, is smaller than the above, the be ≤ the corresponding x or y	
Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}			3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
uniform	grid: ∆z _{Zoom} (n)	≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm	
graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 - 4 GHz: ≤ 3 mm 4 - 5 GHz: ≤ 2.5 mm 5 - 6 GHz: ≤ 2 mm	
grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Z_{\text{com}}}(n-1)$		
x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	
	probe sensors) from probe sent location stial resolution uniform services and services are sensors.	uniform grid: $\Delta z_{Zoom}(n)$ $\begin{array}{c} \Delta z_{Zoom}(1): \text{ between } 1^{st} \\ \text{two points closest to} \\ \text{phantom surface} \\ \Delta z_{Zoom}(n>1): \text{ between} \\ \text{subsequent points} \end{array}$	an closest measurement point obe sensors) to phantom surface from probe axis to phantom surface sent location ≤ 2 GHz: ≤ 15 mm 2 - 3 GHz: ≤ 12 mm When the x or y dimension of the measurement plane orientation measurement resolution must be dimension of the test device with point on the test device. Satial resolution: Δx _{Zoom} , Δy _{Zoom} Datial resolution: Δx _{Zoom} , Δy _{Zoom} Satial resolution: Δx _{Zoo}	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV

Page Number : 24 of 39 Report Issued Date: May 05, 2014 Report Version : Rev. 01

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

10. Bluetooth Exclusions Applied

Mada Pand	Average power(dBm)				
Mode Band	Bluetooth v3.0+EDR	Bluetooth v4.0			
2.4GHz Bluetooth	4	-4			

Note:

1. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-q SAR and ≤ 7.5 for 10-q extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison
 - If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold

Bluetooth Max Power (dBm)	Test Distance (mm)	Frequency (GHz)	exclusion thresholds
4	0	2.48	0.79

2. Per KDB 447498 D01v05r02 exclusion thresholds is 0.79 < 3, RF exposure evaluation is not required.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589

Report Issued

FAX: 86-755-8637-9595 FCC ID: O57A3300GV Report Issued Date: May 05, 2014
Report Version: Rev. 01

: 25 of 39

11. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

Band GSM850	Burst A	verage Powe	r (dBm)	Frame-A	verage Powe	er (dBm)
TX Channel	128	189	251	128	189	251
Frequency (MHz)	824.2	836.4	848.8	824.2	836.4	848.8
GSM (GMSK, 1 Tx slot)	32.03	32.06	32.07	23.03	23.06	23.07
GPRS (GMSK, 1 Tx slot) – CS1	32.02	32.06	32.05	23.02	23.06	23.05
GPRS (GMSK, 2 Tx slots) – CS1	29.21	29.26	29.29	23.21	23.26	23.29
GPRS (GMSK, 3 Tx slots) – CS1	27.23	27.25	27.17	22.97	22.99	22.91
GPRS (GMSK, 4 Tx slots) - CS1	26.04	26.07	25.99	23.04	23.07	22.99
EDGE (8PSK, 1 Tx slot) – MCS5	27.10	27.38	27.21	18.10	18.38	18.21
EDGE (8PSK, 2 Tx slots) – MCS5	26.07	26.45	26.22	20.07	20.45	20.22
EDGE (8PSK, 3 Tx slots) – MCS5	24.20	24.52	24.32	19.94	20.26	20.06
EDGE (8PSK, 4 Tx slots) – MCS5	23.08	23.40	23.12	20.08	20.40	20.12

Report No. : FA3N2302-02

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB
Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB
Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB
Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

Band GSM1900	Burst A	verage Powe	r (dBm)	Frame-A	verage Powe	er (dBm)
TX Channel	512	661	810	512	661	810
Frequency (MHz)	1850.2	1880	1909.8	1850.2	1880	1909.8
GSM (GMSK, 1 Tx slot)	28.56	28.54	28.69	19.56	19.54	19.69
GPRS (GMSK, 1 Tx slot) – CS1	28.55	28.52	28.60	19.55	19.52	19.60
GPRS (GMSK, 2 Tx slots) – CS1	25.69	25.71	25.72	19.69	19.71	<mark>19.72</mark>
GPRS (GMSK, 3 Tx slots) – CS1	23.32	23.44	23.36	19.06	19.18	19.10
GPRS (GMSK, 4 Tx slots) – CS1	22.36	22.49	22.44	19.36	19.49	19.44
EDGE (8PSK, 1 Tx slot) – MCS5	26.64	26.36	26.17	17.64	17.36	17.17
EDGE (8PSK, 2 Tx slots) – MCS5	25.37	25.22	24.89	19.37	19.22	18.89
EDGE (8PSK, 3 Tx slots) – MCS5	23.41	23.26	22.93	19.15	19.00	18.67
EDGE (8PSK, 4 Tx slots) – MCS5	22.32	22.10	21.85	19.32	19.10	18.85

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB
Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB
Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB
Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 26 of 39

 TEL: 86-755-8637-9589
 Report Issued Date
 : May 05, 2014

 FAX: 86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID: O57A3300GV

<WLAN 2.4GHz mode Conducted Power>

	802.11b Average Power (dBm)														
Channel Frequency Data Rate (bps)															
Chamilei	(MHz)	1M bps	2M bps	5.5M bps	11M bps										
CH 01	2412	<mark>12.52</mark>	12.40	12.51	12.50										
CH 06	2437	12.11	12.10	12.21	12.20										
CH 11	2462	12.20	12.18	12.29	12.28										

			802.1	lg Average	Power (dl	Bm)							
Channel Frequency Data Rate (bps)													
Channel	(MHz)	6M bps	9M bps	12M bps	18M bps	24M bps	36M bps	48M bps	54M bps				
CH 01	2412	<mark>10.63</mark>	10.56	10.61	10.58	10.60	10.51	10.59	10.58				
CH 06	2437	10.29	10.24	10.29	10.26	10.28	10.19	10.27	10.26				
CH 11	2462	10.16	10.08	10.13	10.10	10.12	10.03	10.11	10.10				

	WLAN 2.4GHz Band 802.11n-HT20 Average Power (dBm)														
Channel	Frequency			MCS Index											
Chamilei	(MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7						
CH 01	2412	<mark>10.62</mark>	10.59	10.61	10.55	10.55	10.61	10.61	10.60						
CH 06	2437	10.13	10.11	10.13	10.07	10.07	10.13	10.13	10.12						
CH 11	2462	9.68	9.63	9.65	9.59	9.59	9.65	9.65	9.64						

		WLAN 2.	4GHz Band	WLAN 2.4GHz Band 802.11n-HT40 Average Power (dBm)														
Channel	Frequency MCS Index																	
Channel	(MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7									
CH 03	2422	9.20	9.16	9.18	9.12	9.15	9.14	9.19	9.18									
CH 06	2437	<mark>9.98</mark>	9.95	9.96	9.90	9.93	9.92	9.97	9.96									
CH 09	2452	5.30	5.29	5.30	5.24	5.27	5.26	5.31	5.30									

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589

FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 27 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

12. SAR Test Results

Note:

- 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v05r02, for each exposure position, if the highest output channel reported SAR ≤0.8W/kg, other channels SAR testing is not necessary.
- 3. This variant report only verified the worst position based on the original test report. For WLAN SAR, left cheek SAR was evaluated for Co-located with WWAN.

12.1 Head SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
1	GSM850	GSM Voice	Left Cheek	128	824.2	32.03	32.5	1.114	-0.01	0.832	0.92 <mark>7</mark>
2	GSM850	GSM Voice	Left Cheek	189	836.4	32.06	32.5	1.107	-0.05	0.813	0.900
3	GSM850	GSM Voice	Left Cheek	251	848.8	32.07	32.5	1.104	0.06	0.823	0.909

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
5	GSM1900	GSM Voice	Left Cheek	810	1909.8	28.69	29	1.074	80.0	0.748	0.803
6	GSM1900	GSM Voice	Left Cheek	512	1850.2	28.56	29	1.107	-0.06	0.718	0.795
7	GSM1900	GSM Voice	Left Cheek	661	1880	28.54	29	1.112	0.05	0.714	0.794

<WLAN2.4GHz SAR>

Plot No.	Rand	Mode	Test Position	Ch.	Freq. (MHz)	Data Rate (bps)	Average Power (dBm)	Tune-up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
11	WLAN 2.4GHz	802.11b	Right Cheek	1	2412	1M	12.52	13	1.117	-0.09	0.198	0.221
12	WLAN 2.4GHz	802.11b	Left Cheek	1	2412	1M	12.52	13	1.117	0.02	0.043	0.048

SPORTON INTERNATIONAL (SHENZHEN) INC.

FAX: 86-755-8637-9595 FCC ID: O57A3300GV

TEL: 86-755-8637-9589

Page Number : 28 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

12.2 Body SAR

<GSM SAR>

Plot No.		Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
19	GSM850	GPRS (2 Tx slots)	Bottom Face	0	128	824.2	29.21	29.5	1.069	0.07	0.968	1.035
20	GSM850	GPRS (2 Tx slots)	Bottom Face	0	189	836.4	29.26	29.5	1.057	0.08	0.965	1.020
21	GSM850	GPRS (2 Tx slots)	Bottom Face	0	251	848.8	29.29	29.5	1.050	-0.04	0.963	1.011

Plot No.		Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
15	GSM1900	GPRS (2 Tx slots)	Bottom Face	0	810	1909.8	25.72	26	1.067	0.14	1.110	<mark>1.184</mark>
16	GSM1900	GPRS (2 Tx slots)	Bottom Face	0	512	1850.2	25.69	26	1.074	0.04	0.916	0.984
17	GSM1900	GPRS (2 Tx slots)	Bottom Face	0	661	1880	25.71	26	1.069	-0.07	0.989	1.057

<WLAN2.4GHz SAR>

Plo No	I Kand	Mode	Test Position	Gap (cm)	Ch.	(MHz)	Data Rate (bps)	Average Power (dBm)	Tune-up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
31	WLAN 2.4GHz	802.11b	Bottom Face	0	6	2437	1M	12.11	12.5	1.094	-0.04	0.813	0.889
32	WLAN 2.4GHz	802.11b	Bottom Face	0	1	2412	1M	12.52	13	1.117	0.06	0.837	0.935
33	WLAN 2.4GHz	802.11b	Bottom Face	0	11	2462	1M	12.20	12.5	1.072	0.05	0.951	1.019

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589

FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 29 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

12.3 Repeated SAR Measurement

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Data Rate (bps)	Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
19	GSM850	GPRS (2 Tx slots)	Bottom Face	0	128	824.2	-	29.21	29.5	1.069	0.07	0.968	1	1.035
22	GSM850	GPRS (2 Tx slots)	Bottom Face	0	128	824.2	-	29.21	29.5	1.069	0.05	0.956	1.013	1.022
15	GSM1900	GPRS (2 Tx slots)	Bottom Face	0	810	1909.8	-	25.72	26	1.067	0.14	1.110	1	1.184
18	GSM1900	GPRS (2 Tx slots)	Bottom Face	0	810	1909.8	-	25.72	26	1.067	0.01	1.100	1.009	1.173
33	WLAN 2.4GHz	802.11b	Bottom Face	0	11	2462	1M	12.20	12.5	1.072	0.05	0.951	1	1.019
34	WLAN 2.4GHz	802.11b	Bottom Face	0	11	2462	1M	12.20	12.5	1.072	0.02	0.943	1.009	1.010

Note:

- 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg
- 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the largest SAR to the smallest SAR among original and repeated measurement.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

SPORTON INTERNATIONAL (SHENZHEN) INC.

FAX: 86-755-8637-9595 FCC ID: O57A3300GV

TEL: 86-755-8637-9589

Page Number : 30 of 39 Report Issued Date: May 05, 2014

Report No.: FA3N2302-02

Report Version : Rev. 01

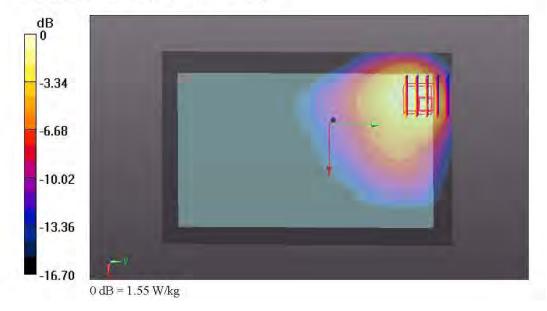
12.4 Highest SAR Plot

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2014.04.23

19 GSM850 GPRS(2 Tx slots) Bottom Face 0cm Ch128

Communication System: UID 0, GPRS/EDGE10 (0); Frequency: 824.2 MHz; Duty Cycle: 1:4.15 Medium: MSL_835_140423 Medium parameters used: f = 824.2 MHz; σ = 0.961 S/m; ϵ_r = 54.07; ρ = 1000 kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.54, 9.54, 9.54); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch128/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.74 W/kg

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.392 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 0.968 W/kg; SAR(10 g) = 0.703 W/kg

Maximum value of SAR (measured) = 1.55 W/kg

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 31 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2014.04.23

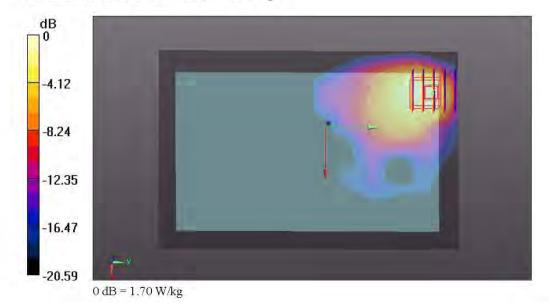
15 GSM1900_GPRS(2 Tx slots)_Bottom Face_0cm_Ch810

Communication System: UID 0, GPRS/EDGE10 (0); Frequency: 1909.8 MHz; Duty Cycle: 1:4.15 Medium: MSL_1900_140423 Medium parameters used: f = 1909.8 MHz; σ = 1.553 S/m; ϵ_r = 53.507; ρ = 1000 kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Ch810/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.10 W/kg

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.943 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 2.29 W/kg

SAR(1 g) = 1.110 W/kg; SAR(10 g) = 0.596 W/kg Maximum value of SAR (measured) = 1.70 W/kg

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 32 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

Date: 2014.04.23 Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Report No. : FA3N2302-02

33 WLAN2.4GHz_802.11b_Bottom Face_0cm_Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL 2450 140423 Medium parameters used: f = 2462 MHz; $\sigma = 1.964$ S/m; $\epsilon_r = 51.623$;

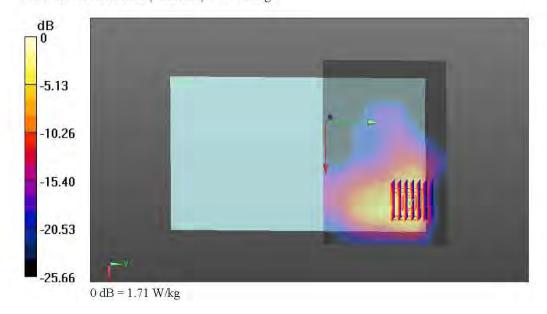
 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.07, 7.07, 7.07); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch11/Area Scan (121x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.67 W/kg


Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.939 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.64 W/kg

SAR(1 g) = 0.951 W/kg; SAR(10 g) = 0.393 W/kg

Maximum value of SAR (measured) = 1.71 W/kg

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV

Page Number : 33 of 39 Report Issued Date: May 05, 2014

Report Version : Rev. 01

13. Simultaneous Transmission Analysis

NO.	Cimultaneous Transmission Configurations	Tab	let	Note
NO.	Simultaneous Transmission Configurations	Head	Body	Note
1.	GSM(Voice) + WLAN2.4GHz(data)	Yes	-	-
2.	GSM(Voice) + Bluetooth(data)	Yes		-
3.	GPRS/EDGE(Data) + WLAN2.4GHz(data)	1	Yes	2.4GHz Hotspot
4.	GPRS/EDGE(Data) + Bluetooth(data)		Yes	Bluetooth Tethering

Report No. : FA3N2302-02

Note:

- WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously. 1.
- The Reported SAR summation is calculated based on the same configuration and test position.
- Per KDB 447498 D01v05r02, simultaneous transmission SAR is compliant if,

 - i) Scalar SAR summation < 1.6W/kg.
 ii) SPLSR = (SAR₁ + SAR₂)^{1.5} / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x₁-x₂)² + (y₁-y₂)² + (z₁-z₂)²], where (x₁, y₁, z₁) and (x₂, y₂, z₂) are the coordinates of the extrapolated peak SAR locations in the zoom scan
 - If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary
 - iii) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg
- For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r01 based on the formula below.
 - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]- $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - ii) When the minimum test separation distance is < 5mm, the distance is used 5mm to determine SAR test
 - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

In this report, 50mm separation is applied to conservatively estimate SAR value for separation distance > 50mm

Bluetooth	Exposure Position	Head	Bottom Face		
Max Power	Test separation	0	0		
4 dBm	Antenna to user distance(mm)	0	0		
4 UDIII	Estimated SAR (W/kg)	0.105	0.105		

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number : 34 of 39 TEL: 86-755-8637-9589 Report Issued Date: May 05, 2014 FAX: 86-755-8637-9595 Report Version : Rev. 01

FCC ID: O57A3300GV

13.1 Head Exposure Conditions

< WWAN + WLAN >

		WWAN		WLAN 2.4GHz				
WWAN Band	Position	Plot No	Max. WWAN SAR (W/kg)	Plot No	Max. WLAN SAR (W/kg)	Summed SAR (W/kg)	SPLSR	Case No
GSM850	Right Cheek			11	0.221	0.22		
GOWIOOU	Left Cheek	1	0.927	12	0.048	0.98		
GSM1900	Right Cheek			11	0.221	0.22		
G3W11900	Left Cheek	5	0.803	12	0.048	0.85		

< WWAN + Bluetooth >

		WWAN		Bluetooth			
WWAN Band	Position	Plot No	Max. WWAN SAR (W/kg)	Estimated SAR (W/kg)	Summed SAR (W/kg)	SPLSR	Case No
GSM850	Right Cheek			0.105	0.11		
G3141830	Left Cheek	1	0.927	0.105	1.03		
GSM1900	Right Cheek			0.105	0.11		
G3W1900	Left Cheek	5	0.803	0.105	0.91		

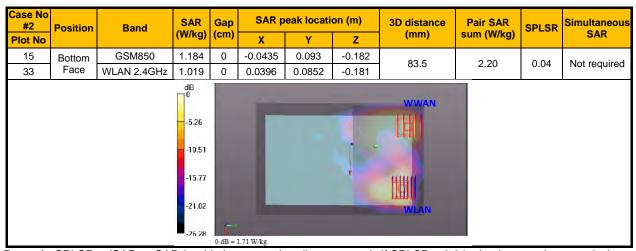
13.2 Tablet Body Exposure Conditions

< WWAN + WLAN >

		WWAN		WLA	AN 2.4GHz				
WWAN Band	Position	Plot No	Max. WWAN SAR (W/kg)	Plot No	Max. WLAN SAR (W/kg)	Summed SAR (W/kg)	SPLSR	Case No	
GSM850	Bottom Face	19	1.035	33	1.019	2.05	0.04	#1	
GSM1900	Bottom Face	15	1.184	33	1.019	2.20	0.04	#2	

< WWAN + Bluetooth >

		WWAN		Bluetooth			
WWAN Band	Position	Plot No	Max. WWAN SAR (W/kg)	Estimated SAR (W/kg)	Summed SAR (W/kg)	SPLSR	Case No
GSM850	Bottom Face	19	1.035	0.105	1.14		
GSM1900	Bottom Face	15	1.184	0.105	1.29		


SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 35 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

13.3 SPLSR Evaluation and Analysis

Case No #1	Position	Band	SAR		Pair SAR	SPLSR	Simultaneous				
Plot No			(W/kg)	(cm)	Х	Υ	Z	(mm)	sum (W/kg)		SAR
19	Bottom	GSM850	1.035	0	-0.031	0.0915	-0.182	70.9	2.05	0.04	Not required
33	Face	WLAN 2.4GHz	1.019	0	0.0396	0.0852	-0.181	70.9	2.05	0.04	Not required
			-5.26 -10.51 -15.77 -21.02	t	1.71 W/kg			WWAN			

Remark: SPLSR = $(SAR_1 + SAR_2)_{1.5}$ / (min. separation distance, mm). If SPLSR \leq 0.04, simultaneously transmission SAR measurement is not necessary

Test Engineer: Luke Lu

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 36 of 39
Report Issued Date : May 05, 2014
Report Version : Rev. 01

14. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 14.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 14.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 37 of 39

Report Issued Date : May 05, 2014

Report Version : Rev. 01

Report No. : FA3N2302-02

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (1g)	Standard Uncertainty (10g)
Measurement System							
Probe Calibration	6.0	Normal	1	1	1	± 6.0 %	± 6.0 %
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	± 1.9 %	± 1.9 %
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	± 3.9 %	± 3.9 %
Boundary Effects	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Linearity	4.7	Rectangular	√3	1	1	± 2.7 %	± 2.7 %
System Detection Limits	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Readout Electronics	0.3	Normal	1	1	1	± 0.3 %	± 0.3 %
Response Time	0.8	Rectangular	√3	1	1	± 0.5 %	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	1	± 1.5 %	± 1.5 %
RF Ambient Noise	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
RF Ambient Reflections	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
Probe Positioner	0.4	Rectangular	√3	1	1	± 0.2 %	± 0.2 %
Probe Positioning	2.9	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
Max. SAR Eval.	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Test Sample Related							
Device Positioning	2.9	Normal	1	1	1	± 2.9 %	± 2.9 %
Device Holder	3.6	Normal	1	1	1	± 3.6 %	± 3.6 %
Power Drift	5.0	Rectangular	√3	1	1	± 2.9 %	± 2.9 %
Phantom and Setup							
Phantom Uncertainty	4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	0.43	± 1.6 %	± 1.1 %
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	0.49	± 1.7 %	± 1.4 %
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	0.49	± 1.5 %	± 1.2 %
Combined Standard Uncertainty	,					± 11.0 %	± 10.8 %
Coverage Factor for 95 %						K:	=2
Expanded Uncertainty						± 22.0 %	± 21.5 %

Table 14.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 38 of 39
Report Issued Date : May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

15. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007
- [6] FCC KDB 447498 D01 v05r02 General RF Exposure Guidance "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014
- [7] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008
- [8] FCC KDB 616217 D04 v01r01, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", May 2013
- [9] FCC KDB 865664 D01 v01r03 "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014.
- [10] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations", May 2013

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : 39 of 39
Report Issued Date : May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

Appendix A. Plots of System Performance Check

The plots are shown as follows.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV

: A1 of A1 Page Number Report Issued Date: May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

System Check Head 835MHz 140423

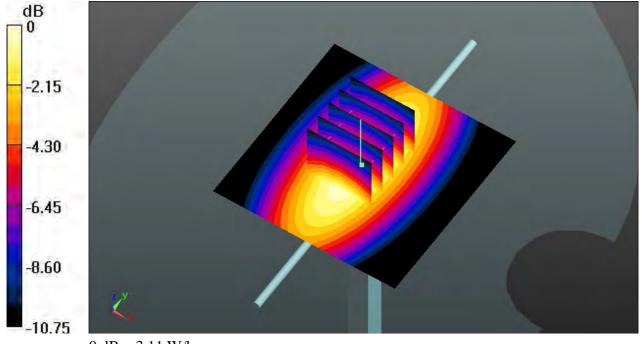
DUT: D835V2 - SN: 4d091

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL_835_140423 Medium parameters used: f = 835 MHz; σ = 0.912 S/m; ϵ_r = 42.045; ρ

 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.68, 9.68, 9.68); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.11 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 59.876 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kgMaximum value of SAR (measured) = 3.11 W/kg

0 dB = 3.11 W/kg

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2014.04.23

System Check Head 1900MHz 140423

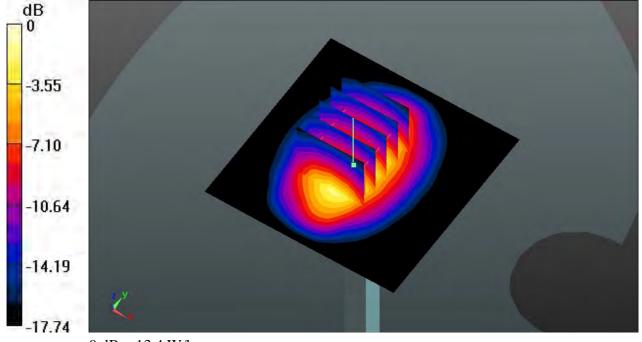
DUT: D1900V2 - SN: 5d118

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 140423 Medium parameters used: f = 1900 MHz; $\sigma = 1.422$ S/m; $\varepsilon_r = 40.315$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8, 8, 8); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 96.780 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.44 W/kg; SAR(10 g) = 4.92 W/kg

SAR(1 g) = 9.44 W/kg; SAR(10 g) = 4.92 W/kg Maximum value of SAR (measured) = 13.4 W/kg

0 dB = 13.4 W/kg

System Check Head 2450MHz 140423

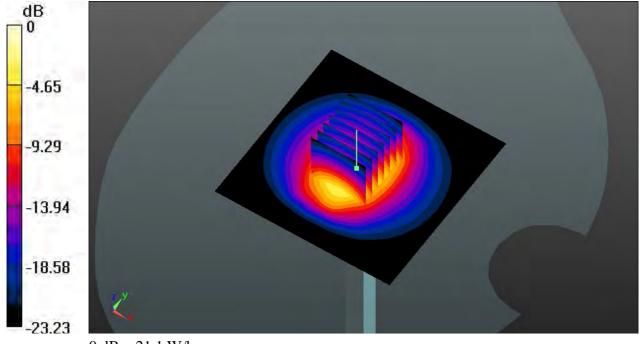
DUT: D2450V2 - SN: 908

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL_2450_140423 Medium parameters used: f = 2450 MHz; $\sigma = 1.823$ S/m; $\varepsilon_r = 37.961$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 22.7°C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.22, 7.22, 7.22); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 20.8 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.574 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.12 W/kgMaximum value of SAR (measured) = 21.1 W/kg

0 dB = 21.1 W/kg

System Check Body 835MHz 140423

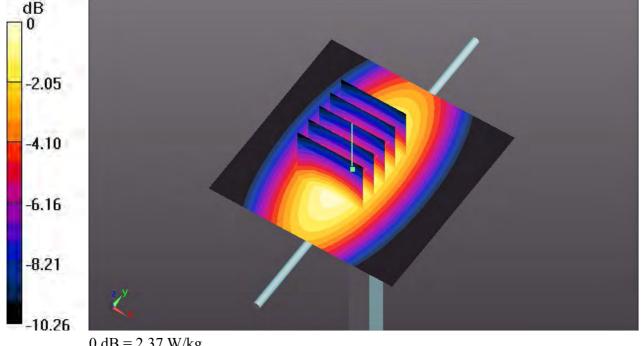
DUT: D835V2 - SN: 4d091

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL 835 140423 Medium parameters used: f = 835 MHz; $\sigma = 0.972$ S/m; $\varepsilon_r = 53.975$; ρ

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.54, 9.54, 9.54); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.38 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.652 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.17 W/kg

SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.46 W/kgMaximum value of SAR (measured) = 2.37 W/kg

0 dB = 2.37 W/kg

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2014.04.23

System Check Body 1900MHz 140423

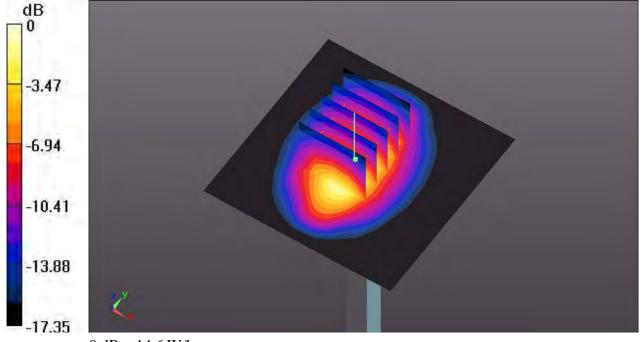
DUT: D1900V2 - SN: 5d118

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900_140423 Medium parameters used: f = 1900 MHz; $\sigma = 1.542$ S/m; $\varepsilon_r = 53.532$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 85.580 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.47 W/kgMaximum value of SAR (measured) = 14.6 W/kg

0 dB = 14.6 W/kg

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2014.04.23

System Check Body 2450MHz 140423

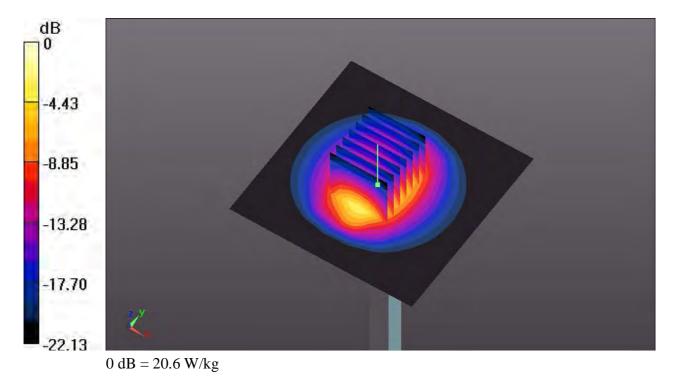
DUT: D2450V2 - SN: 908

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450_140423 Medium parameters used: f = 2450 MHz; $\sigma = 1.949$ S/m; $\varepsilon_r = 51.667$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.07, 7.07, 7.07); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 20.6 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.624 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.17 W/kgMaximum value of SAR (measured) = 20.6 W/kg

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

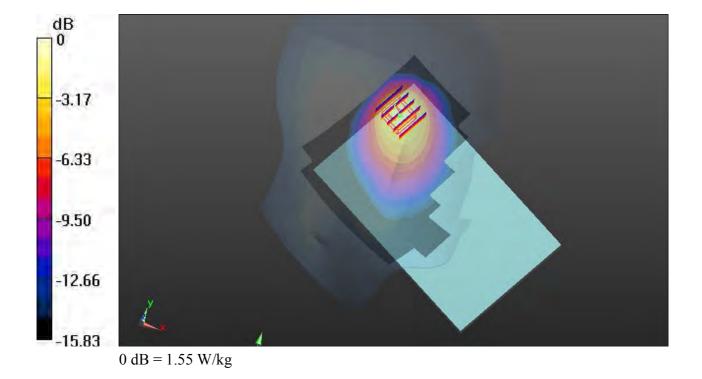
SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : B1 of B1
Report Issued Date : May 05, 2014
Report Version : Rev. 01

Report No. : FA3N2302-02

01 GSM850 GSM Voice Left Cheek Ch128

Communication System: UID 0, Generic GSM (0); Frequency: 824.2 MHz; Duty Cycle: 1:8.3 Medium: HSL_835_140423 Medium parameters used: f = 824.2 MHz; $\sigma = 0.901$ S/m; $\epsilon_r = 42.168$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.68, 9.68, 9.68); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

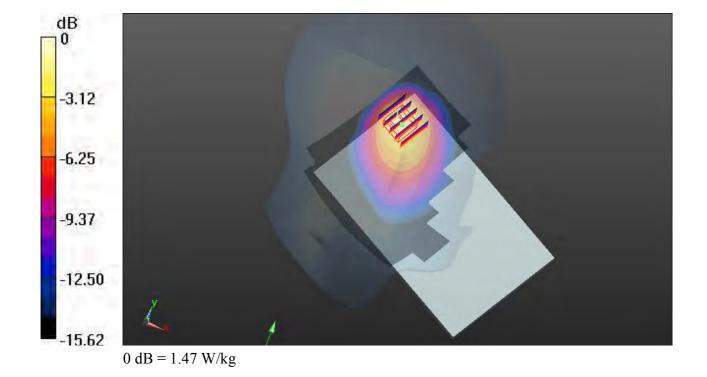
Ch128/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.12 W/kg

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.062 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.16 W/kg SAR(1 g) = 0.832 W/kg; SAR(10 g) = 0.538 W/kg Maximum value of SAR (measured) = 1.55 W/kg

02 GSM850_GSM Voice_Left Cheek_Ch189

Communication System: UID 0, Generic GSM (0); Frequency: 836.4 MHz; Duty Cycle: 1:8.3 Medium: HSL_835_140423 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914$ S/m; $\epsilon_r = 42.034$; $\rho = 1000$ kg/m³

Date: 2014.04.23


Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

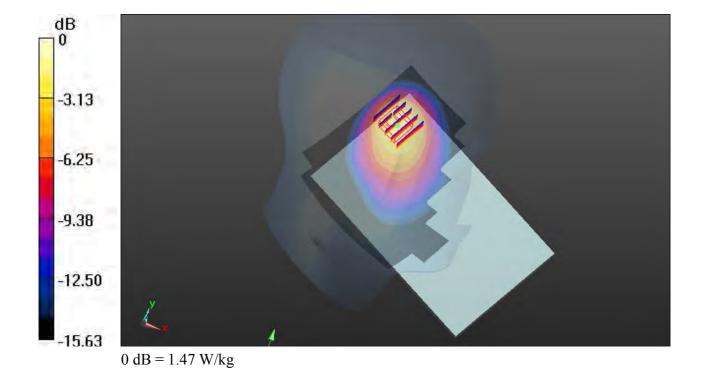
- Probe: EX3DV4 SN3819; ConvF(9.68, 9.68, 9.68); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch189/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.05 W/kg

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.797 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 2.02 W/kg SAR(1 g) = 0.813 W/kg; SAR(10 g) = 0.532 W/kg Maximum value of SAR (measured) = 1.47 W/kg

03 GSM850_GSM Voice_Left Cheek_Ch251

Communication System: UID 0, Generic GSM (0); Frequency: 848.8 MHz; Duty Cycle: 1:8.3 Medium: HSL_835_140423 Medium parameters used: f = 848.8 MHz; $\sigma = 0.926$ S/m; $\epsilon_r = 41.889$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

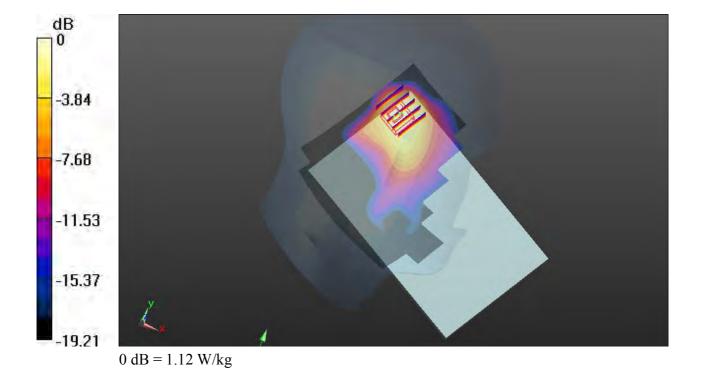
- Probe: EX3DV4 SN3819; ConvF(9.68, 9.68, 9.68); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch251/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.13 W/kg

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.588 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 2.00 W/kg SAR(1 g) = 0.823 W/kg; SAR(10 g) = 0.538 W/kg Maximum value of SAR (measured) = 1.47 W/kg

05 GSM1900_GSM Voice_Left Cheek_Ch810

Communication System: UID 0, Generic GSM (0); Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Medium: HSL_1900_140423 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.432$ S/m; $\epsilon_r = 40.266$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.5 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8, 8, 8); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

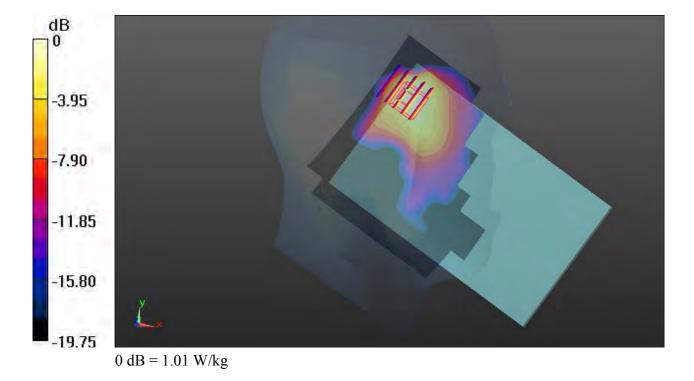
Ch810/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.15 W/kg

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.771 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1.64 W/kg SAR(1 g) = 0.748 W/kg; SAR(10 g) = 0.457 W/kg Maximum value of SAR (measured) = 1.12 W/kg

06 GSM1900_GSM Voice_Left Cheek_Ch512

Communication System: UID 0, Generic GSM (0); Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Medium: HSL_1900_140423 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.371$ S/m; $\epsilon_r = 40.538$; $\rho = 1000$ kg/m³

Date: 2014.04.23


Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8, 8, 8); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

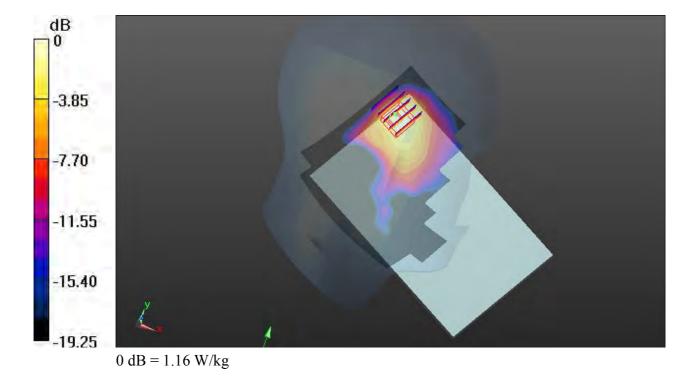
Ch512/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.07 W/kg

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.034 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.718 W/kg; SAR(10 g) = 0.394 W/kg Maximum value of SAR (measured) = 1.01 W/kg

07 GSM1900_GSM Voice_Left Cheek_Ch661

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium: HSL_1900_140423 Medium parameters used: f = 1880 MHz; σ = 1.402 S/m; ϵ_r = 40.407; ρ = 1000 kg/m³

Date: 2014.04.23


Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(8, 8, 8); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch661/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.14 W/kg

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.861 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.53 W/kg SAR(1 g) = 0.714 W/kg; SAR(10 g) = 0.431 W/kg Maximum value of SAR (measured) = 1.16 W/kg

11 WLAN2.4GHz 802.11b Right Cheek Ch1

Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL_2450_140423 Medium parameters used: f = 2412 MHz; $\sigma = 1.786$ S/m; $\epsilon_r = 38.112$;

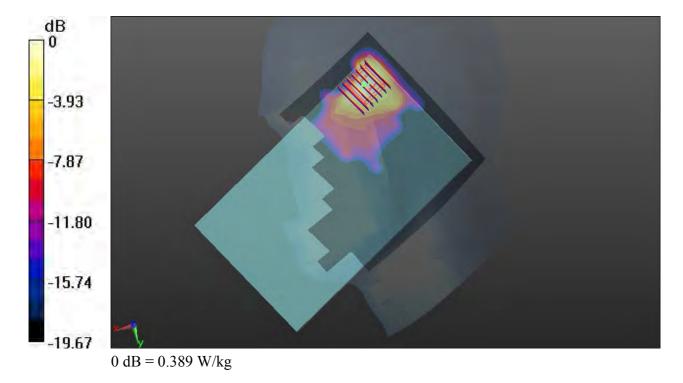
 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 22.7°C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.22, 7.22, 7.22); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch1/Area Scan (121x181x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.525 W/kg


Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.914 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.557 W/kg

SAR(1 g) = 0.198 W/kg; SAR(10 g) = 0.127 W/kg

Maximum value of SAR (measured) = 0.389 W/kg

12 WLAN2.4GHz 802.11b Left Cheek Ch1

Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL_2450_140423 Medium parameters used: f = 2412 MHz; $\sigma = 1.786$ S/m; $\epsilon_r = 38.112$;

Date: 2014.04.23

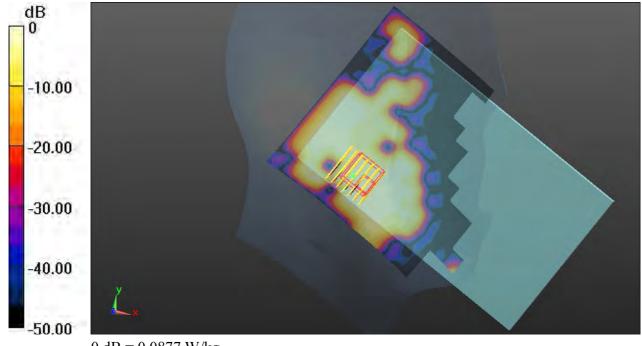
 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 22.7°C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.22, 7.22, 7.22); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch1/Area Scan (121x181x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.0951 W/kg


Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.416 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.043 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.0877 W/kg

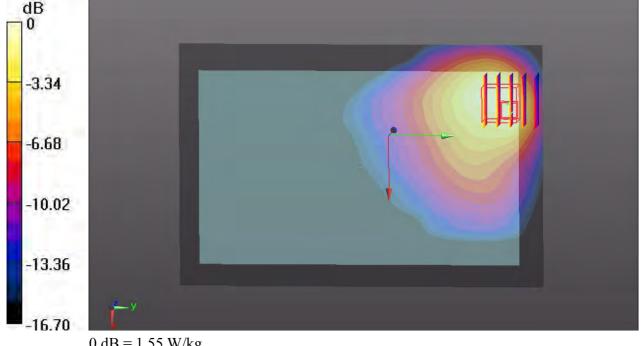
0 dB = 0.0877 W/kg

19 GSM850 GPRS(2 Tx slots) Bottom Face 0cm Ch128

Communication System: UID 0, GPRS/EDGE10 (0); Frequency: 824.2 MHz; Duty Cycle: 1:4.15 Medium: MSL 835 140423 Medium parameters used: f = 824.2 MHz; $\sigma = 0.961$ S/m; $\varepsilon_r = 54.07$; ρ $= 1000 \text{ kg/m}^3$

Date: 2014.04.23

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.54, 9.54, 9.54); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch128/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.74 W/kg

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.392 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.93 W/kgSAR(1 g) = 0.968 W/kg; SAR(10 g) = 0.703 W/kg

Maximum value of SAR (measured) = 1.55 W/kg

0 dB = 1.55 W/kg

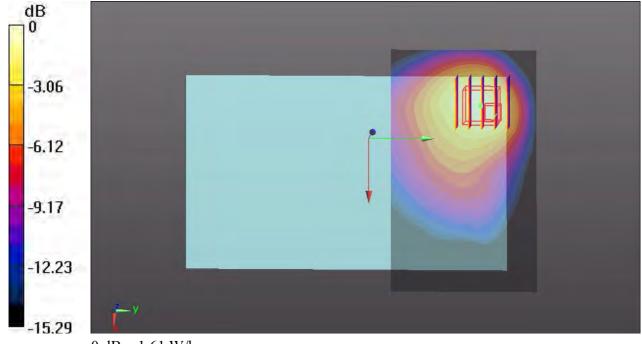
22 GSM850 GPRS(2 Tx slots) Bottom Face 0cm Ch128 Repeat SAR

Communication System: UID 0, GPRS/EDGE10 (0); Frequency: 824.2 MHz; Duty Cycle: 1:4.15 Medium: MSL_835_140423 Medium parameters used: f = 824.2 MHz; $\sigma = 0.961$ S/m; $\epsilon_r = 54.07$; $\rho = 1000$ kg/m³

Date: 2014.04.23

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3819; ConvF(9.54, 9.54, 9.54); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch128/Area Scan (101x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.52 W/kg

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.743 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.99 W/kg

SAR(1 g) = 0.956 W/kg; SAR(10 g) = 0.709 W/kgMaximum value of SAR (measured) = 1.61 W/kg

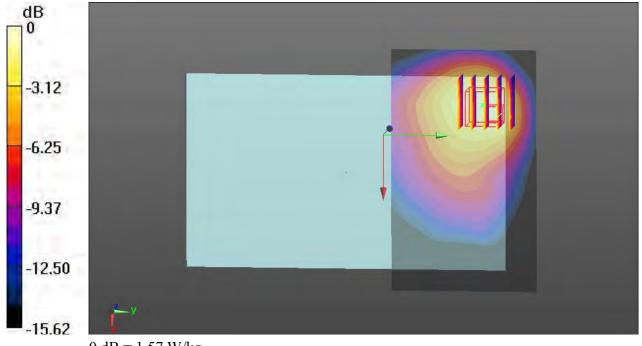
0 dB = 1.61 W/kg

20 GSM850 GPRS(2 Tx slots) Bottom Face 0cm Ch189

Communication System: UID 0, GPRS/EDGE10 (0); Frequency: 836.4 MHz; Duty Cycle: 1:4.15 Medium: MSL_835_140423 Medium parameters used: f = 836.4 MHz; $\sigma = 0.974$ S/m; $\epsilon_r = 53.962$; $\rho = 1000$ kg/m³

Date: 2014.04.23

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.54, 9.54, 9.54); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch189/Area Scan (101x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.50 W/kg

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.882 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 2.00 W/kg

SAR(1 g) = 0.965 W/kg; SAR(10 g) = 0.695 W/kgMaximum value of SAR (measured) = 1.57 W/kg

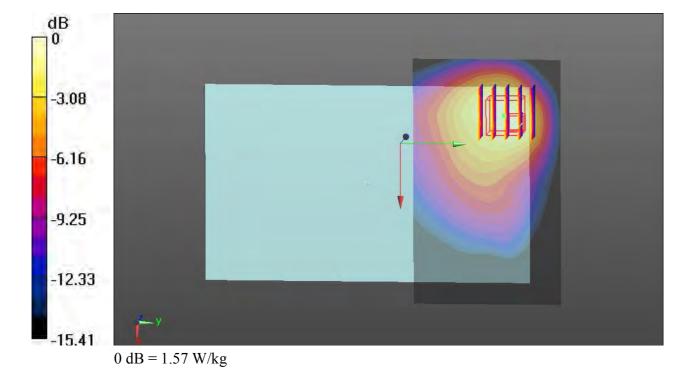
0 dB = 1.57 W/kg

21 GSM850_GPRS(2 Tx slots)_Bottom Face_0cm_Ch251

Communication System: UID 0, GPRS/EDGE10 (0); Frequency: 848.8 MHz; Duty Cycle: 1:4.15 Medium: MSL_835_140423 Medium parameters used: f = 848.8 MHz; σ = 0.987 S/m; ϵ_r = 53.847; ρ = 1000 kg/m³

Date: 2014.04.23

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(9.54, 9.54, 9.54); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch251/Area Scan (101x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.48 W/kg

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.675 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.99 W/kg

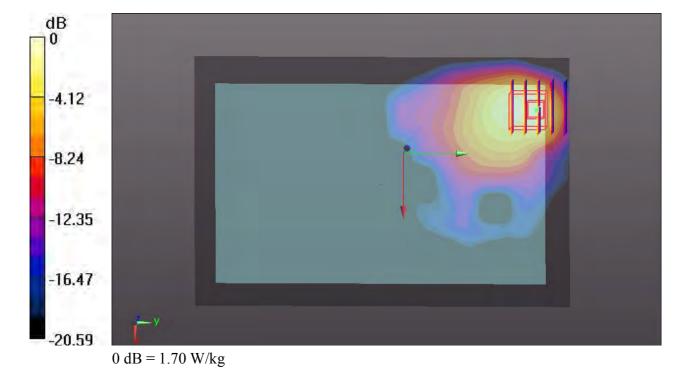
SAR(1 g) = 0.963 W/kg; SAR(10 g) = 0.696 W/kgMaximum value of SAR (measured) = 1.57 W/kg

15 GSM1900 GPRS(2 Tx slots) Bottom Face 0cm Ch810

Communication System: UID 0, GPRS/EDGE10 (0); Frequency: 1909.8 MHz; Duty Cycle: 1:4.15 Medium: MSL_1900_140423 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.553$ S/m; $\epsilon_r = 53.507$; $\rho = 1000$ kg/m³

Date: 2014.04.23

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch810/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.10 W/kg

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.943 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 2.29 W/kg

SAR(1 g) = 1.110 W/kg; SAR(10 g) = 0.596 W/kgMaximum value of SAR (measured) = 1.70 W/kg

18 GSM1900 GPRS(2 Tx slots) Bottom Face 0cm Ch810 Repeat SAR

Communication System: UID 0, GPRS/EDGE10 (0); Frequency: 1909.8 MHz; Duty Cycle: 1:4.15 Medium: MSL_1900_140423 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.553$ S/m; $\epsilon_r = 53.507$; $\rho = 1000$ kg/m³

Date: 2014.04.23

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch810/Area Scan (101x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.66 W/kg

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.899 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.43 W/kg

SAR(1 g) = 1.100 W/kg; SAR(10 g) = 0.583 W/kgMaximum value of SAR (measured) = 1.77 W/kg

16 GSM1900 GPRS(2 Tx slots) Bottom Face 0cm Ch512

Communication System: UID 0, GPRS/EDGE10 (0); Frequency: 1850.2 MHz; Duty Cycle: 1:4.15 Medium: MSL_1900_140423 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.483$ S/m; $\epsilon_r = 53.628$; $\rho = 1000$ kg/m³

Date: 2014.04.23

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch512/Area Scan (101x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.37 W/kg

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.657 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.81 W/kg SAR(1 g) = 0.916 W/kg; SAR(10 g) = 0.528 W/kg Maximum value of SAR (measured) = 1.29 W/kg

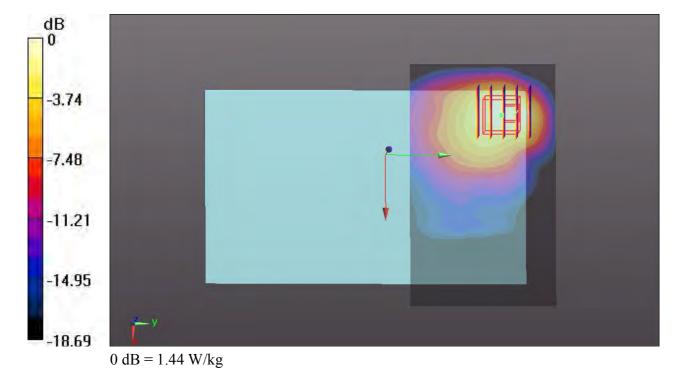
-3.79
-7.58
-11.37
-15.16
-18.95
0 dB = 1.29 W/kg

17 GSM1900_GPRS(2 Tx slots)_Bottom Face_0cm_Ch661

Communication System: UID 0, GPRS/EDGE10 (0); Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: MSL_1900_140423 Medium parameters used: f = 1880 MHz; $\sigma = 1.517$ S/m; $\epsilon_r = 53.569$; $\rho = 1000$ kg/m³

Date: 2014.04.23

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.55, 7.55, 7.55); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch661/Area Scan (101x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.45 W/kg

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.817 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.96 W/kg

SAR(1 g) = 0.989 W/kg; SAR(10 g) = 0.558 W/kgMaximum value of SAR (measured) = 1.44 W/kg

31 WLAN2.4GHz 802.11b Bottom Face 0cm Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450_140423 Medium parameters used: f = 2437 MHz; σ = 1.931 S/m; ϵ_r = 51.715;

Date: 2014.04.23

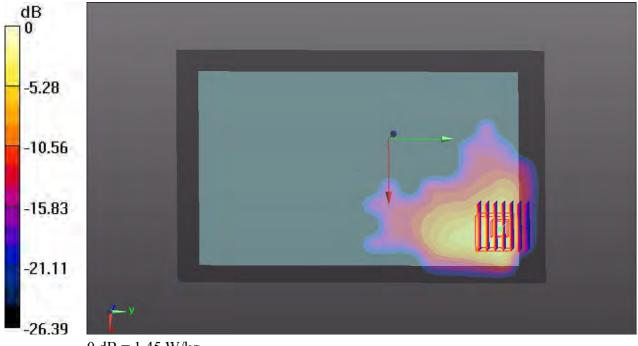
 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.07, 7.07, 7.07); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch6/Area Scan (121x191x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.48 W/kg


Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.212 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.20 W/kg

SAR(1 g) = 0.813 W/kg; SAR(10 g) = 0.343 W/kg

Maximum value of SAR (measured) = 1.45 W/kg

0 dB = 1.45 W/kg

32 WLAN2.4GHz 802.11b Bottom Face 0cm Ch1

Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL_2450_140423 Medium parameters used: f = 2412 MHz; σ = 1.899 S/m; ϵ_r = 51.803;

Date: 2014.04.23

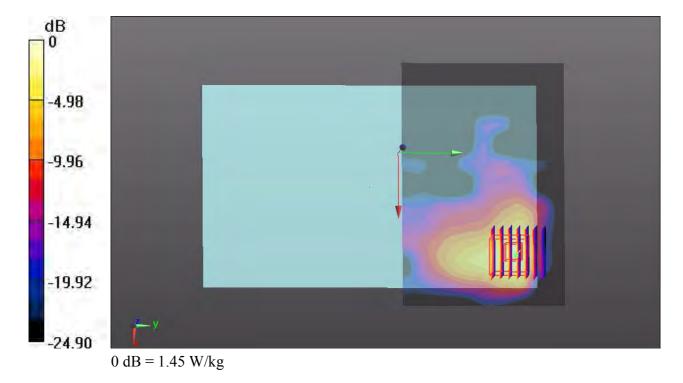
 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.07, 7.07, 7.07); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch1/Area Scan (121x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.40 W/kg


Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.963 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 2.31 W/kg

SAR(1 g) = 0.837 W/kg; SAR(10 g) = 0.347 W/kg

Maximum value of SAR (measured) = 1.45 W/kg

33 WLAN2.4GHz 802.11b Bottom Face 0cm Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450_140423 Medium parameters used: f = 2462 MHz; $\sigma = 1.964$ S/m; $\epsilon_r = 51.623$;

Date: 2014.04.23

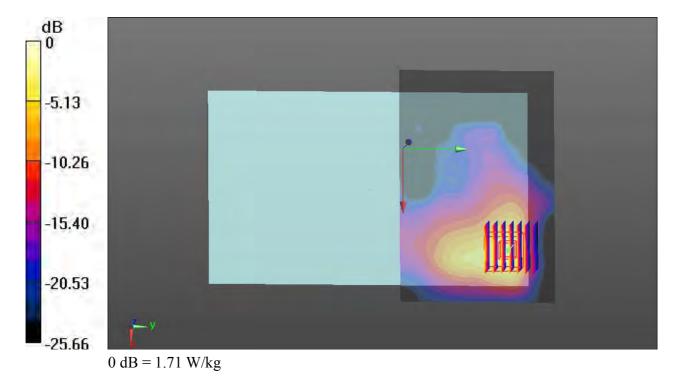
 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.07, 7.07, 7.07); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch11/Area Scan (121x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.67 W/kg


Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.939 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.64 W/kg

SAR(1 g) = 0.951 W/kg; SAR(10 g) = 0.393 W/kg

Maximum value of SAR (measured) = 1.71 W/kg

34 WLAN2.4GHz 802.11b Bottom Face 0cm Ch11 Repeat SAR

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450_140423 Medium parameters used: f = 2462 MHz; σ = 1.964 S/m; ϵ_r = 51.623;

Date: 2014.04.23

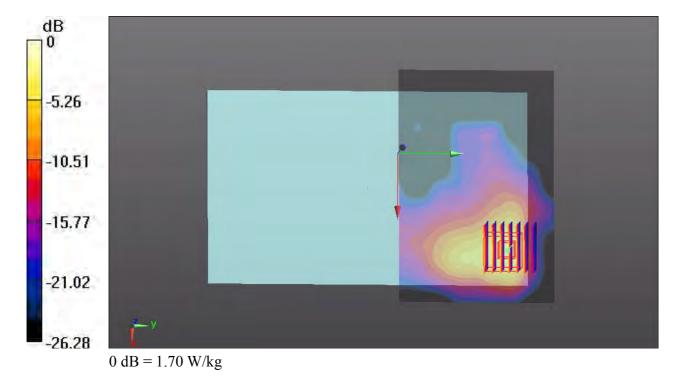
 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3819; ConvF(7.07, 7.07, 7.07); Calibrated: 2013.11.27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn910; Calibrated: 2013.12.17
- Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Ch11/Area Scan (121x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.64 W/kg


Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.957 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.61 W/kg

SAR(1 g) = 0.943 W/kg; SAR(10 g) = 0.389 W/kg

Maximum value of SAR (measured) = 1.70 W/kg

Appendix C. **DASY Calibration Certificate**

The DASY calibration certificates are shown as follows.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV

: C1 of C1 Page Number Report Issued Date: May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-CN (Auden)

Accreditation No.: SCS 108

Certificate No: D835V2-4d091 Nov11

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d091

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: November 18, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D. Kier
Approved by:	Katja Pokovic	Technical Manager	22 3 44 2

Issued: November 18, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.40 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.16 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	7700

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.41 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.42 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.58 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.21 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 5.1 jΩ	
Return Loss	- 25.7 dB	

Antenna Parameters with Body TSL

47.1 Ω - 6.9 jΩ	
- 22.3 dB	

General Antenna Parameters and Design

The state of the s	
Electrical Delay (one direction)	1.396 ns.
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 15, 2009

DASY5 Validation Report for Head TSL

Date: 18.11.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.9 \text{ mho/m}$; $\varepsilon_r = 41.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

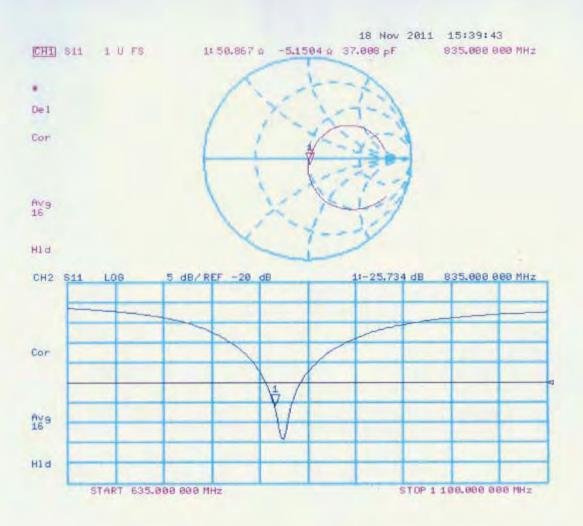
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.950 V/m; Power Drift = -0.0036 dB

Peak SAR (extrapolated) = 3.473 W/kg


SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g

Maximum value of SAR (measured) = 2.740 mW/g

0 dB = 2.740 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 18.11.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

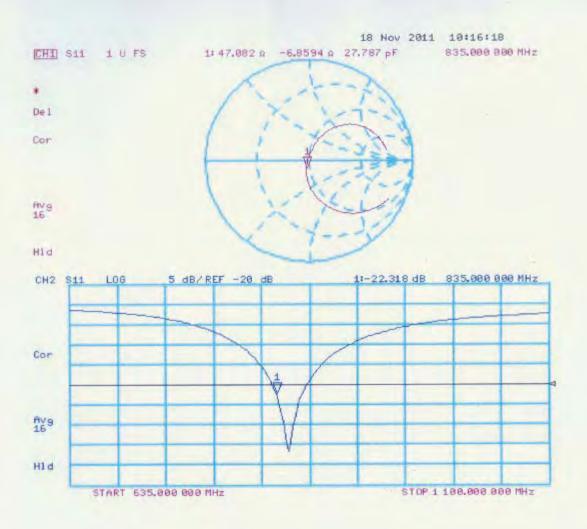
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.082 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.502 W/kg


SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.58 mW/g

Maximum value of SAR (measured) = 2.809 mW/g

0 dB = 2.810 mW/g

Impedance Measurement Plot for Body TSL

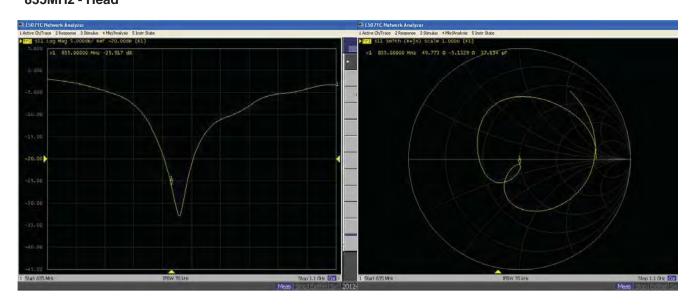
D835V2, serial No. 4d091 Extended Dipole Calibrations

Referring to KDB 865664 D01v01r01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

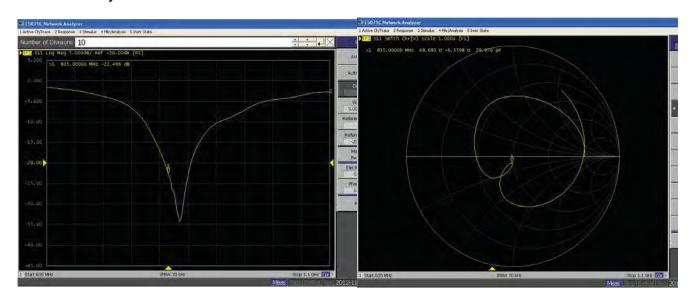
<Justification of the extended calibration>

					D835V2 – s	erial no. 4	ld091					
			835 He	ad					835 Bc	ody		
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
11.18.2011	-25.734		50.867		-5.1504		-22.318		47.082		-6.8594	
11.17.2012	-25.917	0.71	49.773	1.09	-5.1329	0.02	-22.466	0.66	48.683	1.60	-6.3598	0.50

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration.


Therefore the verification result should support extended calibration.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595



FCC Test Report

<Dipole Verification Data> - D835V2, serial no. 4d091 835MHz - Head

835MHz - Body

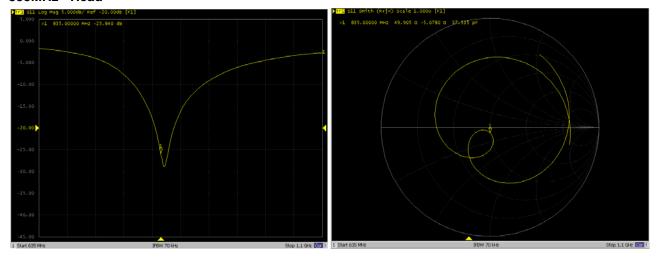
TEL: 86-755-8637-9589 FAX: 86-755-8637-9595

D835V2, Serial No. 4d091 Extended Dipole Calibrations

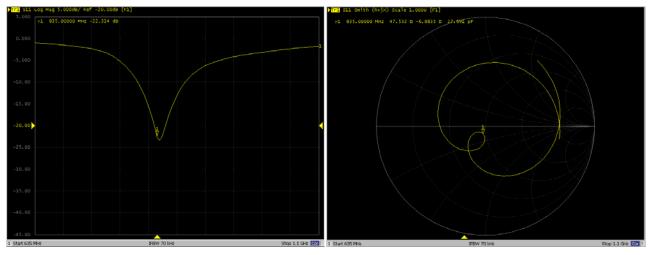
Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Justification of the extended calibration>

					D835V2 – s	erial no. 4	ld091					
			835 He	ad					835 Bo	ody		
Date of Measurement	Return-Loss (dB)	Delta	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
11.18.2011	-25.734		50.867		-5.1504		-22.318		47.082		-6.8594	
11.17.2012	-25.917	0.71	49.773	1.09	-5.1329	-0.02	-22.466	0.66	48.683	-1.60	-6.3598	-0.50
11.15.2013	-25.840	0.30	49.905	-0.13	-5.0780	-0.05	-22.324	0.63	47.532	1.15	-6.8833	0.52


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958



<Dipole Verification Data> - D835V2, serial no. 4d091

835MHz - Head

835MHz - Body

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Sporton-CN (Auden)

Certificate No: D1900V2-5d118_Nov11

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d118

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

November 21, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mai-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	10#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
and the second second	Name	Function	Signature

Calibrated by:

Dimos Iliev

Laboratory Technician

Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: November 21, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich. Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY5	V52.6.2
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy, dz = 5 mm	
1900 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	40.0	1.40 mbo/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	Asset .	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.29 mW / g
SAR for nominal Head TSL parameters	normalized to TW	21.0 mW/g ± 16.5 % (k=2)

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	1.59 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	- Line	

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.59 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4 Ω + 6.9 jΩ	
Return Loss	- 22,5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.8 Ω + 7.1 jΩ	
Return Loss	-22.4 dB	

General Antenna Parameters and Design

1.200 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 21, 2009

DASY5 Validation Report for Head TSL

Date: 21.11.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d118

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011

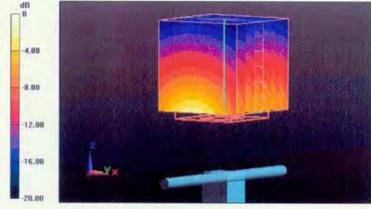
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

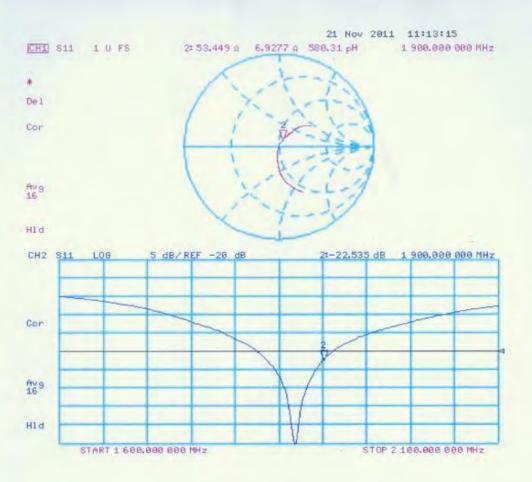
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.061 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.620 W/kg


SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.29 mW/g

Maximum value of SAR (measured) = 12.702 mW/g

0 dB = 12.700 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 21.11,2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d118

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.59 \text{ mho/m}$; $\varepsilon_r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011

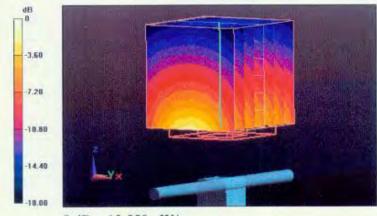
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

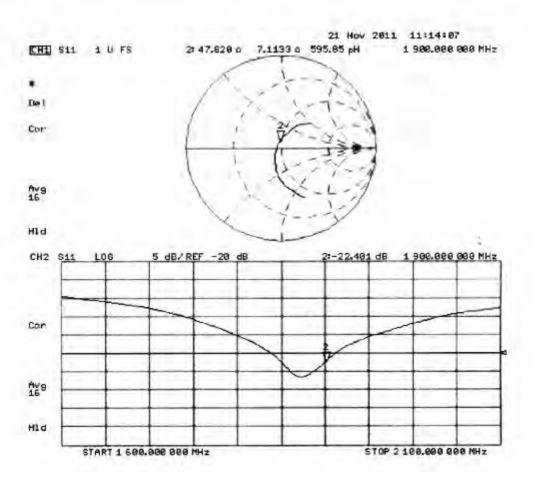
DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.110 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 18.910 W/kg


SAR(1 g) = 10.7 mW/g; SAR(10 g) = 5.59 mW/g

Maximum value of SAR (measured) = 13.549 mW/g

0 dB = 13.550 mW/g

Impedance Measurement Plot for Body TSL

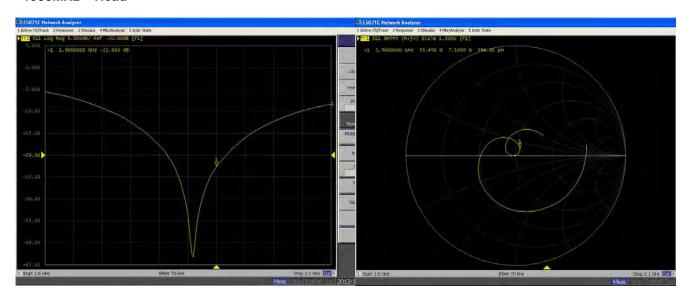
D1900V2, serial no. 5d118 Extended Dipole Calibrations

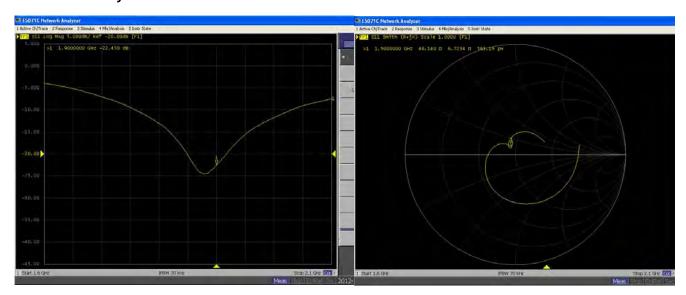
Referring to KDB 865664D01V01r01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Justification of the extended calibration>

				[D1900V2 – s	erial no.	5d118					
1900 Head				1900 Body								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Los s (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
11.21.2011	-22.535		53.449		6.9277		-22.401		47.82		7.1133	
11.17.2012	-22.603	0.30	53.491	-0.04	7.1009	0.17	-22.45	0.22	46.14	-1.68	6.7234	-0.39

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.


TEL: 86-755-8637-9589 FAX: 86-755-8637-9595


FCC Test Report

<Dipole Verification Data>- D1900V2, serial no. 5d118

1900MHz - Head

1900MHz - Body

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595

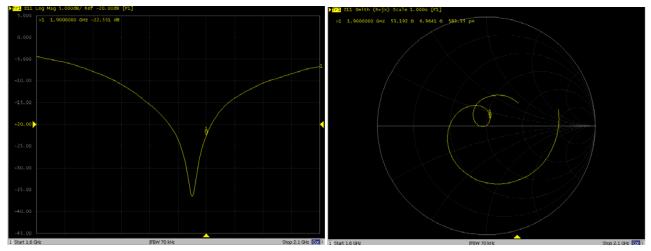
D1900V2, Serial No. 5d118 Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

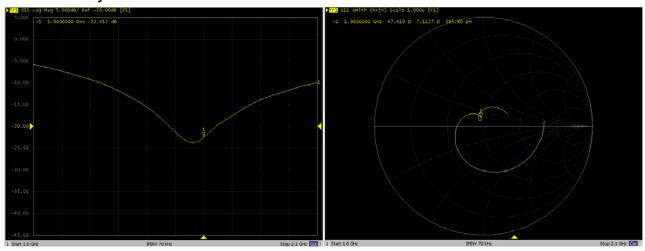
<Justification of the extended calibration>

				[D1900V2 – s	erial no.	5d118					
	1900 Head			1900 Body								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Los s (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
11.21.2011	-22.535		53.449		6.9277		-22.401		47.82		7.1133	
11.17.2012	-22.603	0.30	53.491	-0.04	7.1009	-0.17	-22.450	0.22	46.14	-1.68	6.7234	-0.39
11.15.2013	-22.551	0.23	53.192	0.30	6.9641	0.14	-22.412	0.17	47.419	-1.28	7.1127	-0.39

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration.


Therefore the verification result should support extended calibration.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958



<Dipole Verification Data>- D1900V2, serial no. 5d118

1900MHz - Head

1900MHz - Body

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-KS (Auden)

Accreditation No.: SCS 108

Certificate No: D2450V2-908_Mar13

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 908

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 26, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047,3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power sensor HP B481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	A
			201

issued: March 26, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1,85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	1. Vanit	Ann

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	-	1-0-

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5,94 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.4 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.5 Ω - 0.1 jΩ	
Return Loss	- 24.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.6 Ω + 1.9 Ω
Return Loss	- 30.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.156 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semingid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 19, 2012

DASY5 Validation Report for Head TSL

Date: 26.03.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 908

Communication System: CW; Frequency: 2450 MHz.

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^2$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe; ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;

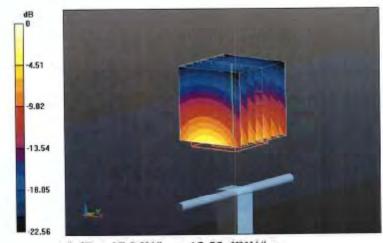
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

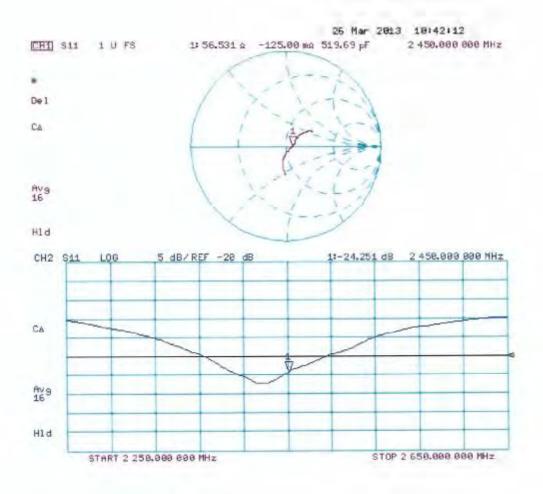
DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.957 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.8 W/kg


SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.36 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

0 dB = 17.9 W/kg = 12.53 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 26.03.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 908

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ S/m}$; $\varepsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

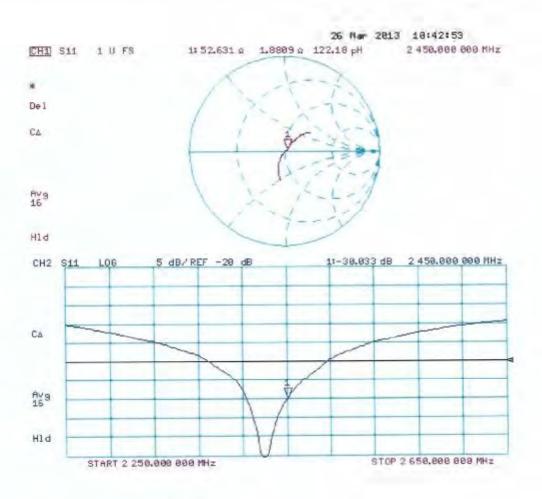
- Probe: ES3DV3 SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28,12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.957 V/m; Power Drift = 0.00 dB

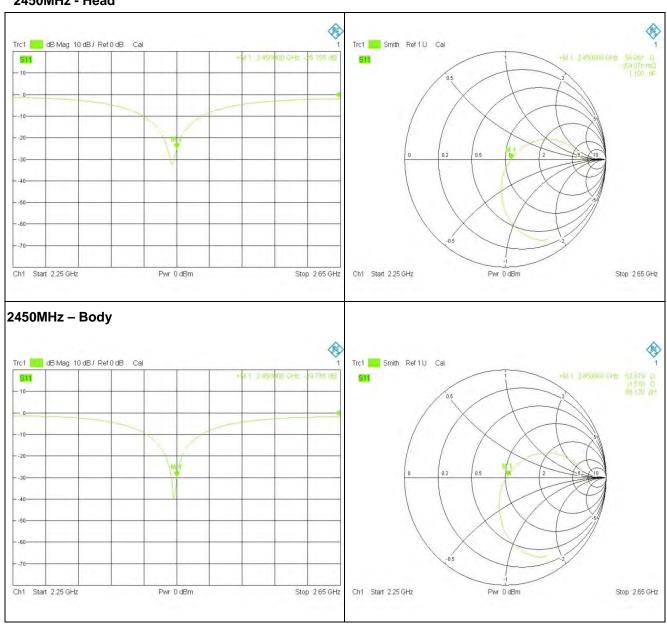
Peak SAR (extrapolated) = 27.0 W/kg


SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.94 W/kg

Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg

Impedance Measurement Plot for Body TSL



Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r03, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Dipole Verification Data> - D2450V2, serial no. 908(Date of Measurement 03.25.2014) 2450MHz - Head

TEL: 886-3-327-3456 FAX: 886-3-328-4978

<Justification of the extended calibration>

	D2450V2 – serial no. 908											
TSL			Head						Body			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
03.26.2013	-24.251		56.531		-0.125		-30.033		52.631		1.881	
03.25.2014	-25.155	-0.373	56.061	-0.47	-0.059	0.066	-29.785	0.826	52.379	-0.252	1.510	-0.371

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration.

Therefore the verification result should support extended calibration.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Accreditation No.: SCS 108

Certificate No: DAE4-910 Dec13

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BK - SN: 910

Calibration procedure(s) QA CAL-06.v26

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: December 17, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	01-Oct-13 (No:13976)	Oct-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-13 (in house check)	In house check: Jan-14
Calibrator Box V2.1	05 11110 000 11 1000	07-Jan-13 (in house check)	In house check: Jan-14

Name Function

To Magning : W. R. Liller Calibrated by: R.Mayoraz Technician

Approved by: Fin Bomholt Deputy Technical Manager

Issued: December 17, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	х	Υ	Z
High Range	403.322 ± 0.02% (k=2)	402.723 ± 0.02% (k=2)	403.207 ± 0.02% (k=2)
Low Range	3.98182 ± 1.50% (k=2)	3.94224 ± 1.50% (k=2)	3.94936 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	233.0 ° ± 1 °

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200032.32	-0.83	-0.00
Channel X + Input	20004.60	1.54	0.01
Channel X - Input	-20002.78	3.07	-0.02
Channel Y + Input	200035.16	1.90	0.00
Channel Y + Input	20001.98	-1.07	-0.01
Channel Y - Input	-20006.13	-0.17	0.00
Channel Z + Input	200035.21	2.05	0.00
Channel Z + Input	20002.94	-0.06	-0.00
Channel Z - Input	-20006.08	-0.02	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.35	0.48	0.02
Channel X + Input	200.15	0.15	0.08
Channel X - Input	-200.04	0.14	-0.07
Channel Y + Input	2000.33	0.65	0.03
Channel Y + Input	199.54	-0.32	-0.16
Channel Y - Input	-201.29	-1.11	0.55
Channel Z + Input	2001.04	1.27	0.06
Channel Z + Input	198.05	-1.62	-0.81
Channel Z - Input	-201.41	-1.23	0.61

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-14.07	-15.91
	- 200	17.64	15.36
Channel Y	200	5.92	6.01
	- 200	-6.42	-6.96
Channel Z	200	-11.90	-12.13
	- 200	9.23	9.49

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	5.20	-3.06
Channel Y	200	10.28	-	5.40
Channel Z	200	11.13	8.33	

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16187	15921
Channel Y	15383	16628
Channel Z	16716	16362

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.00	-1.68	1.68	0.70
Channel Y	0.62	-0.76	1.86	0.60
Channel Z	-1.19	-2.62	0.29	0.60

-2.62

0.29

0.69

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-KS (Auden)

Certificate No: EX3-3819 Nov13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3819

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

November 27, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D	Cal Date (Certificate No.) Scheduled Calibration	
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	4-Sep-13 (No. DAE4-660_Sep13)	Sep-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Name Function Signature

Calibrated by: Israe El-Naoug Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: November 30, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3819_Nov13 Page 1 of 11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3819_Nov13 Page 2 of 11

Probe EX3DV4

SN:3819

Manufactured:

September 2, 2011

Calibrated:

November 27, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.48	0.38	0.53	± 10.1 %
DCP (mV) ^B	95.5	103.0	99.3	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ^E
			dB	dB√μV		dB	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	159.1	±3.3 %
		Υ	0.0	0.0	1.0		177.5	
		Z	0.0	0.0	1.0		159.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.13	10.13	10.13	0.22	1.24	± 12.0 %
835	41.5	0.90	9.68	9.68	9.68	0.16	1.83	± 12.0 %
900	41.5	0.97	9.64	9.64	9.64	0.19	1.45	± 12.0 %
1750	40.1	1.37	8.26	8.26	8.26	0.67	0.63	± 12.0 %
1900	40.0	1.40	8.00	8.00	8.00	0.57	0.66	± 12.0 %
2000	40.0	1.40	8.02	8.02	8.02	0.35	0.83	± 12.0 %
2450	39.2	1.80	7.22	7.22	7.22	0.32	0.90	± 12.0 %
2600	39.0	1.96	7.06	7.06	7.06	0.36	0.90	± 12.0 %
5200	36.0	4.66	5.27	5.27	5.27	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.92	4.92	4.92	0.40	1.80_	± 13.1 %
5500	35.6	4.96	4.63	4.63	4.63	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.33	4.33	4.33	0.55	1.80_	± 13.1 %
5800	35.3	5.27	4.49	4.49	4.49	0.50	1.80	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

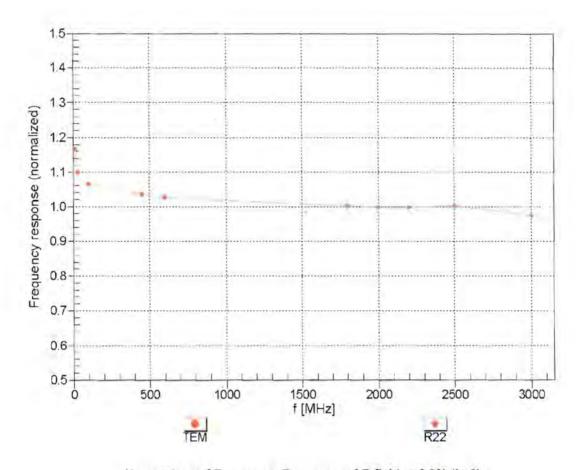
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.71	9.71	9.71	0.29	1.09	± 12.0 %
835	55.2	0.97	9.54	9.54	9.54	0.20	1.61	± 12.0 %
900	55.0	1.05	9.38	9.38	9.38	0.26	1.22	± 12.0 %
1750	53.4	1.49	8.01	8.01	8.01	0.80	0.61	± 12.0 %
1900	53.3	1.52	7.55	7.55	7.55	0.45	0.80	± 12.0 %
2000	53.3	1.52	7.64	7.64	7.64	0.42	0.86	± 12.0 %
2450	52.7	1.95	7.07	7.07	7.07	0.71	0.67	± 12.0 %
2600	52.5	2.16	6.79	6.79	6.79	0.80	0.62	± 12.0 %
5200	49.0	5.30	4.61	4.61	4.61	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.34	4.34	4.34	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.06	4.06	4.06	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.89	3.89	3.89	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.02	4.02	4.02	0.60	1.90	± 13.1 %

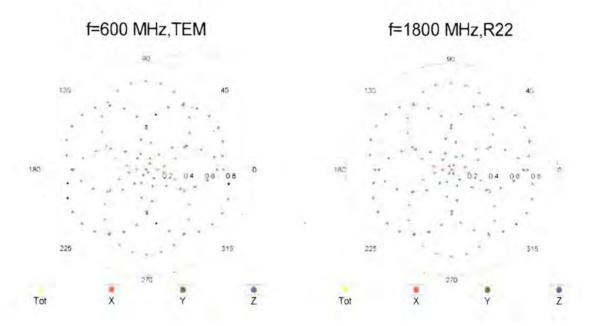
 $^{^{}c}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

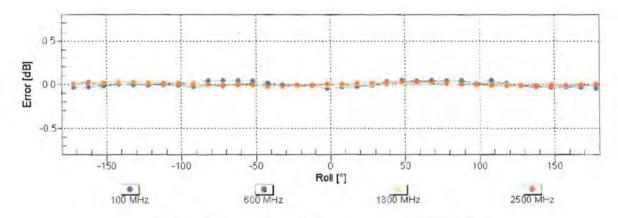

Certificate No: EX3-3819_Nov13 Page 6 of 11

^c At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

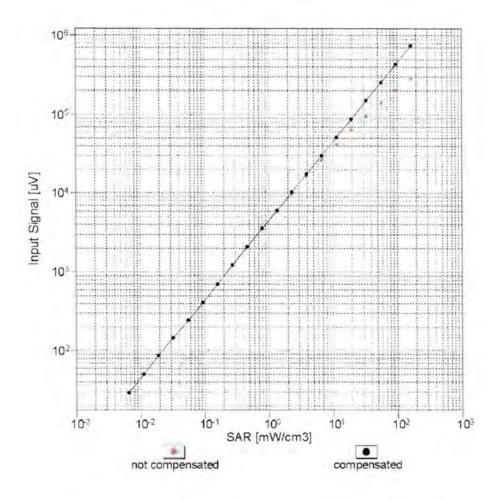
Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

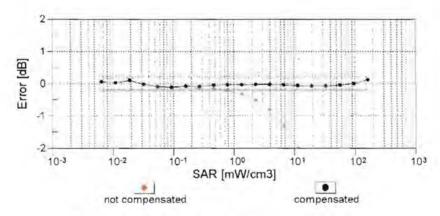

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

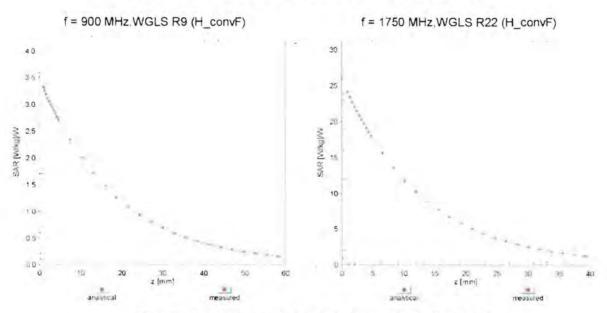
Certificate No: EX3-3819_Nov13


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

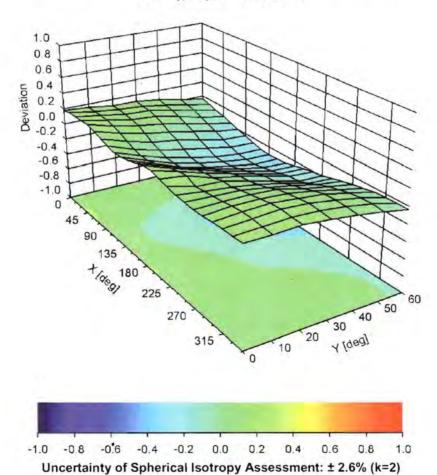


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


EX3DV4-SN:3819

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (0, 9), f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

Other Probe Parameters

Sensor Arrangement	Triangular		
Connector Angle (°)	-42.1		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disable		
Probe Overall Length	337 mm		
Probe Body Diameter	10 mm		
Tip Length	9 mm		
Tip Diameter	2.5 mm		
Probe Tip to Sensor X Calibration Point	1 mm		
Probe Tip to Sensor Y Calibration Point	1 mm		
Probe Tip to Sensor Z Calibration Point	1 mm		
Recommended Measurement Distance from Surface	2 mm		

Variant FCC SAR Test Report

Appendix E. Product Equality Declaration

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: O57A3300GV Page Number : E1 of E1
Report Issued Date : May 05, 2014

Report No. : FA3N2302-02

Report Version : Rev. 01

Lenovo (Shanghai) Electronics Technology Co., Ltd.

No. 68 Building, 199 Fenju Road, Wai Gao Qiao FTZ , Shanghai , China Tel: 86-21-50504500-8237

Date: May 5, 2014

Product Equality Declaration

We, Lenovo (Shanghai) Electronics Technology Co., Ltd., declare on our sole responsibility for product of Lenovo A3300-GV that the difference between the present product and the original product is only different supplier for LCD Panel.

Should you have any questions or comments regarding this matter, please have my best attention.

Declared by : Li Wei

on behalf of Lenovo (Shanghai) Electronics Technology Co., Ltd.