RF TEST REPORT

Report No.: 15070467-FCC-R2

Applicant	Swagtek		
Product Name	Smart Phone		
Model No.	IS-B1102		
Serial No.	DU-1B011B		
Test Standard	FCC Part 15.247: 2014, ANSI C63.10: 2013		
Test Date	June 20 to June 27, 2015		
Issue Date	June 27, 2015		
Test Result	\checkmark Pass $\Gamma_{\text {Fail }}$		
Equipment complied with the specification V			
Equipment did not comply with the specification \quad			
Winnie.		David Huang	
Winnie Test En		David Huang Checked By	
This test report may be reproduced in full only			

Issued by:
SIEMIC (SHENZHEN-CHINA) LABORATORIES
Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao’ an District, Shenzhen, Guangdong China 518108
Phone: +86 075526014629801 Email: China@siemic.com.cn

GLOBAL TESTING \& CERTIFICATIONS

Test Report	$15070467-$ FCC-R2
Page	2 of 59

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	15070467-FCC-R2
Page	3 of 59

This page has been left blank intentionally. min Ciow res fra min ch mi call ach

Test Report	15070467-FCC-R2
Page	4 of 59

CONTENTS

1. REPORT REVISION HISTORY 5
2. CUSTOMER INFORMATION 5
3. TEST SITE INFORMATION 5
4. EQUIPMENT UNDER TEST (EUT) INFORMATION 6
5. TEST SUMMARY 8
6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS 9
6.1 ANTENNA REQUIREMENT. 9
6.2 CHANNEL SEPARATION 10
6.3 20DB BANDWIDTH 14
6.4 PEAK OUTPUT POWER 18
6.5 NUMBER OF HOPPING CHANNEL 22
6.6 TIME OF OCCUPANCY (DWELL TIME) 24
6.7 BAND EDGE 28
6.8 AC POWER LINE CONDUCTED EMISSIONS 36
6.9 RADIATED SPURIOUS EMISSIONS 42
ANNEX A. TEST INSTRUMENT 47
ANNEX B. EUT AND TEST SETUP PHOTOGRAPHS 48
ANNEX C. TEST SETUP AND SUPPORTING EQUIPMENT. 54
ANNEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST 58
ANNEX E. DECLARATION OF SIMILARITY 59

GLOBAL TESTING \& CERTIFICATIONS

Test Report	15070467-FCC-R2
Page	5 of 59

1. Report Revision History

Report No.	Report Version	Description	Issue Date
15070467-FCC-R2	NONE	Original	June 27, 2015

2. Customer information

Applicant Name	Swagtek
Applicant Add	10205 NW 19th Street, STE101, Miami, FL 33172 USA
Manufacturer	Swagtek
Manufacturer Add	10205 NW 19th Street, STE101, Miami, FL 33172 USA

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
Lab Address	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
FCC Test Site No.	718246
IC Test Site No.	$4842 \mathrm{E}-1$
Test Software	Radiated Emission Program-To Shenzhen v2.0

Test Report	$15070467-$ FCC-R2
Page	6 of 59

4. Equipment under Test (EUT) Information

Description of EUT:

Main Model:

Serial Model:

Date EUT received:

Test Date(s):

Equipment Category :

Antenna Gain:

Type of Modulation:

RF Operating Frequency (ies):

Max. Output Power:

Number of Channels:
PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

Port:

GSM850 TX: 824.2 ~ 848.8 MHz ; RX: 869.2 ~ 893.8 MHz

Bluetooth: $2402-2480 \mathrm{MHz}$

8-DPSK: 2.678 dBm

GSM 850: 124CH
PCS1900: 299CH
Bluetooth: 79CH
Smart Phone

IS-B1102

DU-1B011B

June 19, 2015

June 20 to June 27, 2015

DSS

GSM850: 0.07 dBi
PCS1900:0.58 dBi
Bluetooth:0.51 dBi

GSM / GPRS: GMSK
Bluetooth: GFSK, m /4DQPSK, 8DPSK

Power Port, Earphone Port, USB Port

GLOBAL TESTING \& CERTIAICATIONS

Test Report	$15070467-$ FCC-R2
Page	7 of 59

Battery:

Model: IS-B1102
Spec: 3.7V 800mAh 2.96Wh

Input Power:

Trade Name :

GPRS/EGPRS Multi-slot class

FCC ID:

Adapter:
Model: IS-B1102
Input: AC 100-240V; 50/60Hz 150mA
Output: DC 5.0V; 500mA
iSwag Shark , Duo Shark

8/10/12

GLOBAL TESTING \& CERTIFICATIONS

Test Report	15070467-FCC-R2
Page	8 of 59

5. Test Summary

The product was tested in accordance with the following specifications.
All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
$\S 15.203$	Antenna Requirement	Compliance
$\S 15.247(\mathrm{a})(1)$	Channel Separation	Compliance
$\S 15.247(\mathrm{a})(1)$	20 dB Bandwidth	Compliance
$\S 15.247(\mathrm{~b})(1)$	Peak Output Power	Compliance
$\S 15.247(\mathrm{a})(1)(\mathrm{iii})$	Number of Hopping Channel	Compliance
$\S 15.247(\mathrm{a})(1)(\mathrm{iii})$	Time of Occupancy (Dwell Time)	Compliance
$\S 15.247(\mathrm{~d})$	Band Edge	Compliance
$\S 15.207(\mathrm{a})$	AC Line Conducted Emissions	Compliance
$\S 15.205, \S 15.209, \S 15.247(\mathrm{~d})$	Radiated Emissions	Compliance

Measurement Uncertainty
Emissions

Test Item	Description	Uncertainty
Band Edge and Radiated	Confidence level of approximately 95\% (in the case spurious Emissions where distributions are normal), with a coverage factor of 2 (for EUTs $<0.5 \mathrm{~m} \times 0.5 \mathrm{~m} \times 0.5 \mathrm{~m})$	$+5.6 \mathrm{~dB} /-4.5 \mathrm{~dB}$
-	-	-

GLOBAL TESTING \& CERTIFICATIONS
mull Gence fors- Tra min ch mi call ach

Test Report	15070467-FCC-R2
Page	9 of 59

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to $\S 15.203$, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section $\S 15.203$ of the rules. §15.203 state that the subject device must meet the following criteria:
a. Antenna must be permanently attached to the unit.
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.
And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

Antenna Connector Construction

The EUT has 2 antennas:
A permanently attached Monople antenna for Bluetooth, the gain is 0.51 dBi for Bluetooth.
A permanently attached PIFA antenna for GSM, the gain is 0.07 dBi for GSM850 and 0.58 dBi for PCS1900,
The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

GLOBAL TESTING \& CERTIFICATIONS
min Cimice for frin min ch mi call ach

Test Report	15070467-FCC-R2
Page	10 of 59

6.2 Channel Separation

Temperature	$20^{\circ} \mathrm{C}$
Relative Humidity	51%
Atmospheric Pressure	1027 mbar
Test date :	June 27, 2015
Tested By :	Winnie Zhang

Requirement(s):

Spec	Item	Requirement	Applicable
§ 15.247(a)(1)	a)	Channel Separation < 20dB BW and 20dB BW < 25 KHz ; Channel Separation Limit=25KHz Chanel Separation < 20dB BW and 20dB BW > 25 kHz ; Channel Separation Limit=2/3 20dB BW	∇
Test Setup			
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Use the following spectrum analyzer settings: - The EUT must have its hopping function enabled - Span = wide enough to capture the peaks of two adjacent channels - Resolution (or IF) Bandwidth (RBW) $\geq 1 \%$ of the span - Video (or Average) Bandwidth (VBW) \geq RBW - Sweep = auto - Detector function = peak - Trace = max hold - Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.		

GLOBAL TESTING \& CERTIFICATIONS
min Ciow re for Tra min ch milll ach

Test Report	$15070467-$ FCC-R2
Page	11 of 59

Remark		
Result	\checkmark Pass	$\Gamma_{\text {Fail }}$
Test Data Test Plot	(See below)	$\begin{gathered} \Gamma_{\mathrm{N} / \mathrm{A}} \\ \Gamma_{\mathrm{N} / \mathrm{A}} \end{gathered}$

Channel Separation measurement result

Type/ Modulation	CH	CH Freq (MHz)	CH Separation (MHz)	Limit (MHz)	Result
CH Separation GFSK	Low Channel	2402	1.005	0.687	Pass
	Adjacency Channel	2403			
	Mid Channel	2440	1.002	0.687	Pass
	Adjacency Channel	2441			
	High Channel	2480	1.002	0.686	Pass
	Adjacency Channel	2479			
CH Separation п / 4 DQPSK	Low Channel	2402	1.002	0.887	Pass
	Adjacency Channel	2403			
	Mid Channel	2440	1.002	0.881	Pass
	Adjacency Channel	2441			
	High Channel	2480	1.002	0.887	Pass
	Adjacency Channel	2479			
CH Separation 8DPSK	Low Channel	2402	1.002	0.881	Pass
	Adjacency Channel	2403			
	Mid Channel	2440	1.002	0.881	Pass
	Adjacency Channel	2441			
	High Channel	2480	1.002	0.881	Pass
	Adjacency Channel	2479			

GLOBAL TESTING \& CERTIFICATIONS

Test Report	15070467-FCC-R2
Page	12 of 59

Test Plots

Channel Separation measurement result

GLOBAL TESTING \& CERTIFICATIONS
muin nowce for min fin oh mi can ach

Test Report	15070467-FCC-R2
Page	13 of 59

GLOBAL TESTING \& CERTIAICATIONS
min Ciow res fra min ch mi call ach

Test Report	$15070467-$ FCC-R2
Page	14 of 59

6.3 20dB Bandwidth

Temperature	$20^{\circ} \mathrm{C}$
Relative Humidity	541%
Atmospheric Pressure	1027 mbar
Test date :	June 27, 2015
Tested By :	Winnie Zhang

Requirement(s):

Spec	Item	Requirement	Applicable
§15.247(a) (1)	a)	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.	\checkmark
Test Setup			
	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Use the following spectrum analyzer settings: - Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel - RBW $\geq 1 \%$ of the 20 dB bandwidth - $V B W \geq R B W$ - Sweep = auto - Detector function = peak - Trace = max hold. - The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the markerdelta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference		

GLOBAL TESTING \& CERTIAICATIONS
min Ciow re for Tra min ch milll ach

Test Report	15070467-FCC-R2
Page	15 of 59

Test Data $\quad \bar{\checkmark}$ Yes

Test Plot

Measurement result

Modulation	CH	CH Freq (MHz)	20dB Bandwidth (MHz)	99\% Occupied Bandwidth (MHz)
GFSK	Low	2402	1.031	0.89258
	Mid	2441	1.030	0.89218
	High	2480	1.029	0.89413
\% /4 DQPSK	Low	2402	1.331	1.1913
	Mid	2441	1.322	1.1907
	High	2480	1.331	1.1889
	Low	2402	1.322	1.1976
	Mid	2441	1.322	1.1986
	High	2480	1.322	1.1984

Test Report	$15070467-$ FCC-R2
Page	16 of 59

Test Plots

20dB Bandwidth measurement result

Test Report	$15070467-$ FCC-R2
Page	17 of 59

GLOBAL TESTING \& CERTIFICATIONS
min Gionce for Trin min ch millill ach

Test Report	$15070467-$ FCC-R2
Page	18 of 59

6.4 Peak Output Power

Temperature	$20^{\circ} \mathrm{C}$
Relative Humidity	51%
Atmospheric Pressure	1027 mbar
Test date :	June 27, 2015
Tested By:	Winnie Zhang

Requirement(s):

Spec	Item	Requirement	Applicable
§15.247(b) (2)	a)	FHSS in $2400-2483.5 \mathrm{MHz}$ with ≥ 75 channels: ≤ 1 Watt	V
	b)	FHSS in $5725-5850 \mathrm{MHz}$: ≤ 1 Watt	-
	c)	For all other FHSS in the $2400-2483.5 \mathrm{MHz}$ band: ≤ 0.125 Watt.	∇
	d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt	Γ
	e)	FHSS in $902-928 \mathrm{MHz}$ with $\geq 25 \&<50$ channels: s 0.25 Watt	Γ
	f)	DSSS in $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, $5725-$ 5850MHz: ≤ 1 Watt	Γ
Test Setup			
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Use the following spectrum analyzer settings: - Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel - RBW > the 20 dB bandwidth of the emission being measured - $V B W \geq$ RBW - Sweep = auto - Detector function = peak - Trace = max hold		

GLOBAL TESTING \& CERTIAICATIONS

Test Report	15070467-FCC-R2
Page	19 of 59

Peak Output Power measurement result

Type	Modulation	CH	$\begin{aligned} & \text { Freq } \\ & (\mathrm{MHz}) \end{aligned}$	Conducted Power (dBm)	$\begin{aligned} & \text { Limit } \\ & (\mathrm{mW}) \end{aligned}$	Result
Output power	GFSK	Low	2402	0.622	125	Pass
		Mid	2441	0.867	125	Pass
		High	2480	-0.148	125	Pass
	п /4 DQPSK	Low	2402	2.187	125	Pass
		Mid	2441	2.504	125	Pass
		High	2480	1.439	125	Pass
	8-DPSK	Low	2402	2.394	125	Pass
		Mid	2441	2.678	125	Pass
		High	2480	1.624	125	Pass

GLOBAL TESTING \& CERTIFICATIONS

Test Report	$15070467-$ FCC-R2
Page	20 of 59

Test Plots
Output Power measurement result

GLOBAL TESTING \& CERTIFICATIONS

Test Report	15070467-FCC-R2
Page	21 of 59

GLOBAL TESTING \& CERTIAICATIONS
muin nionce for - Tra pra ch mi Call ACh

Test Report	$15070467-$ FCC-R2
Page	22 of 59

6.5 Number of Hopping Channel

Temperature	$20^{\circ} \mathrm{C}$
Relative Humidity	51%
Atmospheric Pressure	1027 mbar
Test date :	June 27, 2015
Tested By :	Winnie Zhang

Requirement(s):

Test Report	15070467-FCC-R2
Page	23 of 59

Number of Hopping Channel measurement result

Type	Modulation	Frequency Range	Number of Hopping Channel	Limit
Number of Hopping Channel	GFSK	$2400-2483.5$	79	15
	$\pi / 4$ DQPSK	$2400-2483.5$	79	15
	8-DPSK	$2400-2483.5$	79	15

Test Plots

Number of Hopping Channels measurement result

Test Report	$15070467-$ FCC-R2
Page	24 of 59

6.6 Time of Occupancy (Dwell Time)

Temperature	$20^{\circ} \mathrm{C}$
Relative Humidity	51%
Atmospheric Pressure	1027 mbar
Test date :	June 27, 2015
Tested By :	Winnie Zhang

Requirement(s):

GLOBAL TESTING \& CERTIFICATIONS
min Golice ros- Tra mia ch milll ach

Test Report	15070467-FCC-R2
Page	25 of 59

Dwell Time measurement result

Type	Modulation	CH	Pulse Width (ms)	Dwell Time (ms)	$\begin{aligned} & \text { Limit } \\ & (\mathrm{ms}) \end{aligned}$	Result
Dwell Time	GFSK	Low	2.875	306.667	400	Pass
		Mid	2.890	308.267	400	Pass
		High	2.890	308.267	400	Pass
	т /4 DQPSK	Low	2.860	305.067	400	Pass
		Mid	2.875	306.667	400	Pass
		High	2.890	308.267	400	Pass
	8-DPSK	Low	2.890	308.267	400	Pass
		Mid	2.875	306.667	400	Pass
		High	2.875	306.667	400	Pass

Note: Dwell time=Pulse Time $(\mathrm{ms}) \times(1600 \div 6 \div 79) \times 31.6$

GLOBAL TESTING \& CERTIFICATIONS

Test Report	15070467-FCC-R2
Page	26 of 59

Test Plots

Dwell Time measurement result

GLOBAL TESTING \& CERTIFICATIONS

Test Report	$15070467-$ FCC-R2
Page	27 of 59

GLOBAL TESTING \& CERTIFICATIONS
min Ciow res fra min ch mi call ach

Test Report	15070467-FCC-R2
Page	28 of 59

6.7 Band Edge

Temperature	$20^{\circ} \mathrm{C}$
Relative Humidity	51%
Atmospheric Pressure	1027 mbar
Test date :	June 27, 2015
Tested By :	Winnie Zhang

Requirement(s):

Spec	Item	Requirement	Applicable
$\begin{aligned} & \text { §15.247(a) } \\ & \text { (1)(iii) } \end{aligned}$	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	\checkmark
Test Setup			
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Radiated Method Only - 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range,		

GLOBAL TESTING \& CERTIFICATIONS
min Ciow re for Tra min ch milll ach

Test Report	$15070467-$ FCC-R2
Page	29 of 59

	and make sure the instrument is operated in its linear range. 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge, check the emission of EUT, if pass then set Spectrum Analyzer as below: a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1 GHz . b. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz with Peak detection for Peak measurement at frequency above 1 GHz . c. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz with Peak detection for Average Measurement as below at frequency above 1 GHz . 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency. 5. Repeat above procedures until all measured frequencies were complete.
Remark	
Result	$\nabla^{\text {Pass }}$ ($\Gamma_{\text {Fail }}$

GLOBAL TESTING \& CERTIACATIONS

Test Report	15070467-FCC-R2
Page	30 of 59

Test Plots

GFSK Mode:

Test Report	15070467-FCC-R2
Page	31 of 59

GLOBAL TESTING \& CERTIFICATIONS
mul Gionce rom- tra mia ch mi call ach

Test Report	15070467-FCC-R2
Page	32 of 59

т /4 DQPSK Mode:

GIOBAL TESTING \&
GLOBNL TESTNG \& CERTIFICATIONS
mun Gooce rose tra min Ch mi call ach

Test Report	15070467-FCC-R2
Page	33 of 59

GLOBAL TESTING \& CERTIACATIONS

Test Report	15070467-FCC-R2
Page	34 of 59

8-DPSK Mode:

Test Report	$15070467-$ FCC-R2
Page	35 of 59

GLOBAL TESTING \& CERTIFICATIONS

Test Report	15070467-FCC-R2
Page	36 of 59

6.8 AC Power Line Conducted Emissions

Temperature	$20^{\circ} \mathrm{C}$
Relative Humidity	51%
Atmospheric Pressure	1027 mbar
Test date :	June 27, 2015
Tested By :	Winnie Zhang

Requirement(s):

Spec	Item	Requirement			Applicable
$\begin{gathered} 47 C F R § 15 . \\ 207 \\ \text { RSS210 } \\ \text { (A8.1) } \end{gathered}$	a)	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz , shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.			V
Test Setup					
Procedure	1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a $1.5 \mathrm{~m} \times 1 \mathrm{~m} \times 0.8 \mathrm{~m}$ high, non-metallic table. 2. The power supply for the EUT was fed through a $50 \mathrm{~W} / 50 \mathrm{mH}$ EUT LISN, connected to filtered mains. 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss				

GLOBAL TESTING \& CERTIAICATIONS
mul Gionce rom- tra mia ch m call ach

Test Report	$15070467-$ FCC-R2
Page	37 of 59

	coaxial cable. 4. All other supporting equipment were powered separately from another main supply. 5. The EUT was switched on and allowed to warm up to its normal operating condition. 6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. 7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz . 8. Step 7 was then repeated for the LIVE line (for $A C$ mains) or $D C$ line (for $D C$ power).
Remark	
Result	\checkmark Pass $\quad \square{ }_{\text {Fail }}$

Test Data

Test Plot

GLOBAL TESTING \& CERTIAICATIONS
mul Gionce rom- tra mia ch m call ach

Test Report	15070467-FCC-R2
Page	38 of 59

Test Mode: Bluetooth Mode

$120 \mathrm{~V} / 60 \mathrm{~Hz}$

Test Data

Phase Line Plot at $120 \mathrm{Vac}, 60 \mathrm{~Hz}$

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Comment
		(MHz)	(dBuV)		$(\mathrm{dB}\}$	(dBuV)	(dBuV)	(dB)	
1	L1	0.1773	35.15	QP	13.10	48.25	64.61	-16.36	
2	L1	0.1773	22.19	AVG	13.10	35.29	54.61	-19.32	
3	L1	0.2242	32.78	QP	12.92	45.70	62.66	-16.96	
4	L1	0.2242	20.65	AVG	12.92	33.57	52.66	-19.09	
5	L1	0.2477	34.23	QP	12.84	47.07	61.83	-14.76	
6	L1	0.2477	26.70	AVG	12.84	39.54	51.83	-12.29	
7	L1	0.4000	29.22	QP	12.27	41.49	57.85	-16.36	
8	L1	0.4000	17.92	AVG	12.27	30.19	47.85	-17.66	
9	L1	1.1891	27.30	QP	11.40	38.70	56.00	-17.30	
10	L1	1.1891	13.30	AVG	11.40	24.70	46.00	-21.30	
11	L1	2.1734	25.17	QP	11.40	36.57	56.00	-19.43	
12	L1	2.1734	14.96	AVG	11.40	26.36	46.00	-19.64	

OLOBAL TESTING \& CERTIACA
GLOB IL TESTING \& CERTIRICATIONS

Test Report	15070467-FCC-R2
Page	39 of 59

Test Mode:	Bluetooth Mode

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Comment
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)	
		0.1773	37.69	QP	13.10	50.79	64.61	-13.82	
1	N	0.1773	24.51	AVG	13.10	37.61	54.61	-17.00	
2	N	0.2242	35.00	QP	12.92	47.92	62.66	-14.74	
3	N	0.2242	22.47	AVG	12.92	35.39	52.66	-17.27	
4	N	0.2477	34.45	QP	12.84	47.29	61.83	-14.54	
5	N	0.2477	12.84	39.43	51.83	-12.40			
6	N	0.2477	26.59	AVG	12.76	45.59	61.20	-15.61	
7	N	0.2672	32.83	QP	12.76				
8	N	0.2672	20.93	AVG	12.76	33.69	51.20	-17.51	
9	N	0.3102	29.17	QP	12.60	41.77	59.97	-18.20	
10	N	0.3102	16.88	AVG	12.60	29.48	49.97	-20.49	
11	N	1.1891	29.30	QP	11.42	40.72	56.00	-15.28	
12	N	1.1891	16.12	AVG	11.42	27.54	46.00	-18.46	

GLOBAL TESTING \& CERTIFICATIONS
mul Gionce rose tra mia ch m call ach

Test Report	$15070467-$ FCC-R2
Page	40 of 59

\square
$240 \mathrm{~V} / 60 \mathrm{~Hz}$

Test Data

Phase Line Plot at $120 \mathrm{Vac}, 60 \mathrm{~Hz}$

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Comment
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)	
1	L1	0.2029	30.91	QP	13.00	43.91	63.49	-19.58	
2	L1	0.2029	22.41	AVG	13.00	35.41	53.49	-18.08	
3	L1	0.2455	34.95	QP	12.85	47.80	61.91	-14.11	
4	L1	0.2455	26.81	AVG	12.85	39.66	51.91	-12.25	
5	L1	0.2867	28.17	QP	12.69	40.86	60.62	-19.76	
6	L1	0.2867	17.54	AVG	12.69	30.23	50.62	-20.39	
7	L1	1.0265	17.18	QP	11.40	28.58	56.00	-27.42	
8	L1	1.0265	7.02	AVG	11.40	18.42	46.00	-27.58	
9	L1	1.1891	26.93	QP	11.40	38.33	56.00	-17.67	
10	L1	1.1891	15.39	AVG	11.40	26.79	46.00	-19.21	
11	L1	1.3531	25.80	QP	11.40	37.20	56.00	-18.80	
12	L1	1.3531	13.98	AVG	11.40	25.38	46.00	-20.62	

GLOBAL TESTING \& CERTIFICATIONS

Test Report	15070467-FCC-R2
Page	41 of 59

Test Mode:	Bluetooth Mode

Test Data

Phase Neutral Plot at $120 \mathrm{Vac}, 60 \mathrm{~Hz}$

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Comment
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)	
1	N	0.2050	30.88	QP	13.00	43.88	63.41	-19.53	
2	N	0.2050	22.04	AVG	13.00	35.04	53.41	-18.37	
3	N	0.2455	34.05	QP	12.85	46.90	61.91	-15.01	
4	N	0.2455	25.92	AVG	12.85	38.77	51.91	-13.14	
5	N	0.2848	25.76	QP	12.70	38.46	60.67	-22.21	
6	N	0.2848	16.67	AVG	12.70	29.37	50.67	-21.30	
7	N	1.1056	21.17	QP	11.41	32.58	56.00	-23.42	
8	N	1.1056	7.05	AVG	11.41	18.46	46.00	-27.54	
9	N	1.1891	29.18	QP	11.42	40.60	56.00	-15.40	
10	N	1.1891	13.34	AVG	11.42	24.76	46.00	-21.24	
11	N	1.3531	27.57	QP	11.44	39.01	56.00	-16.99	
12	N	1.3531	12.08	AVG	11.44	23.52	46.00	-22.48	

GLOBAL TESTING \& CERTIFICATIONS
muin nionce for - Tra pra ch mi Call ACh

Test Report	15070467-FCC-R2
Page	42 of 59

6.9 Radiated Spurious Emissions

Temperature	$20^{\circ} \mathrm{C}$
Relative Humidity	51%
Atmospheric Pressure	1027 mbar
Test date :	June 27, 2015
Tested By:	Winnie Zhang

Requirement(s):

Spec	Item	Requirement		Applicable
47CFR§15. 205, §15.209, §15.247(d)	a)	Except higher limit as specified elsewhere in other section, the emissions from the low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges		V
Test Setup				
Procedure		The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:		

Test Report	15070467-FCC-R2
Page	43 of 59

GLOBAL TESTING \& CERTIAICATIONS
min Gowce rom- TCin min ch milll ach

Test Report	15070467-FCC-R2
Page	44 of 59

Test Mode:	Bluetooth Mode

Below 1GHz

Test Data
Horizontal Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comme nt
1		(MHz)	$(\mathrm{dBuV} /$ $\mathrm{m})$		$(\mathrm{dB} / \mathrm{m})$	$(\mathrm{dBuV} / \mathrm{m}$ $)$	$(\mathrm{dBuV} / \mathrm{m})$	(dB)	(cm)	(\quad)	
2	H	34.0365	27.08	peak	-3.24	23.84	40.00	-16.16			
3	H	78.1389	29.33	peak	-13.75	15.58	40.00	-24.42			
4	H	150.0108	25.74	peak	-8.40	17.34	43.50	-26.16			
5	H	357.9287	26.03	peak	-5.27	20.76	46.00	-25.24			
6	H	625.0780	31.85	peak	0.42	32.27	46.00	-13.73			

GLOBAL TESTING \& CERTIFICATIONS
mul Gionce rose tra mia ch m call ach

Test Report	15070467-FCC-R2
Page	45 of 59

Below 1GHz

$80.0 \mathrm{dBuV} / \mathrm{m}$

Vertical Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	DegreeComme nt	
		(MHz)	$(\mathrm{dBuV} /$ $\mathrm{m})$		$(\mathrm{dB} / \mathrm{m})$	$(\mathrm{dBuV} / \mathrm{m}$ $)$	$(\mathrm{dBuV} / \mathrm{m})$	(dB)	(cm)	(\quad)	
1	V	33.0950	34.14	peak	-2.53	31.61	40.00	-8.39			
2	V	50.5860	46.13	peak	-13.24	32.89	40.00	-7.11			
3	V	91.8163	38.88	peak	-12.92	25.96	43.50	-17.54			
4	V	128.1130	35.95	peak	-7.82	28.13	43.50	-15.37			
5	V	444.8514	38.93	peak	-3.20	35.73	46.00	-10.27			
6	V	620.7096	36.33	peak	0.35	36.68	46.00	-9.32			

GLOBAL TESTING \& CERTIAICATIONS

Test Report	15070467-FCC-R2
Page	46 of 59

Test Mode:	Transmitting Mode

Mode: GFSK (Worst Case)
Low Channel (2402 MHz)

Frequency (MHz)	S.A. Reading ($\mathrm{dB} \mu \mathrm{V}$)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	$\begin{gathered} \text { Limit } \\ (\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}) \end{gathered}$	Margin (dB)
4804	36.41	AV	V	33.83	6.86	31.72	45.38	54	-8.62
4804	35.86	AV	H	33.83	6.86	31.72	44.83	54	-9.17
4804	46.55	PK	V	33.83	6.86	31.72	55.52	74	-18.48
4804	45.92	PK	H	33.83	6.86	31.72	54.89	74	-19.11

Middle Channel (2441 MHz)
$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline \text { Frequency } \\ (\mathrm{MHz})\end{array} \begin{array}{c}\text { S.A. } \\ \text { Reading } \\ (\mathrm{dB} \mu \mathrm{V})\end{array}$ Detector $\left.\left.\begin{array}{c}\text { (PK/AV) }\end{array} \begin{array}{c}\text { Polarity } \\ (\mathrm{H} / \mathrm{V})\end{array} \begin{array}{c}\text { Ant. } \\ \text { Factor } \\ (\mathrm{dB} / \mathrm{m})\end{array} \begin{array}{c}\text { Cable } \\ \text { Loss } \\ (\mathrm{dB})\end{array} \begin{array}{c}\text { Pre- } \\ \text { Amp. } \\ \text { Gain } \\ (\mathrm{dB})\end{array} \begin{array}{c}\text { Cord. } \\ \text { Amp. } \\ (\mathrm{dB} \mu / \mathrm{m})\end{array}\right) \begin{array}{c}\text { Limit } \\ (\mathrm{dB} \mu \mathrm{V} / \mathrm{m})\end{array} \begin{array}{c}\text { Margin } \\ (\mathrm{dB})\end{array}\right]$

High Channel (2480 MHz)
$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline \text { Frequency } \\
(\mathrm{MHz})\end{array} \begin{array}{c}\text { S.A. } \\
\text { Reading } \\
(\mathrm{dB} \mu \mathrm{V})\end{array}$ Detector \(\left.$$
\begin{array}{c}\text { (PK/AV) }\end{array}
$$ $$
\begin{array}{c}\text { Polarity } \\
(\mathrm{H} / \mathrm{V})\end{array}
$$ $$
\begin{array}{c}\text { Ant. } \\
\text { Factor } \\
(\mathrm{dB} / \mathrm{m})\end{array}
$$ $$
\begin{array}{c}\text { Cable } \\
\text { Loss } \\
(\mathrm{dB})\end{array}
$$ $$
\begin{array}{c}\text { Pre- } \\
\text { Amp. } \\
\text { Gain } \\
(\mathrm{dB})\end{array}
$$ \begin{array}{c}Cord.

Amp.

(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})\end{array}\right) \left.\)\begin{tabular}{c}
Limit

$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$

Margin

(dB)
\end{tabular} \right\rvert\,

Test Report	15070467-FCC-R2
Page	47 of 59

Annex A. TEST INSTRUMENT

Instrument	Model	Serial \#	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/18/2014	09/17/2015	V
Line Impedance	LI-125A	191106	09/26/2014	09/25/2015	V
Line Impedance	LI-125A	191107	09/26/2014	09/25/2015	V
LISN	ISN T800	34373	09/26/2014	09/25/2015	V
Double Ridge Horn Antenna (1~18GHz)	AH-118	71283	09/25/2014	09/24/2015	V
Transient Limiter	LIT-153	531118	09/02/2014	09/01/2015	V
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/18/2014	09/17/2015	V
Power Splitter	1\#	1\#	09/02/2014	09/01/2015	V
DC Power Supply	E3640A	MY40004013	09/18/2014	09/17/2015	V
Radiated Emissions					
EMI test receiver	ESL6	100262	09/18/2014	09/17/2015	V
Positioning Controller	UC3000	MF780208282	11/20/2014	11/19/2015	V
$\begin{aligned} & \text { OPT } 010 \text { AMPLIFIER } \\ & \quad(0.1-1300 \mathrm{MHz}) \end{aligned}$	8447E	2727A02430	09/02/2014	09/01/2015	V
Microwave Preamplifier $(1 \sim 26.5 \mathrm{GHz})$	8449B	3008A02402	03/25/2015	03/24/2016	V
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/22/2014	09/21/2015	V
Double Ridge Horn Antenna (1~18GHz)	AH-118	71283	09/25/2014	09/24/2015	V
Universal Radio Communication Tester	CMU200	121393	09/26/2014	09/25/2015	V

Test Report	15070467-FCC-R2
Page	48 of 59

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Test Report	15070467-FCC-R2
Page	49 of 59

Test Report	$15070467-$ FCC-R2
Page	50 of 59

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View	Cover Off - Top View
SHARK P/N: IS-B 1102 Rated Valtage: 3.7 V Capacity: 800 mAh Watt Hour: 2.96 Wh Warning: - Limited charge voltage 4.2 V . - Do not crush.puncture,short of in tire or water. - Do not attompt to open. disassemble.or sorvice the - Do not heat above soc(140\%F).	
Battery - Top View	Battery - Bottom View

Mainborad With Shielding - Front View 1

Mainborad With Shielding - Front View 2

SIEMIC
GLOBAL TESTING \& CERTIFICATIONS

Test Report	15070467-FCC-R2
Page	51 of 59

LCD - Front View 1

LCD - Front View 2

LCD - Rear View 1

LCD - Rear View 2

GLOBAL TESTING \& CERTIAICATIONS mul Gionce rom- tra mia ch m call ach

Test Report	15070467-FCC-R2
Page	52 of 59

GSM Antenna View	BT Antenna View

Test Report	$15070467-$ FCC-R2
Page	53 of 59

Annex B.iii. Photograph: Test Setup Photo

Test Report	15070467-FCC-R2
Page	54 of 59

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Block Configuration Diagram for AC Line Conducted Emissions

Test Table

80 cm above
ground plane

Test Report	15070467-FCC-R2
Page	55 of 59

Block Configuration Diagram for Radiated Emissions (Below 1GHz) .

Receiving Antenna

Test Report	$15070467-$ FCC-R2
Page	56 of 59

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Support Equipment

GLOBAL TESTING \& CERTIAICATIONS mul Gomer rose tra min ch mi call ach

Test Report	15070467-FCC-R2
Page	57 of 59

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Manufacturer	Equipment Description	Model	Calibration Date	Calibration Due Date
N/A	N/A	N/A	N/A	N/A

Test Report	15070467-FCC-R2
Page	58 of 59

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see attachment

GLOBAL TESTING \& CERTIAICATIONS

Test Report	15070467-FCC-R2
Page	59 of 59

Annex E. DECLARATION OF SIMILARITY

Swagtek

To: 775 Montague Expressway Mlpitas,CA 95035,USA

Declaration Letter

Dear Sir,

For our business issue and marketing requirement, we would like to list 2 model numbers on The FCC reports, as following:

Model No.:	Trade :
IS-B1102	iSwag Shark
DU-1B011B	Duo Shark

We declare that : IS-B1102, DU-1B011B, All models the same PCB and Appearance shape, accessories the difference of these is listed as below:

Main Model No	Serial Model No	Difference
IS-B1102	DU-1B011B	IS-B1102 (Dual SIM card); DU-1B011B (Single SIM card)

Thank you!

Sincerely,

Client's signature :

Client's name / title: Charles Cheng/ Manager
Contact information : 1-305 4219938

Address : 10205 NW 19th Street, STE101, Miami, FL 33172 USA

