FCC ID: 055705019

SAR TEST REPORT

For

SWAGTEK

7 inch 4G Tablet

Test Model: T4G

Additional Model No.: Stream 7L, UT3L

Prepared for : SWAGTEK Address : 10205 NW 19th St. STE101, Miami, Florida, United States, 33172 Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Address : Avenue, Bao'an District, Shenzhen, Guangdong, China : (86)755-82591330 Tel Fax : (86)755-82591332 Web www.LCS-cert.com : Mail : webmaster@LCS-cert.com Date of receipt of test sample : December 24, 2019 Number of tested samples : 1 Serial number : Prototype Date of Test December 24, 2019~January 02, 2020 : Date of Report January 17, 2020 :

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 172 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

Γ

FCC ID: 055705019

Report No.:LCS191223014AEB

	SAR TEST REPORT		
Report Reference No	LCS191223014AEB		
Date Of Issue	January 17, 2020		
Testing Laboratory Name:	Shenzhen LCS Compliance Testing Laboratory Ltd.		
Address	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China		
Testing Location/ Procedure :	Full application of Harmonised standards		
	Partial application of Harmonised standards		
	Other standard testing method \Box		
Applicant's Name:	SWAGTEK		
Address	10205 NW 19th St. STE101, Miami, Florida, United States, 3	3172	
Test Specification:			
Standard	IEEE Std C95.1, 2005/IEEE Std 1528 [™] -2013/FCC Part 2.109	93	
Test Report Form No	LCSEMC-1.0		
TRF Originator	Shenzhen LCS Compliance Testing Laboratory Ltd.		
Master TRF:			
Shenzhen LCS Compliance Testi This publication may be reproduce	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long a		
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r	ng Laboratory Ltd. All rights reserved.	ce o l wil	
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context.	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long a g Laboratory Ltd. is acknowledged as copyright owner and sour pliance Testing Laboratory Ltd. takes noresponsibility for and resulting from the reader's interpretation of the reproduced ma	ce o l wil	
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context. Test Item Description:	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long a g Laboratory Ltd. is acknowledged as copyright owner and sour pliance Testing Laboratory Ltd. takes noresponsibility for and resulting from the reader's interpretation of the reproduced ma 7 inch 4G Tablet	ce o l wil	
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long a g Laboratory Ltd. is acknowledged as copyright owner and sour pliance Testing Laboratory Ltd. takes noresponsibility for and resulting from the reader's interpretation of the reproduced ma 7 inch 4G Tablet LOGIC, iSWAG, UNONU	ce o l wil	
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context. Test Item Description: Trade Mark	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long a g Laboratory Ltd. is acknowledged as copyright owner and sour pliance Testing Laboratory Ltd. takes noresponsibility for and resulting from the reader's interpretation of the reproduced ma 7 inch 4G Tablet LOGIC, iSWAG, UNONU	ce o l wil	
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context. Test Item Description. Trade Mark Test Model Operation Frequency	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long a g Laboratory Ltd. is acknowledged as copyright owner and sour pliance Testing Laboratory Ltd. takes noresponsibility for and resulting from the reader's interpretation of the reproduced ma 7 inch 4G Tablet LOGIC, iSWAG, UNONU T4G GSM 850/PCS1900;WCDMA Band II/IV/V;	ce o l wil	
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp not assume liability for damages r due to its placement and context. Test Item Description: Trade Mark	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long a g Laboratory Ltd. is acknowledged as copyright owner and sour pliance Testing Laboratory Ltd. takes noresponsibility for and resulting from the reader's interpretation of the reproduced ma 7 inch 4G Tablet LOGIC, iSWAG, UNONU T4G GSM 850/PCS1900;WCDMA Band II/IV/V; LTE2,4,7,12,17;WLAN2.4G,Bluetooth4.0	ce o l wil	
Shenzhen LCS Compliance Testi This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compliance not assume liability for damages r due to its placement and context. Test Item Description. Trade Mark Test Model Operation Frequency Modulation Type Ratings	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long a g Laboratory Ltd. is acknowledged as copyright owner and sour pliance Testing Laboratory Ltd. takes noresponsibility for and esulting from the reader's interpretation of the reproduced ma 7 inch 4G Tablet LOGIC, iSWAG, UNONU T4G GSM 850/PCS1900;WCDMA Band II/IV/V; LTE2,4,7,12,17;WLAN2.4G,Bluetooth4.0 Refer to page 7 DC 3.8V by Rechargeable Li-ion Battery(2580mAh)	ce o l wil	
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compliance not assume liability for damages r due to its placement and context. Test Item Description. Trade Mark Test Model Operation Frequency Modulation Type	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long a g Laboratory Ltd. is acknowledged as copyright owner and sour pliance Testing Laboratory Ltd. takes noresponsibility for and resulting from the reader's interpretation of the reproduced ma 7 inch 4G Tablet LOGIC, iSWAG, UNONU T4G GSM 850/PCS1900;WCDMA Band II/IV/V; LTE2,4,7,12,17;WLAN2.4G,Bluetooth4.0 Refer to page 7 DC 3.8V by Rechargeable Li-ion Battery(2580mAh) Recharged by DC 5V/1500mA Adapter	ce o l wil	
Shenzhen LCS Compliance Testi This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compliance not assume liability for damages r due to its placement and context. Test Item Description. Trade Mark Test Model Operation Frequency Modulation Type Ratings	ng Laboratory Ltd. All rights reserved. ed in whole or in part for non-commercial purposes as long a g Laboratory Ltd. is acknowledged as copyright owner and sour pliance Testing Laboratory Ltd. takes noresponsibility for and resulting from the reader's interpretation of the reproduced ma 7 inch 4G Tablet LOGIC, iSWAG, UNONU T4G GSM 850/PCS1900;WCDMA Band II/IV/V; LTE2,4,7,12,17;WLAN2.4G,Bluetooth4.0 Refer to page 7 DC 3.8V by Rechargeable Li-ion Battery(2580mAh) Recharged by DC 5V/1500mA Adapter Positive	ce o l wil	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 172 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 055705019

Report No.:LCS191223014AEB

SAR -- TEST REPORT

Test Report No. :	LCS191223014AEB	January 17, 2020 Date of issue
Type / Model	· T4C	
i ype / Widdei	. 140	
EUT	: 7 inch 4G Tablet	
Applicant	: SWAGTEK	
	: 10205 NW 19th St. STE101	, Miami, Florida, United States,
	33172	
Telephone	: /	
Fax	: /	
Manufacturer	: SWAGTEK	
Address	: 10205 NW 19th St. STE101	, Miami, Florida, United States,
	33172	
Telephone	: /	
Fax	: /	
Factory	SWAGTEK	
	: 10205 NW 19th St. STE101	, Miami, Florida, United States,
	33172	· · · · · · ·
Telephone	: /	
Fax	: /	

Test Result

Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 172

Revison History

Revision	Issue Date	Revisions	Revised By
000	January 17, 2020	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 172

TABLE OF CONTENTS

1. TES	T STANDARDS AND TEST DESCRIPTION	6
1.1.	Test Standards	6
1.2.	TEST DESCRIPTION	
1.3.	General Remarks	
1.4.	PRODUCT DESCRIPTION	
1.5.	STATEMENT OF COMPLIANCE	8
2. TES	T ENVIRONMENT	9
2.1.	Test Facility	9
	ENVIRONMENTAL CONDITIONS	
	SAR LIMITS	
2.4.	EQUIPMENTS USED DURING THE TEST	
3. SAR	R MEASUREMENTS SYSTEM CONFIGURATION	11
3.1.	SAR MEASUREMENT SET-UP	
3.2.		
3.3.	PHANTOMS	
3.4.		
3.5.	SCANNING PROCEDURE	
3.6.	DATA STORAGE AND EVALUATION	
3.7.	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	
3.8.	TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	
3.9.	TISSUE EQUIVALENT LIQUID PROPERTIES	
	SYSTEM CHECK SAR MEASUREMENT PROCEDURE	
	POWER REDUCTION	
	POWER DRIFT	
	T CONDITIONS AND RESULTS	
4.1.	Conducted Power Results	27
4.2.	TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION	
4.3.	SAR MEASUREMENT RESULTS	
4.4.	SIMULTANEOUS TX SAR CONSIDERATIONS	
4.5.	SAR MEASUREMENT VARIABILITY	
4.6.	GENERAL DESCRIPTION OF TEST PROCEDURES	
4.7.	MEASUREMENT UNCERTAINTY (450MHz-6GHz)	
4.8.	SYSTEM CHECK RESULTS	
	SAR TEST GRAPH RESULTS	
	LIBRATION CERTIFICATES Probe-EPGO324 Calibration Certificate	
5.1 5.2	SID750Dipole Calibration Certificate	
5.2 5.3	SID750Dipole Calibration Certificate	
5.4	SID 399DII OLE CALIBRATION CERTIFICATE	
5.5	SID 1900 DIPOLE CALIBRATION CERTIFICATE	
5.6	SID2450 DIPOLE CALIBRATION CERTIFICATE	
5.7	SID2600 DIPOLE CALIBRATION CERITICATE	
6. SAR	SYSTEM PHOTOGRAPHS	166
7. SET	UP PHOTOGRAPHS	
8. EUT	TPHOTOGRAPHS	172

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 172

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

IEEE Std C95.1, 2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment. IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. FCC Part 2.1093: Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB447498 D01 General RF Exposure Guidance : Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

<u>KDB865664 D01 SAR Measurement 100 MHz to 6 GHz</u>:SAR Measurement Requirements for 100 MHz to 6 GHz <u>KDB865664 D02 RF Exposure Reporting</u>: RF Exposure Compliance Reporting and Documentation Considerations

KDB 616217 D04 SAR for laptop and tablets v01r02: SAR Evaluation procedures for umpc mini-tablet devices KDB248227 D01 802.11 Wi-Fi SAR: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS KDB941225 D01 3G SAR Procedures: 3G SAR MEAUREMENT PROCEDURES KDB 941225 D06 Hotspot Mode: SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH

KDB 941225 D06 Hotspot Mode: SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	December 24, 2019
Testing commenced on	• •	December 24, 2019
Testing concluded on	:	January 02, 2020

1.4. Product Description

The**SWAGTEK**'s Model:**T4G** or the "EUT" as referred to in this report; more general information as follows,for more details, refer to the user's manual of the EUT.

General Description		
Product Name:	7 inch 4G Tablet	
Model/Type reference:	T4G	
Listed Model No.:	Stream 7L, UT3L	
Model Declaration:	PCB board, structure and internal of these model(s) are the same, Only model name is different for these models.	
Modulation Type:	GMSK for GSM/GPRS; GMSK/8-PSK for EGPRS; QPSK for UMTS; QPSK, 64QAM for LTE	
Device category:	Portable Device	
Exposure category:	General population/uncontrolled environment	
EUT Type:	Production Unit	
Hardware Version:	SE706C-G-MB-V1.2	
Software Version:	LOGIC-T4G-GENERIC-V3.0-C-03092019	
DC 3.8V by Rechargeable Li-ion Battery(2580mAh)		
Power supply:	Recharged by DC 5V/1500mA Adapter	
Antenna Type:	PIFA Antenna	
Hotspot:	Supported, power not reduced when Hotspot open	
VoIP	Supported	
Service (MMS) transmissio	mobile phone. the mobile phone is intended for speech and Multimedia Message on. It is equipped with GPRS/EDGE class 12 for GSM850, PCS1900, WCDMA TE 2,4,7,12,17, and Bluetooth, WiFi2.4G,camera functions. For more information	

see the following datasheet,

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 172

Report No.:LCS191223014AEB

VZHEN LUS COMPLIANCE TESTING	LABORATORT LID. FCC ID: 055705019 Report No.:LCS1912250			
Technical Characteristics				
GSM				
Support Networks:	GSM/GPRS/EDGE			
Support Band:	GSM850/PCS1900/GPRS850/GPRS1900/EDGE850/EDGE1900			
Frequency:	GSM850: 824.2~848.8MHz			
	GSM1900: 1850.2~1909.8MHz			
Power Class:	GSM850:Power Class 4			
	PCS1900:Power Class 1			
Modulation Type:	GMSK for GSM/GPRS; GMSK/8PSK For EGPRS			
GSM Release Version:	R6			
GPRS Multislot Class:	12			
EGPRS Multislot Class:	12			
GPRS operation mode:	Class B			
DTM Mode:	Not Supported			
	PIFA Antenna:			
	-0.5 dBi(Max.) for GSM 850 Band;			
Antenna Description:	-1.5 dBi(Max.) for GSM 900 Band;			
·	0.8 dBi(Max.) for GSM 1800 Band;			
	1.2 dBi(Max.) for GSM 1900 Band			
UMTS				
Operation Band:	UMTS FDD Band II/IV/V			
•	WCDMA Band II: 1852.4~1907.6MHz			
FrequencyRange:	WCDMA Band V: 826.4~846.6MHz			
Madulation Trates				
Modulation Type:	QPSK for WCDMA/HSUPA/HSDPA			
Power Class:	Class 3			
WCDMA Release Version:	R8			
HSDPA Release Version:	Release 8			
HSUPA Release Version:	Release 8			
DC-HSUPA Release Version:	Not Supported			
	PIFA Antenna:			
	-0.5 dBi(Max.) for WCDMA 850 Band;			
Antenna Description:	1.2 dBi(Max.) for WCDMA 1900 Band;			
	0.8 dBi(Max.) for WCDMA 1700 Band			
LTE				
Operation Band:	LTE FDD band 2, 4, 7, 12, 17			
Modulation Type:	64QAM for LTE			
Release Version:	R10			
Power Class:	Class 3			
FOWEI CIASS.	PIFA Antenna:			
	1.2 dBi(Max.) for LTE Band 2;			
Antenna Description:	0.8 dBi(Max.) for LTE Band 4;			
	0.5 dBi(Max.) for LTE Band 7;			
	-3.5 dBi(Max.) for LTE Band 12;			
	-3.5 dBi(Max.) for LTE Band 17			
WIFI 2.4G				
Supported Standards:	IEEE 802.11b/802.11g/802.11n(HT20 and HT40)			
	IEEE 802.11b:2412-2462MHz			
Operation frequency:	IEEE 802.11g/n20:2412-2462MHz			
	IEEE 802.11n40:2422-2452MHz			
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)			
Type of Modulation:	IEEE 802.11g/n: OFDM(64QAM, 16QAM, QPSK, BPSK)			
Channel number:	IEEE 802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7			
Antenna Description:	BT&WIFI&GPS share the same FPC Antenna, 1.5dBi(max.)			
Channel separation:	5MHz			
Bluetooth/GPS	1/4.0			
Bluetooth Version:				
Bluetooth Version: Modulation:	GFSK, π/4-DQPSK, 8-DPSK (BT V4.0)			
Bluetooth Version: Modulation: Operation frequency:	GFSK, π/4-DQPSK, 8-DPSK (BT V4.0) 2402MHz~2480MHz			
Bluetooth Version: Modulation: Operation frequency: Channel number:	GFSK, π/4-DQPSK, 8-DPSK (BT V4.0) 2402MHz~2480MHz 79/40			
Bluetooth Version: Modulation: Operation frequency:	GFSK, π/4-DQPSK, 8-DPSK (BT V4.0) 2402MHz~2480MHz			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 172

1.5. Statement of Compliance

The maximum of results of SAR found during testing for T4G are follows:

Classment	Frequency	Head	Hotspot (Report SAR _{1-g} (W/kg)	Body-worn (Report SAR _{1-g} (W/kg)
Class	Band	(Report SAR _{1-g} (W/kg)	(Separation D	vistance 0mm)
	GSM 850	0.217	0.522	0.522
	GSM1900	0.591	1.363	1.363
	WCDMA Band V	0.405	0.609	0.609
	WCDMA Band IV	0.399	0.874	0.874
PCE	WCDMA Band II	0.460	1.169	1.169
FUE	LTE band 2	0.755	1.386	1.386
	LTE band 4	0.470	0.624	0.624
	LTE band 7	0.898	1.296	1.296
	LTE band 12	0.275	0.659	0.659
	LTE band 17	0.318	0.721	0.721
DTS	WIFI2.4G	0.114	0.109	0.109

<highest< th=""><th>Reported</th><th>standalone</th><th>SAR</th><th>Summary</th><th>/></th></highest<>	Reported	standalone	SAR	Summary	/>
singnest	reported	Standalone	O/IIV	Guinnar	1-

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)
Body-worn	PCE	1.495
(hotspot open)	DTS	1.495

```
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.
Page 8 of 172
```

2.TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- Site Description
 - EMC Lab.
- FCC Registration Number is 254912. Industry Canada Registration Number is 9642A-1. EMSD Registration Number is ARCB0108. UL Registration Number is 100571-492. TUV SUD Registration Number is SCN1081. TUV RH Registration Number is UA 50296516-001. NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier: CN0071

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C	
Humidity:	40-65 %	
	+0 00 /0	
Atmospheric pressure:	950-1050mbar	

2.3. SAR Limits

FCC Limit (1g Tissue)				
	SAR (W/k	(g)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average(averaged over the whole body)	0.08	0.4		
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0		
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

FCC ID: 055705019

2.4. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	PC	Lenovo	G5005	MY42081102	N/A	N/A
2	SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
3	Signal Generator	Agilent	E4438C	MY49072627	2019-06-11	2020-06-10
4	Multimeter	Keithley	MiltiMeter 2000	4059164	2019-11-15	2020-11-14
5	S-parameter Network Analyzer	Agilent	8753ES	US38432944	2019-11-15	2020-11-14
6	Wideband Radio Communication Tester	R&S	CMW500	103818-1	2019-11-22	2020-11-21
7	E-Field PROBE	SATIMO	SSE2	SN 31/17 EPGO324	2019-10-08	2020-10-07
8	DIPOLE 750	SATIMO	SID 750	SN 07/14 DIP 0G750-302	2018-10-01	2021-09-30
9	DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	2018-10-01	2021-09-30
10	DIPOLE 1800	SATIMO	SID 1800	SN 07/14 DIP 1G800-301	2018-10-01	2021-09-30
11	DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	2018-09-24	2021-09-23
12	DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2018-10-01	2021-09-30
13	DIPOLE 2600	SATIMO	SID 2600	SN 38/18 DIP 2G600-468	2018-09-24	2021-09-23
14	COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2019-11-15	2020-11-14
15	SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	2019-11-15	2020-11-14
16	Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	2019-11-15	2020-11-14
17	FEATURE PHONEPOSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
18	DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
19	SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
20	Liquid measurement Kit	HP	85033D	3423A03482	2019-11-15	2020-11-14
21	Power meter	Agilent	E4419B	MY45104493	2019-06-11	2020-06-10
22	Power meter	Agilent	E4419B	MY45100308	2019-11-22	2020-11-21
23	Power sensor	Agilent	E9301H	MY41495616	2019-11-22	2020-11-21
24	Power sensor	Agilent	E9301H	MY41495234	2019-06-11	2020-06-10
25	Directional Coupler	MCLI/USA	4426-20	03746	2019-06-11	2020-06-10

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 10 of 172

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

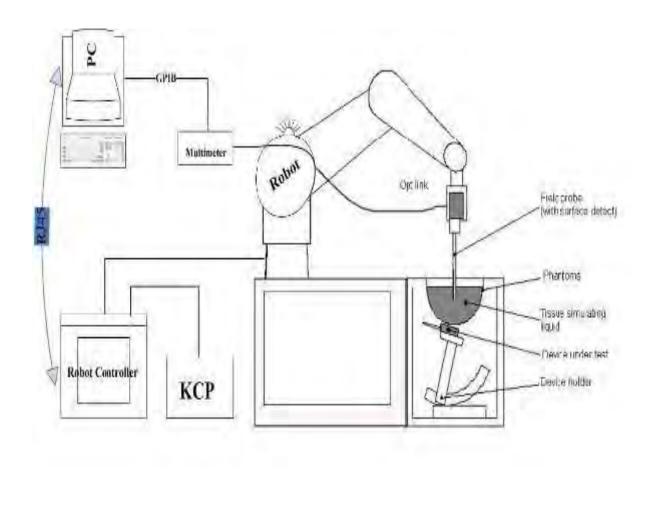
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 172

FCC ID: 055705019

Report No.:LCS191223014AEB

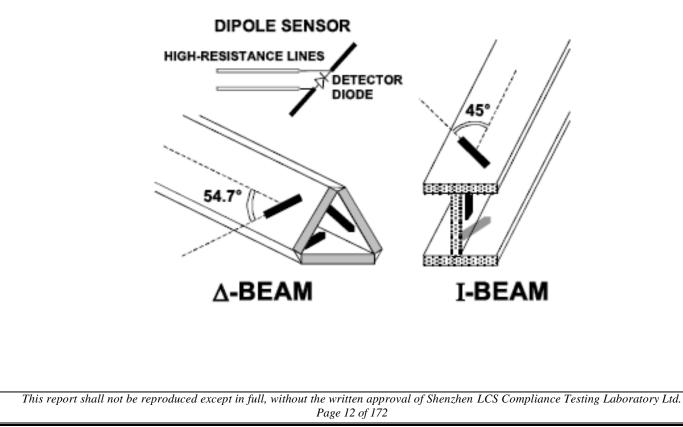
3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324(manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.


Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.


The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 172

FCC ID: 055705019

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$		
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: $\Delta x_{Zoom}, \Delta y_{Zoom}$	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: Δz _{zoom} (n)	\leq 5 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$	
	$\begin{array}{c} \label{eq:states} graded\\ grid \\ \end{array} \begin{array}{c} \Delta z_{Zoom}(1): \ between \\ 1^{st} \ two \ points \ closest \\ to \ phantom \ surface \\ \hline \Delta z_{Zoom}(n \geq 1): \\ between \ subsequent \\ points \\ \end{array}$		\leq 4 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz} : \leq 3 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz} : \leq 2.5 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz} : \leq 2 \ \mathrm{mm} \end{array}$	
			$\leq 1.5 \cdot \Delta z_{Zooun}(n-1) \text{ mm}$		
Minimum zoom scan volume x, y, z		\geq 30 nm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019	Report No.:LCS191223014AEB
---	-------------------	----------------------------

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files . The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion fa	actor ConvFi
- Diode compre	ession point Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

$$\begin{array}{lll} \mathrm{E-field probes}: & E_i = \sqrt{\frac{v_i}{Norm_i \cdot ConvF}} \\ \mathrm{H-field probes}: & H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}}{f} \\ \\ \text{signal of channel i} & (\mathbf{i} = \mathbf{x}, \, \mathbf{y}, \, \mathbf{z}) \\ \text{vity of channel i} & (\mathbf{i} = \mathbf{x}, \, \mathbf{y}, \, \mathbf{z}) \end{array}$$

 $+ a_{i2}f$

With Vi = compensated = sensor sensitivity of channel i Normi [mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution = sensor sensitivity factors for H-field probes aii

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY L	<i>TD. FCC ID: 055705019</i>

Report No.:LCS191223014AEB

- f = carrier frequency [GHz] Ei
 - = electric field strength of channel i in V/m
- Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR

= local specific absorption rate in mW/g = total field strength in V/m Etot

= conductivity in [mho/m] or [Siemens/m] σ

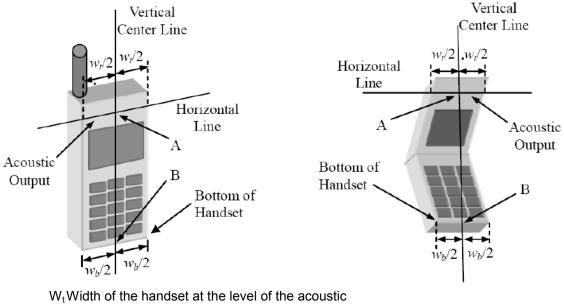
= equivalent tissue density in g/cm3 ρ

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Position of the wireless device in relation to the phantom

General considerations

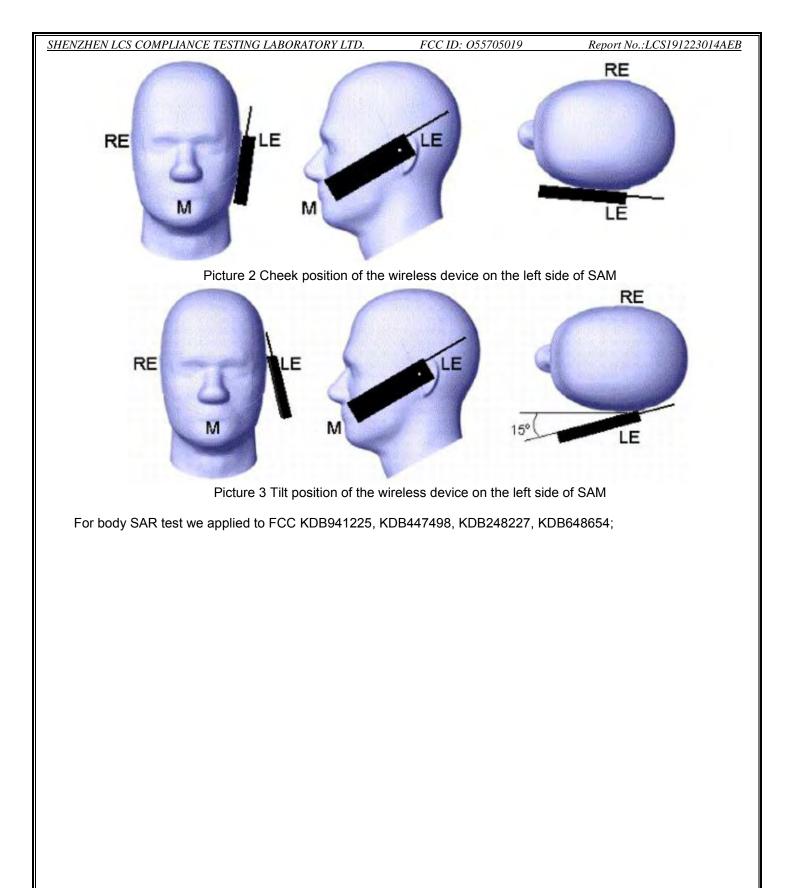
This standard specifies two handset test positions against the head phantom - the "cheek" position and the "tilt" position.


The power flow density is calculated assuming the excitation field as a free space field

$$P_{(\text{pwe})} = \frac{E_{\text{tot}}^2}{3770}$$
 or $P_{(\text{pwe})} = H^2_{\text{tot}}.37.7$

Where P_{pwe}=Equivalent power density of a plane wave in mW/cm2

Etot=total electric field strength in V/m


H_{tot}=total magnetic field strength in A/m

- W_bWidth of the bottom of the handset
- A Midpoint of the widthwtof the handset at the level of the acoustic output
- B Midpoint of the width w_b of the bottom of the handset

Picture 1-a Typical "fixed" case handset Picture 1-b Typical "clam-shell" case handset

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 172

3.8. Tissue Dielectric Parameters for Head and Body Phantoms

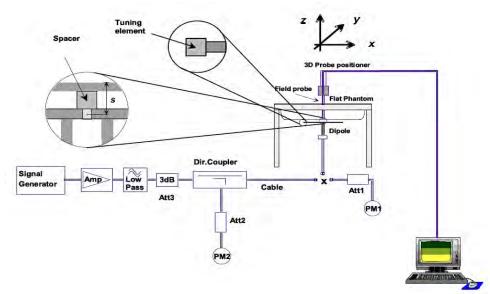
The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid														
Ingredient	750	MHz	8351	ИНz	1800	1800 MHz 1900 MHz		2450MHz		2600MHz		5000MHz		
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.3	41.45	52.5	54.5	40.2	54.9	40.4	62.7	73.2	60.3	71.4	65.5	78.6
Preventol	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40	0.00	0.00
Triton X- 100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.2	10.7

Target Frequency	He	ad	Body		
(MHz)	ε _{r 翁辉龙} (Calvin)	σ(S/m)	ε _r	σ(S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

3.9. Tissue equivalent liquid properties

Dielectric Performance of Head and Body Tissue Simulating Liquid


Test Engineer: Haylie Cao										
Tissue	Measured	Targe	Target Tissue		Measured Tissue				Test Data	
Туре	Frequency (MHz)	σ	٤r	σ	Dev.	٤r	Dev.	Liquid Temp.		
750H	750	0.89	41.90	0.88	-1.12%	41.58	-0.76%	21.5	12/24/2019	
835H	835	0.90	41.50	0.86	-4.44%	40.14	-3.28%	20.4	12/26/2019	
1800H	1800	1.40	40.00	1.42	1.43%	41.59	3.98%	22.6	12/27/2019	
1900H	1900	1.40	40.00	1.37	-2.14%	39.23	-1.93%	21.7	12/30/2019	
2450H	2450	1.80	39.20	1.76	-2.22%	40.12	2.35%	22.5	12/31/2019	
2600H	2600	1.96	39.00	1.94	-1.02%	39.56	1.44%	21.3	01/02/2020	

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

FCC ID: 055705019

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019	Report No.:LCS191223014AEB
---	-------------------	----------------------------

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID750 SN 07/14 DIP 0G750-302 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-34.80		50.7		1.6	
2019-10-01	-34.35	-1.29	51.2	0.5	1.5	-0.1

SID835 SN 07/14 DIP 0G835-303 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-24.49		54.9		2.8	
2019-10-01	-24.17	-1.31	54.5	-0.4	2.6	-0.2

SID1800 SN 30/14 DIP 1G800-301 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-20.26		43.1		6.9	
2019-10-01	-20.13	-0.64	42.9	-0.2	6.7	-0.2

SID1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-01	-26.43		50.5		4.7	
2019-09-01	-26.33	-0.38	50.2	-0.3	4.5	-0.2

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-25.59		44.7		-1.1	
2019-10-01	-25.68	0.35	44.8	0.1	-1.0	0.1

SID2600 SN 38/18 DIP 2G600-468 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-29.14		49.2		3.4	
2019-09-24	-29.12	-0.07	49.1	-0.1	3.2	-0.1

FCC ID: 055705019

Report No.:LCS191223014AEB

								Diffe			
Mixture	Frequency	Power	SAR _{1g}	SAR _{10g} (W/Kg)	Drift (%)	1W Target		Difference percentage		Liquid	Date
Туре	(MHz)	1 Ower	(W/Kg)			SAR _{1g} (W/Kg)	SAR _{10g} (W/Kg)	1g	10g	Temp	Date
		100 mW	0.824	0.562							
Head	750	Normalize to 1 Watt	8.24	5.62	1.42	8.38	5.53	-1.67%	1.63%	21.5	12/24/2019
		100 mW	0.975	0.632							
Head	835	Normalize to 1 Watt	9.75	6.32	-0.21	9.60	6.20	1.56%	1.94%	20.4	12/26/2019
		100 mW	3.819	20.13							
Head	1800	Normalize to 1 Watt	38.19	20.13	3.56	38.13	20.20	0.16%	-0.35%	22.6	12/27/2019
		100 mW	3.921	2.068							
Head	1900	Normalize to 1 Watt	39.21	20.68	-1.17	40.03	20.55	-2.05%	0.63%	21.7	12/30/2019
		100 mW	5.224	2.343							
Head	2450	Normalize to 1 Watt	52.24	23.43	0.24	53.89	24.15	-3.06%	-2.98%	22.5	12/31/2019
		100 mW	5.347	24.20							
Head	2600	Normalize to 1 Watt	53.47	24.20	-2.36	56.91	24.69	-6.04%	-1.98%	21.3	01/02/2020

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum powerin each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously

Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.11.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.11.3 UMTS Test Configuration

3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 172

1) Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

2) Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH shouldbe configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain aconstant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCHpower offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in theTable below. The CQI value is determined by the UE category, transport block size, numberof HS-PDSCHs and modulation used in the H-set

Table 2: Subtests for UMTS Release 5 HSDPA

Sub-set	β _c	β_d	β _d (SF)	β_c/β_d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: \triangle_{ACK} , \triangle_{NACK} and \triangle_{CQI} = 8 $\Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15*\beta_c$

Note2: CM=1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15.

Note3:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Table 3: Sub-Test 5	Setup	for Release	e 6 HSUPA

Sub- set	β _c	β_d	β _d (SF)	β _c /β _d	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.					FCC ID: 055705019			Report No.:LCS191223014AEB			
5 15/15 ⁽⁴⁾	15/15 ⁽⁴⁾ 64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_c = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 * \beta_c$.

Note 2: CM = 1 for $\beta c/\beta d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

3.11.4 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands

c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.

4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions .

a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures.

6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 172 SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within 1/4 dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 055705019	
SHENZHEN LUS UUMFLIANUE TESTING LADUKATUKT LID. $\Gamma UU ID. 00000000000000000000000000000000000$	÷

have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

4. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested.

a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximumoutput) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

4.TEST CONDITIONS AND RESULTS

4.1. Conducted Power Results

According KDB 447498D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR testreduction.

2. According to October 2013TCB Workshop, for GSM / GPRS / EGPRS, the number of time slots to test for SARshould correspond to the highest frame-average maximum output power configuration, considering the possibility ofe.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set inGPRS (2 Tx slot)forGSM850/GSM1900 band due to their highest frame-average power.

3. For hotspot mode SAR testing, GPRS / EDGE should be evaluated, therefore the EUT was set in GPRS (3 Tx slots)for GSM850/GSM1900 band due to its highest frame-average power.

	Conducted power measurement results for GSM850/PCS1900											
		Tune-	Burst Conducted power (dBm) Channel/Frequency(MHz)			Tune-	Average power (dBm)					
GSM	N 850	up			Division	up	Channel/Frequency(MHz)					
		Max	128/ 824.2	190/ 836.6	251/ 848.8	Factors	Max	128/ 824.2	190/ 836.6	251/ 848.8		
G	SM	33.00	32.36	32.55	32.27	-9.03dB	23.97	23.33	23.52	23.24		
	1TX slot	33.50	32.32	32.51	32.17	-9.03dB	24.47	23.29	23.48	23.14		
GPRS	2TX slot	31.00	30.64	30.90	30.47	-6.02dB	24.98	24.62	24.88	24.45		
(GMSK)	3TX slot	30.00	29.70	29.83	29.38	-4.26dB	25.74	25.44	25.57	25.12		
	4TX slot	28.50	28.19	28.29	28.06	-3.01dB	25.49	25.18	25.28	25.05		
	1TX slot	26.50	26.26	26.44	26.05	-9.03dB	17.47	17.23	17.41	17.02		
EGPRS	2TX slot	24.50	23.97	24.14	23.84	-6.02dB	18.48	17.95	18.12	17.82		
(8PSK)	3TX slot	23.00	22.50	22.64	22.31	-4.26dB	18.74	18.24	18.38	18.05		
	4TX slot	21.50	21.02	21.19	20.82	-3.01dB	18.49	18.01	18.18	17.81		
		Tune-	Burst Conducted power (dBm)			Division	Tune-	Average power (dBm)		Bm)		
GSM	1 1900	up	Channel/Frequency(MHz)		Division up Factors		Channel/Frequency(MH		(MHz)			
		Max	512/ 1850.2	661/ 1880	810/ 1909.8	Factors	Max.	512/ 1850.2	661/ 1880	810/ 1909.8		
G	SM	30.00	29.36	29.55	29.31	-9.03dB	20.97	20.33	20.52	20.28		
	1TX slot	29.50	29.24	29.38	29.17	-9.03dB	20.47	20.21	20.35	20.14		
GPRS	2TX slot	28.00	27.55	27.74	27.41	-6.02dB	21.98	21.53	21.72	21.39		
(GMSK)	3TX slot	27.00	26.78	26.88	26.64	-4.26dB	22.74	22.52	22.62	22.38		
	4TX slot	25.50	25.21	25.40	25.10	-3.01dB	22.49	22.20	22.39	22.09		
	1TX slot	26.00	25.68	25.92	25.50	-9.03dB	16.97	16.65	16.89	16.47		
EGPRS	2TX slot	24.00	23.51	23.66	23.32	-6.02dB	17.98	17.49	17.64	17.3		
(8PSK)	3TX slot	22.50	22.03	22.20	21.81	-4.26dB	18.24	17.77	17.94	17.55		
	4TX slot	21.00	20.52	20.64	20.32	-3.01dB	17.99	17.51	17.63	17.31		

<SIM1> Conducted power measurement results for GSM850/PCS1900

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 172 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 055705019 Report No.:LCS191223014AEB <SIM2> Burst Average Conducted power (dBm) **GSM 850** Channel/Frequency(MHz) 128/824.2 190/836.6 251/848.8 GSM 32.27 32.46 32.19 32.22 32.45 32.14 1TX slot 2TX slot 30.53 30.87 30.44 GPRS 29.34 (GMSK) 3TX slot 29.59 29.78 4TX slot 28.10 28.24 28.01 1TX slot 26.17 26.37 26.00 2TX slot 23.91 24.04 23.76 EDGE 22.44 22.24 (8PSK) 22.55 3TX slot 4TX slot 20.98 21.12 20.74

		Burst	Average Conducted powe	r (dBm)		
GSM	1 1900	Channel/Frequency(MHz)				
		512/1850.2	661/1880	810/1909.8		
G	SM	29.31	29.53	29.24		
	1TX slot	29.15	29.30	29.11		
GPRS	2TX slot	27.51	27.65	27.32		
(GMSK)	3TX slot	26.66	26.85	26.55		
	4TX slot	25.14	25.32	25.00		
	1TX slot	25.64	25.83	25.47		
EDGE	2TX slot	23.43	23.63	23.27		
(8PSK)	3TX slot	21.99	22.12	21.75		
	4TX slot	20.45	20.60	20.23		

Notes:

1. Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.00dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB

2. According to the conducted power as above, the GPRS measurements are performed with 3Tx slot for GPRS850 and 3Tx slot GPRS1900.

3. This EUT owns two SIM cards(SIM 1 support GSM/UMTS, SIM 2 support GSM), after we perform the pretest for these two SIM card, we found the SIM 1 is the worst case ,so its result is recorded in this report.

<UMTS Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.A summary of these settings are illustrated below:

HSDPA Setup Configuration:

C.

- a. The EUT was connected to Base Station E5515C referred to theSetup Configuration.
- b. The RF path losses were compensated into the measurements.
 - A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 172

FCC ID: 055705019

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βa	βd (SF)	βc/βd	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)	
1	2/15	15/15	64	2/15	4/15	0.0	0.0	
2	12/15	15/15	64	12/15	24/15	1.0	0.0	
	(Note 4)	(Note 4)		(Note 4)				
3	15/15	8/15	64	15/8	30/15	1.5	0.5	
4	15/15	4/15	64	15/4	30/15	1.5	0.5	
	Magnitude (I	EVM) with H in clause 5.	S-DPCCH te	lirement test in cla st in clause 5.13.1 and Δ _{NACK} = 30/1	IA, and HSDF	PA EVM with ph	ase	
Note 3: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH and HS- DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.								
				or the TFC during factors for the rel				

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base StationR&S CMU200 referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting * :
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI

viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI

d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βα	βa	βα (SF)	βc/βd	βнs (Note1)	βec	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
							0						
	: CM =	Δ _{NACK} and 1 for β _c /β	d =12/1	= 30/15 w I5, β _{hs} /β _c	=24/15. 1	For all ot	β_c . her combinatio CM difference		DPDCH, I	OPCCH,	HS- DPC	CH, E-D	PDCH
Note 2	: CM = and E- : For su	Δ _{NACK} and 1 for β _c /β -DPCCH ibtest 1 tl	d =12/1 the MF he β₀/β	= 30/15 w I5, β _{hs} /β _c PR is bas d ratio of	=24/15. F ed on the 11/15 for	For all otl e relative r the TFC	her combinatio	e. easure	ement peri	iod (TF1	, TF0) is	achieved	
Note 1 Note 2 Note 3 Note 4	: CM = and E- : For su setting : For su	Δ _{NACK} and 1 for β _o /β -DPCCH lbtest 1 tl g the sign lbtest 5 tl	$b_d = 12/1$ the MF he β _d /β alled g he β _d /β	= 30/15 w I5, β _{hs} /β _c PR is bas d ratio of ain facto d ratio of	=24/15. F ed on the 11/15 for rs for the 15/15 for	For all ot e relative r the TFC e reference r the TFC	her combinatio CM difference during the m	e. easure TF1) to easure	ement per $\beta_c = 10/1$ ement per	iod (TF1 15 and β iod (TF1	, TF0) is d = 15/15 , TF0) is	achieved achieved	by
Note 2 Note 3	CM = and E- For su setting For su setting In cas	Δ_{NACK} and 1 for β_c/β -DPCCH lotest 1 the g the sign lotest 5 the g the sign	$b_d = 12/1$ the MF he β _c /β alled g he β _c /β alled g ng by l	= 30/15 w I5, β _{hs} /β _c PR is bas d ratio of ain facto d ratio of ain facto JE using	=24/15. F ed on the 11/15 for rs for the 15/15 for rs for the	For all ot e relative r the TFC e reference r the TFC e reference	her combinatio CM difference during the more ce TFC (TF1, during the more	e. easure TF1) to easure TF1) to	ement peri $β_c = 10/1$ ement peri $β_c = 14/1$	iod (TF1 15 and β iod (TF1 15 and β	, TF0) is d = 15/15 , TF0) is d = 15/15	achieved achieved	by

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019	Report No.:LCS191223014AEB
	10012100017	nepervised bir inde

General Note

1. Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.

3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

	Conducted Power Measurement Results(WCDMA Band II/V/IV)										
Item		FDD Band V result (dBm)			FDD E	FDD Band IV result (dBm)			FDD Band II result (dBm)		
	Band	Test Channel			Test Channel			Test Channel			
		4132/	4183/	4233/	1312/	1413/	1513/	9262/	9400/	9538/	
		826.4	836.6	846.6	1712.4	1732.6	1752.6	1852.4	1880	1907.6	
RMC	12.2kbps	22.63	22.65	22.85	23.89	23.36	23.88	22.46	22.57	22.13	
	Subtest 1	21.32	21.25	20.08	21.25	21.08	21.03	21.49	21.87	21.12	
HSDPA	Subtest 2	21.12	21.14	21.98	20.52	20.31	20.22	21.09	21.26	20.60	
HSDFA	Subtest 3	21.35	20.01	21.39	20.47	20.28	20.13	21.24	21.41	20.74	
	Subtest 4	21.69	20.04	21.58	20.36	20.28	20.09	20.91	21.10	20.41	
	Subtest 1	21.37	21.97	21.27	20.18	20.95	20.18	20.75	20.37	20.48	
	Subtest 2	21.78	21.34	21.39	20.64	20.48	20.14	20.64	20.92	20.39	
HSUPA	Subtest 3	21.39	21.57	21.37	20.59	20.89	20.65	20.80	20.88	20.70	
	Subtest 4	21.78	21.45	21.39	20.67	20.30	20.37	20.83	20.87	20.31	
	Subtest 5	21.37	21.17	21.87	20.32	20.25	20.30	20.39	20.46	20.68	

Conducted Power Measurement Results(WCDMA Band II/V/IV)

Note:1.When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤1/2dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. 2. This EUT owns two SIM cards(SIM 1 support GSM/UMTS, SIM 2 support GSM).

LTE Band2

BW	Frequency		figuration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	22.91	23.11
		1	3	22.91	23.10
		1	5	22.85	23.08
	1850.7	3	0	22.93	22.14
		3	2	23.01	22.10
		3	3	22.82	22.06
		6	0	21.95	21.05
		1	0	22.95	22.17
		1	3	22.99	22.16
		1	5	22.90	22.15
1.4	1880.0	3	0	23.03	21.99
		3	2	23.06	21.98
		3	3	23.10	21.99
		6	0	21.97	20.86
		1	0	22.45	21.75
		1	3	22.52	21.75
		1	5	22.50	21.76
	1909.3	3	0	22.61	21.52
		3	2	22.61	21.55
		3	3	22.53	21.55
		6	0	21.60	20.77
		1	0	22.88	22.99
		1	7	22.81	22.92
		1	14	22.75	22.90
3	1851.5	8	0	21.79	20.88
		8	4	21.89	20.87
		8	7	21.88	20.87
		15	0	21.89	20.97

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 172

					t No.:LCS1912230
		1	0	22.83	22.42
		1	7	22.84	22.45
		1	14	22.85	22.44
	1880.0	8	0	21.88	20.92
		8	4	21.89	21.02
		8	7	21.84	20.92
		15	0	21.92	21.01
-		1	0	22.51	22.37
	-	1	7	22.52	22.39
	-	1	14	22.54	22.36
	1908.5	8	0	21.59	20.69
	1300.5	8	4	21.53	20.58
	-	8	7	21.64	20.58
		<u> </u>	0		20.56
				21.58	
	_	1	0	22.91	22.82
	_	1	12	22.71	22.77
		1	24	22.70	22.70
	1852.5	12	0	21.80	21.22
		12	6	21.83	21.08
		12	13	21.75	21.01
		25	0	21.76	20.96
		1	0	22.96	22.69
		1	12	22.93	22.80
		1	24	22.96	22.74
5	1880.0	12	0	22.04	21.26
-		12	6	22.00	21.23
		12	13	21.94	21.20
		25	0	22.02	21.20
-		1	0	22.43	20.90
	-	1	12	22.43	20.90
	4007 5	1	24	22.47	20.95
	1907.5	12	0	21.51	20.72
	_	12	6	21.49	20.70
	_	12	13	21.46	20.75
		25	0	21.53	20.74
		1	0	22.78	22.97
		1	24	22.61	22.68
		1	49	22.66	22.69
	1855.0	25	0	21.89	20.94
		25	12	21.65	20.84
		25	25	21.65	20.76
	-	50	0	21.78	20.85
-		1	0	22.75	22.79
	F	1	24	22.75	22.85
	F	1	49	22.76	22.83
10	1880.0	25	49	21.87	22.83
10	1000.0	25	12		20.99
	F			21.85	
	F	25	25	21.87	21.00
ļ		50	0	21.89	21.14
	Ļ	1	0	22.49	22.04
		1	24	22.45	21.99
		1	49	22.54	22.12
	1905.0	25	0	21.48	20.66
		25	12	21.47	20.64
	F	25	25	21.62	20.64
	F	50	0	21.58	20.65
		1	0	22.74	22.87
	F	1	37	22.57	22.69
15	1857.5	1	74	22.71	22.79
10	1001.0		0	21.85	20.89
15	F	37		21 Xh	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 172

SHENZHEN LCS COMPLIA	ANCE TESTING LAB	ORATORY LTD.	FCC ID: 055705019) Repor	rt No.:LCS191223014AEB
		37	38	21.71	20.83
		75	0	21.81	20.84
		1	0	22.72	22.82
		1	37	22.75	22.85
		1	74	22.71	22.80
	1880.0	37	0	21.85	21.01
		37	18	21.97	21.13
		37	38	21.82	21.12
		75	0	22.02	21.04
		1	0	22.52	22.57
		1	37	22.44	22.53
		1	74	22.49	22.48
	1902.5	37	0	21.54	20.71
		37	18	21.39	20.70
		37	38	21.40	20.66
		75	0	21.59	20.73
		1	0	23.05	21.93
		1	49	22.93	21.90
		1	99	23.17	22.07
	1860.0	50	0	21.69	20.85
		50	25	21.79	20.81
		50	50	21.78	20.88
		100	0	21.80	20.81
		1	0	23.11	21.59
		1	49	23.16	21.66
		1	99	23.03	21.43
20	1880.0	50	0	21.95	21.00
		50	25	21.92	21.04
		50	50	21.85	20.94
		100	0	21.88	21.02
		1	0	22.97	21.53
		1	49	22.81	21.33
		1	99	22.76	21.24
	1900.0	50	0	21.72	20.74
		50	25	21.57	20.64
		50	50	21.60	20.66
		100	0	21.60	20.71

LTE Band4

BW	Frequency	RB Conf	iguration	Average Power [dBm]		
(MHz)	(MHz)	Size	Offset	QPSK	16QAM	
		1	0	23.60	23.76	
		1	3	23.53	23.72	
		1	5	23.52	23.73	
	1710.7	3	0	23.65	22.78	
		3	2	23.55	22.72	
		3	3	23.52	22.76	
		6	0	22.50	21.32	
		1	0	23.01	23.78	
		1	3	22.94	23.73	
1.4	1732.5	1	5	22.99	23.72	
		3	0	23.00	22.48	
		3	2	22.99	22.45	
		3	3	22.94	22.40	
		6	0	21.94	20.86	
		1	0	23.28	23.32	
		1	3	23.23	23.31	
	1754.3	1	5	23.27	23.31	
		3	0	23.39	22.75	
		3	2	23.44	22.71	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 172

ENZHEN LCS COMP	PLIANCE TESTING LABO	ORATORY LTD.	FCC ID: 0557050	019 Repor	t No.:LCS191223014A
		3	3	23.42	22.77
	Γ	6	0	22.46	21.44
		1	0	23.55	23.66
		1	7	23.49	23.61
		1	14	23.49	23.55
	1711.5	8	0	22.50	21.39
		8	4	22.44	21.36
		8	7	22.57	21.56
		15	0	22.49	21.50
		1	0	22.83	22.93
	-		7	22.88	22.93
	-	1			
	4	1	14	22.96	23.04
3	1732.5	8	0	21.88	20.88
		8	4	21.90	20.96
		8	7	21.91	20.98
		15	0	21.88	21.05
		1	0	23.49	23.43
		1	7	23.51	23.55
	T T	1	14	23.46	23.52
	1753.5	8	0	22.41	21.56
		8	4	22.50	21.62
	F	8	7	22.37	21.55
	F	15	0	22.45	21.33
		1	0	23.45	23.56
		1	12	23.43	23.50
	-				23.44
	4740.0	1	24	23.35	
	1712.0	12	0	22.56	21.70
	_	12	6	22.45	21.88
		12	13	22.58	21.84
		25	0	22.52	21.76
		1	0	22.79	22.87
		1	12	22.83	22.98
		1	24	22.97	23.01
5	1732.5	12	0	21.98	21.23
_		12	6	22.01	21.24
		12	13	21.93	21.33
		25	0	21.95	21.24
		1	0	23.41	21.24
		1	12	23.47	21.90
	-				
	4750 5	1	24	23.45	21.70
	1752.5	12	0	22.46	21.68
		12	6	22.39	21.69
		12	13	22.35	21.61
		25	0	22.37	21.65
		1	0	23.52	23.53
	T T	1	24	23.33	23.44
	Γ	1	49	23.18	23.17
	1715.0	25	0	22.41	21.59
	T T	25	12	22.41	21.52
	l F	25	25	22.30	21.45
	l F	50	0	22.39	21.53
		1	0	22.83	22.83
10	F	1	24	22.93	22.03
		1	49	22.95	23.07
	1700 5				
	1732.5	25	0	21.98	21.06
		25	12	22.00	21.03
		25	25	21.96	21.18
		50	0	22.05	21.10
		1	0	23.40	22.71
	1750.0	1	24	23.42	22.80
1	Т	1	49	23.36	22.79

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 172

<u>S</u> H	ENZHEN LCS COMPI	LIANCE TESTING LAP	SORATORY LTD.	FCC ID: 055705019	9 Repor	rt No.:LCS191223014AEB
			25	0	22.39	21.59
			25	12	22.46	21.60
			25	25	22.51	21.59
			50	0	22.42	21.59
			1	0	23.45	23.62
			1	37	23.32	23.45
			1	74	22.86	23.03
		1717.5	37	0	22.36	21.46
			37	18	22.28	21.29
			37	38	22.02	21.04
			75	0	22.36	21.37
			1	0	22.78	22.83
			1	37	22.90	23.07
			1	74	23.06	23.17
	15	1732.5	37	0	21.90	21.05
			37	18	21.84	21.06
			37	38	22.00	21.15
			75	0	21.99	21.07
			1	0	23.28	22.47
			1	37	23.50	22.68
			1	74	23.45	22.78
		1747.5	37	0	22.41	21.61
			37	18	22.31	21.66
			37	38	22.39	21.61
			75	0	22.35	21.48
			1	0	23.68	22.60
			1	49	23.29	22.25
			1	99	22.99	21.96
		1720.0	50	0	22.27	21.47
			50	25	22.21	21.36
			50	50	22.00	21.02
			100	0	22.22	21.19
			1	0	23.07	22.21
			1	49	23.12	22.20
			1	99	23.35	22.36
	20	1732.5	50	0	22.03	21.00
	-		50	25	22.05	21.14
			50	50	22.12	21.25
			100	0	21.99	21.07
			1	0	23.20	22.27
			1	49	23.45	22.50
			1	99	23.67	22.85
		1745.0	50	0	22.14	21.28
			50	25	22.28	21.40
			50	50	22.36	21.52
			100	0	22.32	21.44
	L	1				

	=		·	A	
BW	Frequency	RB Configuration		Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	21.35	21.72
		1	12	21.63	22.01
	2502.5	1	24	20.69	21.11
		12	0	21.41	21.57
5		12	6	21.42	21.60
2535.0		12	13	21.06	21.24
		25	0	21.17	21.27
		1	0	22.09	22.14
	2535.0	1	12	22.54	22.57
		1	24	21.54	21.64

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 172

ZHEN LCS COMF	LIANCE TESTING LABO		FCC ID: 055705019		t No.:LCS19122301
	_	12	0	22.35	22.26
	_	12	6	22.42	22.22
	_	12	13	22.04	22.17
		25	0	22.20	22.15
	_	1	0	19.56	19.74
		1	12	20.24	20.44
		1	24	19.58	19.80
	2567.5	12	0	19.90	20.00
		12	6	20.11	20.21
		12	13	19.93	20.04
		25	0	19.88	20.02
		1	0	21.07	21.35
		1	24	20.97	21.30
		1	49	21.08	21.35
	2505.0	25	0	21.00	21.07
	2000.0	25	12	20.93	21.01
	-	25	25	21.00	20.76
	-	50	0	20.96	21.03
			0		
		1	-	21.90 22.32	22.20
		1	24		22.62
4.0		1	49	21.57	21.90
10	2535.0	25	0	22.25	22.08
		25	12	22.25	22.09
		25	25	22.00	21.94
		50	0	22.10	22.16
		1	0	21.11	19.55
		1	24	21.95	20.39
		1	49	20.12	20.58
	2565.0	25	0	21.48	19.58
	2000.0	25	12	21.82	19.94
		25	25	20.09	20.20
		50	0	21.75	19.88
		1	0	21.14	21.44
		1	37	20.77	21.09
	-	1	74	20.86	21.03
	2507.5	37	0		
	2507.5			20.89	20.94
	_	37	18	20.77	20.81
	-	37	38	20.98	20.52
		75	0	20.93	20.63
		1	0	21.80	22.10
		1	37	22.16	22.46
		1	74	21.00	21.34
15	2535.0	37	0	22.24	22.08
		37	18	22.11	22.15
		37	38	21.64	21.74
		75	0	21.95	21.91
		1	0	20.72	20.04
		1	37	21.61	19.99
		1	74	21.90	20.29
	2562.5	37	0	21.58	19.68
	2562.5	37	18	21.60	19.00
		37	38	21.80	20.05
		75	0	21.74	19.82
		1	0	21.38	21.52
		1	49	21.11	21.24
		1	99	21.43	21.49
20	2510.0	50	0	20.77	20.83
		50	25	20.98	20.37
	T T	50	50	21.10	20.24
	ļ Ē	100	0	21.08	20.52
	2535.0	1	0	21.62	21.76

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 172

SHENZHEN LCS COMPLIANCE TESTING LAI	BORATORY LTD.	FCC ID: 05570501	9 Repor	rt No.:LCS191223014AEB
	1	49	22.34	22.48
	1	99	21.65	21.80
	50	0	22.03	21.94
	50	25	22.08	22.01
	50	50	21.71	21.67
	100	0	21.83	21.76
	1	0	20.66	20.96
	1	49	21.54	19.93
	1	99	20.59	21.00
2560	50	0	21.87	19.97
	50	25	21.63	19.75
	50	50	20.02	20.15
	100	0	21.91	19.98

LTE Band 12

BW	Frequency	RB Configuration		Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	23.32	22.67
		1	3	23.11	22.78
		1	5	23.33	22.80
	699.7	3	0	23.22	21.88
		3	2	23.27	21.93
		3	3	23.17	21.91
		6	0	22.24	20.82
		1	0	22.97	22.12
		1	3	23.17	22.26
		1	5	23.13	22.26
1.4	707.5	3	0	23.20	21.85
		3	2	23.20	21.81
		3	3	23.21	21.81
		6	0	22.05	20.88
		1	0	22.78	22.70
		1	3	22.72	22.85
		1	5	22.70	22.92
	715.3	3	0	22.80	21.82
		3	2	22.77	21.93
		3	3	22.83	21.91
		6	0	21.75	20.64
		1	0	23.15	22.92
		1	7	23.20	22.97
		1	14	23.14	23.02
	700.5	8	0	22.14	21.00
		8	4	22.15	21.01
		8	7	22.19	21.15
		15	0	22.18	21.07
		1	0	23.00	22.79
		1	7	23.18	22.91
		1	14	23.07	22.77
3	707.5	8	0	21.96	20.79
		8	4	21.99	20.81
		8	7	22.01	20.82
		15	0	22.03	20.93
		1	0	22.98	22.95
		1	7	22.82	22.89
		1	14	22.81	22.90
	714.3	8	0	21.73	20.66
		8	4	21.61	20.63
		8	7	21.88	20.65
		15	0	21.58	20.64
5	701.5	1	0	23.03	22.63

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 172

SHENZHEN LCS COMPL	IANCE TESTING LAB	ORATORY LTD.	FCC ID: 05570501	9 Repor	rt No.:LCS191223014AEB
		1	12	23.18	22.62
		1	24	23.16	22.69
		12	0	22.25	21.12
		12	6	22.27	21.25
		12	13	22.15	21.27
		25	0	22.19	21.29
		1	0	23.09	23.25
		1	12	23.18	23.35
		1	24	23.07	23.17
	707.5	12	0	21.93	21.20
		12	6	22.12	21.16
		12	13	21.91	21.05
		25	0	22.10	21.01
		1	0	22.86	21.32
		1	12	22.86	21.09
		1	24	22.84	21.10
	713.5	12	0	21.83	20.73
		12	6	21.72	20.81
		12	13	21.61	20.76
		25	0	21.69	20.89
		1	0	23.04	22.99
		1	24	23.05	23.09
		1	49	23.13	22.99
	704	25	0	22.26	21.11
		25	12	22.17	20.93
		25	25	22.04	20.85
		50	0	22.16	20.96
		1	0	22.94	22.89
		1	24	23.02	22.84
		1	49	22.79	22.59
10	707.5	25	0	22.00	21.06
		25	12	22.15	20.93
		25	25	21.88	20.88
		50	0	22.09	20.89
		1	0	23.08	22.53
		1	24	22.99	22.38
		1	49	22.93	22.33
	711	25	0	21.94	20.87
		25	12	21.78	20.82
		25	25	21.80	20.88
		50	0	21.80	20.86

LTE Band17

BW	Frequency	RB Conf	iguration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	23.28	23.32
		1	12	23.01	23.35
		1	24	23.21	23.38
	706.5	12	0	22.14	21.30
		12	6	22.01	21.20
		12	13	22.06	21.18
		25	0	22.06	21.06
5	710	1	0	23.16	21.43
		1	12	23.34	21.23
		1	24	22.93	21.30
		12	0	22.09	21.02
		12	6	21.97	20.98
		12	13	21.97	20.94
		25	0	21.87	21.05
	713.5	1	0	23.02	22.16

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 172

SH	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.			FCC ID: 05570501	9 Repor	rt No.:LCS191223014AEB
			1	12	22.93	22.01
			1	24	22.94	22.12
			12	0	21.87	20.77
			12	6	21.71	20.78
			12	13	21.70	20.72
			25	0	21.71	20.83
			1	0	23.07	22.85
			1	24	23.03	22.68
			1	49	22.80	22.49
		709	25	0	22.04	20.90
			25	12	22.12	20.86
			25	25	22.08	20.83
			50	0	21.98	20.85
		710	1	0	22.89	22.68
			1	24	22.99	22.67
			1	49	22.84	22.39
	10		25	0	22.16	20.92
			25	12	21.81	20.82
			25	25	21.90	20.74
			50	0	21.88	20.90
			1	0	23.05	22.44
			1	24	23.03	22.40
			1	49	22.94	22.37
		711	25	0	22.02	20.95
			25	12	21.87	20.86
			25	25	21.85	20.81
			50	0	21.81	20.84

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)
	4		1	9.85
		0440	2	9.24
	1	2412	5.5	9.16
			11	9.07
			1	9.86
IEEE 802.11b	6	0407	2	9.21
	6 2437	5.5	9.48	
			11	9.52
			1	10.18
	11	2462	2	9.25
		2462	5.5	9.09
			11	9.11
	1	2412	6	11.07
			9	10.49
			12	10.29
			18	10.26
			24	10.11
			36	10.07
			48	10.01
			54	10.12
IEEE 802.11g			6	11.31
			9	11.16
			12	11.15
	0	0407	18	11.14
	6	2437	24	11.12
			36	11.19
			48	11.25
			54	11.14
	11	2462	6	11.45

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 172

SHENZHEN LCS COMPLIAN	ICE TESTING LABORATORY	'LTD. F	CC ID: 055705019	Report No.:LCS191223014AE
			9	11.23
			12	11.01
			18	11.14
			24	11.25
			36	11.32
			48	11.21
			54	11.37
			MCS0	11.00
			MCS0 MCS1	10.26
			MCS1 MCS2	10.26
	1	2412	MCS3	10.39
			MCS4	10.46
			MCS5	10.78
			MCS6	10.32
			MCS7	10.17
			MCS0	11.23
			MCS1	11.14
			MCS2	11.05
IEEE 802.11n		o . .	MCS3	11.02
HT20	6	2437	MCS4	11.10
			MCS5	10.69
			MCS6	10.85
			MCS7	10.00
			MCS7	11.39
		2462		
			MCS1	11.25
			MCS2	11.13
	11		MCS3	11.09
			MCS4	11.08
			MCS5	11.00
			MCS6	11.24
			MCS7	11.19
		2422	MCS0	11.43
			MCS1	11.25
			MCS2	11.36
			MCS3	11.01
	3		MCS4	11.24
			MCS5	11.02
			MCS6	11.27
			MCS7	11.30
			MCS0	11.52
			MCS0 MCS1	11.52
			MCS2	11.36
IEEE 802.11n	6	2437	MCS3	11.41
HT40			MCS4	11.20
			MCS5	11.47
			MCS6	11.36
			MCS7	11.19
			MCS0	11.65
			MCS1	11.42
			MCS2	11.23
			MCS3	11.08
	9	2452	MCS4	11.47
			MCS5	11.36
			MCS5 MCS6	11.24
			MCS0 MCS7	11.24
			11/03/	11.47

Note:SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 172 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.FCC ID: 055705019Report No.:LCS191223014AEB

<bt conducted="" power=""></bt>					
Mode	channel	Frequency (MHz)	Conducted AVG output power (dBm)		
	0	2402	-0.309		
BLE	20	2442	-2.143		
	39	2480	-0.906		
	0	2402	-0.141		
GFSK	39	2441	-2.022		
	78	2480	-0.817		
	0	2402	-0.864		
π/4-DQPSK	39	2441	-2.647		
	78	2480	-1.579		
8DPSK	0	2402	-0.759		
	39	2441	-2.470		
	78	2480	-1.402		

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\sqrt{f(GHz)} \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

• f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

Bluetooth Turn up	Separation Distance	Frequency	Exclusion
Power (dBm)	(mm)	(GHz)	Thresholds
1.0	5	2.45	0.4

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied todetermine SAR test exclusion. The test exclusion threshold is 0.4< 3.0, SAR testing is not required. <Tune Up Procedure>

	GSM <sim1></sim1>					
GSM 850 (GMSK) (Burst Average Power)						
Channel Channel 251 Channel 190 Channel 128						
Target (dBm)	32.0	32.0	32.0			
Tolerance ±(dB)	1.0	1.0	1.0			
	GSM 1900 (GMSK) (B	urst Average Power)				
Channel	Channel 810	Channel 661	Channel 512			
Target (dBm)	29.5	29.0	29.0			
Tolerance ±(dB)	1.0	1.0	1.0			

GSM 850 GPRS (GMSK) (Burst Average Power)					
Ch	annel	128	190	251	
1 Txslot	Target (dBm)	32.5	32.5	32.5	
I I XSIOL	Tolerance ±(dB)	1.0	1.0	1.0	
2 Txslot	Target (dBm)	30.0	30.0	30.0	
2 1 XSIUL	Tolerance ±(dB)	1.0	1.0	1.0	
3 Txslot	Target (dBm)	29.0	29.0	29.0	
5 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0	
4 Txslot	Target (dBm)	27.5	27.5	27.5	
4 1 X SIOL	Tolerance ±(dB)	1.0	1.0	1.0	
	GSM850 EGPRS	6 (8PSK) (Burst Av	verage Power)		
Ch	annel	128	190	251	
1 Txslot	Target (dBm)	25.5	25.5	25.5	
1 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0	
2 Txslot	Target (dBm)	23.5	23.5	23.5	
2 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0	
3 Txslot	Target (dBm)	22.0	22.0	22.0	
5 1 25101	Tolerance ±(dB)	1.0	1.0	1.0	
4 Txslot	Target (dBm)	20.5	20.5	20.5	
4 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0	
	GSM 1900 GPRS	6 (GMSK) (Burst A	verage Power)		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 172

SHENZHEN	SHENZHEN LCS COMPLIANCE TESTING LABORATORY): 055705019	Report No.:LCS191	223014AEB
	Ch	annel	512	661	810	
	1 Txslot	Target (dBm)	28.5	28.5	28.5	
	I I XSIOL	Tolerance ±(dB)	1.0	1.0	1.0	
	2 Txslot	Target (dBm)	27.0	27.0	27.0	
	2 1 XSIOL	Tolerance ±(dB)	1.0	1.0	1.0	
	2 Typlot	Target (dBm)	26.0	26.0	26.0	
	3 Txslot	Tolerance ±(dB)	1.0	1.0	1.0	
	4 Txslot	Target (dBm)	24.5	24.5	24.5	
	4 1 XSIOL	Tolerance ±(dB)	1.0	1.0	1.0	
		GSM 1900 EDGI	E (8PSK) (Burst A	verage Power)		
	Ch	annel	512	661	810	
	1 Txslot	Target (dBm)	25.0	25.0	25.0	
	T TXSIOL	Tolerance ±(dB)	1.0	1.0	1.0	
	2 Txslot	Target (dBm)	23.0	23.0	23.0	
	2 1 25101	Tolerance ±(dB)	1.0	1.0	1.0	
	3 Txslot	Target (dBm)	21.5	21.5	21.5	
	5 1 85101	Tolerance ±(dB)	1.0	1.0	1.0	
	4 Txslot	Target (dBm)	20.0	20.0	20.0	
	4 1 XSIUL	Tolerance ±(dB)	1.0	1.0	1.0	

	GSM <sim2></sim2>					
GSM 850 (GMSK) (Burst Average Power)						
Channel Channel 251 Channel 190 Channel 128						
Target (dBm)	32.0	32.0	32.0			
Tolerance ±(dB)	1.0	1.0	1.0			
	GSM 1900 (GMSK) (B	Surst Average Power)				
Channel	Channel 810	Channel 661	Channel 512			
Target (dBm)	29.0	29.0	29.0			
Tolerance ±(dB)	1.0	1.0	1.0			

GSM 850 GPRS (GMSK) (Burst Average Power)					
Ch	annel	128	190	251	
1 Typlet	Target (dBm)	32.0	32.0	32.0	
1 Txslot	Tolerance ±(dB)	1.0	1.0	1.0	
2 Txslot	Target (dBm)	30.0	30.0	30.0	
2 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0	
3 Txslot	Target (dBm)	29.0	29.0	29.0	
3 1 X SIUL	Tolerance ±(dB)	1.0	1.0	1.0	
4 Txslot	Target (dBm)	27.5	27.5	27.5	
4 1 2 5101	Tolerance ±(dB)	1.0	1.0	1.0	
	GSM850 EGPRS	6 (8PSK) (Burst Av	verage Power)		
Ch	Channel		190	251	
1 Txslot	Target (dBm)	25.5	25.5	25.5	
1 1 1 3101	Tolerance ±(dB)	1.0	1.0	1.0	
2 Txslot	Target (dBm)	23.5	23.5	23.5	
2 1 73101	Tolerance ±(dB)	1.0	1.0	1.0	
3 Txslot	Target (dBm)	22.0	22.0	22.0	
5 1 7 3101	Tolerance ±(dB)	1.0	1.0	1.0	
4 Txslot	Target (dBm)	20.5	20.5	20.5	
4 1 7 3101	Tolerance ±(dB)	1.0	1.0	1.0	
	GSM 1900 GPRS	(GMSK) (Burst A	verage Power)		
Ch	annel	512	661	810	
1 Txslot	Target (dBm)	28.5	28.5	28.5	
1 1 1 3101	Tolerance ±(dB)	1.0	1.0	1.0	
2 Txslot	Target (dBm)	27.0	27.0	27.0	
2 1 13101	Tolerance ±(dB)	1.0	1.0	1.0	
3 Txslot	Target (dBm)	26.0	26.0	26.0	
0 1 / 3101	Tolerance ±(dB)	1.0	1.0	1.0	
4 Txslot	Target (dBm)	24.5	24.5	24.5	
7 1 73101	Tolerance ±(dB)	1.0	1.0	1.0	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 172

GSM 1900 EDGE (8PSK) (Burst Average Power)							
Channel 512 661 81							
1 Txslot	Target (dBm)	25.0	25.0	25.0			
I I XSIOL	Tolerance ±(dB)	1.0	1.0	1.0			
2 Txslot	Target (dBm)	23.0	23.0	23.0			
	Tolerance ±(dB)	1.0	1.0	1.0			
2 Typlot	Target (dBm)	21.5	21.5	21.5			
3 Txslot	Tolerance ±(dB)	1.0	1.0	1.0			
4 Txslot	Target (dBm)	20.0	20.0	20.0			
	Tolerance ±(dB)	1.0	1.0	1.0			

UMTS										
UMTS Band V										
Channel	Channel 4132	Channel 4183	Channel 4233							
Target (dBm)	22.0	22.0	22.0							
Tolerance ±(dB)	1.0	1.0	1.0							
	UMTS Band V HSDPA(sub-test 1)									
Channel	Channel 4132	Channel 4183	Channel 4233							
Target (dBm)	21.0	21.0	20.0							
Tolerance ±(dB)	1.0	1.0	1.0							
		HSDPA(sub-test 2)								
Channel	Channel 4132	Channel 4183	Channel 4233							
Target (dBm)	21.0	21.0	21.0							
Tolerance ±(dB)	1.0	1.0	1.0							
		HSDPA(sub-test 3)								
Channel	Channel 4132	Channel 4183	Channel 4233							
Target (dBm)	21.0	20.0	21.0							
Tolerance ±(dB)	1.0	1.0	1.0							
		HSDPA(sub-test 4)								
Channel	Channel 4132	Channel 4183	Channel 4233							
Target (dBm)	21.0	20.0	21.0							
Tolerance ±(dB)	1.0	1.0	1.0							
		HSUPA(sub-test 1)								
Channel	Channel 4132	Channel 4183	Channel 4233							
Target (dBm)	21.0	21.0	21.0							
Tolerance ±(dB)	1.0	1.0	1.0							
		HSUPA(sub-test 2)								
Channel	Channel 4132	Channel 4183	Channel 4233							
Target (dBm)	21.0	21.0	21.0							
Tolerance ±(dB)	1.0	1.0	1.0							
		HSUPA(sub-test 3)								
Channel	Channel 4132	Channel 4183	Channel 4233							
Target (dBm)	21.0	21.0	21.0							
Tolerance ±(dB)	1.0	1.0	1.0							
		HSUPA(sub-test 4)								
Channel	Channel 4132	Channel 4183	Channel 4233							
Target (dBm)	21.0	21.0	21.0							
Tolerance ±(dB)	1.0	1.0	1.0							
		HSUPA(sub-test 5)								
Channel	Channel 4132	Channel 4183	Channel 4233							
Target (dBm)	21.0	21.0	21.0							
Tolerance ±(dB)	1.0	1.0	1.0							

UMTS Band IV								
Channel	Channel 1312	Channel 1413	Channel 1513					
Target (dBm)	23.0	23.0	23.0					
Tolerance ±(dB)	1.0	1.0 1.0						
	UMTS Band IV HSDPA(sub-test 1)							
Channel	Channel 1312	Channel 1413	Channel 1513					
Target (dBm)	21.0	21.0	21.0					
Tolerance ±(dB)	1.0	1.0	1.0					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 172

SHENZHEN	LCS COMPLIANCE TESTIN	G LABORATORY LTD.	FCC ID: 055705019	Report No.:LCS191223014	AEB
		UMTS Band IV	HSDPA(sub-test 2)		
	Channel	Channel 1312	Channel 1413	Channel 1513	
	Target (dBm)	20.0	20.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	
		UMTS Band IV	HSDPA(sub-test 3)		
	Channel	Channel 1312	Channel 1413	Channel 1513	
	Target (dBm)	20.0	20.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	
		UMTS Band IV	HSDPA(sub-test 4)		
	Channel	Channel 1312	Channel 1413	Channel 1513	
	Target (dBm)	20.0	20.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	
			HSUPA(sub-test 1)		
	Channel	Channel 1312	Channel 1413	Channel 1513	
	Target (dBm)	20.0	20.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	
			HSUPA(sub-test 2)		
	Channel	Channel 1312	Channel 1413	Channel 1513	
	Target (dBm)	20.0	20.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	
			HSUPA(sub-test 3)		
	Channel	Channel 1312	Channel 1413	Channel 1513	
	Target (dBm)	20.0	20.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	
			HSUPA(sub-test 4)		
	Channel	Channel 1312	Channel 1413	Channel 1513	
	Target (dBm)	20.0	20.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	
			HSUPA(sub-test 5)		
	Channel	Channel 1312	Channel 1413	Channel 1513	
	Target (dBm)	20.0	20.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	

UMTS Band II								
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	22.0	22.0	22.0					
Tolerance ±(dB)	1.0	1.0	1.0					
UMTS Band II HSDPA(sub-test 1)								
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	21.0	21.0	21.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II	HSDPA(sub-test 2)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	21.0	21.0	20.0					
Tolerance ±(dB)	1.0	1.0	1.0					
UMTS Band II HSDPA(sub-test 3)								
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	21.0	21.0	20.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II	HSDPA(sub-test 4)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	20.0	21.0	20.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II	HSUPA(sub-test 1)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	20.0	20.0	20.0					
Tolerance ±(dB)	1.0	1.0	1.0					
	UMTS Band II	HSUPA(sub-test 2)						
Channel	Channel 9262	Channel 9400	Channel 9538					
Target (dBm)	20.0	20.0	20.0					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019	Report No.:LCS191223014AEB
SHENERICES COMPENSATE FESTING ENDORMORTED.	1 CC ID. 055705017	Report NoLCS1/1225014/1LD

Tolerance ±(dB) 1.0		1.0						
UMTS Band II HSUPA(sub-test 3)								
Channel 9262	Channel 9400	Channel 9538						
20.0	20.0	20.0						
1.0	1.0	1.0						
Tolerance ±(dB) 1.0 1.0 1.0 UMTS Band II HSUPA(sub-test 4) 1.0 1.0 1.0								
Channel 9262	Channel 9400	Channel 9538						
20.0	20.0	20.0						
1.0	1.0	1.0						
UMTS Band II I	HSUPA(sub-test 5)							
Channel 9262	Channel 9400	Channel 9538						
20.0	20.0	20.0						
1.0	1.0	1.0						
	UMTS Band II I Channel 9262 20.0 1.0 UMTS Band II I Channel 9262 20.0 1.0 UMTS Band II I Channel 9262 20.0	UMTS Band II HSUPA(sub-test 3) Channel 9262 Channel 9400 20.0 20.0 1.0 1.0 UMTS Band II HSUPA(sub-test 4) Channel 9262 Channel 9400 20.0 20.0 1.0 1.0 UMTS Band II HSUPA(sub-test 4) Channel 9262 Channel 9400 20.0 1.0 1.0 1.0 UMTS Band II HSUPA(sub-test 5) Channel 9262 Channel 9400 20.0 20.0						

Target (dBm) 22.0 22.5 22.0 22.0 22.0 21.0 Tolerance ±(dB) 1.0				Band 2			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				-			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Channel						-
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							16QAM
BW:1.4MHz [<rb=3>, <rb=6>] Channel Channel 18607 Channel 18900 Channel 19133 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.5 22.0 22.5 21.0 22.0 22.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Channel Channel 18615 Channel 18900 Channel 19185 Channel 1.0 1.0 1.0 1.0 1.0 1.0 Target (dBm) 22.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td></rb=6></rb=3>							
Channel Channel 18607 Channel 18900 Channel 19193 Target (dBm) 22.5 22.0 22.5 21.0 22.0 21.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Channel Channel 18615 Channel 18900 Channel 19185 Open X 160AM OPSK 160AM Target (dBm) 22.0 21.0 21.0 20.0 21.0 21.0	Tolerance ±(dB)					1.0	1.0
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					-		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Channel						
Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 BW:3MHz [< RB=1>] Channel 18615 Channel 18900 Channel 19185 QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20							
BW:3MHz [<rb=1>] Image: bit of the system of t</rb=1>							
Channel Channel 18615 Channel 18900 Channel 19185 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 20.0 20.0 21.0 20.0 20.0 20.0 21.0 20.0 20.0 21.0 20.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <	I olerance ±(dB)	1.0			1.0	1.0	1.0
Channel QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 20.0 21.0 21.0 20.0 21.0 21.0 20.0 21.0 21.0 20.0 21.0 20.0 21.0 20.0 20.0 21.0 20.0 21.0 20.0 21.0 1.0	I						
Image QPSK TeQAM QPSK <t< td=""><td>Channel</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Channel						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
Channel Channel 18615 Channel 18900 Channel 19185 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 20.0 21.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 BW:SMHz [<rb=1> Channel 18625 Channel 18900 Channel 19175 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 22.0 22.0 22.0 21.0 1.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Channel 18625 Channel 18900 Channel 19175 QPSK 16QAM QPSK <t< td=""><td>Tolerance ±(dB)</td><td></td><td></td><td></td><td></td><td>1.0</td><td>1.0</td></t<></rb=1>	Tolerance ±(dB)					1.0	1.0
Channel QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 20.0 21.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 BW:5MHz [<rb=1>] Channel 20.0 22.0 22.0 22.0 22.0 22.0 21.0 16QAM Target (dBm) 22.0 22.0 22.0 22.0 22.0 22.0 21.0 1.0 1.0 Target (dBm) 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 21.0 1.0</rb=1>	I		-		-		
Channel CAPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 20.0 21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 1.0	Channel						1
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Tolerance ±(dB)	1.0			1.0	1.0	1.0
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Channel						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
BW:5MHz [<rb=12>, <rb=25>] Channel Channel 18625 Channel 18900 Channel 19175 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 21.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 Channel Channel 18650 Channel 18900 Channel 19150 Channel QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK Target (dBm) 22.0 21.5 22.0 22.0 22.0 Channel 18650 Channel 18000 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK <</rb=25></rb=12>							
Channel Channel 18625 Channel 18900 Channel 19175 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 21.0 22.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 BW:10MHz [<rb=1>] Channel R650 Channel 18900 Channel 19150 Channel 18650 Channel 18900 Channel 19150 Channel 0PSK 16QAM 0PSK 16QAM Target (dBm) 22.0 21.5 22.0 22.0 22.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 BW:10MHz [<rb=25>, <rb=50>] Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 20.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0<td>I olerance ±(dB)</td><td></td><td></td><td></td><td>-</td><td>1.0</td><td>1.0</td></rb=50></rb=25></rb=1>	I olerance ±(dB)				-	1.0	1.0
Channel QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 21.0 22.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 BW:10MHz [<rb=1>] Channel Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 21.5 22.0 22.0 22.0 22.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 BW:10MHz [<rb=25>, <rb=50>] Channel 18650 Channel 18900 Channel 19150 Channel QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 20.0 21.0 21.0 20.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</rb=50></rb=25></rb=1>	I						
QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 21.0 22.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 BW:10MHz [<rb=1>] Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 21.5 22.0 22.0 22.0 22.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 BW:10MHz [<rb=25>, <rb=50>] Email E</rb=50></rb=25></rb=1>	Channel						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
BW:10MHz [<rb=1>] Channel Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 21.5 22.0 22.0 22.0 22.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Channel 18650 Channel 18650 Channel 18900 Channel 19150 Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 20.0 21.0 21.0 20.0 20.0 21.0 20.0 20.0 21.0 20.0 20.0 21.0 20.0</rb=1>							
Channel Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 21.5 22.0 22.0 22.0 22.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 BW:10MHz [<rb=25>, <rb=50>] Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK Target (dBm) 21.0 20.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 BW:15MHz [<rb=1>] Channel 18675 Channel 18900 Channel 19125 QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM Q</rb=1></rb=50></rb=25>	Tolerance ±(dB)	1.0			-	1.0	1.0
Channel QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 21.5 22.0 22.0 22.0 22.0 22.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 BW:10MHz [<rb=25>, <rb=50>] Channel Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 20.0 21.0 21.0 20.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Channel 18675 Channel 18900 Channel 19125 Channel 18675 Channel 18900 Channel 19125 Channel QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM</rb=50></rb=25>							40450
QPSK 16QAM QPSK 22.0 <td>Channel</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Channel						
Tolerance ±(dB) 1.0 21.0 20.0 21.0 21.0 20.0 21.0 21.0 20.0 20.0 21.0 21.0 20.0 20.0 21.0 20.0	onannor	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
BW:10MHz [<rb=25>, <rb=50>] Channel Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 20.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 Channel 18675 Channel 18900 Channel 19125 Channel 18675 Channel 18900 Channel 19125 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 22.0 22.0 22.0 22.0 22.0</rb=50></rb=25>	Target (dBm)	22.0	21.5	22.0	22.0	22.0	22.0
Channel Channel 18650 Channel 18900 Channel 19150 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 20.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 BW:15MHz [<rb=1>] Channel 18675 Channel 18900 Channel 19125 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 22.0 22.0 22.0 22.0 22.0</rb=1>	Tolerance ±(dB)					1.0	1.0
QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 21.0 20.0 21.0 21.0 21.0 20.0 Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 BW:15MHz [<rb=1>] Channel 18675 Channel 18900 Channel 19125 QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 22.0 22.0 22.0 22.0 22.0</rb=1>		Bl	V:10MHz [<f< td=""><td>RB=25>, <re< td=""><td>3=50>]</td><td></td><td></td></re<></td></f<>	RB=25>, <re< td=""><td>3=50>]</td><td></td><td></td></re<>	3=50>]		
QPSK 16QAM 10 20.0 <td>Channel</td> <td>Channe</td> <td>l 18650</td> <td>Channe</td> <td>l 18900</td> <td>Channe</td> <td>l 19150</td>	Channel	Channe	l 18650	Channe	l 18900	Channe	l 19150
Tolerance ±(dB) 1.0	Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
BW:15MHz [<rb=1>] Channel 18675 Channel 18900 Channel 19125 Channel QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 22.0 22.0 22.0 22.0 22.0</rb=1>	Target (dBm)	21.0	20.0	21.0	21.0	21.0	20.0
Channel 18675 Channel 18900 Channel 19125 Channel QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 22.0 22.0 22.0 22.0 22.0	Tolerance ±(dB)	1.0				1.0	1.0
QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 22.0 22.0 22.0 22.0			BW:15M				
QPSK 16QAM QPSK 16QAM QPSK 16QAM QPSK 16QAM Target (dBm) 22.0 22.0 22.0 22.0 22.0 22.0 22.0	Channol	Channe	18675	Channe	18900	Channe	l 19125
	Challie	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Tolerance ±(dB) 1.0 1.0 1.0 1.0 1.0 1.0	Target (dBm)	22.0	22.0	22.0	22.0	22.0	22.0
	Tolerance ±(dB)					1.0	1.0
BW:15MHz [<rb=37>, <rb=75>]</rb=75></rb=37>		B	V:15MHz [<f< td=""><td>RB=37>, <re< td=""><td>3=75>]</td><td></td><td></td></re<></td></f<>	RB=37>, <re< td=""><td>3=75>]</td><td></td><td></td></re<>	3=75>]		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.			FCC ID	: 055705019	Repa	ort No.:LCS191	<u>223014AEB</u>	
	Channel	Channe	el 18675	Channe	el 18900	Channel 19125		
	Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
	Target (dBm)	21.0	20.0	21.5	21.0	21.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
			BW:20M	Hz [<rb=1>]</rb=1>]			
	Channel	Channel 18700		Channel 18900		Channel 19100		
	Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
	Target (dBm)	23.0	22.0	23.0	21.0	22.0	21.0	
	Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
		BV	V:20MHz [<r< td=""><td>B=50>, <rb< td=""><td>=100>]</td><td></td><td></td><td></td></rb<></td></r<>	B=50>, <rb< td=""><td>=100>]</td><td></td><td></td><td></td></rb<>	=100>]			
	Channel Channel 18700			Channe	el 18900	Channel 19100		
	Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
	Target (dBm)	21.0	20.0	21.0	21.0	21.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	

			Band 4					
			Hz [<rb=1></rb=1>					
Channel	Channe	el 19957	Channe	el 20175	Channe	l 20393		
	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Target (dBm)	23.0	23.0	23.0	23.0	23.0	23.0		
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0		
		W:1.4MHz [<						
Channel	Channe		Channe		Channe			
	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Target (dBm)	23.0	22.0	22.5	21.5	23.0	22.0		
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0		
			lz [<rb=1>]</rb=1>					
Channel	Channe		Channe		Channe			
	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Target (dBm)	23.0	23.0	22.0	23.0	23.0	23.0		
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0		
		3W:3MHz [<f< td=""><td>-</td><td>-</td><td></td><td></td></f<>	-	-				
Channel		l 19965	Channe		Channe			
onanner	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Target (dBm)	22.0	21.0	21.0	20.0	22.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0		
			lz [<rb=1>]</rb=1>					
Channel	Channe		Channe		Channe			
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Target (dBm)	23.0	23.0	22.0	23.0	23.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0		
		W:5MHz [<r< td=""><td></td><td>-</td><td></td><td></td></r<>		-				
Channel		el 19975	Channe		Channe			
onanner	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Target (dBm)	22.0	21.0	22.0	21.0	22.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0		
			Hz [<rb=1>]</rb=1>					
Channel		el 20000	Channe		Channe			
onanner	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Target (dBm)	23.0	23.0	23.0	23.0	23.0	22.0		
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0		
		N:10MHz [<f< td=""><td>RB=25>, <re< td=""><td>8=50>]</td><td></td><td></td></re<></td></f<>	RB=25>, <re< td=""><td>8=50>]</td><td></td><td></td></re<>	8=50>]				
Channel		el 20000	Channe		Channe			
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Target (dBm)	22.0	21.0	22.0	21.0	22.0	21.0		
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0		
			Hz [<rb=1></rb=1>					
Channel		el 20025	Channe		Channe			
	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM		
Target (dBm)	23.0	23.0	23.0	23.0	23.0	22.0		
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0		
	B	N:15MHz [<f< td=""><td>RB=37>, <re< td=""><td>8=75>]</td><td></td><td></td></re<></td></f<>	RB=37>, <re< td=""><td>8=75>]</td><td></td><td></td></re<>	8=75>]				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.		TORY LTD.	FCC ID: 055705019		Report No.:LCS191		1223014AEB	
	Channel	Channe	el 20025	Channe	Channel 20175		Channel 20325	
	Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
	Target (dBm)	22.0	21.0	22.0	21.0	22.0	21.0	
	Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
			BW:20M	Hz [<rb=1>]</rb=1>]			
	Channel		Channel 20050		Channel 20175		Channel 20300	
	Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
	Target (dBm)	23.0	22.0	23.0	22.0	23.0	22.0	
	Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
		BV	V:20MHz [<r< td=""><td>B=50>, <rb< td=""><td>=100>]</td><td></td><td></td><td></td></rb<></td></r<>	B=50>, <rb< td=""><td>=100>]</td><td></td><td></td><td></td></rb<>	=100>]			
	Channel Channel 20050		el 20050	Channel 20175		Channel 20300		
	Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
	Target (dBm)	22.0	21.0	22.0	21.0	22.0	21.0	
	Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	

		LTE	Band 7				
			lz [<rb=1>]</rb=1>				
Channel	Channe	1 20850	Channe	Channel 21100		l 21350	
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	21.0	22.0	22.0	22.0	20.0	20.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
		W:5MHz [<r< td=""><td>B=12>, <rb< td=""><td>=25>]</td><td></td><td></td></rb<></td></r<>	B=12>, <rb< td=""><td>=25>]</td><td></td><td></td></rb<>	=25>]			
Channel	Channe		Channel 21100		Channe	l 21350	
	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	21.0	21.0	22.0	22.0	20.0	20.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
		BW:10M	Hz [<rb=1>]</rb=1>]			
Channel	Channe			el 21100	Channe		
Challie	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	21.0	21.0	22.0	22.0	21.0	20.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
BW:10MHz [<rb=25>, <rb=50>]</rb=50></rb=25>							
Channel	Channe	1 20850	Channel 21100		Channel 21350		
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	21.0	21.0	22.0	22.0	21.0	20.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
		BW:15M	Hz [<rb=1>]</rb=1>			•	
Channel	Channe	l 20850	Channel 21100		Channe	l 21350	
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	21.0	21.0	22.0	22.0	21.0	20.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
	Bl	V:15MHz [<f< td=""><td>RB=37>, <re< td=""><td>B=75>]</td><td></td><td></td></re<></td></f<>	RB=37>, <re< td=""><td>B=75>]</td><td></td><td></td></re<>	B=75>]			
Channel	Channe	20850	Channe	Channel 21100		Channel 21350	
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	20.0	20.0	22.0	22.0	21.0	20.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
		BW:20M	Hz [<rb=1>]</rb=1>			•	
Channal	Channe	1 20850	Channe	el 21100	Channe	l 21350	
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	21.0	21.0	22.0	22.0	21.0	21.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
. , ,	BV	/:20MHz [<r< td=""><td>B=50>, <rb< td=""><td>=100>]</td><td></td><td></td></rb<></td></r<>	B=50>, <rb< td=""><td>=100>]</td><td></td><td></td></rb<>	=100>]			
Channel	Channe	20850	Channe	el 21100	Channe	l 21350	
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	21.0	20.0	22.0	22.0	21.0	20.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC II
--

Report No.:LCS191223014AEB

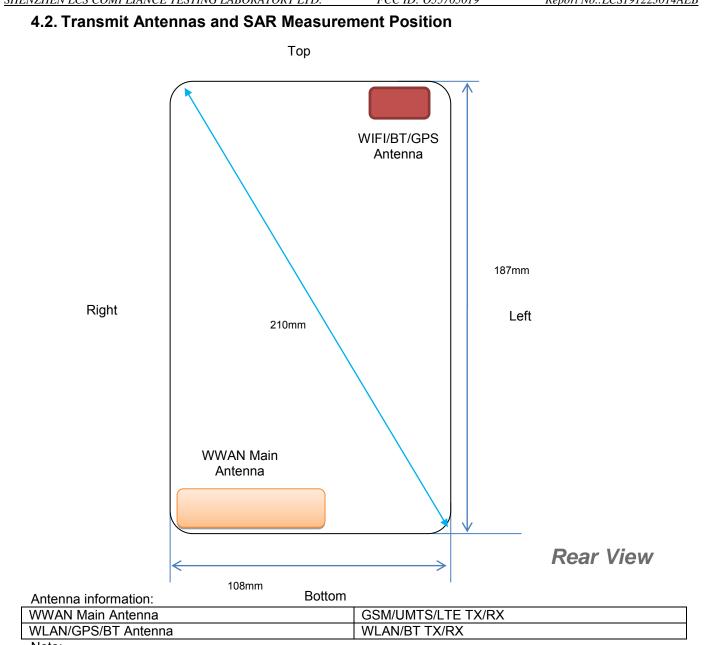
		LTE	Band 12			
			Hz [<rb=1></rb=1>		1	
Channel		l 19957		Channel 20175		I 20393
	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Target (dBm)	23.0	22.0	23.0	22.0	22.0	22.0
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0
BW:1.4MHz [<rb=3>, <rb=6>]</rb=6></rb=3>						
Channel		l 19957	Channe		Channe	1
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Target (dBm)	23.0	21.0	23.0	21.0	22.0	21.0
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0
			lz [<rb=1>]</rb=1>			
Channel		l 19965	Channe		Channe	
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Target (dBm)	23.0	23.0	23.0	22.0	22.0	22.0
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0
BW:3MHz [<rb=8>, <rb=15>]</rb=15></rb=8>						
Channel	Channel 19965		Channel 20175		Channe	l 20385
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Target (dBm)	22.0	21.0	22.0	20.0	21.0	20.0
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0
			lz [<rb=1>]</rb=1>			
Channel	Channel 19975		Channel 20175		Channel 20375	
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Target (dBm)	23.0	22.0	23.0	23.0	22.0	21.0
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0
	В	W:5MHz [<r< td=""><td>B=12>, <rb< td=""><td>=25>]</td><td></td><td></td></rb<></td></r<>	B=12>, <rb< td=""><td>=25>]</td><td></td><td></td></rb<>	=25>]		
Channel	Channel 19975		Channe	el 20175	Channel 20375	
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Target (dBm)	22.0	21.0	22.0	21.0	21.0	20.0
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0
			Hz [<rb=1>]</rb=1>]		
Channel	Channe	el 20000	Channe	el 20175	Channe	l 20350
Challie	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Target (dBm)	23.0	23.0	23.0	22.0	23.0	22.0
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0
	B	N:10MHz [<f< td=""><td>RB=25>, <re< td=""><td>3=50>]</td><td></td><td></td></re<></td></f<>	RB=25>, <re< td=""><td>3=50>]</td><td></td><td></td></re<>	3=50>]		
Channel	Channe	el 20000	Channe	el 20175	Channe	l 20350
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Target (dBm)	22.0	21.0	22.0	21.0	21.0	20.0
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0

LTE Band	17
----------	----

BW:5MHz [<rb=1>]</rb=1>							
Channel	Channe	el 23755	Channe	el 23790	Channe	l 23825	
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	23.0	23.0	23.0	21.0	23.0	22.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
BW:5MHz [<rb=12>, <rb=25>]</rb=25></rb=12>							
Channel	Channel 23755		Channel 23790		Channel 23825		
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	22.0	21.0	22.0	21.0	21.0	20.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
	BW:10MHz [<rb=1>]</rb=1>						
Channel	Channel 23755		Channel 23790		Channel 23825		
Channel	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Target (dBm)	23.0	22.0	22.0	22.0	23.0	22.0	
Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	
	B	N:10MHz [<f< td=""><td>RB=25>, <re< td=""><td>3=50>]</td><td></td><td></td></re<></td></f<>	RB=25>, <re< td=""><td>3=50>]</td><td></td><td></td></re<>	3=50>]			
Channel	Channe	el 23755	Channe	el 23790	Channel 23825		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 172

SHENZHEN	LCS COMPLIANCE TESTING LABORATORY LTD.			FCC ID: 055705019		Report No.:LCS191223014AEB		
		QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
	Target (dBm)	22.0	20.0	22.0	20.0	22.0	20.0	
	Tolerance ±(dB)	1.0	1.0	1.0	1.0	1.0	1.0	


WiFi 2.4G							
802.11b (Average)							
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	9.0	9.0	10.0				
Tolerance ±(dB)	1.0	1.0	1.0				
802.11g (Average)							
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	11.0	11.0	11.0				
Tolerance ±(dB)	1.0	1.0	1.0				
802.11n HT20 (Average)							
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	11.0	11.0	11.0				
Tolerance ±(dB)	1.0	1.0	1.0				
802.11n HT40 (Average)							
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	11.0	11.0	11.0				
Tolerance ±(dB)	1.0	1.0	1.0				

Bluetooth V4.2							
BLE-GFSK (Average)							
Channel	Channel 0	Channel 19	Channel 39				
Target (dBm)	0.0	-2.0	0.0				
Tolerance ±(dB)	1.0	1.0	1.0				
GFSK (Average)							
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	0.0	-2.0	0.0				
Tolerance ±(dB)	1.0	1.0	1.0				
π/4DQPSK (Average)							
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	0.0	-2.0	-1.0				
Tolerance ±(dB)	1.0	1.0	1.0				
π/4DQPSK (Average)							
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	0.0	-2.0	-1.0				
Tolerance ±(dB)	1.0	1.0	1.0				

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 055705019

Report No.:LCS191223014AEB

Note:

1). Per KDB648474 D04, because the overall diagonal distance of this devices is 206mm>160mm, it is considered as "Tablet" device.

2). Per KDB648474 D04, 10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR < 1.2 W/Kg.

3). According to the KDB941225 D06 Hot Spot SAR v02, the edges with less than 25 mm distance to the antennas need to be tested for SAR.

4). Per KDB 616217 D04, The antennas in tablets are typically located near the back (bottom) surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations. Exposures from antennas through the front (top) surface of the displaysection of a full-size tablet, away from the edges, are generally limited to the user's hands.

Distance of The Antenna to the EUT surface and edge (mm)						
Antennas	Back	Top Side	Bottom Side	Left Side	Right Side	
WWAN	<5	172	<5	49	<5	
BT/WLAN	<5	<5	171	10	93	

Positions for SAR tests; Hotspot mode					
Antennas	Back	Top Side	Bottom Side	Left Side	Right Side
WWAN	Yes	No	Yes	No	Yes
BT/WLAN	Yes	Yes	No	Yes	No

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 172

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019	j j
--	---	-------------------	-----

Report No.:LCS191223014AEB

General Note: Referring to KDB 941225 D06 v02, When the overall device length and width are ≥9cm*5cm, the test distance is 10mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

4.3. SAR Measurement Results

The calculated SAR is obtained by the following formula: Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift) Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
Speech for GSM850/1900	1:8
GPRS850	1:2.67
GPRS1900	1:2.67
UMTS	1:1
LTE	1:1
WLAN2450	1:1

4.4.1 SAR Results

SAR Values [GSM 850]

				•							
Ch.	Freq. (MHz)	Time slots	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results	
	measured / reported SAR numbers –Head										
190	836.6	Voice	Left Cheek	32.55	33.00	0.53	1.109	0.196	0.217	Plot 1	
190	836.6	Voice	Left Tilt	32.55	33.00	1.24	1.109	0.124	0.138		
190	836.6	Voice	Right Cheek	32.55	33.00	-0.38	1.109	0.112	0.124		
190	836.6	Voice	Right Tilt	32.55	33.00	3.47	1.109	0.078	0.087		
		mea	asured / reported	d SAR numbers	s - Body (hotsp	ot open, d	istance 0m	m) <sim1></sim1>			
190	836.6	3Txslots	Rear	29.83	30.00	1.60	1.040	0.502	0.522	Plot 2	
190	836.6	3Txslots	Right	29.83	30.00	-0.21	1.040	0.307	0.319		
190	836.6	3Txslots	Bottom	29.83	30.00	3.56	1.040	0.244	0.254		
-	,										

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. The frame average of GPRS (3Tx slots) higher than GSM and sample can support VoIP function.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s). 0 A D Value - 100M 40001

				SAR Va	lues [GSM 19	000]						
				Conduct	Maximum	Power		SAR _{1-g} res	ults(W/kg)			
Ch.	Freq.	time slots	Test	ed	Allowed	Drift	Scaling			Graph		
011.	(MHz)		Position	Power	Power	(%)	Factor	Measured	Reported	Results		
				(dBm)	(dBm)							
measured / reported SAR numbers –Head												
661	1880.0	Voice	Left Cheek	29.55	30.00	-1.46	1.109	0.533	0.591	Plot 3		
661	1880.0	Voice	Left Tilt	29.55	30.00	2.54	1.109	0.410	0.455			
661	1880.0	Voice	Right Cheek	29.55	30.00	0.17	1.109	0.327	0.363			
661	1880.0	Voice	Right Tilt	29.55	30.00	-2.31	1.109	0.169	0.187			
		n	neasured / reporte	ed SAR numb	ers – Body (ho	tspot opei	n, distance	0mm)				
661	1880.0	3Txslots	Rear	26.88	27.00	-1.73	1.028	1.326	1.363	Plot 4		
512	1850.2	3Txslots	Rear	26.78	27.00	-4.13	1.052	0.965	1.015			
810	1909.8	3Txslots	Rear	26.64	27.00	2.86	1.086	1.047	1.137			
661	1880.0	3Txslots	Right	26.88	27.00	1.13	1.028	0.529	0.544			
661	1880.0	3Txslots	Bottom	26.88	27.00	-0.01	1.028	0.327	0.336			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 055705019 Report No.:LCS191223014AEB

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. The frame average of GPRS (3Tx slots) higher than GSM and sample can support VoIP function.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

				SAR Value	s [WCDMA B	and V]				
Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
			1	measured / repo	orted SAR numl	bers –Hea	d			
4233	846.6	RMC*	Left Cheek	22.85	23.00	0.38	1.035	0.248	0.257	
4233	846.6	RMC*	Left Tilt	22.85	23.00	1.56	1.035	0.163	0.169	
4233	846.6	RMC*	Right Cheel	k 22.85	23.00	-0.50	1.035	0.391	0.405	Plot 5
4233	846.6	RMC*	Right Tilt	22.85	23.00	2.69	1.035	0.274	0.284	
		n	neasured / repo	orted SAR numb	bers - Body (ho	tspot oper	n, distance	0mm)		
4233	846.6	RMC*	Rear	22.85	23.00	1.26	1.035	0.588	0.609	Plot 6
4233	846.6	RMC*	Right	22.85	23.00	3.54	1.035	0.253	0.262	
4233	846.6	RMC*	Bottom	22.85	23.00	-0.21	1.035	0.172	0.178	
_	,									

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

SAR Values [WCDMA Band IV]

-										
Ch.	Freq. (MHz)	Chan nel Type	Test Position	Condu cted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
measured / reported SAR numbers –Head										
1312	1712.4	RMC	Left Cheek	23.89	24.00	0.15	1.026	0.399	0.409	Plot 7
1312	1712.4	RMC	Left Tilt	23.89	24.00	-1.63	1.026	0.213	0.218	
1312	1712.4	RMC	Right Cheek	23.89	24.00	2.44	1.026	0.178	0.183	
1312	1712.4	RMC	Right Tilt	23.89	24.00	-1.20	1.026	0.086	0.088	
			measured / reported	ed SAR num	bers - Body (h	otspot opei	n, distance	0mm)		
1312	1712.4	RMC	Rear	23.89	24.00	-1.23	1.026	0.874	0.896	Plot 8
1413	1732.6	RMC	Rear	23.36	24.00	0.49	1.159	0.625	0.724	
1513	1752.6	RMC	Rear	23.88	24.00	2.56	1.028	0.711	0.731	
1312	1712.4	RMC	Right	23.89	24.00	-0.41	1.026	0.602	0.617	
1312	1712.4	RMC	Bottom	23.89	24.00	-3.54	1.026	0.417	0.428	

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

				SAR Value		banu nj				
Ch.	Freq. (MHz)	Chan nel Type	Test Position	Condu cted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
measured / reported SAR numbers –Head										
9400	1880.0	RMC	Left Cheek	22.57	23.00	-2.79	1.104	0.417	0.460	Plot 9
9400	1880.0	RMC	Left Tilt	22.57	23.00	1.23	1.104	0.345	0.381	
9400	1880.0	RMC	Right Cheek	22.57	23.00	-0.24	1.104	0.208	0.230	
9400	1880.0	RMC	Right Tilt	22.57	23.00	3.46	1.104	0.119	0.131	
			measured / reported	ed SAR num	bers - Body (h	otspot oper	n, distance	0mm)		
9400	1880.0	RMC	Rear	22.57	23.00	1.38	1.104	1.059	1.169	Plot 10
9262	1852.4	RMC	Rear	22.46	23.00	0.34	1.132	0.847	0.959	
9538	1907.6	RMC	Rear	22.13	23.00	-1.25	1.222	0.762	0.931	
9400	1880.0	RMC	Right	22.57	23.00	0.62	1.104	0.413	0.456	
9400	1880.0	RMC	Bottom	22.57	23.00	-4.41	1.104	0.239	0.264	

SAR Values [WCDMA Band II]

Remark:

1. The value with block color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

SAR Values [LTE Band 2]

		Channel		Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Type (20M)	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
				neasured / repo	rted SAR numb	oers – Hea	ad			
18700	1860.0	1RB	Left Cheek	23.17	24.00	-1.56	1.211	0.471	0.570	
18700	1860.0	1RB	Left Tilt	23.17	24.00	2.91	1.211	0.225	0.272	
18700	1860.0	1RB	Right Chee	k 23.17	24.00	-0.49	1.211	0.624	0.755	Plot 11
18700	1860.0	1RB	Right Tilt	23.17	24.00	0.12	1.211	0.380	0.460	
18900	1880.0	50%RB	Left Cheek	21.95	22.00	1.78	1.012	0.284	0.287	
18900	1880.0	50%RB	Left Tilt	21.95	22.00	-0.74	1.012	0.116	0.117	
18900	1880.0	50%RB	Right Chee	k 21.95	22.00	-3.26	1.012	0.378	0.382	
18900	1880.0	50%RB	Right Tilt	21.95	22.00	4.15	1.012	0.145	0.147	
		m	easured / rep	orted SAR numb	pers - Body (ho	tspot opei	n, distance	0mm)		
18700	1860.0	1RB	Rear	23.17	24.00	0.04	1.211	1.145	1.386	Plot 12
18900	1880.0	1RB	Rear	23.16	24.00	1.58	1.213	0.836	1.014	
19100	1900.0	1RB	Rear	22.97	23.00	-2.30	1.007	0.957	0.964	
18700	1860.0	1RB	Right	23.17	24.00	0.13	1.211	0.524	0.634	
18700	1860.0	1RB	Bottom	23.17	24.00	-3.95	1.211	0.236	0.286	
18900	1880.0	50%RB	Rear	21.95	22.00	4.10	1.012	0.710	0.718	
18900	1880.0	50%RB	Right	21.95	22.00	-0.46	1.012	0.347	0.351	
18900	1880.0	50%RB	Bottom	21.95	22.00	-1.85	1.012	0.129	0.130	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019	Report No.:LCS191223014AEB
		· · · ·
SAR Value	s [I TE Band 4]	

					ues [LIE Dai					
	_	Channel		Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Freq. (MHz)	Type (20M)	Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
			r	neasured / repo	rted SAR numb	oers – Hea	ad			
20175	1720.0	1RB	Left Cheek	23.68	24.00	0.60	1.076	0.437	0.470	Plot 13
20175	1720.0	1RB	Left Tilt	23.68	24.00	1.07	1.076	0.301	0.324	
20175	1720.0	1RB	Right Cheel	k 23.68	24.00	-3.21	1.076	0.243	0.262	
20175	1720.0	1RB	Right Tilt	23.68	24.00	4.58	1.076	0.115	0.124	
20300	1745.0	50%RB	Left Cheek	22.36	23.00	0.20	1.159	0.246	0.285	
20300	1745.0	50%RB	Left Tilt	22.36	23.00	-1.26	1.159	0.120	0.139	
20300	1745.0	50%RB	Right Cheel	k 22.36	23.00	-0.13	1.159	0.107	0.124	
20300	1745.0	50%RB	Right Tilt	22.36	23.00	0.49	1.159	0.085	0.098	
		m	neasured / repo	orted SAR numb	bers - Body (ho	tspot oper	n, distance	0mm)		
20175	1720.0	1RB	Rear	23.68	24.00	-1.42	1.076	0.580	0.624	Plot 14
20175	1720.0	1RB	Right	23.68	24.00	-0.11	1.076	0.358	0.385	
20175	1720.0	1RB	Bottom	23.68	24.00	0.33	1.076	0.241	0.259	
20300	1745.0	50%RB	Rear	22.36	23.00	-1.14	1.159	0.367	0.425	
20300	1745.0	50%RB	Right	22.36	23.00	-4.85	1.159	0.196	0.227	
20300	1745.0	50%RB	Bottom	22.36	23.00	2.36	1.159	0.073	0.085	

SAR Values [LTE Band 7]

		Channe		Conducte	Maximum	Power		SAR _{1-g} resu	ults(W/kg)		
Ch.	Freq. (MHz)	l Type	Test Position	d Power	Allowed Power	Drift (%)	Scaling Factor	Measured	Reporte d	Graph Results	
		(20M)		(dBm)	(dBm)				-		
	1	n			rted SAR numb			n	n		
21100	2535.0	1RB	Left Cheek	x 22.34	23.00	-3.52	1.164	0.771	0.898	Plot 15	
20850	2510.0	1RB	Left Cheek	x 21.43	22.00	1.47	1.140	0.692	0.789		
21350	2560.0	1RB	Left Cheek	x 21.54	22.00	-0.86	1.112	0.635	0.706		
21100	2535.0	1RB	Left Tilt	22.34	23.00	0.01	1.164	0.539	0.627		
21100	2535.0	1RB	Right Chee	k 22.34	23.00	-1.14	1.164	0.418	0.487		
21100	2535.0	1RB	Right Tilt	22.34	23.00	4.27	1.164	0.266	0.310		
21100	2535.0	50%RB	Left Cheek	(22.08	23.00	0.02	1.236	0.423	0.523		
21100	2535.0	50%RB	Left Tilt	22.08	23.00	1.34	1.236	0.207	0.256		
21100	2535.0	50%RB	Right Chee	k 22.08	23.00	-1.98	1.236	0.256	0.316		
21100	2535.0	50%RB	Right Tilt	22.08	23.00	-0.36	1.236	0.145	0.179		
		me	easured / repoi	rted SAR numb	ers - Body (ho	tspot oper	n, distance	0mm)			
21100	2535.0	1RB	Rear	22.34	23.00	1.06	1.164	1.113	1.296	Plot 16	
20850	2510.0	1RB	Rear	21.43	22.00	0.14	1.140	1.025	1.169		
21350	2560.0	1RB	Rear	21.54	22.00	-2.36	1.112	0.968	1.076		
21100	2535.0	1RB	Right	22.34	23.00	4.41	1.164	0.621	0.723		
21100	2535.0	1RB	Bottom	22.34	23.00	-3.67	1.164	0.437	0.509		
21100	2535.0	50%RB	Rear	22.08	23.00	0.03	1.236	0.596	0.737		
21100	2535.0	50%RB	Right	22.08	23.00	-1.25	1.236	0.203	0.251		
21100	2535.0	50%RB	Bottom	22.08	23.00	0.85	1.236	0.148	0.183		

					SAR Valu	ues [LTE Baı	າd 12]				
Ch.	Freq. (MHz)	Channel Type (10M)	Test Position	Pa (a	ducted ower IBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR1-g res Measured	sults(W/kg) Reported	Graph Results
						orted SAR num					
2306			Left Ch		23.13	24.00	-0.36	1.222	0.146	0.178	
2306			Left 7		23.13	24.00	1.59	1.222	0.074	0.090	
2306			Right C		23.13	24.00	-2.18	1.222	0.225	0.275	Plot 17
2306			Right		23.13	24.00	3.24	1.222	0.110	0.134	
2306			Left Ch		22.26	23.00	0.79	1.186	0.085	0.101	
2306			Left 7		22.26	23.00	-4.70	1.186	0.062	0.074	
2306			Right C		22.26	23.00	-0.48	1.186	0.097	0.115	
2306	0 704.0		Right		22.26	23.00	1.23	1.186	0.042	0.050	
						bers - Body (ho					
2306			Rea		23.13	24.00	-1.28	1.222	0.539	0.659	Plot 18
2306			Rig		23.13	24.00	3.56	1.222	0.349	0.426	
2306			Botte	om	23.13	24.00	-0.27	1.222	0.201	0.246	
2306					22.26	23.00	-0.85	1.186	0.256	0.304	
2306	0 704.0		0	ht	22.26	23.00	2.36	1.186	0.174	0.206	
2306	0 704.0) 50%RE	B Bott	om	22.26	22.00	-1.23	1.186	0.086	0.102	
				JIII		23.00		1.100	0.000	0.102	
		_			SAR Valu	ues [LTE Bai	nd 17]	1.100			
Ch.	Freq. (MHz)	Channel	Test Positio	n	SAR Valu Conduc ted Power (dBm)	ues [LTE Bai Maximum Allowed Power (dBm)	nd 17] Power Drift (%)	Scaling Factor	SAR1-g re.		Graph Results
	Freq. (MHz)	Channel Type (20M)	Test Positic	n meas	SAR Valu Conduc ted Power (dBm) sured / repo	ues [LTE Bai Maximum Allowed Power (dBm) ported SAR num	nd 17] Power Drift (%) bbers - Hea	Scaling Factor	SAR1-g re. Measured	sults(W/kg) Reported	Results
23780	Freq. (MHz)	Channel Type (20M) 1RB	Test Positio	m meas ek	SAR Valu Conduc ted Power (dBm) sured / repo 23.07	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00	nd 17] Power Drift (%) bbers - Hea 3.12	Scaling Factor ad 1.239	SAR1-g re. Measured 0.257	sults(W/kg) Reported 0.318	
23780 23780	Freq. (MHz) 0 709.0 0 709.0	Channel Type (20M) 1RB 1RB	Test Positic Left Cher Left Til	n meas ek	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00	nd 17] Power Drift (%) abers - Hea 3.12 -0.39	Scaling Factor ad 1.239 1.239	SAR1-g re. Measured 0.257 0.163	sults(W/kg) Reported 0.318 0.202	Results
23780 23780 23780	Freq. (MHz) 0 709.0 0 709.0 0 709.0	Channel Type (20M) 1RB 1RB 1RB 1RB	Test Positic Left Che Left Tilt Right Che	m meas ek t	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07	ues [LTE Bar Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00	nd 17] Power Drift (%) abers - Hea 3.12 -0.39 -0.58	Scaling Factor 1.239 1.239 1.239	<i>SAR1-g re.</i> <i>Measured</i> 0.257 0.163 0.184	sults(W/kg) Reported 0.318 0.202 0.228	Results
23780 23780 23780 23780 23780	Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 709.0 0 709.0	Channel Type (20M) 1RB 1RB 1RB 1RB 1RB	Test Positic Left Che Left Tili Right Che Right Ti	n meas ek t sek It	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 24.00	nd 17] Power Drift (%) abers - Hea 3.12 -0.39 -0.58 4.13	Scaling Factor ad 1.239 1.239 1.239 1.239	SAR1-g re. Measured 0.257 0.163 0.184 0.099	sults(W/kg) Reported 0.318 0.202 0.228 0.123	Results
23780 23780 23780 23780 23790	Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 709.0 0 709.0 0 710.0	Channel Type (20M) 1RB 1RB 1RB 1RB 50%RB	Test Positic Left Chee Left Till Right Chee Right Ti Left Chee	meas ek tek tek tit tek	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07 23.07 23.07	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 24.00 24.00 23.00	nd 17] Power Drift (%) bers - Hea 3.12 -0.39 -0.58 4.13 0.47	Scaling Factor ad 1.239 1.239 1.239 1.239 1.239 1.213	SAR1-g re. Measured 0.257 0.163 0.184 0.099 0.214	sults(W/kg) Reported 0.318 0.202 0.228 0.123 0.260	Results
23780 23780 23780 23780 23790 23790	Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 709.0 0 710.0 0 710.0	Channel Type (20M) 1RB 1RB 1RB 1RB 50%RB 50%RB	Test Position Left Chee Left Till Right Chee Right Ti Left Chee Left Till	n meas ek tek tek tit ek	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07 23.07 23.07 23.16 22.16	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 24.00 23.00	nd 17] Power Drift (%) bers - Hea 3.12 -0.39 -0.58 4.13 0.47 1.54	Scaling Factor 1.239 1.239 1.239 1.239 1.213 1.213	<i>SAR1-g re.</i> <i>Measured</i> 0.257 0.163 0.184 0.099 0.214 0.132	sults(W/kg) Reported 0.318 0.202 0.228 0.123 0.260 0.160	Results
23780 23780 23780 23780 23790 23790 23790	Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 709.0 0 710.0 0 710.0 0 710.0 0 710.0	Channel Type (20M) 1RB 1RB 1RB 1RB 50%RB 50%RB 50%RB	Test Position Left Chee Left Till Right Chee Left Chee Left Chee Left Till Right Chee	meas ek t ek t ek t ek t ek	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07 23.07 22.16 22.16 22.16	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 23.00 23.00 23.00	nd 17] Power Drift (%) bbers - Hea 3.12 -0.39 -0.58 4.13 0.47 1.54 -0.54	Scaling Factor 1.239 1.239 1.239 1.239 1.213 1.213	<i>SAR1-g re.</i> <i>Measured</i> 0.257 0.163 0.184 0.099 0.214 0.132 0.074	sults(W/kg) Reported 0.318 0.202 0.228 0.123 0.260 0.160 0.090	Results
23780 23780 23780 23780 23790 23790	Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 709.0 0 710.0 0 710.0 0 710.0 0 710.0	Channel Type (20M) 1RB 1RB 1RB 1RB 50%RB 50%RB 50%RB 50%RB	Test Position Left Chen Left Till Right Chen Right Ti Left Chen Left Till Right Chen Right Ti	meas ek t ek t ek t ek t ek t	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07 23.07 23.07 22.16 22.16 22.16 22.16	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 23.00 23.00 23.00 23.00 23.00	nd 17] Power Drift (%) bers - Hea 3.12 -0.39 -0.58 4.13 0.47 1.54 -0.54 -2.35	Scaling Factor 1.239 1.239 1.239 1.239 1.213 1.213 1.213	<i>SAR1-g re.</i> <i>Measured</i> 0.257 0.163 0.184 0.099 0.214 0.132 0.074 0.058	sults(W/kg) Reported 0.318 0.202 0.228 0.123 0.260 0.160	Results
2378(2378(2378(2379(2379(2379(2379(2379(2379(Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 709.0 0 709.0 0 710.0 0 710.0 0 710.0 0 710.0	Channel Type (20M) 1RB 1RB 1RB 1RB 50%RB 50%RB 50%RB 50%RB	Test Position Left Chee Left Till Right Chee Right Till Right Chee Right Chee Right Till Right Till	meat ek tek tek tek tek tek tek tek tek	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07 23.07 23.07 23.07 23.16 22.16 22.16 22.16 22.16 22.16	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 23.00 23.00 23.00 23.00 23.00 bers - Body (ho	nd 17] Power Drift (%) abers - Hea 3.12 -0.39 -0.58 4.13 0.47 1.54 -0.54 -2.35 otspot ope	Scaling Factor 1.239 1.239 1.239 1.239 1.213 1.213 1.213 1.213 n, distance	SAR1-g re. Measured 0.257 0.163 0.184 0.099 0.214 0.132 0.074 0.058 0mm)	sults(W/kg) Reported 0.318 0.202 0.228 0.123 0.260 0.160 0.090 0.070	Results Plot 19
23780 23780 23780 23790 23790 23790 23790 23790 23790 23790 23790	Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 709.0 0 710.0 0 710.0 0 710.0 0 710.0 0 710.0 0 710.0	Channel Type (20M) 1RB 1RB 1RB 1RB 50%RB 50%RB 50%RB 50%RB	Test Position Left Chee Left Till Right Chee Right Ti Right Chee Right Chee Right Ti measured / m Rear	meas ek tek tek tek tek tek tek tek tek tek	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07 23.07 23.07 22.16 22.16 22.16 22.16 22.16 22.16 22.16	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00	nd 17] Power Drift (%) bers - Hea 3.12 -0.39 -0.58 4.13 0.47 1.54 -0.54 -2.35 otspot ope -0.97	Scaling Factor 1.239 1.239 1.239 1.239 1.213 1.213 1.213 1.213 1.213 n, distance 1.239	SAR1-g re. Measured 0.257 0.163 0.184 0.099 0.214 0.132 0.074 0.058 0.074 0.058 0.074	sults(W/kg) Reported 0.318 0.202 0.228 0.123 0.260 0.160 0.090 0.070 0.721	Results
23780 23780 23780 23790 23790 23790 23790 23790 23780 23780 23780	Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 709.0 0 710.0 0 710.0 0 710.0 0 710.0 0 710.0 0 710.0 0 709.0 0 709.0 0 709.0	Channel Type (20M) 1RB 1RB 1RB 1RB 50%RB 50%RB 50%RB 50%RB 50%RB 7 1RB 1RB	Test Position Left Chen Left Till Right Chen Right Chen Left Chen Left Chen Right Chen Right Chen Right Till Right Chen Right Chen R	n meas ek tek tek tek tek tek tek tek tek tek t	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07 23.07 23.07 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 23.00 23.00 23.00 23.00 23.00 bers - Body (ho 24.00 24.00 24.00	nd 17] Power Drift (%) bers - Hea 3.12 -0.39 -0.58 4.13 0.47 1.54 -0.54 -2.35 btspot ope -0.97 -1.23	Scaling Factor 1.239 1.239 1.239 1.239 1.213 1.213 1.213 1.213 1.213 1.213 1.213 1.213 1.239	SAR1-g re. Measured 0.257 0.163 0.184 0.099 0.214 0.132 0.074 0.058 0mm) 0.582 0.314	sults(W/kg) Reported 0.318 0.202 0.228 0.123 0.260 0.160 0.090 0.070 0.721 0.389	Results Plot 19
23780 23780 23780 23790 23790 23790 23790 23790 23780 23780 23780 23780	Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 709.0 0 710.0 0 710.0 0 710.0 0 710.0 0 710.0 0 710.0 0 709.0 0 709.0 0 709.0 0 709.0	Channel Type (20M) 1RB 1RB 1RB 1RB 50%RB 50%RB 50%RB 50%RB 50%RB 50%RB	Test Position Left Chee Left Till Right Chee Right Ti Left Chee Left Till Right Chee Right Ti measured / measured / measured Right Ti measured / measured	n meas ek tek tek tek tek tek tek tek tek tek t	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07 23.07 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.10 23.07 23.07 23.07	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 23.00 24.00 24.00 23.00 23.00 23.00 23.00 24.00 24.00 23.00 23.00 23.00 24.00 24.00 23.00 23.00 23.00 24.00 24.00 24.00 23.00 23.00 24.00 24.00 24.00 23.00 23.00 23.00 24.00 24.00 24.00 23.00 23.00 23.00 24.00 24.00 24.00 23.00 23.00 24.00 24.00 24.00 24.00 23.00 24.00 24.00 24.00 23.00 24.00	nd 17] Power Drift (%) bers - Hea 3.12 -0.39 -0.58 4.13 0.47 1.54 -0.54 -2.35 btspot ope -0.97 -1.23 0.14	Scaling Factor 1.239 1.239 1.239 1.239 1.213 1.213 1.213 1.213 1.213 1.213 1.213 1.239 1.239	SAR1-g re. Measured 0.257 0.163 0.184 0.099 0.214 0.132 0.074 0.058 0mm) 0.582 0.314 0.231	sults(W/kg) Reported 0.318 0.202 0.228 0.123 0.260 0.160 0.090 0.070 0.721 0.389 0.286	Results Plot 19
2378(2378(2378(2379(2379(2379(2379(2378(2378(2378(2378(2378(2379(Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 710.0 0 710.0 0 710.0 0 710.0 0 710.0 0 710.0 0 709.0 0 709.0 0 709.0 0 709.0 0 709.0 0 709.0	Channel Type (20M) 1RB 1RB 1RB 1RB 50%RB 50%RB 50%RB 50%RB 50%RB 50%RB 1RB 1RB 1RB 1RB 1RB	Test Position Left Chea Left Till Right Chea Right Ti Left Chea Left Till Right Chea Right Chea Right Ti measured / ra Rear Right Bottor Rear	n meas ek t tek t ek t ek t tek t tek t tek t tek t transformed n	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07 22.16 22.16 22.16 22.16 22.16 22.16 22.16 23.07 23.07 23.07 23.07 23.07 23.07	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 24.00 24.00 24.00 24.00 24.00 24.00	nd 17] Power Drift (%) ibers - Hea 3.12 -0.39 -0.58 4.13 0.47 1.54 -0.54 -2.35 otspot ope -0.97 -1.23 0.14 3.65	Scaling Factor 1.239 1.239 1.239 1.239 1.213 1.213 1.213 1.213 1.213 1.239 1.239 1.239 1.239 1.239	<i>SAR1-g re.</i> <i>Measured</i> 0.257 0.163 0.184 0.099 0.214 0.132 0.074 0.058 <i>0mm</i>) 0.582 0.314 0.231 0.165	sults(W/kg) Reported 0.318 0.202 0.228 0.123 0.260 0.160 0.090 0.070 0.070 0.721 0.389 0.286 0.200	Results Plot 19
23780 23780 23780 23790 23790 23790 23790 23790 23780 23780 23780 23780	Freq. (MHz) 0 709.0 0 709.0 0 709.0 0 709.0 0 710.0 0 710.0 0 710.0 0 710.0 0 710.0 0 710.0 0 709.0 0 709.0 0 709.0 0 709.0 0 709.0 0 710.0	<i>Channel</i> <i>Type</i> (<i>20M</i>) 1RB 1RB 1RB 50%RB 50%RB 50%RB 50%RB 50%RB 1RB 1RB 1RB 1RB 1RB 50%RB	Test Position Left Chee Left Till Right Chee Right Ti Left Chee Left Till Right Chee Right Ti measured / measured / measured Right Ti measured / measured	meas ek tek tek tek tek tek tek tek tek tek	SAR Valu Conduc ted Power (dBm) sured / repo 23.07 23.07 23.07 23.07 23.07 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.16 22.10 23.07 23.07 23.07	ues [LTE Bai Maximum Allowed Power (dBm) orted SAR num 24.00 24.00 24.00 23.00 24.00 24.00 23.00 23.00 23.00 23.00 24.00 24.00 23.00 23.00 23.00 24.00 24.00 23.00 23.00 23.00 24.00 24.00 24.00 23.00 23.00 24.00 24.00 24.00 23.00 23.00 23.00 24.00 24.00 24.00 23.00 23.00 23.00 24.00 24.00 24.00 23.00 23.00 24.00 24.00 24.00 24.00 23.00 24.00 24.00 24.00 23.00 24.00	nd 17] Power Drift (%) bers - Hea 3.12 -0.39 -0.58 4.13 0.47 1.54 -0.54 -2.35 btspot ope -0.97 -1.23 0.14	Scaling Factor 1.239 1.239 1.239 1.239 1.213 1.213 1.213 1.213 1.213 1.213 1.213 1.239 1.239	SAR1-g re. Measured 0.257 0.163 0.184 0.099 0.214 0.132 0.074 0.058 0mm) 0.582 0.314 0.231	sults(W/kg) Reported 0.318 0.202 0.228 0.123 0.260 0.160 0.090 0.070 0.721 0.389 0.286	Results Plot 19

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

SHEN	VZHEN LC	S COMPLIANCE T	ESTING LABOR	ATORY LTD.	FCC	ID: 05570	5019	Report No.:LCS191223014AEB		
				SAR Va	lues [WIFI2	.4G]				
Ch.	Freq. (MHz)	Service	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR1-g res Measured	ults(W/kg) Reported	Graph Results
			me	easured / repo	rted SAR nun	nbers –Hea	ad			
9	2452	802.11n(40)	Left Cheek	11.65	12.00	3.34	1.084	0.105	0.114	Plot 21
9	2452	802.11n(40)	Left Tilt	11.65	12.00	0.69	1.084	0.084	0.091	
9	2452	802.11n(40)	Right Cheek	11.65	12.00	1.05	1.084	0.071	0.077	
9	2452	802.11n(40)	Right Tilt	11.65	12.00	-0.41	1.084	0.042	0.046	
		me	asured / report	ed SAR numb	ers - Body (h	otspot ope	n, distance	e Omm)		
9	2452	802.11n(40)	Rear	11.65	12.00	0.93	1.084	0.101	0.109	Plot 22
9	2452	802.11n(40)	Left	11.65	12.00	-2.14	1.084	0.084	0.091	
9	2452	802.11n(40)	Тор	11.65	12.00	1.56	1.084	0.057	0.062	

Remark:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $0.593[0.297*(19.95/10.00)] \le 1.2 W/kg$.

4.4.2 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [\langle f(GHz)/x] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

•0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(neak location separation mm)} < 0.04$$

(peak location separation, mm)

Estimated stand alone SAR								
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)			
Bluetooth*	2450	Head	1.00	5	0.053			
Bluetooth*	2450	Hotspot	1.00	5	0.053			
Bluetooth*	2450	Body-worn	1.00	5	0.053			

Remark:

- 1. Bluetooth*- Including Lower power Bluetooth
- Maximum average power including tune-up tolerance: 2.
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine 3. SAR test exclusion
- Body as body use distance is 10mm from manufacturer declaration of user manual 4.

4.4. Simultaneous TX SAR Considerations

4.5.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT, the BT and WiFi modules sharing same antenna, GSM, WCDMA modules sharing a single antenna; BT/WLAN and GSM/UMTS can simultaneous transmit;

Air-Interface	Band (MHz)	Туре	Simultaneous Transmissions	Voice over Digital Transport(Data)
	850	VO	Yes,WLAN or BT/BLE	N/A
GSM	1900	VO	Tes, WLAN OF BT/BLE	IN/A
	GPRS/EDGE	DT	Yes,WLAN or BT/BLE	N/A
WCDMA	Band II/BandV	DT	Yes,WLAN or BT/BLE	N/A
LTE	Band2/Band4/ Band7 /Band12/Band17	DT	Yes,WLAN or BT/BLE	N/A
WLAN	2450	DT	Yes,GSM,GPRS, UMTS,LTE	Yes
BT	2450	DT	Yes,GSM,GPRS, UMTS,LTE	N/A
Note:VO-Voice	Service only;DT-Digital Tra	ansport		

Application Simultaneous Transmission information:

BT and WLAN can be active at the same time, but only with interleaving of packages switched on board level. That means that they don't transmit at the same time.

BT- Classical Bluetooth;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 172

Note:

4.5.2 Evaluation of Simultaneous SAR

Head Exposure Conditions

	Simultaneous transmission SAR for WiFi and GSM										
Test Position	GSM850 Reported SAR _{1-g} (W/kg)	GSM1900 Reported SAR _{1-g} (W/kg)	WiFi2.4G Reported SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required				
Left Cheek	0.217	0.591	0.114	0.705	1.6	no	no				
Left Tilt	0.138	0.455	0.091	0.546	1.6	no	no				
Right Cheek	0.124	0.363	0.077	0.440	1.6	no	no				
Right Tilt	0.087	0.187	0.046	0.233	1.6	no	no				

Simultaneous transmission SAR for WiFi and UMTS

Test Position	UMTS Band V Reported SAR _{1-g} (W/kg)	UMTS Band IV Reported SAR _{1-g} (W/kg)	UMTS Band II Reported SAR _{1-g} (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	0.257	0.409	0.460	0.114	0.574	1.6	no	no
Left Tilt	0.169	0.218	0.381	0.091	0.472	1.6	no	no
Right Cheek	0.405	0.183	0.230	0.077	0.482	1.6	no	no
Right Tilt	0.284	0.088	0.131	0.046	0.330	1.6	no	no

Simultaneou	Simultaneous transmission SAR for WiFi and LTE								
Reported SAR1-g(W/kg)	Test Position								
Reported SART-g(W/kg)	Left Cheek	Left Tilt	Right Cheek	Right Tilt					
LTE Band2	0.570	0.272	0.755	0.460					
LTE Band4	0.470	0.324	0.262	0.124					
LTE Band7	0.898	0.627	0.487	0.310					
LTE Band12	0.178	0.090	0.275	0.134					
LTE Band17	0.318	0.202	0.228	0.123					
WiFi2.4G	0.114	0.091	0.077	0.046					
MAX. ΣSAR1-g (W/kg)	1.012	0.718	0.832	0.506					
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6					
Peak location separation ratio	no	no	no	no					
Simut Meas. Required	no	no	no	no					

Simultaneous transmission SAR for BT and GSM

Test Position	GSM850 Reported SAR _{1-g} (W/kg)	GSM1900 Reported SAR _{1-g} (W/kg)	BT Estimated SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	0.217	0.591	0.053	0.644	1.6	no	no
LeftTilt	0.138	0.455	0.053	0.508	1.6	no	no
Right Cheek	0.124	0.363	0.053	0.416	1.6	no	no
Right Tilt	0.087	0.187	0.053	0.240	1.6	no	no

Simultaneous transmission SAR for BT and UMTS									
Test Position	UMTS Band V Reported SAR _{1-g} (W/kg)	UMTS Band IV Reported SAR _{1-g} (W/kg)	UMTS Band II Reported SAR _{1-g} (W/kg)	BT Estimated SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required	
Left Cheek	0.257	0.409	0.460	0.053	0.513	1.6	no	no	
LeftTilt	0.169	0.218	0.381	0.053	0.434	1.6	no	no	
RightChek	0.405	0.183	0.230	0.053	0.458	1.6	no	no	
Right Tilt	0.284	0.088	0.131	0.053	0.337	1.6	no	no	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019
---	-------------------

Simulaneous transmission SAR for BT and LTE								
Reported SAR1-g(W/kg)	Test Position							
Reported SAR I-g(W/kg)	Left Cheek	Left Tilt	Right Cheek	Right Tilt				
LTE Band2	0.570	0.272	0.755	0.460				
LTE Band4	0.470	0.324	0.262	0.124				
LTE Band7	0.898	0.627	0.487	0.310				
LTE Band12	0.178	0.090	0.275	0.134				
LTE Band17	0.318	0.202	0.228	0.123				
BT Estimated SAR1-g (W/kg)	0.053	0.053	0.053	0.053				
MAX. ΣSAR1-g (W/kg)	0.951	0.680	0.808	0.513				
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6				
Peak location separation ratio	no	no	no	no				
Simut Meas. Required	no	no	no	no				

Simultaneous transmission SAR for BT and LTE

BodyHotspot Exposure Conditions

Simultaneous transmission SAR for WiFi and GSM

Test Position	GSM850 Reported SAR _{1-g} (W/kg)	GSM1900 Reported SAR _{1-g} (W/kg)	WiFi2.4G Reported SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Rear	0.522	1.363	0.109	1.472	1.6	no	no
Left	/	/	0.091	0.091	1.6	no	no
Right	0.319	0.544	1	0.544	1.6	no	no
Bottom	0.254	0.336	1	0.336	1.6	no	no
Тор	/	/	0.062	0.062	1.6	no	no

Simultaneous transmission SAR for WiFi and UMTS

Test Position	UMTS Band V Reported SAR _{1-g} (W/kg)	UMTS Band IV Reported SAR _{1-g} (W/kg)	UMTS Band II Reported SAR _{1-g} (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Rear	0.609	0.896	1.169	0.109	1.278	1.6	no	no
Left	/		/	0.091	0.091	1.6	no	no
Right	0.262	0.617	0.456	1	0.617	1.6	no	no
Bottom	0.178	0.428	0.264	1	0.428	1.6	no	no
Тор	1		/	0.062	0.062	1.6	no	no

Simultaneous transmission SAR for WiFi and LTE

Reported SAR1-g(W/kg)			Test Positio	n				
Reported SAR I-g(W/Kg)	Rear	Left	Right	Bottom	Тор			
LTE Band2	1.386	/	0.634	0.286	/			
LTE Band4	0.624	/	0.385	0.259	/			
LTE Band7	1.296	/	0.723	0.509	/			
LTE Band12	0.659	/	0.426	0.246	/			
LTE Band17	0.721	/	0.389	0.286				
WiFi2.4G	0.109	0.091	/	/	0.062			
MAX. ΣSAR1-g (W/kg)	1.495	0.091	0.723	0.509	0.062			
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6			
Peak location separation ratio	no	no	no	no	no			
Simut Meas. Required	no	no	no	no	no			

Simultaneous transmission SAR for BT and GSM

Test Position	GSM850 Reported SAR _{1-g} (W/kg)	GSM1900 Reported SAR _{1-g} (W/kg)	BT Estimated SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Rear	0.522	1.363	0.053	1.416	1.6	no	no
Left	/	/	0.053	0.053	1.6	no	no
Right	0.319	0.544	1	0.544	1.6	no	no
Bottom	0.254	0.336	1	0.336	1.6	no	no
Тор	/	1	0.053	0.053	1.6	no	no

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 172 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 055705019 Report No.:LCS191223014AEB

_		Simulta	neous transm	ission SAR f	or BT and UN	ITS		
Test Positio	UMTS Band V Reported n SAR _{1-g} (W/kg)	UMTS Band IV Reported SAR _{1-g} (W/kg)	UMTS Band II Reported SAR _{1-g} (W/kg)	BT Estimated SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Rear	0.609	0.896	1.169	0.053	1.222	1.6	no	no
Left	/		/	0.053	0.053	1.6	no	no
Right	0.262	0.617	0.456	1	0.617	1.6	no	no
Botton	า 0.178	0.428	0.264	1	0.428	1.6	no	no
Тор	1		1	0.053	0.053	1.6	no	no

Simultaneous transmission SAR for BT and LTE

Deported SAD1 g(M//kg)	Test Position					
Reported SAR1-g(W/kg)	Rear	Left	Right	Bottom	Тор	
LTE Band2	1.386	/	0.634	0.286	/	
LTE Band4	0.624	/	0.385	0.259	/	
LTE Band7	1.296	/	0.723	0.509	/	
LTE Band12	0.659	/	0.426	0.246	/	
LTE Band17	0.721	/	0.389	0.286		
BT Estimated SAR1-g (W/kg)	0.053	0.053	/	/	0.053	
MAX. ΣSAR1-g (W/kg)	1.439	0.053	0.723	0.509	0.053	
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	
Peak location separation ratio	no	no	no	no	no	
Simut Meas. Required	no	no	no	no	no	

Note:

1. The WiFi and BT share same antenna, so cannot transmit at same time.

2. The value with **block** color is the maximum values of standalone

3. The value with blue color is the maximum values of $\sum SAR_{1-q}$

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 59 of 172

4.5. SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is ≥ 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with $\leq 20\%$ variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 3) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 4) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 5) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 6) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Fraguanay		RF		Depented	Highest	First Repeated	
Frequency Band (MHz)	Air Interface	Exposure Configuration	Test Position	Repeated SAR (yes/no)	Measured SAR _{1-g} (W/Kg)	Measued SAR _{1-g} (W/Kg)	Largest to Smallest SAR Ratio
750	LTE Band 12	Standalone	Body-Rear	no	0.539	n/a	n/a
750	LTE Band 17	Standalone	Body-Rear	no	0.582	n/a	n/a
050	GSM850	Standalone	Body-Rear	no	0.502	n/a	n/a
850	WCDMA Band V	Standalone	Body-Rear	no	0.588	n/a	n/a
1800	WCDMA Band IV	Standalone	Body-Rear	no	0.874	0.829	1.054
1600	LTE Band 4	Standalone	Body-Rear	no	0.580	n/a	n/a
	GSM1900	Standalone	Body-Rear	no	1.316	1.245	1.057
1900	WCDMA Band II	Standalone	Body-Rear	no	1.059	0.958	1.105
	LTE Band 2	Standalone	Body-Rear	no	1.145	1.098	1.043
2450	2.4GWLAN	Standalone	Cheek-Left	no	0.105	n/a	n/a
2600	LTE Band 7	Standalone	Body-Rear	no	1.113	1.074	1.036

Remark:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

4.6. General description of test procedures

- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
- 5. UMTS was tested in RMC mode with 12.2 kbit/s and TPC bits set to 'all 1'.
- 6. WiFi was tested in 802.11b/g/n mode with 1 Mbit/s and 6 Mbit/s. According to KDB 248227 the SAR testing for 802.11g/n is not required since When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 7. Required WiFi test channels were selected according to KDB 248227
- 8. According to FCC KDB pub 248227 D01, When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement and when there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- 9. According to FCC KDB pub 941225 D06 this device has been tested with 10 mm distance to the phantom for operation in WiFi hot spot mode.
- 10. Per FCC KDB pub 941225 D06 the edges with antennas within 2.5 cm are required to be evaluated for SAR to cover WiFi hot spot function.

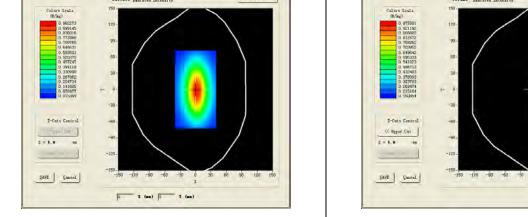
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 60 of 172

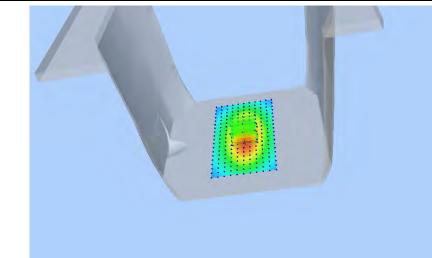
	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 055705019 Report No.:LCS191223014AEB	
	 According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional. 	
l	12. According to KDB 447498 D01 testing of other required channels within the operating mode of a	
	frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:	
l	• \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz	
	●≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz	
l	●≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz	
l	13. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices	
	that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band.	
	 Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg. 	
	15. Per KDB648474 D04 require when the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, using the same wireless mode test configuration for voice and data, such as UMTS and Wi-Fi, and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface)	
	16. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.	
	17. Per KDB648474 D04 require for phablet SAR test considerations, For Mobile Phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, When hotspot mode applies,	
	10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.	

18. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

4.7. Measurement Uncertainty (450MHz-6GHz)

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR accoridng to KDB865664D01.

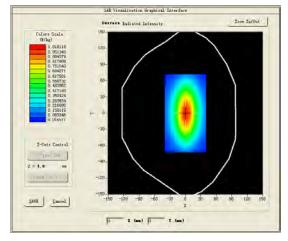

Report No.:LCS191223014AEB

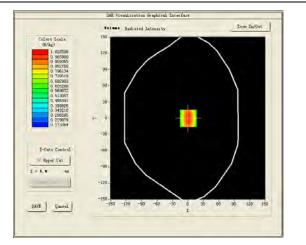

0 I

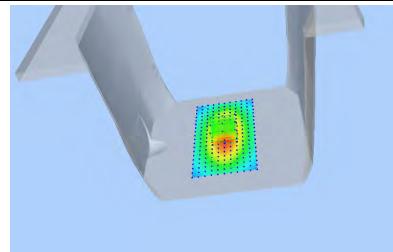
4.8. System Check Results

Test mode:750MHz(Head) Product Description:Validation Model:Dipole SID750 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: December 24, 2019

Medium(liquid type)	HSL_750
Frequency (MHz)	750.0000
Relative permittivity (real part)	40.58
Conductivity (S/m)	0.88
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.45
Variation (%)	1.420000
SAR 10g (W/Kg)	0.562452
SAR 1g (W/Kg)	0.824413
SURFACE SAR	VOLUME SAR
Sak Visualization draphred Zaterdare Switzer Industri Internation Calore Scale 0 46273 0 46273 0 46273 0 4728 0 4729 0	Safe Vironalization draphical Sater(are Followe Bediated Satematy Zom SadPort Callers Saula 150 0.01502 0.01502 0.01502 0.01502 0.01502 0.01502 0.01502 0.01502 00- 0.01502

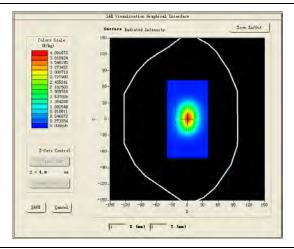


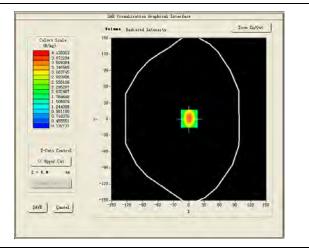

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 62 of 172

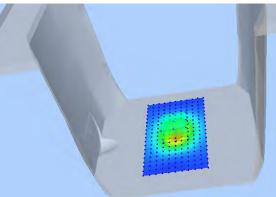

Report No.:LCS191223014AEB

Test mode:835MHz(Head) Product Description:Validation Model:Dipole SID835 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date:December 26, 2019

Medium(liquid type)	HSL_850
Frequency (MHz)	835.0000
Relative permittivity (real part)	40.14
Conductivity (S/m)	0.86
Input power	100mW
Crest Factor	1.0
Conversion Factor	2.04
Variation (%)	-0.210000
SAR 10g (W/Kg)	0.632132
SAR 1g (W/Kg)	0.975488
SURFACE SAR	VOLUME SAR

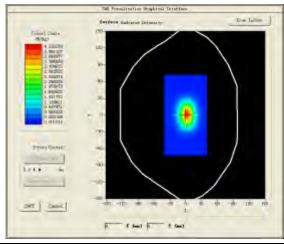


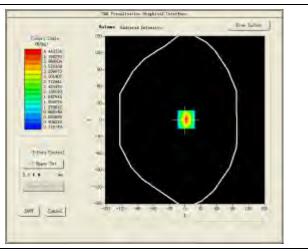

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 63 of 172

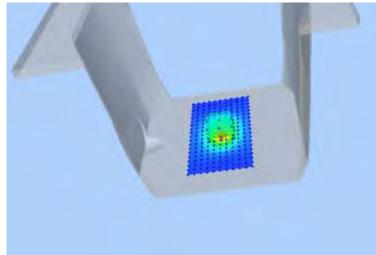

Report No.:LCS191223014AEB

Test mode:1800MHz(Head) Product Description:Validation Model :Dipole SID1800 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: December 27, 2019

Medium(liquid type)	HSL_1800
Frequency (MHz)	1800.0000
Relative permittivity (real part)	41.59
Conductivity (S/m)	1.42
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.65
Variation (%)	3.560000
SAR 10g (W/Kg)	2.013283
SAR 1g (W/Kg)	3.819085
SURFACE SAR	VOLUME SAR

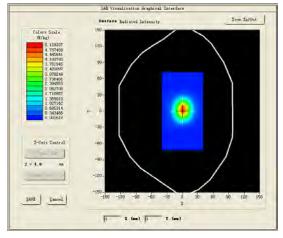


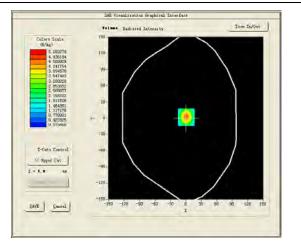

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 64 of 172

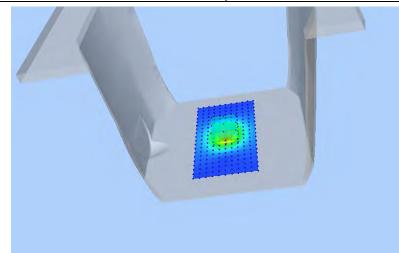

Report No.:LCS191223014AEB

Test mode:1900MHz(Head) Product Description:Validation Model :Dipole SID1900 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: December 30, 2019

SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	3.921162
SAR 10g (W/Kg)	2.068260
Variation (%)	-1.170000
Conversion Factor	2.10
Crest Factor	1.0
Input power	100mW
Conductivity (S/m)	1.37
Relative permittivity (real part)	39.23
Frequency (MHz)	1900.0000
Medium(liquid type)	HSL_1900

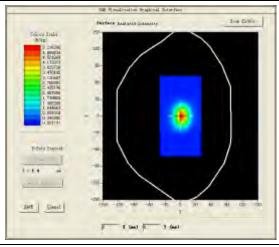


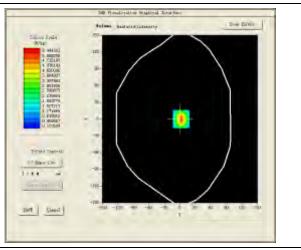

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 65 of 172

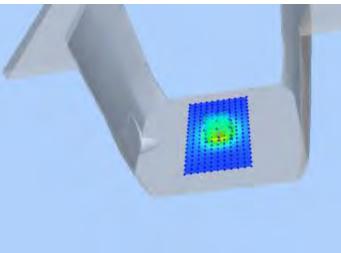

Report No.:LCS191223014AEB

Test mode:2450MHz(Head) Product Description:Validation Model:Dipole SID2450 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: December 31, 2019

Medium(liquid type)	HSL_2450
Frequency (MHz)	2450.0000
Relative permittivity (real part)	40.12
Conductivity (S/m)	1.76
Input power	100mW
Crest Factor	1.0
Conversion Factor	2.21
Variation (%)	0.240000
SAR 10g (W/Kg)	2.343463
SAR 1g (W/Kg)	5.224016
SURFACE SAR	VOLUME SAR



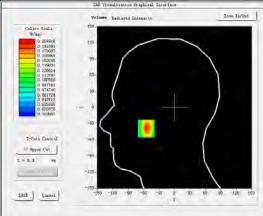

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 172

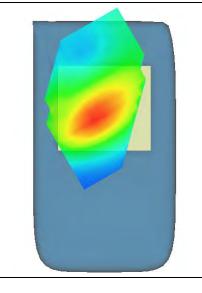

Report No.:LCS191223014AEB

Test mode:2600MHz(Head) Product Description:Validation Model:Dipole SID2600 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: January 02, 2020

SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	5.346648
SAR 10g (W/Kg)	2.420415
Variation (%)	-2.360000
Conversion Factor	1.89
Crest Factor	1.0
Input power	100mW
Conductivity (S/m)	1.94
Relative permittivity (real part)	39.56
Frequency (MHz)	2600.0000
Medium(liquid type)	HSL_2600

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 67 of 172

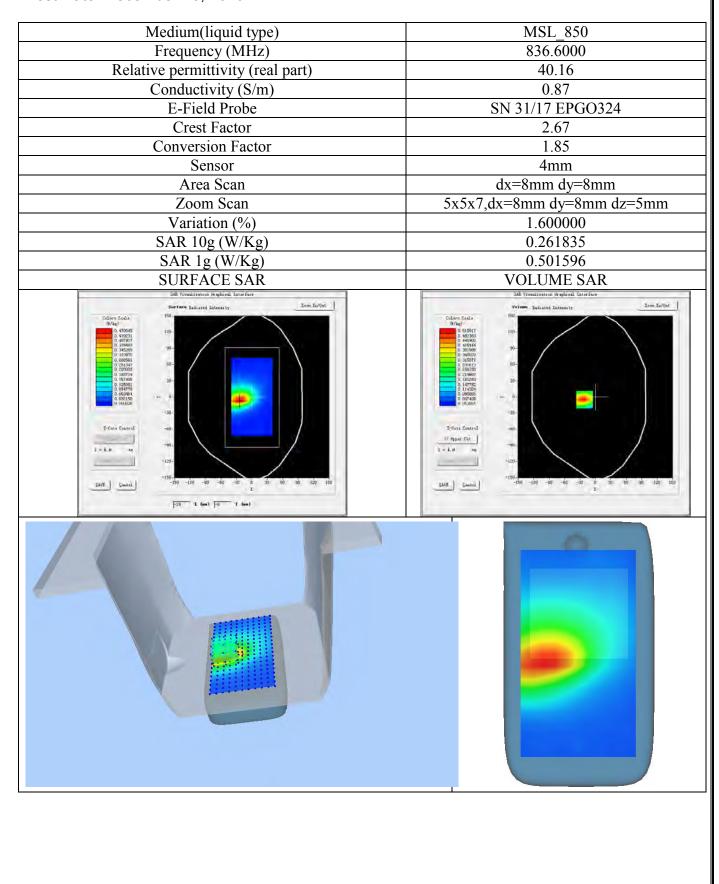

4.10SAR Test Graph Results


SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02; #1

Test Mode:GSM 850MHz,Middle channel(Head Left Cheek) Product Description:7 inch 4G Tablet Model:T4G Test Date: December 26, 2019

Medium(liquid type)	HSL_850		
Frequency (MHz)	836.6000		
Relative permittivity (real part)	40.12		
Conductivity (S/m)	0.87		
E-Field Probe	SN 31/17 EPGO324		
Crest Factor	2.67		
Conversion Factor	1.78		
Sensor	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	0.530000		
SAR 10g (W/Kg)	0.107242		
SAR 1g (W/Kg)	0.196291		
SURFACE SAR	VOLUME SAR		
388 Vieweilspatien Fryslied Interfere	248 Vessaliyation Styliced Interface		
Environmental Lebran by Loom La/Out	Visions Padastel Lutens ty Zom. Lu/out Order 0.00446 100 100 Order 100 100 100 100		

2 = 0.2 2 30 60 30 120 I SAVE Gandel -10



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 68 of 172

CC ID: 055705019 Report No.:1

Report No.:LCS191223014AEB

#2 Test Mode:Hotspot GSM850MHz,Middle channel(Body Rear Side) Product Description:7 inch 4G Tablet Model:T4G Test Date: December 26, 2019

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 69 of 172

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019 Report No.:LCS191223014AEB
#3	
Test Mode:GSM 1900MHz, Middle channel(He Product Description:7 inch 4G Tablet	ead Left Cheek)
Model:T4G	
Test Date: December 30, 2019	
Medium(liquid type)	HSL_1800 1880.0000
Frequency (MHz) Relative permittivity (real part)	39.24
Conductivity (S/m)	1.39
E-Field Probe	SN 31/17 EPGO324
Crest Factor	2.67
Conversion Factor	1.83
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
$\frac{\text{Variation (\%)}}{\sum A P_{1} \log (W/V_{C})}$	-1.460000
SAR 10g (W/Kg) SAR 1g (W/Kg)	0.320463 0.533371
SURFACE SAR	VOLUME SAR
SURFACE SAR	Bill (result) sture (brighted). Exercises
	Values Sala and Latena ty Zene Zu/Ox 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.0000000 0.00000000000000000000000000000000000

SHENZHEN LCS COMPLIANCE	TESTING LABORATORY LTD	ECC ID: 055705010	Demost No. J.CS101222014AED
SHENZHEN LCS COMPLIANCE	IESTING LABORATORY LID.	FCC ID: 055705019	Report No.:LCS191223014AEB
#4 Test Mode: Hotspot Product Description Model:T4G Test Date: Decembe		annel(Body Rear Sid	e)
M	1 $(1$ $(1$ $(1$ $(1$ $(1$ $(1$ $(1$		MGI 1000
	edium(liquid type)		MSL_1800
	requency (MHz)		1880.0000
	e permittivity (real part)		52.34
C	onductivity (S/m)		1.38
	E-Field Probe	S	N 31/17 EPGO324
	Crest Factor		2.67
C	Conversion Factor		1.87
	Sensor		4mm
	Area Scan	d	lx=8mm dy=8mm
	Zoom Scan	5x5x7,dx	=8mm dy=8mm dz=5mm
	Variation (%)		-1.730000
S	SAR 10g (W/Kg)		0.682829
	SAR 1g (W/Kg)		1.315852
	URFACE SAR		VOLUME SAR
Cillans Back View 1, 17560 1, 17560 1, 17560 1, 17560 1, 17560 1, 17560 1, 17560 1, 17560 1, 17560 1, 17180 1,	Envrare Industed Detensity 2000 200 200 200 200 200 200 2	Colares Sanka (Pray)	$\begin{array}{c} \text{Yalvane Indicated Datasets} \\ \text{Tended} \\ T$

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019 Report No.:LCS191223014A	EB
#5		
Test Mode:WCDMA Band V,High channel(Head	Right Cheek)	
Product Description:7 inch 4G Tablet	0	
Model:T4G		
Test Date: December 26, 2019		
Medium(liquid type)	HSL_850	
Frequency (MHz)	846.6000	
Relative permittivity (real part)	40.41	
Conductivity (S/m)	0.87	
E-Field Probe	SN 31/17 EPGO324	
Crest Factor	1.0	
Conversion Factor	1.78	
Sensor	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	-0.500000	
SAR 10g (W/Kg)	0.247209	
SAR 1g (W/Kg)	0.391496	
SURFACE SAR	VOLUME SAR	
.508 Viewilsestens deuploch, Interface	SAD Viewalaration Brighted, Interface	
Surface Industed Intensity Zom In/Ont	Wollows Indiated Intents 2 Zoon In/Ont	1
0.500 (0 100) 0.500	0.04/m 5.24/4 100 0.7/6/ 0.0009 129-	
0.31046 0.2007fb 0.2007fb 0.2007fc 99-	0 291100 0 271970 0 282911 99-	
0 2 44600 0 2 224 45 0 7 20086 0 1 777204 0 2 00080 0 1 777204	0 220562 0 424462 0 1995533 0 176173	
0 154219 0 102044 0 190260 2 006699 3 29-	0 137074 0 137075 0 118995 10-	
	0 00255 0 00257 0 00257 1 1 14625	
2-Cas Castral -en.	7-State Control -ed-	
2 = 9,3 as -491.	2 = x, 3 mg -401	
-197	-100-	
<u>ant</u> <u>Lunna</u> -150 -150 -160 -10 1 10 100 100 100 100		
This report shall not be reproduced except in full, without the written	approval of Shenzhen LCS Compliance Testing Laboratory Ltd.	
Page 72 c		
1 ugt / 2 0j 1/ 2		

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019 Report No.:LCS191223014AEB		
#6			
Test Mode: Hotspot WCDMA Band V,High char	nnel(Body Rear Side)		
Product Description:7 inch 4G Tablet			
Model:T4G			
Test Date: December 26, 2019			
Medium(liquid type)	MSL_850		
	846.6000		
Frequency (MHz)			
Relative permittivity (real part)	40.23		
Conductivity (S/m)	0.89		
E-Field Probe	SN 31/17 EPGO324		
Crest Factor	1.0		
Conversion Factor	1.85		
Sensor	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	1.260000		
SAR 10g (W/Kg)	0.362359		
SAR 1g (W/Kg)	0.587837		
SURFACE SAR	VOLUME SAR		
SURFACE SAR	VOLUME SAK		
240 Trans Industrial Interface 7 Chars State 9 Constrained 9 Co	Definition of transitions (p Colors Order 0 0		
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 73 of 172			

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019 Report No.:LCS191223014AEB	
#7 Test Meder/MCDMA Dend IV(Levy shannel/(lead Left Check)		
Test Mode:WCDMA Band IV, Low channel(Head Product Description:7 inch 4G Tablet	i Leit Glieek)	
Model:T4G		
Test Date: December 27, 2019		
Medium(liquid type) Frequency (MHz)	HSL_1800 1712.4000	
Relative permittivity (real part)	41.47	
Conductivity (S/m)	1.41	
E-Field Probe	SN 31/17 EPGO324	
Crest Factor	1.0	
Conversion Factor	1.83	
Sensor	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%) SAR 10g (W/Kg)	0.150000 0.241851	
SAR 10g (W/Kg) SAR 1g (W/Kg)	0.398687	
SURFACE SAR	VOLUME SAR	
348 Vicentiyation (Highligh Interfere	268 Visionalusvaturis Regulieral, Esterfare	
Surface Industry Zon Indiated	Versione Technick Latence to Zoon Te/Opt	
0/Ag) 0. 403187 0. 595642 2. 595642	9/Ac/ 0.95934 3.39932 3.39732	
0 3.0008 0 10.0058 0 2.02416 0 2.02417	0. 4(4900) 0. 317090 0. 2007m 0. 0.04400	
0 270133 00- 0 1170106 0 1170106 0 119705 20-	0 2 2007 68- 1 2 1174 68- 1 2 12846 90- 1 12846 90- 1 12846 90-	
0 (5570) 0 (57170) 0 (57130) av (1)	0 (1964) 0 (1969) 0 (1979) 0 (1979) - 4	
7-their Courts -res.	T-Char Courted	
1 = 0,3 · ··· -120-	1 = 1, i = 300 	
-190 -100 -100 -00 -00 -0 0 0 0 0 0 00 00	24.02 Lunci - 100 - 100 - 100 - 100 - 10 10 100 100	
ja t (an) ja t (an)		
B		
This report shall not be reproduced except in full, without the written a		
Page 74 of		

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019 Report No.:LCS1912230	14AEB	
#8 Test Mode: Hotspot WCDMA Band IV Low cha	anel(Body Side)		
Test Mode: Hotspot WCDMA Band IV,Low channel(Body Side) Product Description:7 inch 4G Tablet			
Model:T4G			
Test Date: December 27, 2019			
Medium(liquid type)	MSL_1800		
Frequency (MHz)	1712.4000		
Relative permittivity (real part)	41.48		
Conductivity (S/m)	1.41		
E-Field Probe	SN 31/17 EPGO324		
Crest Factor	1.0		
Conversion Factor	1.87		
Sensor	4mm		
Area Scan Zoom Scan	dx=8mm dy=8mm 5x5x7,dx=8mm dy=8mm dz=5mr	~	
Variation (%)	-1.230000	11	
SAR 10g (W/Kg)	0.482919		
SAR 10g (W/Kg) SAR 1g (W/Kg)	0.482919		
SAR Ig (w/Rg)	VOLUME SAR		
280 Viewijsputer Brybied Tatafers	28 Yorkitsuba (Fighies), Tatrifars		
Colors Seale Oracle	Vorteen Enduated Latena (r) Even Le Calaer Sacla 190 <	109	
	This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 75 of 172		

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC 1D: 055705019 Report No.:LCS191223014AEB	
#9 Test Mode:WCDMA Band II,Middle channel(He Product Description:7 inch 4G Tablet Model:T4G Test Date: December 30, 2019		
Medium(liquid type)	HSL_1900	
Frequency (MHz)	1880.0000	
Relative permittivity (real part)	39.32	
Conductivity (S/m)	1.39	
E-Field Probe	SN 31/17 EPGO324	
Crest Factor	1.0	
Conversion Factor	1.83	
Sensor	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
$\frac{\text{Variation (%)}}{\sum A P_{1} \log (W/K q)}$	-2.790000	
$\frac{\text{SAR 10g (W/Kg)}}{\text{SAP 1g (W/Kg)}}$	0.288585 0.417235	
SAR 1g (W/Kg) SURFACE SAR	VOLUME SAR	
38 Viesdisation (repliced, Tatorfan	28 Versilisatum Peglical Taturfers	
Colores Seal Sen La/det 0 / Le/det Seal La/det 1 / Le/det Seal La/det <	Colore Scale Same Tablascal Datasets Origin Colore Scale Origon Colore Scale <td< td=""></td<>	
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 76 of 172		

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019	Report No.:LCS191223014AEB
#10		
Test Mode: Hotspot WCDMA Band II,Middle cha Product Description:7 inch 4G Tablet	innel(Body Front Sid	e)
Model:T4G		
Test Date: December 30, 2019		
Medium(liquid type)	Ν	MSL 1900
Frequency (MHz)		1880.0000
Relative permittivity (real part)		39.25
Conductivity (S/m)		1.43
E-Field Probe	SN 3	1/17 EPGO324
Crest Factor		1.0
Conversion Factor		1.87
Sensor		4mm
Area Scan	dx=8	8mm dy=8mm
Zoom Scan	5x5x7,dx=81	nm dy=8mm dz=5mm
Variation (%)		1.380000
SAR 10g (W/Kg)		0.562127
SAR 1g (W/Kg)		1.059477
SURFACE SAR	VO	LUME SAR
200 Yermaliyation ikupiledi Tator face Sector Laborator Tatora a Zaon Laborat	20	fermalssatten Braghred, Tater face B. Jacksteil Taters to Zoom Ts/Out
Charter State 100 1 (1000) 100 1 (1000) 100 0 (1000) 100 0 (1000) 100 0 (1000) 100 0 (1000) 100 0 (1000) 100 0 (1000) 100 0 (1000) 100 0 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 2 (1000) 100 2 (1000) 100 2 (1000) 100 1 (1000) 100 2 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 100 1 (1000) 10	Colore Scala 100 9/Net 207001 100000 100 100000 100 100000 100 100000 100 000000 100 000000 100 000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 0000000 000000 00000000 000000 00000000 000000 000000000 000000 00000000000 00000000 000000000000000000000000 000000000000000000000000000000000000	
This report shall not be reproduced except in full, without the written Page 77 of		ompliance Testing Laboratory Ltd.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. #11	FCC ID: 055705019 Report No.:LCS191223014AEB	
Test Mode: Hotspot LTE Band 2, 1RB,Low channel(Head Right Cheek)		
Product Description:7 inch 4G Tablet Model:T4G		
Test Date: December 30, 2019		
Medium(liquid type)	HSL 1900	
Frequency (MHz)	1860.0000	
Relative permittivity (real part)	39.09	
Conductivity (S/m)	1.44	
E-Field Probe	SN 31/17 EPGO324	
Crest Factor	1.0	
Conversion Factor	1.65 4mm	
Sensor Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	-0.490000	
SAR 10g (W/Kg)	0.418031	
SAR 1g (W/Kg)	0.623528	
SURFACE SAR	VOLUME SAR	
Edit Visualization Brighted Tator fixes Colume State Som Faring 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.50000 0.60000 0.500000 0.50000 0.500000 0.50000 0.500000 0.50000 0.500000 0.50000 0.500000 0.50000 0.500000 0.50000 0.500000 0.50000 0.500000 0.50000 0.5000000 0.500000 0.500000000000 0.500000000000000000000000000000000000	Differentiation is sphered. Extended Differentiation Differentiating Differentiation	
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 78 of 172		

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 055705019 Report No.:LCS191223014AEB			
#12			
Test Mode: Hotspot LTE Band 2, 1RB,Low channel(Body Rear Side)			
Product Description:7 inch 4G Tablet			
Model:T4G			
Test Date: December 30, 2019			
Medium(liquid type)	MSL 1900		
Frequency (MHz)	1860.0000		
Relative permittivity (real part)	40.22		
Conductivity (S/m)	1.78		
E-Field Probe	SN 31/17 EPGO324		
Crest Factor	1.0		
Conversion Factor	1.68		
Sensor	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz	=5mm	
Variation (%)	0.040000		
SAR 10g (W/Kg)	0.642620		
SAR 1g (W/Kg)	1.145375		
SURFACE SAR	VOLUME SAR		
200 Viensijsstem Bryberk Taterfan Derfans Lebend Diensten	SAU Trendarition Graphed Interfect Walnum And side Interfect	In In/Oat	
Data solar Solar Solar 0.1000 1.20000 100 1.20000 100 0.00000 100 1.00000 100 1.00000 100 1.00000 100 1.00000 100 1.00000 100 1.00000 100 1.00000 100 1.00000 100 1.00000 100 1.00000 100 1.00000 100	Laters Sealer (1990) C. 1995 C. 1995	90 90 140 (U)	
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 79 of 172			

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 055705019 Report No.:LCS191223014AEB
#13 Test Mode: LTE Band 4, 1RB, Low channel(He Product Description:7 inch 4G Tablet Model:T4G	ad Left Cheek)
Test Date: December 27, 2019	1151 1900
Medium(liquid type)	HSL_1800 1720.0000
Frequency (MHz)	
Relative permittivity (real part)	40.87
Conductivity (S/m)	1.39
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.65
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.600000 0.228326
SAR 10g (W/Kg)	0.228326
SAR 1g (W/Kg)	
SURFACE SAR	VOLUME SAR
Difference Difference Colume Service Colum Service Colum </td <td>Values Latistical Literativy Zom Latistic 0.4 07504 0.4 0000 0.4 00000 0.4 00000 0.4 0000000000</td>	Values Latistical Literativy Zom Latistic 0.4 07504 0.4 0000 0.4 00000 0.4 00000 0.4 0000000000

Page 80 of 172