

Report No: JYTSZB-R12-2100828

FCC REPORT

Applicant:	SWAGTEK
Address of Applicant:	10205 NW 19th Street,STE 101, Miami, FL33172,USA
Equipment Under Test (E	EUT)
Product Name:	6.8 inch 4G Smart Phone
Model No.:	L68, MATRIX, N68
Trade mark:	LOGIC, iSWAG, UNONU
FCC ID:	O55681521
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	18 May, 2021
Date of Test:	18 May, to 17 Jun., 2021
Date of report issued:	22 Jun., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	22 Jun., 2021	Original

Tested by:

Janet Wei

Test Engineer

Date: 22 Jun., 2021

Reviewed by:

Winner Thang

Project Engineer

Date:

22 Jun., 2021

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
_			
3		ITENTS	
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	-
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	15
	6.6.1	Conducted Emission Method	15
	6.6.2	Radiated Emission Method	
	6.7	SPURIOUS EMISSION	25
	6.7.1	Conducted Emission Method	25
	6.7.2	Radiated Emission Method	26
7	TES [.]	T SETUP PHOTO	
8	FUT	CONSTRUCTIONAL DETAILS	33
0	EUI	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result		
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass		
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass		
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass		
Conducted Band Edge		Appendix A - BLE	Pass		
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass		
Conducted Spurious Emission	15.205 & 15.209	Appendix A - BLE	Pass		
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: Not Applicable. 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer). ANSI C63.10-2013					
Test Method: KDB 558074 D01 15.247	Meas Guidance v05r02				

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th Street, STE 101, Miami, FL33172, USA
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th Street, STE 101, Miami, FL33172, USA

5.2 General Description of E.U.T.

R	
Product Name:	6.8 inch 4G Smart Phone
Model No.:	L68, MATRIX, N68
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.58 dBi
Power supply:	Rechargeable Li-ion Battery DC3.85V, 5000mAh
AC adapter:	Model: GLY-G43UA-050200-629A
	Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2000mA
Remark:	Model No.: L68, MATRIX, N68 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being trademark. LOGIC is for L68. iSWAG is for MATRIX, UNONU is for N68
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\ \	/ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022	
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021	
Cable	HP	10503A	N/A	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2105075

PDU	MWRF-test	XY-G10	N/A	N/A	N/A	
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0			
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021	

6 Test results and Measurement Data

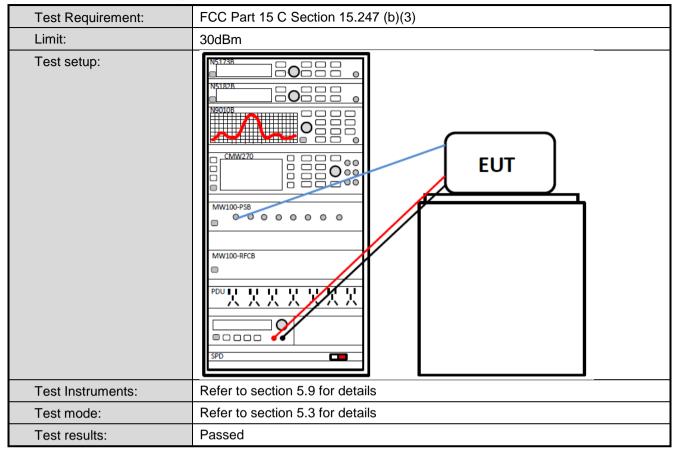
6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
responsible party shall be u antenna that uses a unique so that a broken antenna ca electrical connector is prohi 15.247(b) (4) requirement: (4) The conducted output pe antennas with directional ga section, if transmitting anter power from the intentional r	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or bited. ower limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The BLE antenna is an Interr antenna is 0.58dBi.	hal antenna which cannot replace by end-user, the best-case gain of the

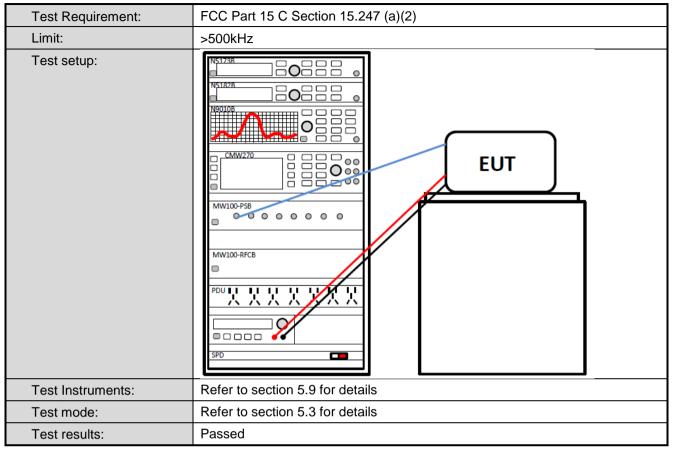
6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7						
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Frequency range (MHz)							
	· · · · · · · · · · · · · · · · · · ·	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30 * Decreases with the logarithm	60	50					
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im The peripheral devices ar LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line ard interference. In order to fi positions of equipment ar according to ANSI C63.10 	are connected to the ma on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of the checked for maximum and the maximum emission and all of the interface cab	hich provides a ng equipment. main power through a ance with 500hm the test setup and conducted on, the relative les must be changed					
Test setup:	Reference	80cm Filter EMI Receiver	– AC power					
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

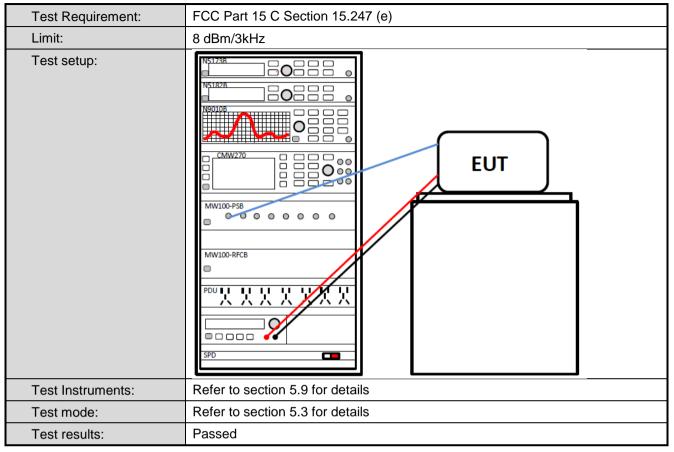
Measurement Data:


Product name:	6.8 inch 4G Smart Phone	Product model:	L68
ſest by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Fest voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
90 Level (dBuV) 80 70 60 50 40 30 20 10 0 -5.15 .2 Trace: 10	34 7 10 6 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10	11 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 12	FCC PART 15.247 QP FCC PART 15.247 AV
Freq Lev	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Limit Over Level Line Limit I dBuV dBuV dB 35.62 49.97 -14.35 4 40.78 47.15 -6.37 4 49.21 57.11 -7.90 (52.06 56.45 -4.39 (42.09 46.32 -4.23 4 44.21 56.00 -11.79 (47.14 56.00 -8.86 (35.42 46.00 -10.58 4 36.10 46.00 -9.90 4 48.02 56.00 -7.98 (47.00 56.00 -9.00 (35.25 46.00 -10.75 4	Average Average QP QP Average QP Average Average QP

roduct name:		6.8 inch 4	G Smart F	Phone	Prod	uct moc	del:	L68			
est by:		lanet			Test	Test mode: BLE Tx mo		de			
est frequency:		50 kHz ~	30 MHz		Phas	se:		Neutral			
est voltage:		AC 120 V/	/60 Hz		Envi	ronment	t:	Temp: 22.5	5℃ Huni:	55%	
90 Level (dBu 80 70 60 50 40 40 30 40 10 0 5.15 .2	MM	.5	56 Wy (W 1 / / / / / / / / / / / / / / / / / /	10 M/M/Winny SHI	12 12 12 12 12 12 12 12 12 12		5			30	
17 100				Troq	lacitoj (in	112)					
Fre	Read eq Level	LISN Factor		Cable Loss	Level	Limit Line	Over Limit	Remark			
m	Hz dBuV	<u>ab</u>	<u>ab</u>	āB	 dBu∛	 dBu∛	<u>dB</u>				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35 38.49 59 29.96 74 41.90 52 37.19 34 36.66 34 23.26 53 23.53 39 23.42	10. 13 10. 15 10. 17 10. 18 10. 48 10. 50 10. 50 10. 53 10. 65 10. 66 10. 67 10. 82	-0.05 -0.03 0.00 0.01 0.06 0.07 0.07 0.07 0.11 0.12 0.12 0.20	0.04 0.03 0.03 0.04 0.04 0.04 0.05 0.11 0.12 0.13 0.18		$\begin{array}{c} 57.15\\ 46.71\\ 56.45\\ 56.00\\ 56.00\\ 46.00\\ 46.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\end{array}$	-8.51 -6.55 -4.33 -8.23 -8.73 -12.13 -11.82 -11.71 -7.98	Áverage QP QP Average Average Average QP Average			



6.3 Conducted Output Power



6.4 Occupy Bandwidth

6.5 Power Spectral Density

6.6 Band Edge

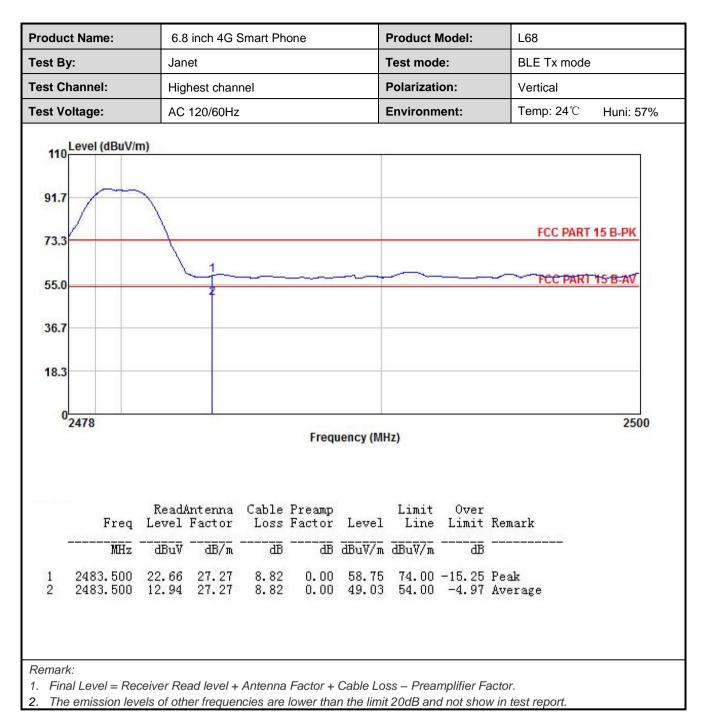
6.6.1 Conducted Emission Method

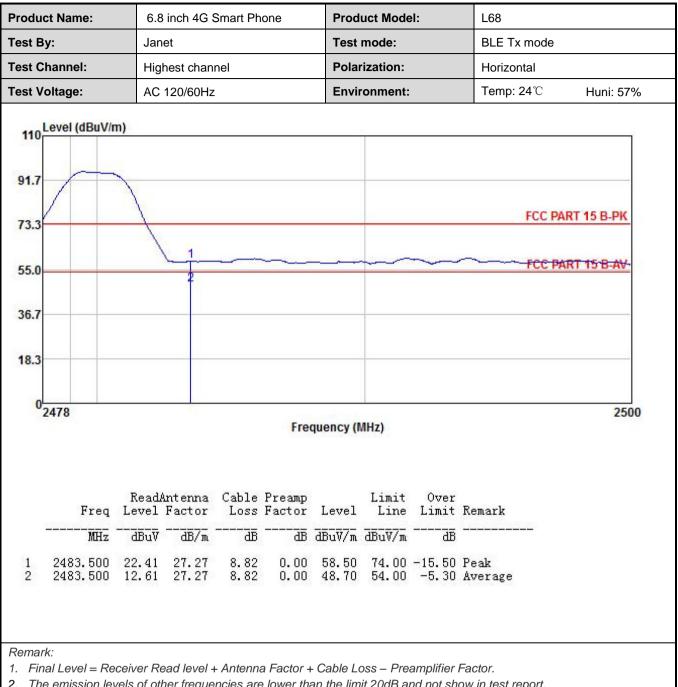
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.6.2 Radiated Emission Method

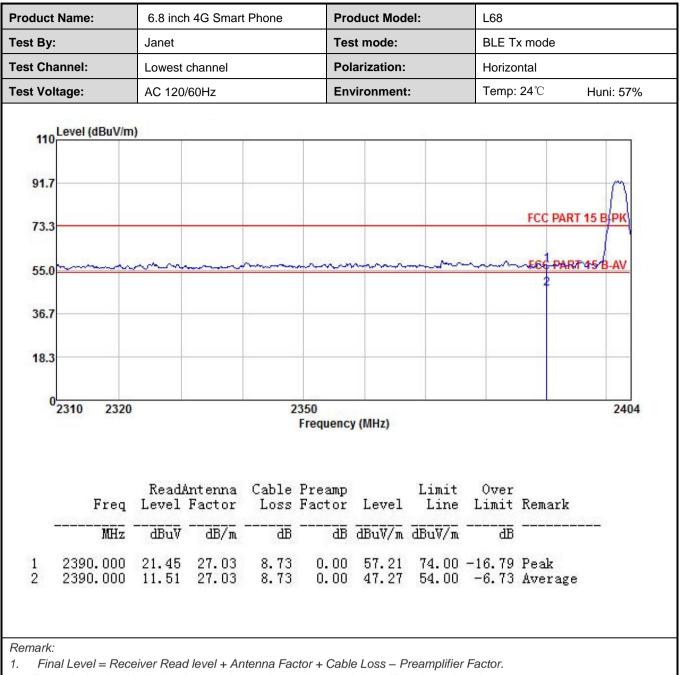
Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	2310 MHz to 2390 MHz and 2483.5MHz to 2500 MHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz Peak 1MHz 3MHz F							
		RMS	1MHz	3MHz				
Limit:	Frequen	icy I	<u>imit (dBuV/m @:</u> 54.00	3m)	Remark Average Value			
	Above 10	GHz –	74.00		Peak Value			
Test Procedure:	 the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emist the limit s of the EU have 10 c 	d at a 3 meter ine the positi was set 3 meter which was me and height is d to determine contal and ver measurement suspected en then the anter a maximum re receiver syste Bandwidth we ssion level of pecified, then T would be re B margin wo	er camber. The ta on of the highest eters away from t ounted on the top varied from one in the the maximum entical polarization nt. mission, the EUT enna was tuned to ble was turned fre eading. em was set to Pe vith Maximum Ho the EUT in peak in testing could be eported. Otherwise	able was ro radiation. he interfer of a varia meter to for value of the so of the an was arrar o heights om 0 degr ak Detect Id Mode. so the emi one by on	rence-receiving able-height antenna our meters above he field strength. Intenna are set to inged to its worst from 1 meter to 4 rees to 360 degrees Function and is 10 dB lower than and the peak values issions that did not e using peak, quasi-			
Test setup:		LEUT urntable) Gro Test Receive	Horn Antenna 3m Horn Antenna 3m Horn Antenna are the second	Antenna Tower	Swwwww			
Test Instruments:	Refer to section	on 5.9 for det	ails					
Test mode:	Refer to section	on 5.3 for det	ails					
Test results:	Passed							

PHY: 1MHz


t Name:	6.8 i	nch 4G Sn	nart Phon	e	Pro	oduct Mod	del:	L68			
/:	Jane	t			Tes	st mode:		BLE Tx mode	le		
annel:	Lowe	est channe	1		Po	arization	:	Vertical			
ltage:	AC 1	20/60Hz			En	vironmen	t:	Temp: 24 ℃	Huni: 57%		
Level (dBuV/n	1)				-	-11-2					
									n		
								FCC PART	15 B-PK		
m	when	man		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~			FOG PAR	F-45-8-AV		
2310 2320)			2350 Freque	ncy (MHz)	4			2404		
Frea						Limit Line	Over Limit	Remark			
MHz	 dBu∛	 dB/m	<u>a</u> b				āē				
2390.000 2390.000	20.83 11.94	27.03 27.03	8.73 8.73		56.59 47.70			Peak Average			
	: annel: Itage: Level (dBuV/n 2310 2320 Freq MHz	iannel: Jane Jane Itage: AC 1 Level (dBuV/m) 2310 2320 Read/ Freq Level MHz dBuV	: Janet Janet Lowest channe AC 120/60Hz Level (dBuV/m) 2310 2320 ReadAnt enna Freq Level Factor MHz dBuV dB/m	: Janet Janet Lowest channel Hage: AC 120/60Hz Level (dBuV/m) Comparison Level (dBuV/m) Comparison Level (dBuV/m) Comparison Level (dBuV/m) Comparison	: Janet annel: Lowest channel Itage: AC 120/60Hz Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level (dBuV/m) Level Factor Loss Factor MHz dBuV dB/m dB dB	Image: Janet Test Itage: AC 120/60Hz Environment Level (dBuV/m) Image: AC 120/60Hz	: Janet Test mode: nanel: Lowest channel Polarization: Itage: AC 120/60Hz Environmen Level (dBuV/m) Image: Image: Image: 2000 2000 2000 2000 2010 2320 2350 Frequency (MHz) ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Limit MHz dBuV dB/m dB dB dB uV/m dBuV/m	Janet Test mode: nannel: Lowest channel Polarization: Itage: AC 120/60Hz Environment: Level (dBuV/m)	Image: Janet Test mode: BLE Tx mode Itage: AC 120/60Hz Polarization: Vertical Itage: AC 120/60Hz Environment: Temp: 24°C Level (dBuV/m) Level (dBuV/m) Limit Over Freq Level Factor Loss Factor Level Limit Over Limit Remark		

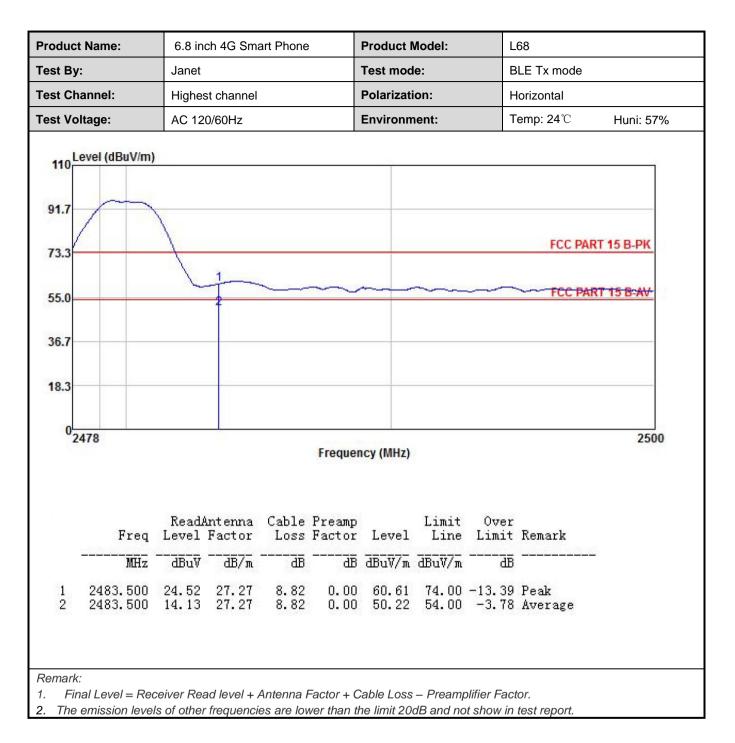


The emission levels of other frequencies are lower than the limit 20dB and not show in test report. 2


2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

PHY: 2MHz

roduct Name:	6	5.8 inch 4G	Smart P	hone		Product	Model:	Le	68	
est By:	Ja					Test mo	de:	BL	BLE Tx mode	
est Channel:	L					Polarization:			Vertical	
est Voltage:	A	C 120/60H	Z			Environ	ment:	Te	mp: 24 ℃	Huni: 57%
110 Level (dBu	V/m)						1			
91.7										$-\alpha$
73.3		_			_				FCC PART	<u>15 В-РК</u>
55.0	m	m		m			~~~~	~~~~~	FEC PART	45-B-AV
36.7	-									
18.3										
0 <mark>0</mark> 23102	320			2350 Freq	juency (M	Hz)				2404
Freq	Read Level	lAntenna l Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
MH2	dBu	7	B	<u>a</u> B	dBuV/m	dBuV/m	<u>ab</u>			
MH2	21.48	3 27.03	8.73	0.00 0.00		74.00	-16.76	Peak Averag		



2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

oduct Name:	6.8 in	ich 4G Sma	rt Phone		Produ	ct Model:	L6	8	
est By:	Janet				Test m	node:	BL	E Tx mode.	
est Channel:	Highe	st channel			Polariz	zation:	Ve	rtical	
est Voltage:	AC 12	20/60Hz			Enviro	nment:	Te	mp: 24 ℃	Huni: 57%
110 Level (dBu\ 91.7 73.3 55.0 36.7 18.3 0 2478	//m)	1		Frequency	/ (MHz)			FCC PART	
Fre	Read q Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
ME	Hz dBuV			ā	dBuV/m	dBuV/m	āē		
1 2483.50 2 2483.50			8.82 8.82				-14.40 -4.45	Peak Average	

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	.205	and 15.209					
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m or 10m								
	Frequency Detector RBW VBW Remark								
Receiver setup:							Quasi-peak Value		
	Peak 1MHz 3MHz Peak Valu						Peak Value		
	Above 1GHz RMS 1MHz 3MHz Average Value								
Limit:	Frequency	/	Limi	it (dBuV/m @ [.]	10m)		Remark		
	30MHz-88M	Hz		30.0		G	luasi-peak Value		
	88MHz-216N	1Hz		33.5			uasi-peak Value		
	216MHz-960			36.0			uasi-peak Value		
	960MHz-1G			44.0		G	luasi-peak Value		
	Frequency	/	Lim	nit (dBuV/m @	3m)		Remark		
	Above 1GF	lz –		<u>54.0</u> 74.0			Average Value Peak Value		
Test Procedure:	 1GHz)/1.5r (below 1G rotated 36 radiation. The EUT w away from on the top of The antenr the ground Both horize make the n For each s case and t meters and to find the r The test-re Specified E If the emiss the limit sp of the EUT have 10 dE 	n(above 16 Hz)or 3 m 0 degrees vas set 10 r the interfe of a variable a height is to determ ontal and v neasurements suspected of hen the an I the rota ta maximum re eceiver system andwidth w sion level o ecified, then would be margin wo	GHz netes to meta eren e-he s varianten enten able ead stern with of the enter repoould	n the top of above the r chamber(a o determine ers(below 10 ce-receiving eight antenna aried from or the maximu cal polarizat ssion, the E na was tune was turned ing. n was set f Maximum H e EUT in per sting could b orted. Other be re-tested	grounc above the p GHz) or antenia tower ne met um valu ions of UT wa d to he from 0 to Pea old Moo ak moo be stop wise th I one b	I at a 1GHz oosition 3 me na, wh er to f ue of the a as arra eights degre k Det de de was ped ar e emis y one	table 0.8m (below 10 meter chamber). The table was n of the highest eters (above 1GHz) nich was mounted four meters above the field strength. anged to its worst from 1 meter to 4 es to 360 degrees rect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data		
Test setup:	Below 1GHz	10m <	.		S A RF	Antenna To earch intenna Test reiver	wer		

Project No.: JYTSZE2105075

	Above 1GHz				
	AE EUT Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report. 				

Measurement Data (worst case):

Below 1GHz:

Flouuct Maine.	oduct Name: 6.8 inch 4G Smart Phone					Product Model:		L68			
Test By:	st By: Janet				Test	mode:		BLE Tx mo	BLE Tx mode		
Sest Frequency: 30 MHz ~ 1 GHz					Polarization:		Vertical & Horizontal				
Test Voltage:					Envi	Environment:		Temp: 24°C Huni: 57		ii: 57%	
				Full	Spectrum						
80											
70	+										
70	-										
60	+										
≥ 50											
//18p u 90 - 90 - 90 - 90 - 90 - 90 - 90 - 90 -								FCC PART 1	5.247 10m		
.⊑ 40	+										
a 30											
	+								* **		
20	the second		*		a. a			No. of Concession, Name	and the second		
	LAN W.	1 * Madel	Martin Land	u i.	. White the state		o la	and the state of the			
10						a state in the state of the	and the second				
10	TYL MANNALL	M. Planting		A STATE OF STATE	and the second sec		LAPA				
0	- Windowsky			10014			400				
0	TYL MANNALL	50 60	80		200	300	400	500	800 1G		
0	- Windowsky	50 60	80		200 equency in		400	500	800 1G		
0 3	om quency J	MaxP	eak↓	Fr Limit↓	equency in Margin↓	Hz Height∔	400 Pol	Azimuth↓	Corr. ↓],	
0 3 • Free (N	quency↓ MHz)⊷	MaxP (dB IL-1)	^v eak↓ V/m)⊷	Fr Limit∔ (dB ዞ	equency in Margin∔ (dB)⊬	Hz Height∔ (cm)⊬	Pol₽	Azimuth∔ (deg)⊷	Corr.↓ (dB/m)∉	4	
0 3 • Free (N	om quency J	MaxP (dB म \	eak↓	Fr Limit↓	equency in Margin↓	Hz Height∔		Azimuth↓ (deg)⊮ 248.0⊮	Corr. ↓	4	
0 3 • Free (N • 3 • 4	Quency↓ 0M MHz) 30.485000 17.169000 74.426000	MaxP (dB ዞ) (dB ዞ)	/eak↓ V/m)⊮ 19.53₽ 14.67₽ 17.56₽	Fr Limit↓ (dB ዞ 30.00↔ 30.00↔ 30.00↔	equency in Margin↓ (dB)↩ 10.47↩ 15.33↩ 12.44↩	Hz Height↓ (cm)₊ ³ 100.0₊ ³ 100.0₊ ³	Pol₊ V₊ V₊ V₊ V₊	Azimuth↓ (deg)↩ 248.0↩ 103.0↩ 220.0↩	Corr.↓ (dB/m)← -17.6← -15.7← -19.1←	4	
0 3 • Free (N • 3 • 4 • 7 • 82	quency↓ 0M MHz) 30.485000 17.169000 74.426000 25.109000	MaxP (dB IL) (dB IL)	/eak↓ V/m)√ 19.53≁ 14.67≁ 17.56≁ 25.18₽	Fr Limit↓ (dB № 30.00+3 30.00+3 30.00+3 30.00+3	equency in Margin↓ (dB)↩ 10.47↩ 15.33↩ 12.44↩ 10.82↩	Hz Height↓ (cm)₊ ³ 100.0₊ ³ 100.0₊ ³ 100.0₊ ³ 100.0₊ ³	Pol₊ V₊ V₊ V₊ V₊	Azimuth↓ (deg)↔ 248.0↔ 103.0↔ 220.0↔ 203.0↔	Corr.↓ (dB/m)← -17.6← -15.7← -19.1← -2.0←	4	
0 3 • Free (N • 3 • 4 • 7 • 82 • 91	Quency↓ 0M MHz) 30.485000 17.169000 74.426000	MaxP (dB IL-1) le ²	/eak↓ V/m)⊮ 19.53₽ 14.67₽ 17.56₽	Fr Limit↓ (dB ዞ 30.00↔ 30.00↔ 30.00↔	equency in Margin↓ (dB)- 10.47- 15.33- 12.44-	Hz Height↓ (cm)₊ ³ 100.0₊ ³ 100.0₊ ³	Pol₊ V₊ V₊ V₊ V₊	Azimuth↓ (deg)↩ 248.0↩ 103.0↩ 220.0↩	Corr.↓ (dB/m)← -17.6← -15.7← -19.1←	4	

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

PHY: 1MHz

			annel: Lowest ch			
		Det	tector: Peak Valu		T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	54.48	-10.39	44.09	74.00	-29.91	Vertical
4804.00	54.23	-10.39	43.84	74.00	-30.16	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	46.41	-10.39	36.02	54.00	-17.98	Vertical
4804.00	46.85	-10.39	36.46	54.00	-17.54	Horizonta
			annel: Middle ch			
		Det	ector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	54.54	-10.14	44.40	74.00	-29.60	Vertical
4884.00	54.40	-10.14	44.26	74.00	-29.74	Horizonta
	-	Dete	ctor: Average Va	lue	-	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	46.12	-10.14	35.98	54.00	-18.02	Vertical
4884.00	46.40	-10.14	36.26	54.00	-17.74	Horizonta
			annel: Highest ch			
_	I -	Det	ector: Peak Valu		·	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	55.03	-9.91	45.12	74.00	-28.88	Vertical
4960.00	54.56	-9.91	44.65	74.00	-29.35	Horizonta
	1	Dete	ctor: Average Va	llue		1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	45.92	-9.91	36.01	54.00	-17.99	Vertical
4960.00	45.86	-9.91	35.95	54.00	-18.05	Horizonta

1. Final Level =Receiver Read level + Factor.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

PHY: 2MHz

		Test ch	annel: Lowest cl	nannel					
			tector: Peak Valu						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	53.84	-10.39	43.45	74.00	-30.55	Vertical			
4804.00	54.58	-10.39	44.19	74.00	-29.81	Horizontal			
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	46.88	-10.39	36.49	54.00	-17.51	Vertical			
4804.00	41.17	-10.39	30.78	54.00	-23.22	Horizontal			
		Test ch	annel: Middle ch	annel					
		De	tector: Peak Valu	le	1	-			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4884.00	53.74	-10.14	43.60	74.00	-30.40	Vertical			
4884.00	54.42	-10.14	44.28	74.00	-29.72	Horizontal			
	-	Dete	ctor: Average Va	alue	T				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4884.00	47.29	-10.14	37.15	54.00	-16.85	Vertical			
4884.00	40.76	-10.14	30.62	54.00	-23.38	Horizontal			
Test channel: Highest channel Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4960.00	53.31	-9.91	43.40	74.00	-30.60	Vertical			
4960.00	54.71	-9.91	44.80	74.00	-29.20	Horizontal			
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4960.00	46.89	-9.91	36.98	54.00	-17.02	Vertical			
4960.00	41.22	-9.91	31.31	54.00	-22.69	Horizontal			
Remark: 1. Final Level =F	Receiver Read level	+ Factor.							

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.