

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde \& Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer Calibration kit	Rohde \& Schwarz ZV-Z235	101223	05/2019	05/2022
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde \& Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H 1	44220687	05/2020	05/2023

Page: 10/10
Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR Reference Dipole Calibration Report

Ref : ACR.60.8.21.MVGB.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 03/15 DIP2G450-352
Calibrated at MVG
Z.I. de la pointe du diable
Technopôle Brest Iroise - 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE
Calibration date: 03/01/2021
Accreditations \#2-6789 and \#2-6814
Scope available on www.cofac.f

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

	Name	Function	Date	Signature
Prepared by：	Jérôme LUC	Technical Manager	$3 / 1 / 2021$	F．5
Checked by ：	Jérôme LUC	Technical Manager	$3 / 1 / 2021$	F．5
Approved by：	Yann Toutain	Laboratory Director	$3 / 1 / 2021$	Cann Toutain
				2021.03 .01
		$13: 13: 40$		
$+0 '^{\prime} 00^{\prime}$				

	Customer Name
	SHENZHEN NTEK
Distribution：	TESTING
	TECHNOLOGY
	CO．，LTD．

Issue	Name	Date	Modifications
A	Jérôme LE GALL	$3 / 1 / 2021$	Initial release

TABLE OF CONTENTS

1 Introduction 4
2 Device Under Test 4
3 Product Description 4
3.1 General Information

\qquad
4
4 Measurement Method 5
4.1 Return Loss Requirements 5
4.2 Mechanical Requirements

\qquad
5 Measurement Uncertainty 5
5.1 Return Loss 5
5.2 Dimension Measurement 5
5.3 Validation Measurement 5
6 Calibration Measurement Results. 6
6.1 Return Loss and Impedance 6
6.2 Mechanical Dimensions

\qquad
6
7 Validation measurement 7
7.1 Measurement Condition 7
7.2 Head Liquid Measurement 7
7.3 Measurement Result

\qquad
8
8 List of Equipment 10

INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528 , FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

Device Under Test	
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID2450
Serial Number	SN 03/15 DIP2G450-352
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

4 MEASUREMENT METHOD

The IEEE 1528 , FCC KDB s and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
$400-6000 \mathrm{MHz}$	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
$0-300$	0.20 mm
$300-450$	0.44 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty

Page: 5/10

1 g	$19 \%(\mathrm{SAR})$
10 g	$19 \%(\mathrm{SAR})$

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		hmm		d mm	
	required	measured	required	measured	required	measured
300	$420.0 \pm 1 \%$.		$250.0 \pm 1 \%$.		$6.35 \pm 1 \%$.	
450	$290.0 \pm 1 \%$.		$166.7 \pm 1 \%$.		$6.35 \pm 1 \%$.	
750	$176.0 \pm 1 \%$.		$100.0 \pm 1 \%$.		$6.35 \pm 1 \%$.	
835	$161.0 \pm 1 \%$.		$89.8 \pm 1 \%$.		$3.6 \pm 1 \%$.	
900	$149.0 \pm 1 \%$.		$83.3 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1450	$89.1 \pm 1 \%$.		$51.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1500	$80.5 \pm 1 \%$.		$50.0 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1640	$79.0 \pm 1 \%$.		$45.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1750	$75.2 \pm 1 \%$.		$42.9 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1800	$72.0 \pm 1 \%$.		$41.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1900	$68.0 \pm 1 \%$.		$39.5 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1950	$66.3 \pm 1 \%$.		$38.5 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2000	$64.5 \pm 1 \%$.		$37.5 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2100	$61.0 \pm 1 \%$.		$35.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2300	$55.5 \pm 1 \%$.		$32.6 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2450	$51.5 \pm 1 \%$.		$30.4 \pm 1 \%$.		$3.6 \pm 1 \%$.	

Page: 6/10

2600	$48.5 \pm 1 \%$.		$28.8 \pm 1 \%$.		$3.6 \pm 1 \%$.	
3000	$41.5 \pm 1 \%$.		$25.0 \pm 1 \%$.		$3.6 \pm 1 \%$.	
3500	$37.0 \pm 1 \%$.		$26.4 \pm 1 \%$.		$3.6 \pm 1 \%$.	
3700	$34.7 \pm 1 \%$.		$26.4 \pm 1 \%$.		$3.6 \pm 1 \%$.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.
7.1 MEASUREMENT CONDITION

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' $: 41.9$ sigma $: 1.88$
Distance between dipole center and liquid	10.0 mm
Area scan resolution	$\mathrm{dx}=8 \mathrm{~mm} / \mathrm{dy}=8 \mathrm{~mm}$
Zoon Scan Resolution	$\mathrm{dx}=5 \mathrm{~mm} / \mathrm{dy}=5 \mathrm{~mm} / \mathrm{dz}=5 \mathrm{~mm}$
Frequency	24502450 MHz
Input power	20 dBm
Liquid Temperature	$20+/-1{ }^{\circ} \mathrm{C}$
Lab Temperature	$20+/-1{ }^{\circ} \mathrm{C}$
Lab Humidity	$30-70 \%$

7.2 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity $\left(\varepsilon_{r}^{\prime}\right)$		Conductivity (σ) S/m	
	required	measured	required	measured
300	$45.3 \pm 10 \%$		$0.87 \pm 10 \%$	
450	$43.5 \pm 10 \%$		$0.87 \pm 10 \%$	
750	$41.9 \pm 10 \%$		$0.89 \pm 10 \%$	
835	$41.5 \pm 10 \%$		$0.90 \pm 10 \%$	
900	$41.5 \pm 10 \%$		$0.97 \pm 10 \%$	
1450	$40.5 \pm 10 \%$		$1.20 \pm 10 \%$	
1500	$40.4 \pm 10 \%$		$1.23 \pm 10 \%$	
1640	$40.2 \pm 10 \%$		$1.31 \pm 10 \%$	
1750	$40.1 \pm 10 \%$		$1.37 \pm 10 \%$	
1800	$40.0 \pm 10 \%$		$1.40 \pm 10 \%$	
1900	$40.0 \pm 10 \%$		$1.40 \pm 10 \%$	
1950	$40.0 \pm 10 \%$		$1.40 \pm 10 \%$	
2000	$40.0 \pm 10 \%$		$1.40 \pm 10 \%$	

Page: 7/10

2100	$39.8 \pm 10 \%$		$1.49 \pm 10 \%$	
2300	$39.5 \pm 10 \%$		$1.67 \pm 10 \%$	
2450	$39.2 \pm 10 \%$	41.9	$1.80 \pm 10 \%$	1.88
2600	$39.0 \pm 10 \%$		$1.96 \pm 10 \%$	
3000	$38.5 \pm 10 \%$		$2.40 \pm 10 \%$	
3500	$37.9 \pm 10 \%$		$2.91 \pm 10 \%$	

7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

$\begin{gathered} \text { Frequency } \\ \mathrm{MHz} \\ \hline \end{gathered}$	$1 \mathrm{~g} \mathrm{SAR}(\mathrm{W} / \mathrm{kg} / \mathrm{W})$		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.69 (5.37)	24	23.94 (2.39)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 9/10

8 LIST OF EQUIPMENT

Equipment Summary Sheet

Equipment Description	Manufacturer Model	Identification No．	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN－13／09－SAM68	Validated．No cal required．	Validated．No cal required．
COMOSAR Test Bench	Version 3	NA	Validated．No cal required．	Validated．No cal required．
Network Analyzer	Rohde \＆Schwarz ZVM	100203	05／2019	05／2022
Network Analyzer－ Calibration kit	Rohde \＆Schwarz ZV－Z235	101223	05／2019	05／2022
Calipers	Mitutoyo	SN 0009732	10／2019	10／2022
Reference Probe	MVG	EPGO333 SN 41／18	05／2020	05／2021
Multimeter	Keithley 2000	1160271	02／2020	02／2023
Signal Generator	Rohde \＆Schwarz SMB	106589	04／2019	04／2022
Amplifier	Aethercomm	SN 046	Characterized prior to test．No cal required．	Characterized prior to test．No cal required．
Power Meter	NI－USB 5680	170100013	05／2019	05／2022
Directional Coupler	Narda 4216－20	01386	Characterized prior to test．No cal required．	Characterized prior to test．No cal required．
Temperature／Humidity Sensor	Testo 184 H 1	44220687	05／2020	05／2023

Page：10／10

SAR Reference Dipole Calibration Report

Ref ：ACR．60．9．21．MVGB．A

SHENZHEN NTEK TESTING TECHNOLOGY CO．，LTD．

BUILDING E，FENDA SCIENCE PARK，SANWEI COMMUNITY，XIXIANG STREET， BAO＇AN DISTRICT，SHENZHEN GUANGDONG，CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY： 2600 MHZ SERIAL NO．：SN 03／15 DIP2G600－356

Summary：

This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG，using the COMOSAR test bench．The test results covered by accreditation are traceable to the International System of Units（SI）．

	Name	Function	Date	Signature
Prepared by：	Jérôme Luc	Technical Manager	$3 / 1 / 2021$	万5
Checked by：	Jérôme Luc	Technical Manager	$3 / 1 / 2021$	万5
Approved by：	Yann Toutain	Laboratory Director	$3 / 1 / 2021$	Cann Toutain
		2021．03．01		

	Customer Name
	SHENZHEN NTEK
Distribution：	TESTING
	TECHNOLOGY
	CO．，LTD．

Issue	Name	Date	Modifications
A	Jérôme Luc	$3 / 1 / 2021$	Initial release

TABLE OF CONTENTS

1 Introduction. 4
2 Device Under Test 4
3 Product Description 4
3.1 General Information

\qquad
4
4 Measurement Method 5
4.1 Return Loss Requirements - 5
4.2 Mechanical Requirements

\qquad
5
5 Measurement Uncertainty 5
5.1 Return Loss 5
5.2 Dimension Measurement 5
5.3 Validation Measurement 5
6 Calibration Measurement Results.6
6.1 Return Loss and Impedance 6
6.2 Mechanical Dimensions

\qquad
6
7 Validation measurement 7
7.1 Measurement Condition 7
7.2 Head Liquid Measurement 7
7.3 Measurement Result

\qquad
8
8 List of Equipment 10

1
 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528 , FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

Device Under Test	
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID2600
Serial Number	SN 03/15 DIP2G600-356
Product Condition (new / used)	Used

3
PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 -MVG COMOSAR Validation Dipole

4 MEASUREMENT METHOD

The IEEE 1528 , FCC KDBs and $\mathrm{CEI} / \mathrm{IEC} 62209$ standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
$400-6000 \mathrm{MHz}$	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
$0-300$	0.20 mm
$300-450$	0.44 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

> Scan Volume

Expanded Uncertainty

Page: 5/10
Template_ACR.DDD.N.YY.MV GB.ISSUE_SAR Reference Dipole $v G$ only for the puppose for which it is submitted and is not to be released in whole or part without written approval of MVG

SAR REFERENCE DIPOLE CALIBRATION REPORT
Ref: ACR.60.9.21 MVGB.A

1 g	$19 \%(\mathrm{SAR})$
10 g	$19 \%(\mathrm{SAR})$

6 CALIBRATION MEASUREMENT RESULTS
6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		hmm		d mm	
	required	measured	required	measured	required	measured
	$420.0 \pm 1 \%$.		$250.0 \pm 1 \%$.		$6.35 \pm 1 \%$.	
450	$290.0 \pm 1 \%$.		$166.7 \pm 1 \%$.		$6.35 \pm 1 \%$.	
750	$176.0 \pm 1 \%$.		$100.0 \pm 1 \%$.		$6.35 \pm 1 \%$.	
835	$161.0 \pm 1 \%$.		$89.8 \pm 1 \%$.		$3.6 \pm 1 \%$.	
900	$149.0 \pm 1 \%$.		$83.3 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1450	$89.1 \pm 1 \%$.		$51.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1500	$80.5 \pm 1 \%$.		$50.0 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1640	$79.0 \pm 1 \%$.		$45.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1750	$75.2 \pm 1 \%$.		$42.9 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1800	$72.0 \pm 1 \%$.		$41.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1900	$68.0 \pm 1 \%$.		$39.5 \pm 1 \%$.		$3.6 \pm 1 \%$.	
1950	$66.3 \pm 1 \%$.		$38.5 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2000	$64.5 \pm 1 \%$.		$37.5 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2100	$61.0 \pm 1 \%$.		$35.7 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2300	$55.5 \pm 1 \%$.		$32.6 \pm 1 \%$.		$3.6 \pm 1 \%$.	
2450	$51.5 \pm 1 \%$.		$30.4 \pm 1 \%$.		$3.6 \pm 1 \%$.	

Page: 6/10
Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the puppose for which it is submitted and is not to be released in whole or part without written approval of MVG.

辛ac-mRA

2600	$48.5 \pm 1 \%$.	-	$28.8 \pm 1 \%$.	-	$3.6 \pm 1 \%$.	-
3000	$41.5 \pm 1 \%$.		$25.0 \pm 1 \%$.		$3.6 \pm 1 \%$.	
3500	$37.0 \pm 1 \%$.		$26.4 \pm 1 \%$.		$3.6 \pm 1 \%$.	
3700	$34.7 \pm 1 \%$.		$26.4 \pm 1 \%$.		$3.6 \pm 1 \%$.	

7 VALIDATION MEASUREMENT

The IEEE Std. $1528, \mathrm{FCC} \mathrm{KDBs}$ and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.
7.1 MEASUREMENT CONDITION

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' $: 41.5$ sigma : 2.03
Distance between dipole center and liquid	10.0 mm
Area scan resolution	$\mathrm{dx}=8 \mathrm{~mm} / \mathrm{dy}=8 \mathrm{~mm}$
Zoon Scan Resolution	$\mathrm{dx}=5 \mathrm{~mm} / \mathrm{dy}=5 \mathrm{~mm} / \mathrm{dz}=5 \mathrm{~mm}$
Frequency	26002600 MHz
Input power	20 dBm
Liquid Temperature	$20+/-1{ }^{\circ} \mathrm{C}$
Lab Temperature	$20+/-1{ }^{\circ} \mathrm{C}$
Lab Humidity	$30-70 \%$

7.2 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity $\left(\varepsilon_{r}{ }^{\prime}\right)$		Conductivity $(\sigma) \mathrm{S} / \mathrm{m}$	
	required	measured	required	measured
300	$45.3 \pm 10 \%$		$0.87 \pm 10 \%$	
450	$43.5 \pm 10 \%$		$0.87 \pm 10 \%$	
750	$41.9 \pm 10 \%$		$0.89 \pm 10 \%$	
835	$41.5 \pm 10 \%$		$0.90 \pm 10 \%$	
900	$41.5 \pm 10 \%$		$0.97 \pm 10 \%$	
1450	$40.5 \pm 10 \%$		$1.20 \pm 10 \%$	
1500	$40.4 \pm 10 \%$		$1.23 \pm 10 \%$	
1640	$40.2 \pm 10 \%$		$1.31 \pm 10 \%$	
1750	$40.1 \pm 10 \%$		$1.37 \pm 10 \%$	
1800	$40.0 \pm 10 \%$		$1.40 \pm 10 \%$	
1900	$40.0 \pm 10 \%$		$1.40 \pm 10 \%$	
1950	$40.0 \pm 10 \%$		$1.40 \pm 10 \%$	
2000	$40.0 \pm 10 \%$		$1.40 \pm 10 \%$	

Page: 7/10

2100	$39.8 \pm 10 \%$		$1.49 \pm 10 \%$	
2300	$39.5 \pm 10 \%$		$1.67 \pm 10 \%$	
2450	$39.2 \pm 10 \%$		$1.80 \pm 10 \%$	
2600	$39.0 \pm 10 \%$	41.5	$1.96 \pm 10 \%$	2.03
3000	$38.5 \pm 10 \%$		$2.40 \pm 10 \%$	
3500	$37.9 \pm 10 \%$		$2.91 \pm 10 \%$	

7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 g SAR (W/kg/W)		$10 \mathrm{~g} \mathrm{SAR}(\mathrm{W} / \mathrm{kg} / \mathrm{W})$	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3	55.83 (5.58)	24.6	24.19 (2.42)
3000	63.8		25.7	
3500	67.1		25	

Page：9／10

8 LIST OF EQUIPMENT

Equipment Summary Sheet

Equipment Description	Manufacturer／ Model	Identification No．	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN－13／09－SAM68	Validated．No cal required．	Validated．No cal required．
COMOSAR Test Bench	Version 3	NA	Validated．No cal required．	Validated．No ca required．
Network Analyzer	Rohde \＆Schwarz ZVM	100203	05／2019	05／2022
Network Analyzer－ Calibration kit	Rohde \＆Schwarz ZV－Z235	101223	05／2019	05／2022
Calipers	Mitutoyo	SN 0009732	10／2019	10／2022
Reference Probe	MVG	EPGO333 SN 41／18	05／2020	05／2021
Multimeter	Keithley 2000	1160271	02／2020	02／2023
Signal Generator	Rohde \＆Schwarz SMB	106589	04／2019	04／2022
Amplifier	Aethercomm	SN 046	Characterized prior to test．No cal required．	Characterized prior to test．No cal required．
Power Meter	NI－USB 5680	170100013	05／2019	05／2022
Directional Coupler	Narda 4216－20	01386	Characterized prior to test．No cal required．	Characterized prior to test．No cal required．
Temperature／Humidity Sensor	Testo 184 H 1	44220687	05／2020	05／2023

SAR Reference Waveguide Calibration Report

Ref : ACR.60.10.21.MVGB.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA SATIMO COMOSAR REFERENCE WAVEGUIDE FREQUENCY: 5000-6000 MHZ
SERIAL NO.: SN 13/14 WGA33

Summary:

This document presents the method and results from an accredited SAR reference waveguide calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	3/1/2021	FS5
Checked by :	Jérôme Luc	Technical Manager	3/1/2021	
Approved by :	Yann Toutain	Laboratory Director	3/1/2021	en Toutain

	Customer Name
	SHENZHEN NTEK
Distribution:	TESTING
	TECHNOLOGY
	CO., LTD.

Issue	Name	Date	Modifications
A	Jérôme Luc	$3 / 1 / 2021$	Initial release

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT
Ref. ACR. 60.10 .21 MVGB.A

TABLE OF CONTENTS

1 Introduction. 4
2 Device Under Test 4
3 Product Description 4
3.1 General Information

\qquad
4
4 Measurement Method 4
4.1 Return Loss Requirements 4
4.2 Mechanical Requirements

\qquad 4
5 Measurement Uncertainty 5
5.1 Return Loss 5
5.2 Dimension Measurement 5
5.3 Validation Measurement 5
6 Calibration Measurement Results 5
6.1 Return Loss 5
6.2 Mechanical Dimensions

\qquad
6
7 Validation measurement 6
7.1 Head Liquid Measurement 8
7.2 Measurement Result 8
8 List of Equipment 11

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528 and CEI／IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards．

2
DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 5000－6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 13／14 WGA33
Product Condition（new／used）	Used

3
PRODUCT DESCRIPTION

3．1 GENERAL INFORMATION

MVG＇s COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI／IEC 62209 standards．

4 MEASUREMENT METHOD

The IEEE 1528 and CEI／IEC 62209 standards provide requirements for reference waveguides used for system validation measurements．The following measurements were performed to verify that the product complies with the fore mentioned standards．

4．1 RETURN LOSS REQUIREMENTS

The waveguide used for SAR system validation measurements and checks must have a return loss of -8 dB or better．The return loss measurement shall be performed with matching layer placed in the open end of the waveguide，with the waveguide and matching layer in direct contact with the phantom shell as outlined in the fore mentioned standards．A direct method is used with a network analyser and its calibration kit，both with a valid ISO17025 calibration．

4．2 MECHANICAL REQUIREMENTS

The IEEE 1528 and CEI／IEC 62209 standards specify the mechanical dimensions of the validation waveguide，the specified dimensions are as shown in Section 6．2．Figure 1 shows how the dimensions relate to the physical construction of the waveguide．A direct method is used with a ISO17025 calibrated caliper．

5

MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
$400-6000 \mathrm{MHz}$	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
$0-300$	0.20 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	$19 \%(\mathrm{SAR})$
10 g	$19 \%(\mathrm{SAR})$

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS

Page: 5/11
Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide $v G$
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT
Ref. ACR. 60.10 .21 MVGB.A

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-9.15	-8	$21.17 \Omega+13.26 \mathrm{j} \Omega$
5400	-13.75	-8	$68.57 \Omega+6.68 \mathrm{j} \Omega$
5600	-16.65	-8	$35.76 \Omega-2.15 \mathrm{j} \Omega$
5800	-14.30	-8	$54.74 \Omega+18.27 \mathrm{j} \Omega$

6.2 MECHANICAL DIMENSIONS

Frequency (MHz)	L (mm)		W (mm)		Lf $(\mathbf{m m})$		Wf $(\mathbf{m m})$	
	Required	Measured	Required	Measured	Required	Measured	Required	Measured
5800	$40.39 \pm$	-	$20.19 \pm$	-	$81.03 \pm$	-	$61.98 \pm$	-
	0.13	-	0.13	-	0.13		0.13	

Figure 1: Validation Waveguide Dimensions

7 VALIDATION MEASUREMENT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT
Ref: ACR. 60.10 .21 MVGB.A

Measurement Condition

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values 5200 MHz : eps' : 34.06 sigma : 4.70 Head Liquid Values 5400 MHz : eps' : 33.39 sigma : 4.91 Head Liquid Values 5600 MHz : eps 7 sigma : 5.13 0 sigma : 5.34
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	$\mathrm{dx}=8 \mathrm{~mm} / \mathrm{dy}=8 \mathrm{~mm}$
Zoon Scan Resolution	$\mathrm{dx}=4 \mathrm{~mm} / \mathrm{dy}=4 \mathrm{~m} / \mathrm{dz}=2 \mathrm{~mm}$
Frequency	$\begin{aligned} & 5200 \mathrm{MHz} \\ & 5400 \mathrm{MHz} \\ & 5600 \mathrm{MHz} \\ & 5800 \mathrm{MHz} \\ & \hline \end{aligned}$
Input power	20 dBm
Liquid Temperature	$20+/-1{ }^{\circ} \mathrm{C}$
Lab Temperature	$20+/-1{ }^{\circ} \mathrm{C}$
Lab Humidity	30-70 \%

7．1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity（ $\left.\varepsilon_{r}{ }^{\prime}\right)$		Conductivity（ σ ）s／m	
	required	measured	required	measured
5000	$36.2 \pm 10 \%$		$4.45 \pm 10 \%$	
5100	$36.1 \pm 10 \%$		$4.56 \pm 10 \%$	
5200	$36.0 \pm 10 \%$	34.06	$4.66 \pm 10 \%$	4.70
5300	$35.9 \pm 10 \%$		$4.76 \pm 10 \%$	
5400	$35.8 \pm 10 \%$	33.39	$4.86 \pm 10 \%$	4.91
5500	$35.6 \pm 10 \%$		$4.97 \pm 10 \%$	
5600	$35.5 \pm 10 \%$	32.77	$5.07 \pm 10 \%$	5.13
5700	$35.4 \pm 10 \%$		$5.17 \pm 10 \%$	
5800	$35.3 \pm 10 \%$	32.40	$5.27 \pm 10 \%$	5.34
5900	$35.2 \pm 10 \%$		$5.38 \pm 10 \%$	
6000	$35.1 \pm 10 \%$		$5.48 \pm 10 \%$	

7．2 MEASUREMENT RESULT

At those frequencies，the target SAR value can not be generic．Hereunder is the target SAR value defined by Satimo，within the uncertainty for the system validation．All SAR values are normalized to 1 W net power．In bracket，the measured SAR is given with the used input power．

Frequency（MHz）	$1 \mathrm{~g} \operatorname{SAR}(\mathrm{~W} / \mathrm{kg})$		10 g SAR $(\mathrm{W} / \mathrm{kg})$	
	required	measured	required	measured
5200	159.00	$162.34(16.23)$	56.90	$55.42(5.54)$
5400	166.40	$168.48(16.85)$	58.43	$57.03(5.70)$
5600	173.80	$174.92(17.49)$	59.97	$58.63(5.86)$
5800	181.20	$178.89(17.89)$	61.50	$59.32(5.93)$

SAR MEASUREMENT PLOTS @ 5200 MHz

SAR MEASUREMENT PLOTS @ 5400 MHz

SAR MEASUREMENT PLOTS @ 5600 MHz

Page: 9/11

SAR MEASUREMENT PLOTS＠ 5800 MHz

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT
Ref. ACR.60.10.21.MVGB.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde \& Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer Calibration kit	Rohde \& Schwarz ZV-Z235	101223	05/2019	05/2022
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde \& Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H 1	44220687	05/2020	05/2023

Page: 11/11

ACCREDITEDPage 234 of 241

<Justification of the extended calibration>

If dipoles are verified in return loss ($<-20 \mathrm{~dB}$, within 20% of prior calibration for below 3 GHz , and $<-8 \mathrm{~dB}$, within 20% of prior calibration for 5 GHz to 6 GHz), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.
<Head 750MHz>

Return Loss (dB)	Delta (\%)	Impedance	Delta(ohm)	Date of Measurement
-23.80	-	56.4	-	Mar. 01, 2021
-23.642	0.66	56.998	0.598	Feb. 28, 2022

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

＜Head 835MHz＞

Return Loss（dB）	Delta（\％）	Impedance	Delta（ohm）	Date of Measurement
-25.44	-	54.40	-	Mar．01，2021
-25.803	1.43	54.492	0.092	Feb．28，2022

The return loss is $<-20 \mathrm{~dB}$ ，within 20% of prior calibration；the impedance is within 5 ohm of prior calibration．Therefore the verification result should support extended calibration．

＜Head 1800MHz＞

Return Loss（dB）	Delta（\％）	Impedance	Delta（ohm）	Date of Measurement
-28.85	-	47.90	-	Mar．01，2021
-28.545	1.06	47.809	0.091	Feb．28，2022

The return loss is $<-20 \mathrm{~dB}$ ，within 20% of prior calibration；the impedance is within 5 ohm of prior calibration．Therefore the verification result should support extended calibration．

Dipole Verification Data

<Head 1900MHz>

Return Loss (dB)	Delta (\%)	Impedance	Delta(ohm)	Date of Measurement
-24.79	-	50.80	-	Mar. 01, 2021
-24.518	1.10	50.516	0.284	Feb. 28, 2022

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

＜Head 2450MHz＞

Return Loss（dB）	Delta（\％）	Impedance	Delta（ohm）	Date of Measurement
-23.18	-	56.30	-	Mar．01，2021
-23.39	0.91	56.342	0.042	Feb．28，2022

The return loss is $<-20 \mathrm{~dB}$ ，within 20% of prior calibration；the impedance is within 5 ohm of prior calibration．Therefore the verification result should support extended calibration．

<Head 2600MHz>

Return Loss (dB)	Delta (\%)	Impedance	Delta(ohm)	Date of Measurement
-21.15	-	52.70	-	Mar. 01, 2021
-21.248	0.46	53.053	0.353	Feb. 28, 2022

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data

(8)
<Head 5200MHz>

Return Loss (dB)	Delta (\%)	Impedance	Delta(ohm)	Date of Measurement
-9.15	-	21.17	-	Mar. 01, 2021
-9.1819	0.35	21.191	0.021	Feb. 28, 2022

The return loss is $<-8 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data

<Head 5800MHz>

Return Loss (dB)	Delta (\%)	Impedance	Delta(ohm)	Date of Measurement
-14.30	-	54.74	-	Mar. 01, 2021
-14.349	0.34	55.115	0.375	Feb. 28, 2022

The return loss is $<-8 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data

END

