

Report No: JYTSZB-R01-2100171

FCC REPORT

Applicant: SWAGTEK			
Address of Applicant:	10205 NW 19th Street, STE 101, Miami, FL33172, USA		
Equipment Under Test (E	EUT)		
Product Name:	6.3 inch 4G Smart Phone		
Model No.:	L63, ACTIV, N63		
Trade mark:	LOGIC, iSWAG, UNONU		
FCC ID:	O55630521		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B		
Date of sample receipt:	15 Apr., 2021		
Date of Test:	15 Apr., to 04 Jun, 2021		
Date of report issued:	07 Jun., 2021		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	07 Jun., 2021	Original

Tested by:

Cavey Chen Test Engineer Winner Thang Project Engineer

07 Jun., 2021 Date:

07 Jun., 2021

Date:

Reviewed by:

Project No.: JYTSZE2104058

3 Contents

		Pag	e
1	С	OVER PAGE	1
2	V	ERSION	2
3	С	ONTENTS	3
4		EST SUMMARY	
-			
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE AND TEST SAMPLES PLANS	5
	5.4	MEASUREMENT UNCERTAINTY	6
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	Related Submittal(s) / Grant (s)	
	5.7	DESCRIPTION OF CABLE USED	6
	5.8	Additions to, deviations, or exclusions from the method	
	5.9	LABORATORY FACILITY	
	5.10	LABORATORY LOCATION	
	5.11	Test Instruments list	7
6	Т	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	
	6.2	RADIATED EMISSION	.1
7	Т	EST SETUP PHOTO1	.7
8	Ε	UT CONSTRUCTIONAL DETAILS1	.8

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part 15.107	Pass	
Radiated Emission	Part 15.109 Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: The EUT not applicable of the test item.			
Test Method: ANSI C63.4:2014			

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th Street, STE 101, Miami, FL33172, USA
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th Street, STE 101, Miami, FL33172, USA

5.2 General Description of E.U.T.

Product Name:	6.3 inch 4G Smart Phone		
Model No.:	L63, ACTIV, N63		
Power supply:	Rechargeable Li-ion Battery DC3.8V, 3800mAh		
AC adapter:	Model: HB001-B		
	Input: AC100-240V, 50/60Hz, 0.2A		
	Output: DC 5.0V, 1.5A		
Remark:	The Model No.: L63, ACTIV, N63 were identical inside, the electrical circuit design, layout, components used and internal wiring, The only difference between them is as follows:		
	The trademark LOGIC correspond model L63;		
	The trademark iSWAG correspond model ACTIV;		
	The trademark UNONU correspond model N63		
Test Sample Condition:	The test samples were provided in good working order with no visible defects.		

5.3 Test Mode and test samples plans

Detail description		
Keep the EUT in Downloading mode(Worst case)		
Keep the EUT in Charging+Recording mode		
Keep the EUT in Charging+Playing mode		
Keep the EUT in FM receiver mode		
Keep the EUT in GPS receiver mode		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Test Samples Plans :

Samples Number	Used for Test Items	
1#	Conducted Emission	
2#	Radiated Emission	
3#	EUT constructional details	
Remark: JianYan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples,		
and will keep the above samples for a month.		

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR 3M7QPY2		DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.10 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

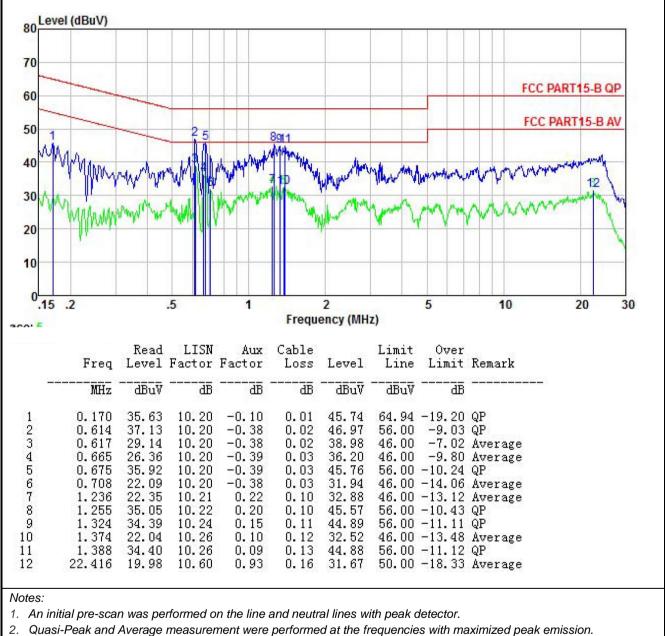
Project No.: JYTSZE2104058

5.11 Test Instruments list

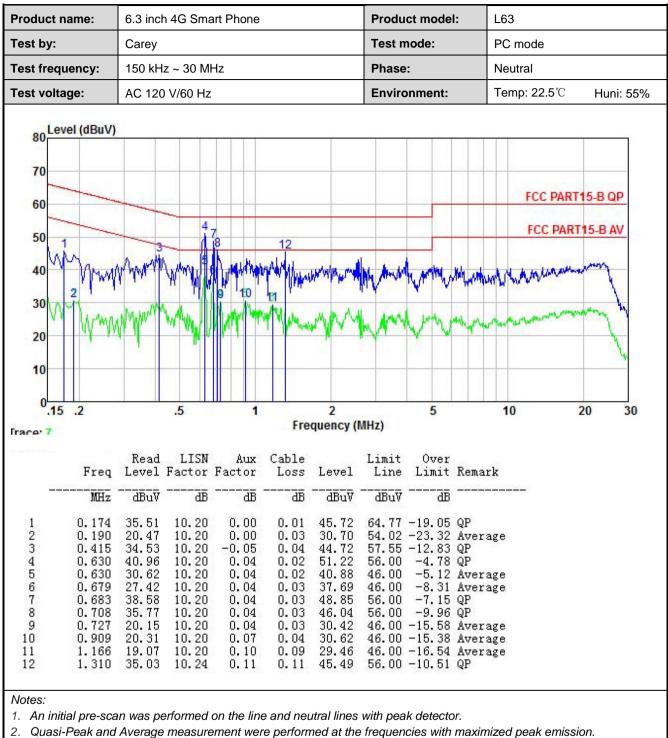
Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022

Conducted Emission:	Conducted Emission:										
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)						
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022						
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022						
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022						
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021						
Cable	HP	10503A	N/A	03-03-2021	03-02-2022						
EMI Test Software	AUDIX	E3	N	/ersion: 6.110919	b						

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)	Limit (dBµV)		
	· · · · · · ·	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5 0.5-30	56 60	46 50	
	* Decreases with the logarithm		50	
Test setup:	Reference Plane			
Test procedure		EMI Receiver		
	 The E.O.T and simulators are impedance stabilization netw coupling impedance for the r The peripheral devices are a LISN that provides a 50ohm/ termination. (Please refers to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.4(Ia) 	vork(L.I.S.N.). The prov neasuring equipment. Iso connected to the m '50uH coupling impeda the block diagram of t checked for maximum d the maximum emissi a all of the interface cal	ide a 50ohm/50uH nain power through a nce with 50ohm the test setup and conducted on, the relative oles must be changed	
Test Instruments:	Refer to section 5.11 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			


Measurement data:

Product name:	6.3 inch 4G Smart Phone	Product model:	L63
Test by:	Carey	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

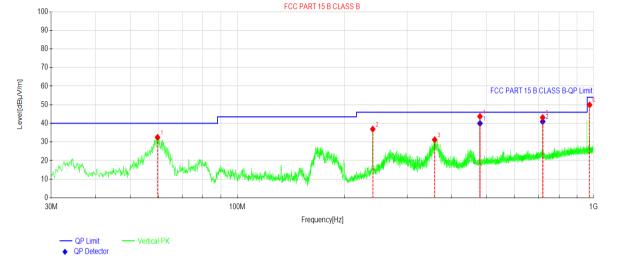
3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Se	ection 15.109	9				
Test Frequency Range:	30MHz to 6000MH	Hz					
Test site:	Measurement Dis	tance: 3m (S	Sem	i-Anechoic (Chamber)		
Receiver setup:	Frequency	Detector	r	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-pea		120kHz 300kH		Quasi-peak Value	
		Peak		1MHz	3MHz	Peak Value	
	Above 1GHz	RMS		1MHz	3MHz	Average Value	
Limit:	Frequenc	y	Lim	nit (dBuV/m	@3m)	Remark	
	30MHz-88MHz		40.0			Quasi-peak Value	
	88MHz-216MHz			43.5		Quasi-peak Value	
	216MHz-960MHz			46.0		Quasi-peak Value	
	960MHz-1G	GHz		54.0		Quasi-peak Value	
	41			54.0		Average Value	
	Above 1G	HZ		74.0		Peak Value	
Test setup:	Below 1GHz	4m 4m •		RFT			
		EUT		Horn Antenna Horn Antenna	Antenna Tower		
Test Procedure:	ground at a 3 m degrees to dete 2. The EUT was s which was mou 3. The antenna he ground to deter	neter semi-a ermine the p set 3 meters unted on the eight is varie rmine the ma	anec oositi awa top ed fro axim	hoic camber on of the hig ay from the in of a variable om one mete num value of	The table ghest radiat nterference height an er to four m the field st	e-receiving antenna, tenna tower. leters above the	

Project No.: JYTSZE2104058



	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Belefi Terrei			
Product Name:	6.3 inch 4G Smart Phone	Product Model:	L63
Test By:	Carey	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.∉	Freq.↩ [MHz]↩	Reading[<u>d</u> BµV/m]∂	Level⊌ [dBµV/m]⊮	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]∉	Polarity₀
1 @	59.6850₽	49.65₽	32.45 ₽	-17.20 ₽	40.00₽	7.55₽	Vertical.
2₽	240.026	52.75₽	36.89₽	-15.86 ₽	46.00₽	9.11₽	Vertical
3₽	358.183	44.00⊷	31.17₽	-12.83 ₽	46.00₽	14.83₽	Vertical
4 ₽	480.028	53.96 ₽	43.73₽	-10.23₽	46.00₽	2.27₽	Vertical
5₽	720.030	50.09 ₽	43.13₽	- <mark>6.96</mark> ₽	46.00₽	2.87₽	Vertical.
6 ₽	975.068	53.15 ₽	49.93 ₽	-3.22 ₽	54.00₽	4.07⊷	Verticale •

Final	Data List∉							4
NO.∉	Freq.⊬	Factor.	QP Value⊌	QP Limit⊬	QP Margin⊮	QP Reading⊮	Angle⊬	Verdict∂
NO.«	[MHz]∂	[dB]∉	[dBµV/m]∂	[dBµV/m]∂	[dB]∉	[dBµV/m]∂	[°]@	verdicte
1₽	480.028	-10.23 ₽	39.96 ₽	<mark>46.00</mark> ₽	<mark>6.04</mark> ₽	50.19 ₽	127₽	PASS~
2⊷	720.030	- 6.96 @	40 .95⊷	46.00 ₊ ^₀	<mark>5.05</mark> ₽	47.91 ₽	198 ₽	PASS~

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

		e: 6.3	6.3 inch 4G Smart Phone Carey					Product Model:			L63					
est By	/:	Ca	rey					Test m	ode:		PC m	ode				
est Fr	equend	;y: 30	MHz ~ 1 GH	Ηz				Polarization:		:	Horizontal			Horizontal		
est Vo	AC 120/60Hz					Environment:			t:	Temp: 24℃ Huni: 57%						
	100 90				F	CC PART 15 E	3 CLASS B									
_evel[dBµV/m]	80 70 60 50										FCC PAR	T 15 B CLASS E	3-QP Limit _e			
_evel[d	40							2		•		¢ ⁵				
-	30							dand •								
	20		muniter			, Jan	ANALAN AN		ALC: NO		telefores					
	10 +v//v/1	an a	and a state of the	her-Honorensistens julie was	not a state of the	nilt.										
	30M			100M					1				1G			
	•	QP Limit - QP Detector	— Horizontal PK			Frequenc	y[Hz]									
	NO.«	QP Detector	Reading BuV/m	n]∂ [dBi	evel⊬ uV/m]₽	Fac [dE	tor⊷ 3]⊷	Lim [dBµV	//m]∘	Margir [dB]∉	,	Polari	-			
	1 e	 QP Detector Freq [MHz] 166.007 	Reading BuV/m 40.45	n]∞ [dBµ i∞ 21	.¥/m]∘ .47₽	Fac [dE -18.	tor⊬ 3]₽ 98₽	[dBµV 43.5	//m]∂ 50₽	[dB] 22.03	e l	Horizor	ntale '			
	1₽ 2₽	 QP Detector Freq [MHz] 166.007 240.026 	Reading BuV/m 40.45 53.79	n] [dB] ie 21 ie 37	. <mark>.47</mark> ₽ 47₽ 93₽	Fac [dE -18. -15.	tor⊬ 3]₽ 98₽ 86₽	[dBµV 43.5 46.0	//m]∂ 50₽)0₽	[dB]∉ 22.03 8.07∉	0 40 50	Horizor Horizor	ntale ntale			
	1₽ 2₽ 3₽	 QP Detector Freq.← [MHz] 166.007 240.026 288.724 	Reading BuV/m 40.45 53.79 41.45	ו <mark>ויי [dB]</mark> וויי 21 וויי 37 וויי 27	. <u>47</u> ₽ . <u>47₽</u> . <u>93₽</u> .16₽	Fac [dE -18. -15. -14.	tor.⊬ 3]≓ 98.₽ 86.₽ 29.₽	[dBµV 43.5 46.0 46.0	//m]₽ 50₽)0₽)0₽	[dB] 22.03 8.07∉ 18.84	, , , ,	Horizon Horizon Horizon	ntal⊷ ntal⊷ ntal⊷			
	1₽ 2₽	 QP Detector Freq [MHz] 166.007 240.026 	Reading BuV/m 40.45 53.79 41.45 58.59	il ^a [dBj ila 21 ila 37 ila 27 ila 48	. <mark>.47</mark> ₽ 47₽ 93₽	Fac [dE -18. -15.	tor⊬ 3]⊅ 98₽ 86₽ 29₽ 23₽	[dBµV 43.5 46.0	//m]# 50#)0#)0#)0#	[dB]∉ 22.03 8.07∉	4) 4) 4) 4) 4) 4)	Horizor Horizor	ntale ntale ntale			
	1₽ 2₽ 3₽ 4₽	 QP Detector Freq. ← [MHz] ← 166.007 240.026 288.724 480.028 	Reading BuV/m 40.45 53.79 41.45 58.59 47.13	ו]לי [dBı גם 21 גם 37 גם 27 גם 48 גם 40	.47₽ .93₽ .16₽ .36₽	Fac [dE -18. -15. -14. -14.	tor.⊎ 3]⊒ 98+⊒ 86+⊒ 29+⊒ 23+⊒ 23+⊒ 96+⊒	[dBµV 43.5 46.0 46.0 46.0	//m]+ 50+)0+)0+)0+)0+)0+	[dB] 22.03 8.07 18.84 -2.36	a	Horizon Horizon Horizon Horizon	<u>ntal</u> ⊷ ntal⊷ ntal⊷ ntal⊷ ntal⊷			
	1.0 2.0 3.0 4.0 5.0 6.0	 QP Detector Freq. ← [MHz] 166.007 240.026 288.724 480.028 720.030 975.068 	Reading BuV/m 40.45 53.79 41.45 58.59 47.13	ו]לי [dBı גם 21 גם 37 גם 27 גם 48 גם 40	.47₽ .93₽ .16₽ .36₽ .17₽	Fac [dE -18. -15. -14. -10. -6.9	tor.⊎ 3]⊒ 98+⊒ 86+⊒ 29+⊒ 23+⊒ 23+⊒ 96+⊒	[dBµV 43.5 46.0 46.0 46.0 46.0	//m]+ 50+)0+)0+)0+)0+)0+	[dB] 22.03 8.07+ 18.84 -2.36 5.83+	a	Horizon Horizon Horizon Horizon Horizon	<u>ntal</u> ⊷ ntal⊷ ntal⊷ ntal⊷ ntal⊷			
	1.0 2.0 3.0 4.0 5.0 6.0	 QP Detector Freq. ← [MHz] 166.007 240.026 288.724 480.028 720.030 975.068 	Reading BuV/m 40.45 53.79 41.45 58.59 47.13 56.75	ו]ש [dBı וש 21 וש 37 וש 27 וש 48 וש 40 וש 53	1V/m]= .47= .93= .16= .36= .17= .53=	Fac [dE -18. -15. -14. -10. -6.9 -3.2	tor.↓ 3]↓ 98↓ 29↓ 29↓ 23↓ 23↓ 22↓	[dBµV 43.5 46.0 46.0 46.0 54.0	//m]~ 50~)0~)0~)0~)0~)0~	[dB] 22.03 8.07+ 18.84 -2.36 5.83+ 0.47+		Horizon Horizon Horizon Horizon Horizon	<u>ntal</u> ⊷ ntal⊷ ntal⊷ ntal⊷ ntal⊷			
	1.0 2.0 3.0 4.0 5.0 6.0	 QP Detector Freq. ↓ [MHz] 166.007 240.026 288.724 480.028 720.030 975.068 Data List ↓ Freq. ↓ [MHz] ↓	Reading BuV/m 40.45 53.79 41.45 58.59 47.13	ו]לי [dBı גם 21 גם 37 גם 27 גם 48 גם 40	₩/m]₽ <u>.47</u> ₽ <u>.93</u> ₽ <u>.16</u> ₽ <u>.36</u> ₽ <u>.17</u> ₽ <u>.53</u> ₽	Fac [dE -18. -15. -14. -10. -6.9	tor.↓ 3]↓ 98↓ 29↓ 23↓ 23↓ 23↓ 22↓	[dBµV 43.5 46.0 46.0 46.0 46.0	(/m]+ 50+)0+)0+)0+)0+)0+)0+)0+)0+	[dB] 22.03 8.07+ 18.84 -2.36 5.83+	a	Horizon Horizon Horizon Horizon Horizon	<u>ntal</u> ⊷ ntal⊷ ntal⊷ ntal⊷ ntal⊷			
	1.0 2.0 3.0 4.0 5.0 6.0 Final I	 QP Detector Freq.↓ [MHz]↓ 166.007 240.026 288.724 480.028 720.030 975.068 	Reading BuV/m 40.45 53.79 41.45 58.59 47.13 56.75	[dB] ↓ 21 ↓ 37 ↓ 37 ↓ 27 ↓ 48 ↓ 40 ↓ 53 QP Value	₩/m]₽ .47₽ .93₽ .16₽ .36₽ .17₽ .53₽ .53₽ .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Fac [dE -18. -15. -14. -10. -6.9 -3.2	tor 3] 98 29 23 23 23 22 22 22 22 22 22 22	[dBµV 43.5 46.0 46.0 46.0 46.0 54.0	(/m]+ 50+)0+)0+)0+)0+)0+)0+)0+)0+ (dt	[dB] 22.03 8.07+ 18.84 -2.36 5.83+ 0.47+ Reading	Angl	Horizon Horizon Horizon Horizon Horizon	ntale ntale ntale ntale			

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	6.3 inch 4G Smart Phone	Product Model:	L63
Test By:	Carey	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%
100		FCC PART 15 B	
90			
80			FCC PART 15 B-PK Limit
ر 70			
			FCC PART 15 B-AV Limit
ଞ୍ଚି 50			3
¥ 40		n disk and a second a local second	
<u> </u>			
20			
10			
0			
1G	2G	3G	4G 5G 6G

Suspe	ected Data	Liste						
NO.₽	Freq.↩ [MHz]↩	Reading⊬ [dBµV/m]⊮	Level↩ [dBµV/m]↩	Factor⊬ [dB]∉	Limit⊮ [dBµV/m]∛	Margin⊌ [dB]∉	Trace₽	Polarity∉
1 ₽	3406.74	59.01 <i>⊷</i>	46.56↩	-12.45÷	74.00₽	27.44	PK₽	Vertical <i></i> ₽
2 ₽	3437.74	51.19 ₽	39.14₽	-12.05 ₽	54.00↩	14.86 ₽	AV₽	Vertical <i></i> ₽
3₽	4674.86	57.43 ₽	51.42₽	-6.01₽	74.00↩	22.58 ₽	PK₽	Vertical <i></i> ₽
4₽	4687.36	4 9.14⊷	43.10 ₽	-6.04	54.00↩	10.90₽	AV₽	Vertical₽
5₽	5348.43	49.04 ⊷	47.16 ₽	-1.88 ₽	54.00↩	6.84₽	AV⊷	Vertical <i></i> ₽
6₽	5374.43	56.79₽	55.00₽	-1.79₽	74.00↩	19.00 ₽	PK₽	Vertical₽

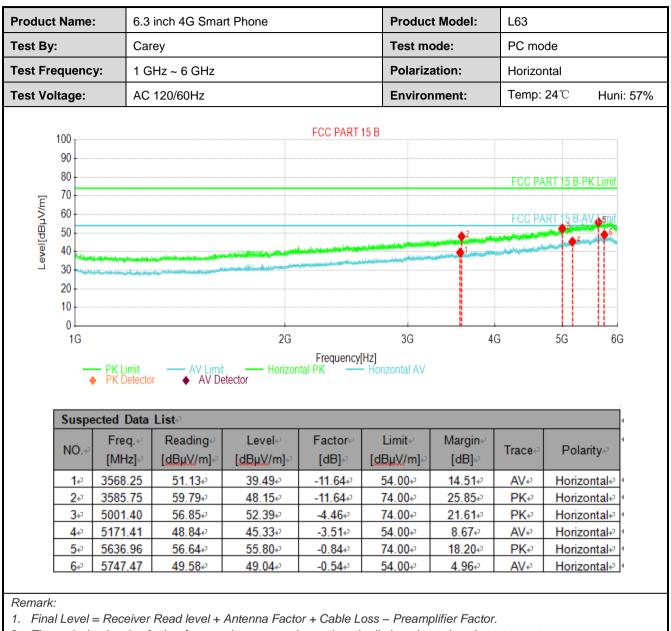
Frequency[Hz]

Vertical AV

- Vertical PK

Remark:

PK Limit PK Detector


٠

AV Detector

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.