

Report No: JYTSZB-R12-2100589

FCC REPORT (Bluetooth)

Applicant:	SWAGTEK
Address of Applicant:	10205 NW 19th Street, STE 101, Miami, FL33172, USA
Equipment Under Test (E	EUT)
Product Name:	6.3 inch 4G Smart Phone
Model No.:	L63, ACTIV, N63
Trade mark:	LOGIC, iSWAG, UNONU
FCC ID:	O55630521
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	15 Apr., 2021
Date of Test:	15 Apr., to 04 Jun, 2021
Date of report issued:	07 Jun., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	07 Jun., 2021	Original

Cavey Chen Test Engineer Winner Mang

Tested by:

07 Jun., 2021 Date:

Reviewed by:

Project Engineer

07 Jun., 2021 Date:

Project No.: JYTSZE2104058

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	-
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T.	-
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY.	
5.8 LABORATORY LOCATION	-
5.9 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED EMISSIONS	-
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH 6.5 CARRIER FREQUENCIES SEPARATION	-
6.5 CARRIER FREQUENCIES SEPARATION	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
6.9 Band Edge	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 SPURIOUS EMISSION 6.10.1 Conducted Emission Method	
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	5.247 (a)(1) Appendix A – BT	
Hopping Channel Number	15.247 (a)(1)	Appendix A – BT	Pass
Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass
Conducted Band Edge	45 005 8 45 000	Appendix A – BT	Pass
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass
Conducted Spurious Emission		Appendix A – BT	Pass
Radiated Spurious Emission	15.247(d)	See Section 6.10.2	Pass
Remark:			

Pass: The EUT complies with the essential requirements in the standard. 1.

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Test Method:	ANSI C63.10-2013
rest method:	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th Street, STE 101, Miami, FL33172, USA
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th Street, STE 101, Miami, FL33172, USA

5.2 General Description of E.U.T.

Product Name:	6.3 inch 4G Smart Phone		
Model No.:	L63, ACTIV, N63		
Operation Frequency:	2402MHz~2480MHz		
Transfer rate:	1/2/3 Mbits/s		
Number of channel:	79		
Modulation type:	GFSK, π/4-DQPSK, 8DPSK		
Modulation technology:	FHSS		
Antenna Type:	Internal Antenna		
Antenna gain:	-0.7 dBi		
Power supply:	Rechargeable Li-ion Battery DC3.8V, 3800mAh		
AC adapter:	Model: HB001-B		
	Input: AC100-240V, 50/60Hz, 0.2A		
	Output: DC 5.0V, 1.5A		
Remark:	The Model No.: L63, ACTIV, N63 were identical inside, the electrical circuit design, layout, components used and internal wiring, The only difference between them is as follows:		
	The trademark LOGIC correspond model L63;		
	The trademark iSWAG correspond model ACTIV;		
	The trademark UNONU correspond model N63		
Test Sample Condition:	The test samples were provided in good working order with no visible defects.		

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19	2421MHz	39	2441MHz	59	2461MHz			
Remark: Channel 0, 39 &78 selected for GFSK, π /4-DQPSK and 8DPSK.								

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark	GFSK (1 Mbps) is the worst case mode.			
Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane				

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	V	ersion: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022	
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021	
Cable	HP	10503A	N/A	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

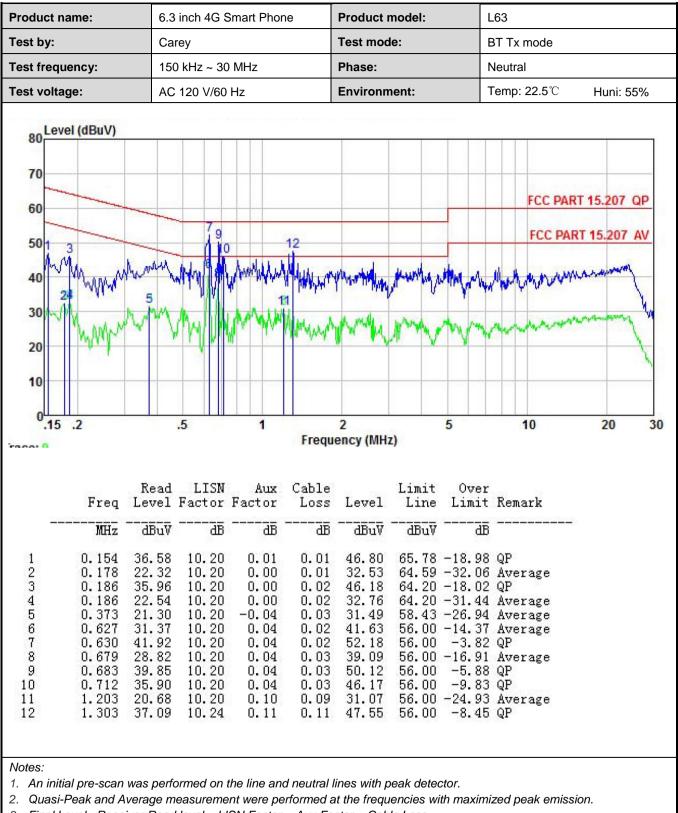
Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	N N	Version: 2.0.0.0	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohit 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. ower limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this unas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Bluetooth antenna is an the antenna is -0.7 dBi.	Internal antenna which permanently attached, and the best case gain of

6.2 Conducted Emissions

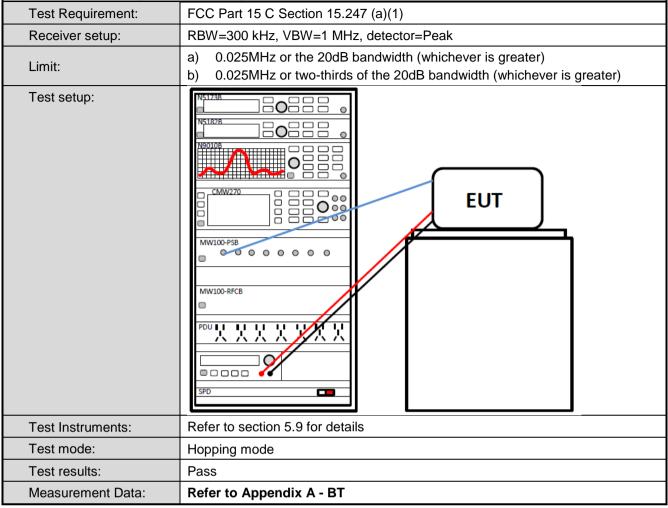

Test Requirement:	FCC Part 15 C Section 15.	207	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz	z, Sweep time=auto	
Limit:	Frequency range (MHz)	Limit (c	dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logari	60 thm of the frequency	50
Test setup:	Reference Pl		
	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Networ Test table height=0.8m		
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipment 	tion network (L.I.S.N.). Th npedance for the measuri	is provides a ng equipment. main power through a lance with 500hm the test setup and n conducted sion, the relative ables must be changed
Test Instruments:	Refer to section 5.9 for det	ails	
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Product name:	6.3 inch 4G Smart Phone		Produ	uct model:	L63	L63		
ſest by:	Carey		Test	mode:	BT Tx mode	BT Tx mode		
est frequency:	150 kHz ~ 30	MHz	Phase	e:	Line			
Fest voltage:	AC 120 V/60 I	AC 120 V/60 Hz		onment:	Temp: 22.5 ℃	Huni: 55%		
80 10 0.15 .2	.5	5 ⁸⁹ 12 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FCC PART 1			
Freq I 	Read LISN Level Factor Fa dBuV dB	Aux Cable	Level	Limit Over	Remark			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48.73 38.67 47.19 38.29 44.33 33.05 33.87 46.94 46.66 34.83 35.20 45.56	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Average QP Average QP Average QP QP Average Average Average			

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

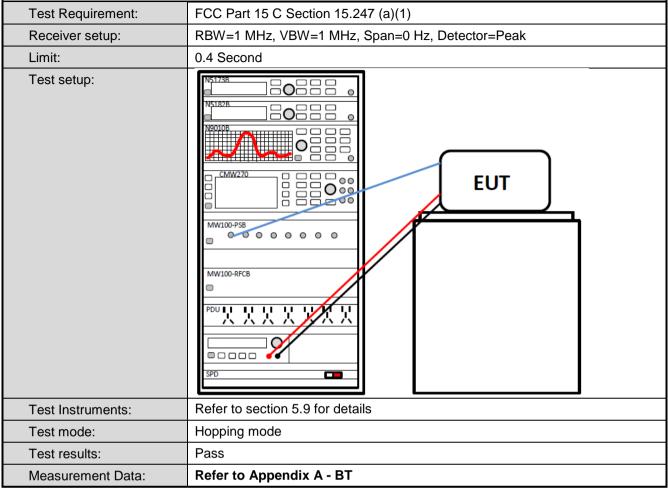
6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	Within authorization band
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.5 Carrier Frequencies Separation



6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz, Frequency Range: 2400MHz~2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.7 Dwell Time

6.8 Pseudorandom Frequency Hopping Sequence

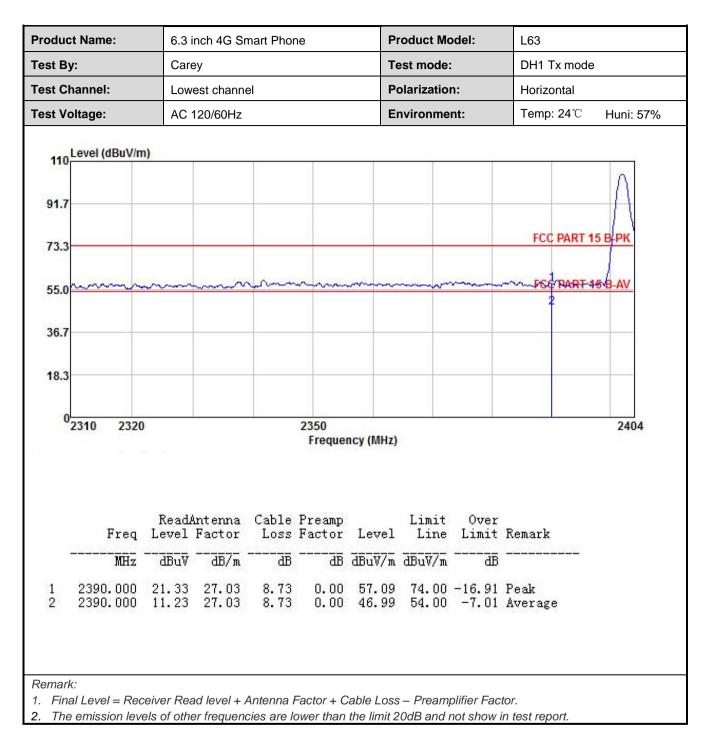
	<u>· · · · · · · · · · · · · · · · · · · </u>	•		
Test Requirement:	FCC Part 15 C Section	15.247 (a)(1) requireme	ent:	
Frequency hopping systems	s shall have hopping chanr	el carrier frequencies se	parated by a r	ninimum of
25 kHz or the 20 dB bandwid	dth of the hopping channe	l, whichever is greater.		
Alternatively. Frequency hop				
hannel carrier frequencies				
opping channel, whichever				
nan 125 mW. The system s				
ate from a Pseudorandom o				
on the average by each tran hopping channel bandwidths				
synchronization with the trar			inequencies in	
EUT Pseudorandom Frequ	•	•		
•			whose 5th and	Oth stage
The pseudorandom sequend outputs are added in a modu				
stage. The sequence begins				
with nine ones.			or introgration is	
 Number of shift register state 	ages: 9			
• Length of pseudo-random	sequence: $2^9 - 1 = 511$ bits			
 Longest sequence of zeros 	s: 8 (non-inverted signal)			
	<u>└</u> ╞╡ <u>╞</u> ╡ <u>╞</u> ╡ <u></u> ╞			
	Ļ			
	(+)∢			
Linear Feedback Si	hift Register for Generati	on of the PRBS seque	nce	
An example of Pseudorando	om Frequency Hopping Se	quence as follow:		
0 2 4 6	62 64 78 1	73	75 77	
Each frequency used equal	ly on the average by each	transmitter.		
Each frequency used equall The system receivers have i			pandwidths of t	heir

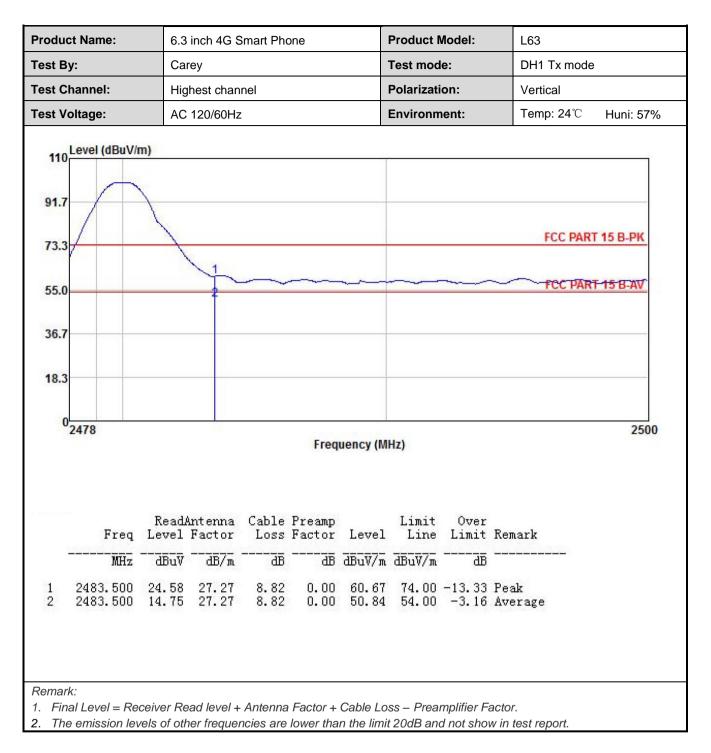
6.9 Band Edge

6.9.1 Conducted Emission Method

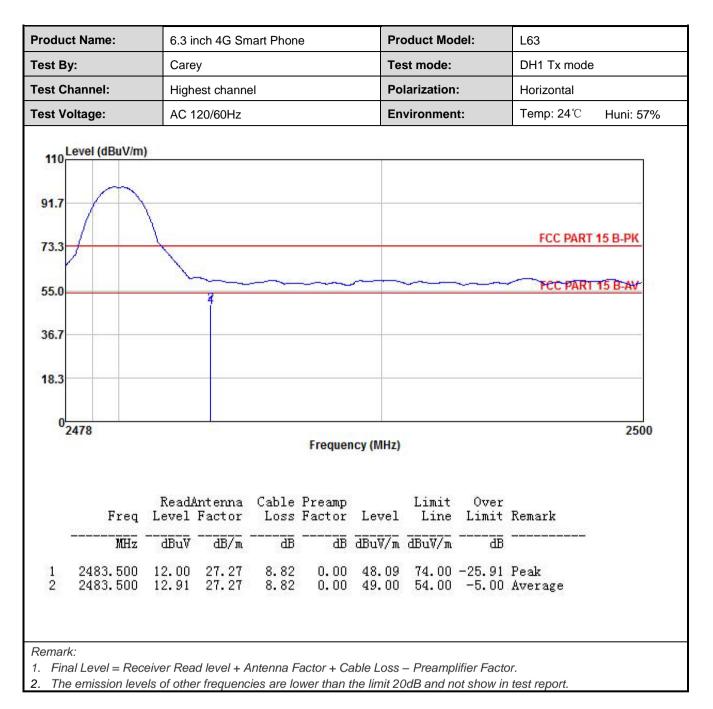
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

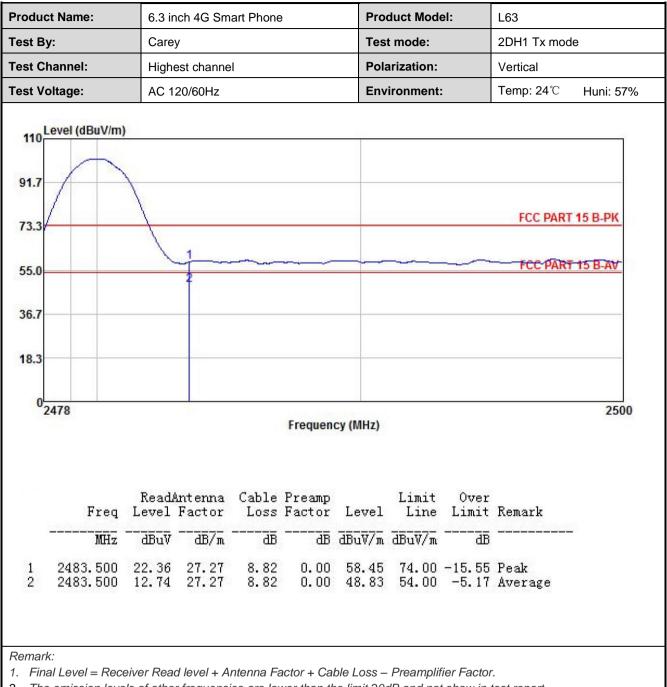
6.9.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Frequency Range:	2310 MHz to 23	390 MHz and	d 248	33.5 MHz to 2	500 M	lHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	r	RBW	V	BW	Remark
	Above 1GHz	Peak		1MHz	31	MHz	Peak Value
	Above IGHZ	RMS		1MHz	31	MHz	Average Value
Limit:	Frequenc	су	Lim	it (dBuV/m @3	3m)		Remark
	Above 1G	H7		54.00		Av	verage Value
				74.00		F	Peak Value
Test setup:	Hom Antenna Tower Hom Antenna Tower Ground Reference Plane Test Receiver						
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB 					degrees to eceiving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and s to find the on and Specified lower than the ak values of the	
Test Instruments:	Refer to section	5.9 for deta	ails				
Test mode:	Non-hopping m	ode					
Test results:	Passed						

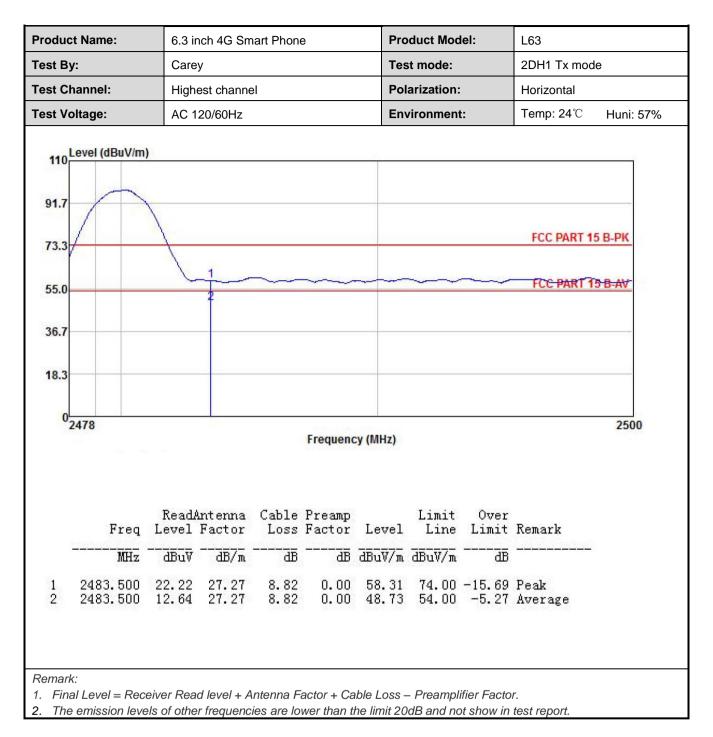

GFSK Mode:

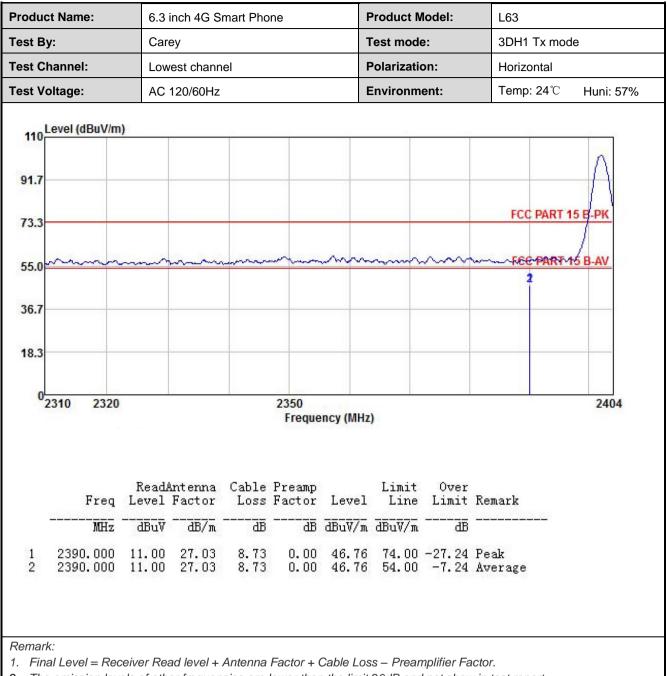
roduct Name:	6.3 inch 4G Sma	art Phone		Product	Model:	L63		
est By:	Carey		Test mode:		DH1 Tx	DH1 Tx mode		
est Channel:	Lowest channel			Polarizat	tion:	Vertical		
est Voltage:	AC 120/60Hz			Environ	ment:	Temp: 2	4℃ Huni: 57%	
110 Level (dBuV/m) 91.7 73.3 55.0 36.7 18.3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~				PART 15 B-PK	
0 2310 2320		2350 Freq	uency (M	IHz)			2404	
R Freq Le	eadAntenna C: vel Factor I	able Preamp .oss Factor	Level	Limit Line	Over Limit	Remark		
MHz d	BuV	dBdB	dBuV/m	dBuV/m	<u>ab</u>			
			58.44	74 00	-15.56	Peak		

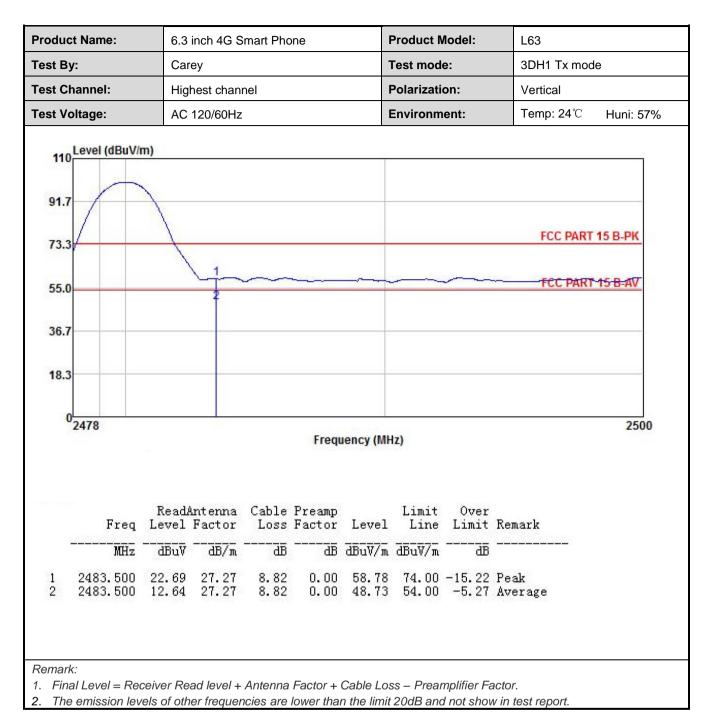



$\pi/4$ -DQPSK mode

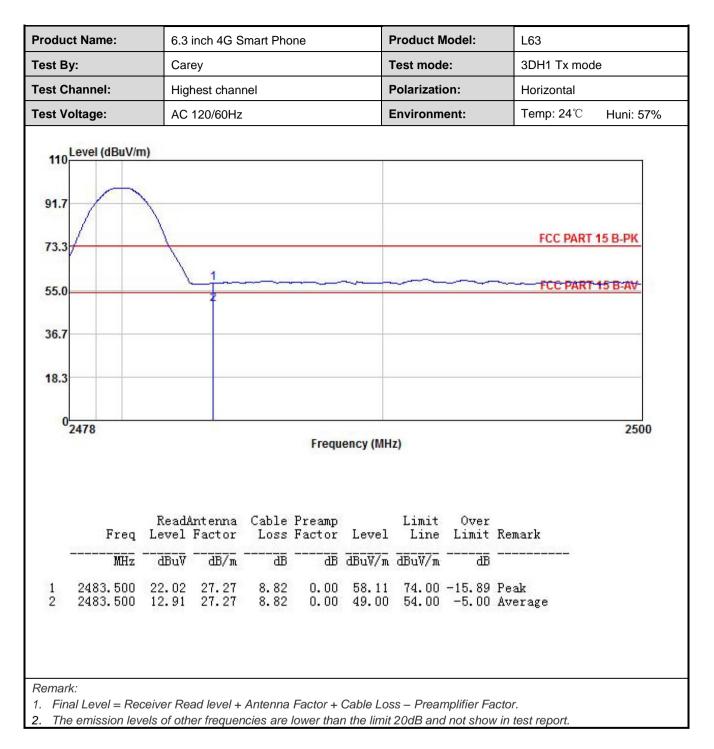
Name:	6.3 i	6.3 inch 4G Smart Phone Carey Lowest channel		Р	roduct M	odel:	L63	L63 2DH1 Tx mode		
:	Care			Т	est mode):	2DH1 Tx mo			
annel:	Low			Р	olarizatio	on:	Vertical			
Itage:	AC	120/60Hz			E	nvironme	ent:	Temp: 24 ℃	Huni: 57%	
Level (dBuV/	m)								1	
									0	
									\square	
								FCC PAR	1 15 B _F PK	
m		m	m	m		m	m	FCC PAR	7-45'B-AV	
2310 232	0			2350 Frequ	ency (MHz	<u>z)</u>			2404	
Freq	Read/ Level	Intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
MHz	dBu∛		<u>ab</u>	<u>d</u> B	dBuV/m	dBuV/m	ā	·		
2390.000 2390.000	22.10 12.09	27.03 27.03	8.73 8.73	0.00 0.00	57.86 47.85	74.00 54.00	-16.14 -6.15	Peak Average		
	annel: Itage: Level (dBuV// 2310 232 Freq MHz 2390.000	Card annel: Low Itage: AC Level (dBuV/m) 2310 2320 Freq Level MHz dBuV 2390.000 22.10	Carey annel: Lowest channel tage: AC 120/60Hz Level (dBuV/m)	Carey Carew	Carey Carey Carey Carey Carey Covest channel Covest	Carey T annel: Lowest channel P itage: AC 120/60Hz E Level (dBuV/m) E Level (dBuV/m) E 2000 2000 2000 2310 2320 2350 Frequency (MHz) Preq ReadAntenna Level Factor Cable Preamp Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 2390.000 22.10 27.03 8.73 0.00 57.86	Carey Test mode annel: Lowest channel Polarization Itage: AC 120/60Hz Environme Level (dBuV/m) Image:	Carey Test mode: annel: Lowest channel Polarization: Itage: AC 120/60Hz Environment: Level (dBuV/m)	Carey Test mode: 2DH1 Tx mail annel: Lowest channel Polarization: Vertical tage: AC 120/60Hz Environment: Temp: 24°C Level (dBuV/m) FCC PAR FCC PAR 2310 2320 2350 Frequency (MHz) Frequency (MHz) KeadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Dim t Dim t 2390.000 22.10 27.03 8.73 0.00 57.86 74.00 -16.14 Peak	






8DPSK mode

Product Name:	6.3 inch 4G Smart Phone		Product Model:	L63	L63	
Test By:	Carey		Test mode:	3DH1 Tx m	node	
Test Channel:	Lowest channel		Polarization:	Vertical		
Test Voltage:	AC 120/60Hz		Environment:	Temp: 24°0	emp: 24°C Huni: 57%	
110 Level (dBuV/m)						
91.7					\land	
73.3				FCC P/	ART 15 B/PK	
55.0	minim	m	m	mmpeep	4RT-15-B-AV	
36.7				_		
18.3						
0 <mark></mark>		2350 Frequency (I	MHz)		2404	
Freq L	ReadAntenna Cable evel Factor Loss	Preamp Factor Level	Limit Over Line Limit	Remark		
MHz	18uV	dB dBuV/m	dBuV/mdB			
	2.28 27.03 8.73 2.91 27.03 8.73		74.00 -15.96 54.00 -5.33			
	ver Read level + Antenna of other frequencies are					



6.10 Spurious Emission

6.10.1 Conducted Emission Method

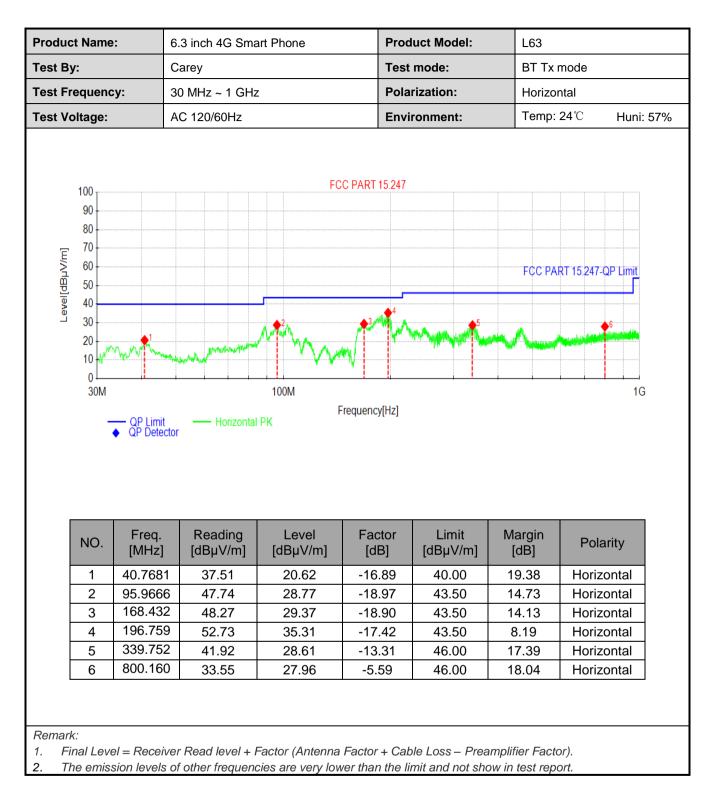
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.2	209				
Test Frequency Range:	9 kHz to 25 GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detecto	or	RBW	VBW	Remarl	k
	30MHz-1GHz	Quasi-pe	eak	120kHz	300k⊢	Iz Quasi-peak	Value
		Peak		1MHz	3MHz	z Peak Val	ue
	Above 1GHz	RMS		1MHz	3MHz	z Average V	alue
Limit:	Frequenc	ÿ	Lim	it (dBuV/m	@3m)	Remark	
	30MHz-88MHz		40.0			Quasi-peak Va	alue
	88MHz-216MHz		43.5			Quasi-peak Va	alue
	216MHz-960	MHz	46.0			Quasi-peak Va	alue
	960MHz-10	GHz		54.0		Quasi-peak Va	alue
	Ab 200			54.0		Average Val	ue
	Above 1G	HZ	74.0		Peak Value		
	Above 1GHz	am 0.8m No.8m A E EUT (Turntable)	Test Re	am Ground Reference Plane sceiver	Pre- Amplifier Contr		
Test Procedure:	 /1.5m(above) was rotated 3 radiation. 2. The EUT was 	1GHz) abo 60 degrees set 3 mete	ve th s to d ers av	e ground at letermine the way from the	a 3 mete e positio e interfer	e 0.8m(below 1GF er chamber. The ta n of the highest ence-receiving able-height antenr	able

Project No.: JYTSZE2104058

	tower.3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.		
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.		
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.		
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report. 		



Measurement Data (worst case):

Below 1GHz:

Fest By: Carey Test mode: BT Tx mode Itest Frequency: 30 MHz ~ 1 GHz Polarization: Vertical Fest Voltage: AC 120/60Hz Environment: Temp: 24'C Image: Test Voltage: AC 120/60Hz FCC PART 15 247 Image: Test Voltage: Image: Test Voltage: FCC PART 15 247 Image: Test Voltage: Test Voltage: Image: Test Voltage: Test Voltage: Test Voltage: FCC PART 15 247 Image: Test Voltage: Test Voltage	
Test Voltage: AC 120/60Hz Environment: Temp: 24 C	2 Huni: 579
FCC PART 15.247 FCC PART 15.247 FCC PART 15 FCC PART 1	2 Huni: 579
Frequency[Hz]	
	247-QP Limit 6 1
NO. Freq. Reading Level Factor Limit Margin [dBµV/m] [dBµV/m] [dB] [dBµV/m] [dB]	Polarity
	Vertical
	Vertical
	Vertical
	Vertical Vertical Vertical

Above 1GHz:

		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	55.92	-10.39	45.53	74.00	28.47	Vertical
4804.00	55.56	-10.39	45.17	74.00	28.83	Horizonta
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	48.49	-10.39	38.10	54.00	15.90	Vertical
4804.00	48.09	-10.39	37.70	54.00	16.30	Horizonta
		Testsh				
			annel: Middle ch tector: Peak Valu			
Fraguanay	Read Level	De	Level	Limit Line	Margin	
Frequency (MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarizatio
4882.00	55.88	-10.18	45.70	74.00	28.30	Vertical
4882.00	55.14	-10.18	44.96	74.00	29.04	Horizonta
	1	Dete	ctor: Average Va	alue	1	1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4882.00	48.50	-10.18	38.32	54.00	15.68	Vertical
4882.00	48.09	-10.18	37.91	54.00	16.09	Horizonta
			annel: Highest cl tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	55.52	-10.12	45.40	74.00	28.60	Vertical
4960.00	55.14	-10.12	45.02	74.00	28.98	Horizonta
		Dete	ctor: Average Va	alue		
	Read Level	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
Frequency (MHz)	(dBuV)		(ubu v/iii)	(424.111)	(==)	
	(dBuV) 48.91	-10.12	(dBdV/III) 38.79	54.00	15.21	Vertical