

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE191202206V01

FCC REPORT (BLE)

Applicant: SWAGTEK

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 6.0 inch 4G Smart Phone

Model No.: L60, RAPTOR, N60

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: 055604619

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 04 Dec., 2019

Date of Test: 05 Dec., to 11 Dec., 2019

Date of report issued: 02 Jan., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	12 Dec., 2019	Original
01	02 Jan., 2020	Update Page 4, Page 21~24
	09 Jan., 2020	Update Page 1, 5, Update Applicant Company, Manufacturer Company and Factory Company

Tested by: Mike DU Date: 02 Jan., 2020

Test Engineer

Reviewed by: Winner Thang Date: 02 Jan., 2020

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4		ST SUMMARY	
- 5		NERAL INFORMATION	
•	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	Measurement Uncertainty	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	Antenna requirement:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	Spurious Emission	
	6.7.		
	6.7.	2 Radiated Emission Method	27
7	TES	ST SETUP PHOTO	32
0	E117	CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

Product Name:	6.0 inch 4G Smart Phone
Model No.:	L60, RAPTOR, N60
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.05 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-3000mAh
AC adapter:	Model: TPA-98B050100UU01
	Input: AC100-240V, 50/60Hz, 0.15A
	Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	Model No.: L60, RAPTOR, N60, were identical inside, the electrical circuit design, layout, components used and internal wiring. The difference between them is as follows:
	L60 model corresponds to the trademark LOGIC.
	RAPTOR model correspond to the trademark iSWAG.
	N60 model corresponds to the trademark UNONU.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: CCISE191202206V01

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure: 1010 mbar			
Test mode:			
Transmitting mode Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2019	11-20-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		9b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2019	11-20-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

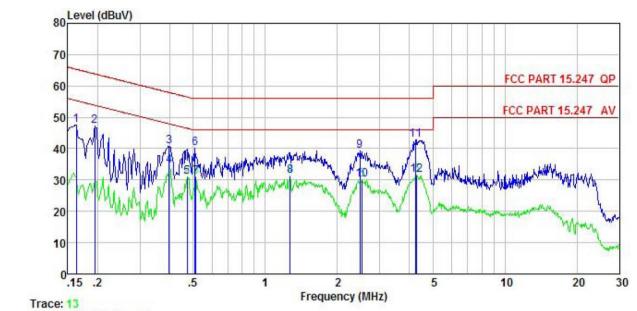
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

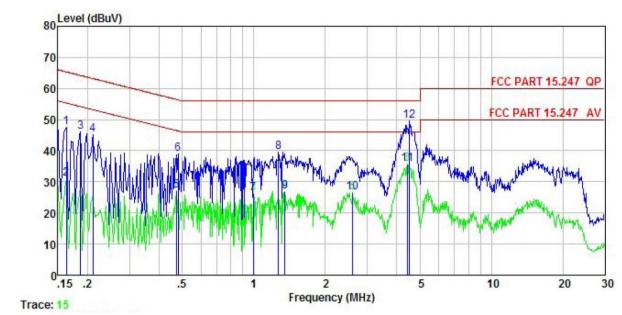
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.05 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:			(dBuV)		
Limit	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logar				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10-2013 on conducted measurement. 				
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for de	Refer to section 5.3 for details			
Test results:	Passed				

Measurement Data:

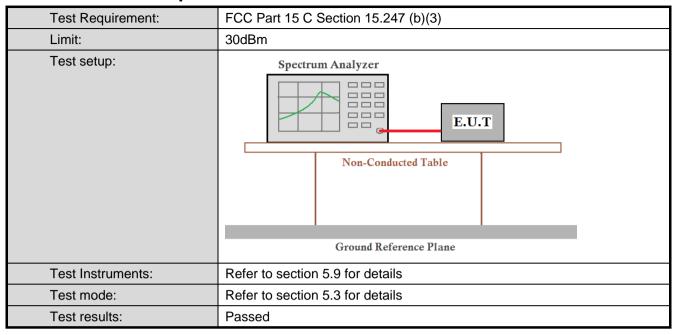
Product name:	6.0 inch 4G Smart Phone	Product model:	L60
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>d</u> B	<u>d</u> B	₫B	dBu₹	dBu√	dB	
1	0.162	37.32	-0.44	-0.08	10.77	47.57	65.34	-17.77	QP
2	0.194	36.90	-0.41	-0.15	10.76	47.10	63.84	-16.74	QP
3	0.398	29.87	-0.37	0.40	10.72	40.62	57.90	-17.28	QP
4	0.398	23.65	-0.37	0.40	10.72	34.40	47.90	-13.50	Average
1 2 3 4 5 6 7 8	0.471	20.89	-0.38	-0.15	10.75	31.11	46.49	-15.38	Average
6	0.510	29.98	-0.39	-0.35	10.76	40.00	56.00	-16.00	QP
7	0.513	20.96	-0.39	-0.35	10.76	30.98	46.00	-15.02	Average
8	1.269	20.60	-0.39	0.19	10.90	31.30	46.00	-14.70	Average
9	2.487	28.93	-0.43	-0.26	10.94	39.18	56.00	-16.82	QP
10	2.540	19.71	-0.43	-0.25	10.94	29.97	46.00	-16.03	Average
11	4.247	32.26	-0.47	-0.01	10.88	42.66	56.00	-13.34	QP
12	4.292	21.32	-0.47	-0.01	10.88	31.72	46.00	-14.28	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

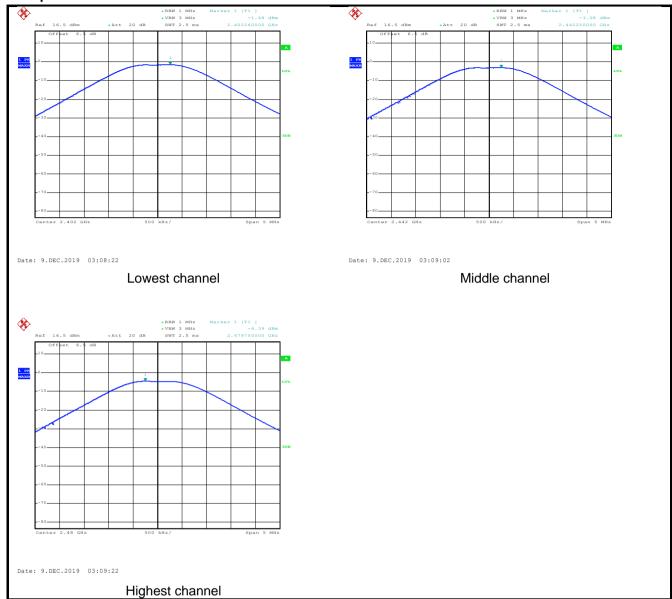
Product name:	6.0 inch 4G Smart Phone	Product model:	L60
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
	·	<u> </u>	


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	−−−dB	dB	dB	dBu₹	₫₿uѶ	dB	
1	0.162 0.162	37.30 20.85	-0.68 -0.68	0.01 0.01	10.77	47.40 30.95		-17.94 -24.30	QP Average
3	0.186	36.09 34.94	-0.69	0.00	10.76	46.16	64.20	-18.04	QP
1 2 3 4 5 6 7 8 9	0.211 0.471	17.00	-0.68 -0.65	0.00	10.75	45.02 27.11	46.49		Average
7	0.481 0.994	28.89 16.08	-0.65 -0.63	0.02	10.75 10.87	39.01 26.40	46.00		Average
9	1.269 1.352	29.29 16.52	-0.64	0.11 0.12	10.90 10.91	39.66 26.90	46.00		Average
10 11	2.608 4.430	16.13 24.89	-0.67 -0.71	0.26	10.93	26.65 35.63	46.00	-10.37	Average Average
12	4.525	38.71	-0.71	0.60	10.87	49.47	56.00	-6.53	QP

Notes:

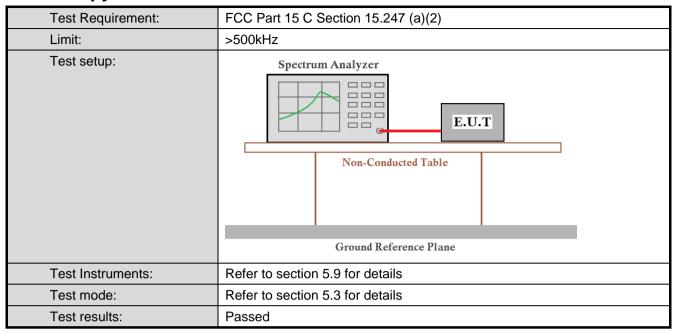
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power



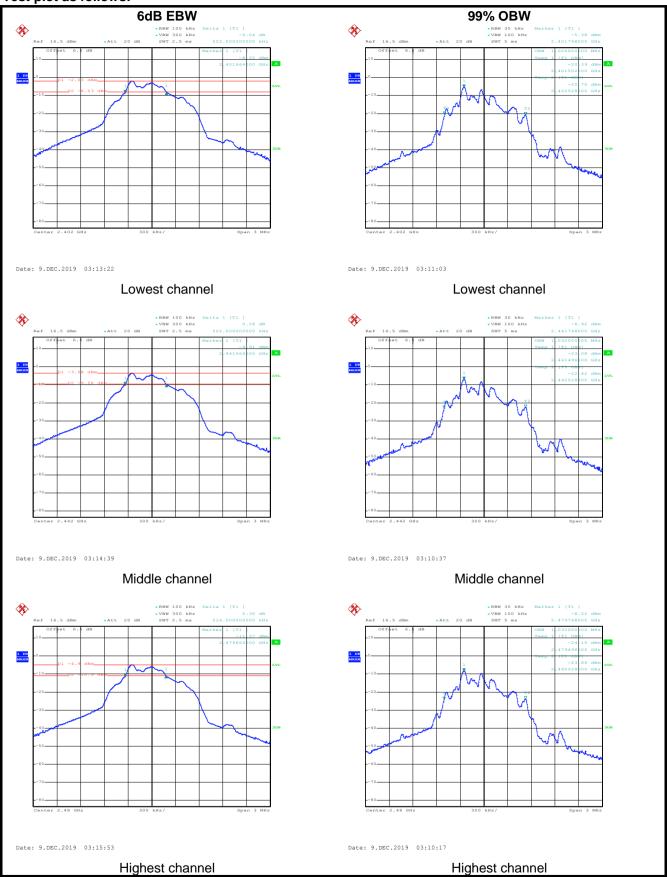
Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.48		
Middle	-3.08	30.00	Pass
Highest	-4.39		



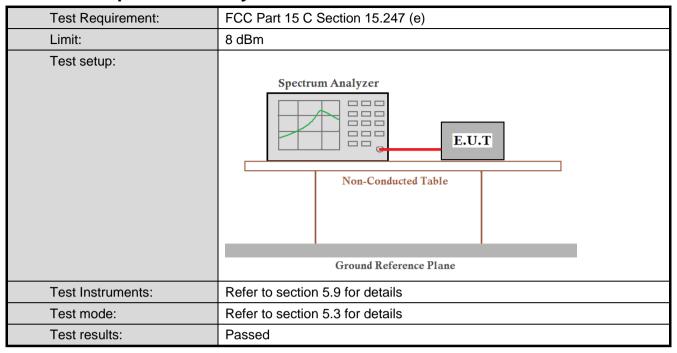
Test plot as follows:

6.4 Occupy Bandwidth



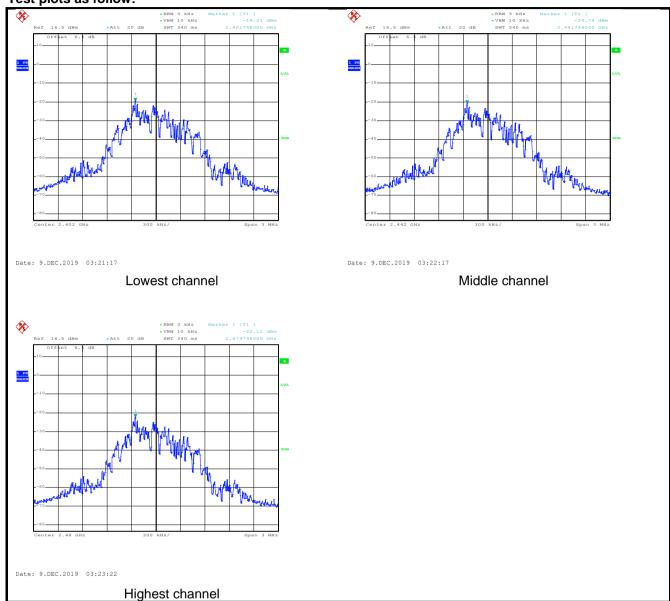
Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	0.522				
Middle	0.522	>500	Pass		
Highest	0.516				
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	1.026				
Middle	Middle 1.032		N/A		
Highest	1.032				



Test plot as follows:

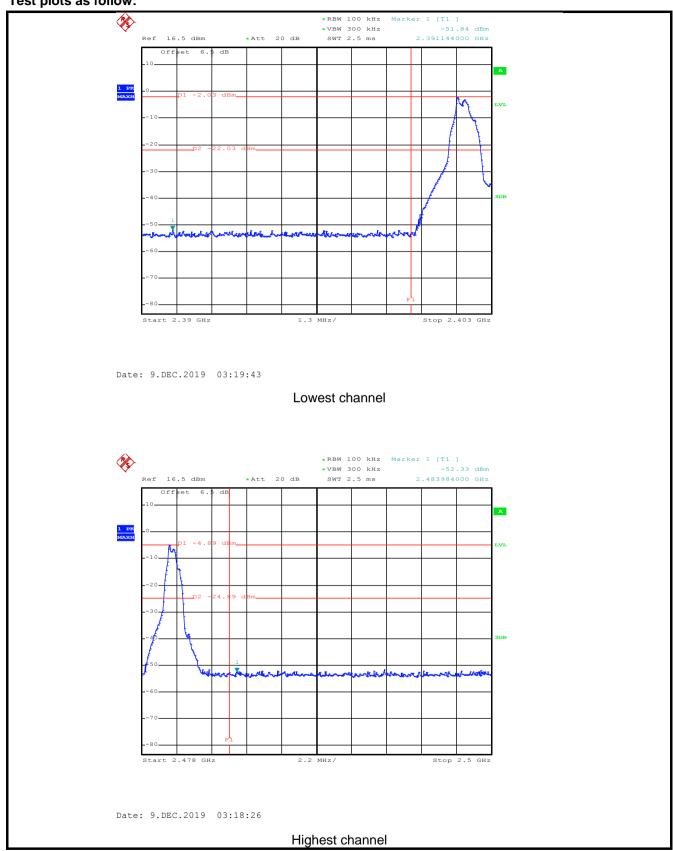
6.5 Power Spectral Density



Measurement Data:

mododi omone Bata.					
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result		
Lowest	-19.21				
Middle	-20.74	8.00	Pass		
Highest	-22.12				

Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plots as follow:

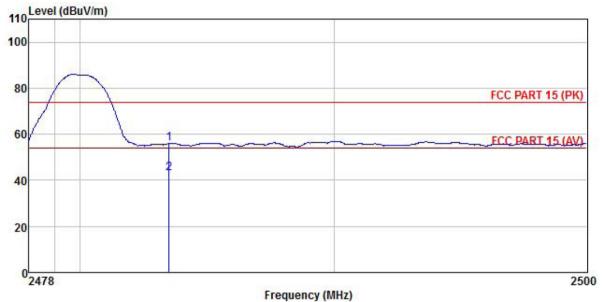
6.6.2 Radiated Emission Method

0.0.2	Radialed Ellission i	victilou								
	Test Requirement:	FCC Part 15 C Section 15.205 and 15.209								
	Test Frequency Range:	2.3GHz to 2.5	GHz							
	Test Distance:	3m								
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
		Above 1GHz	Peak	1MHz	3MHz	Peak Value				
			RMS	1MHz	3MHz	Average Value				
	Limit:	Frequer	ncy L	imit (dBuV/m @3		Remark				
		Above 10	GHz —	54.00 74.00	Α	verage Value Peak Value				
	Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horize make the 4. For each case and meters are to find the Specified 6. If the emite the limits of the EU have 10 ce	ad at a 3 meterine the position was set 3 meterine which was meterine man height is ad to determine zontal and vertical measurement then the anterine maximum respected en assimum respectiver systems. Bandwidth was in level of specified, then T would be red margin wo	varied from one re the maximum varical polarization of the control	ble was rota radiation. he interference of a variable meter to four value of the fiss of the anter was arranged heights from 0 degree ak Detect Full Mode. mode was 1 stopped and se the emissione by one u	ted 360 degrees ce-receiving e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees inction and 0 dB lower than d the peak values ons that did not using peak, quasi-				
	Test setup:	AE Wags	Test Receive	3m and Reference Plane	Antenna Tower					
	Test Instruments:	Refer to section	on 5.9 for deta	ails						
	Test mode:	Refer to section								
	Test results:	Passed								

Product Name: 6.0 i		6.0 inch 4G Smart Phone			Product Model:			L60			
est By:	N	Mike Lowest channel				Test mode:			BLE Tx mode		
est Channel:	L				Polarizat	ion:	Ve	rtical			
Test Voltage: AC		AC 120/60Hz				Environment:			mp: 24℃	Huni: 57%	
101-1-17	D-1//1										
110 Level (d	Buv/m)			- 1							
100											
80									FCC PART	15 (PK)	
									100111111	77	
60									FCC PART	15 (AV)	
-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~					- Company	Manage		Journ 1	
40		5							1		
20											
0	2000			2252						2424	
2310	2320			2350 Freq	uency (M	Hz)				2404	
		_			_						
	Fre	Kead q Level	intenna Factor	Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	ME	Iz dBuV	dB/m		<u>d</u> B	dBu√/m	dBuV/m	<u>d</u> B			
1	2390.00	0 20.68		4.69			74.00		Peak		
2	2390.00		27.07	4.69	0.00	42.55			Average		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


Product Name:		6.0 in	6.0 inch 4G Smart Phone				duct Mo	del:	L60 BLE Tx mode		
est By:		Mike	Mike				Test mode:				
est Channe	el:	Lowes	st channe	el		Pol	Polarization:		Horizont	al	
est Voltage) :	AC 12	AC 120/60Hz				Environment: Temp		Temp: 2	4 ℃	Huni: 57%
1	al (AD	Allen)									
110 Leve	ei (aBu	IV/m)	170		71						
100						-					
80										FCC PART	15 (PK)
										10017411	
60										FCC PART	15 (Δ\/)
000	A CONTRACTOR OF THE PARTY OF TH	Mary Comp	~~~~~	~~~~	~	~~~~~~	**************************************		******		13 140/
40		4								- 2	
20											
14											
0		222			2250						2404
2310	0 2	2320			2350 Fred	quency (M	IHz)				2404
			D 14		C 11	ъ		T	A		
		Freq	Level	ntenna Factor			Level	Limit Line	Over Limit	Remark	
		MHz	dBu√		āB	<u>d</u> B	dBu√/m	dBu√/m	dB		
	1 2	2390.000	20.51	27.08	4.69	0.00	53.96	74 00	-20.04	Peak	
		2390.000	9.09	27.08	4.69	0.00	42.54	54.00	-11.46	Average	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch 4G Smart Phone	Product Model:	L60						
Test By:	Mike	Test mode:	BLE Tx mode						
Test Channel:	Highest channel	Polarization:	Vertical						
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%						
110 Level (dBuV/m)									

	Freq	Read Freq Level		Preamp Factor				
	MHz	dBu₹	dB/m	 <u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2483,500 2483,500							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	6.0 inch 4G Smart Phone	Product Model:	L60 BLE Tx mode		
Гest By:	Mike	Test mode:			
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		
Lavel (dDs)//m					
110 Level (dBuV/m	1)				
100					
80			FCC PART 15 (PK)		
			TOC PART 13 (PR)		
60	1		FOC DADT 45 (AVA		
			FCC PART 45 (AV)		
40	2				
20					
20					
2478			2500		
	Frequer	icy (MHz)			
	ReadAntenna Cable Pr	eamo Limit	Over		
	Freq Level Factor Loss Fa	ctor Level Line			

dB dBuV/m dBuV/m

0.00 56.07 74.00 -17.93 Peak

0.00 43.24 54.00 -10.76 Average

₫B

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.35

27.35

dBuV dB/m

22.21

9.38

MHz

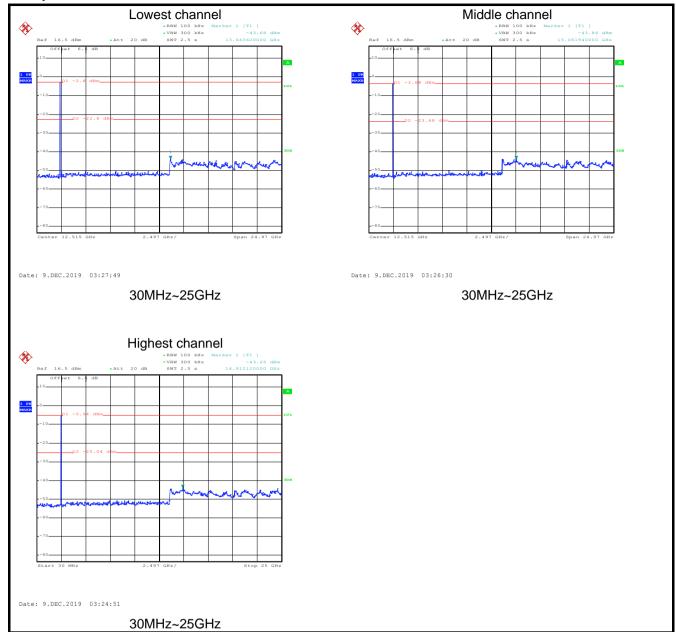
2483.500

2483.500

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.81

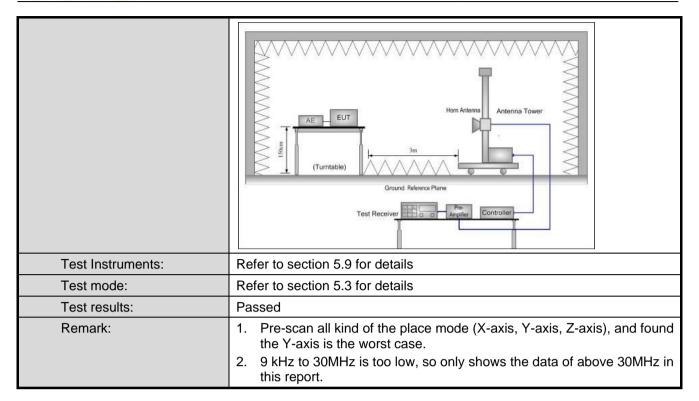
4.81


6.7 Spurious Emission

6.7.1 Conducted Emission Method

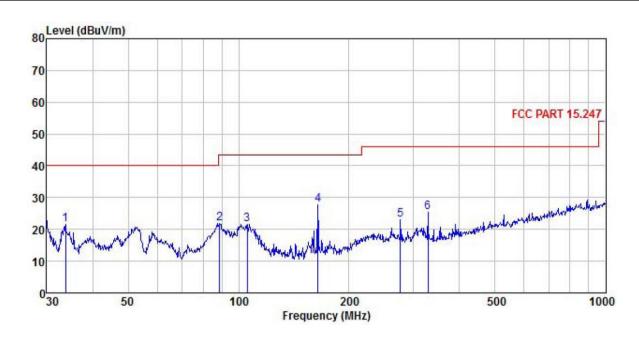
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VB	sW	Remark		
. toodiver cotap	30MHz-1GHz	Quasi-peak	120KHz	3001		Quasi-peak Value		
	Al 4011-	Peak	1MHz	3M	Hz	Peak Value		
	Above 1GHz	RMS	1MHz	3M	Hz	Average Value		
Limit:	Frequency	/ L	Limit (dBuV/m @3m)			Remark		
	30MHz-88MHz		40.0			Quasi-peak Value		
	88MHz-216M	1Hz	43.5		Quasi-peak Value			
	216MHz-960N	ИHz	46.0		C	Quasi-peak Value		
	960MHz-1G	Hz	54.0		C	Quasi-peak Value		
	Above 1GF	lz	54.0			Average Value		
			74.0			Peak Value table 0.8m(below		
	 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
Test setup:	EUT	3m < 4m 4m 0.8m			Antenna Search Antenn Test ceiver —	1		



Measurement Data (worst case):

Below 1GHz:

Product Name:	6.0 inch 4G Smart Phone	Product Model:	L60
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq				Preamp Factor				Remark
<u> </u>	MHz	dBm		<u>ав</u>		_dBm/m	_dBπ/m	<u>dB</u>	
1	33.799	39.37	11.05	0.98	29.96	21.44	40.00	-18.56	QP
1 2 3 4 5 6	88.652	39.67	9.63	2.00	29.58	21.72	43.50	-21.78	QP
3	105.642	37.07	12.01	2.00	29.49	21.59	43.50	-21.91	QP
4	164.330	44.86	9.44	2.62	29.10	27.82	43.50	-15.68	QP
5	276.124	35.34	13.20	2.88	28.49	22.93	46.00	-23.07	QP
6	327.887	36.60	14.17	3.03	28.51	25.29	46.00	-20.71	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Na	Name: 6.0 inch 4G Smart Phone Product Model:				L60	L60										
est By: Mike						Test mode:			BLE	BLE Tx mode						
est Freque	ency:	30 MHz	~ 1 G	Hz			Polarization:			Horizontal				Horizontal		
est Voltag	sst Voltage: AC 120/60Hz Environment: Temp: 24°C						np: 24 ℃	Huni: 57%								
80 Lev	el (dBuV/m)															
70																
60																
50										FCC PART	15.247					
40																
30								4								
20				1	-	2	3	5	الماسميلال	had a substitute of the land	of the sand of the sand					
1.1	L. worth starting	Mark Market	رور العاميس	morning	"Tooluguddy	AND MANY	remember 1944	W.A.	KN-VAN							
10 🗥	-		, u		n n											
030	5)		100	Freq	20 Juency (N	00 ИНz)		500		1000					
30				ntenna	Cable	uency (N Preamp	MHz)	Limit Line	Over	Remark	1000					
30	F	R req Le		ntenna	Cable	uency (N Preamp	MHz)		Over		1000					

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1Gnz			Test ch	nannel: Lowe	est channel				
				tector: Peak					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	48.28	30.85	6.80	41.81	44.12	74.00	-29.88	Vertical	
4804.00	48.52	30.85	6.80	41.81	44.36	74.00	-29.64	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	37.78	30.85	6.80	41.81	33.62	54.00	-20.38	Vertical	
4804.00	37.58	30.85	6.80	41.81	33.42	54.00	-20.58	Horizontal	
	Test channel: Middle channel								
				tector: Peak					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	48.31	31.20	6.86	41.84	44.53	74.00	-29.47	Vertical	
4884.00	48.53	31.20	6.86	41.84	44.75	74.00	-29.25	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	37.84	31.20	6.86	41.84	34.06	54.00	-19.94	Vertical	
4884.00	38.47	31.20	6.86	41.84	34.69	54.00	-19.31	Horizontal	
			T4 -1-	! . !!					
				annel: High					
	Dand	A t		tector: Peak	k value		0		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	48.26	31.63	6.91	41.87	44.93	74.00	-29.07	Vertical	
4960.00	48.21	31.63	6.91	41.87	44.88	74.00	-29.12	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
	_								

Remark:

4960.00

4960.00

38.42

37.96

6.91

6.91

41.87

41.87

35.09

34.63

31.63

31.63

Project No.: CCISE1912022

Vertical

Horizontal

-18.91

-19.37

54.00

54.00

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.