

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200608202V01

FCC REPORT

Applicant: SWAGTEK

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 6.09 inch 4G Smart Phone

Model No.: L61, PRIME, UN61

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: 055602520

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 22 Jun., 2020

Date of Test: 23 Jun., to 28 Jul., 2020

Date of report issued: 11 Aug., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	30 Jul., 2020	Original
01	11 Aug., 2020	Update Page 4, 8

Tested by:	Mike.ou	Date:	11 Aug., 2020	
	Test Engineer			

Reviewed by: Date: 11 Aug., 2020

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		2
4		
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	
	5.2 GENERAL DESCRIPTION OF E.U.T	
	5.3 TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 Measurement Uncertainty	_
	5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.8 LABORATORY LOCATION	
	5.9 Test Instruments List	
6		
O		
	6.1 ANTENNA REQUIREMENT:	_
	6.2 CONDUCTED EMISSION	
	6.3 CONDUCTED OUTPUT POWER	
	6.4 OCCUPY BANDWIDTH	
	6.6 BAND EDGE	
	6.6.1 Conducted Emission Method	
	6.6.2 Radiated Emission Method	
	6.7 Spurious Emission	
	6.7.1 Conducted Emission Method	25
	6.7.2 Radiated Emission Method	27
7	7 TEST SETUP PHOTO	32
8	B EUT CONSTRUCTIONAL DETAILS	24
J		

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

J.Z General Description	. 6. 2.6.11
Product Name:	6.09 inch 4G Smart Phone
Model No.:	L61, PRIME, UN61
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.47 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2950mAh
AC adapter:	Model:MST-0501000F
	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5V, 1A
Remark:	The Model No.: L61, PRIME, UN61 were identical inside, the electrical circuit design, layout, components used and internal wiring, The only difference between them is as follows:
	The trademark LOGIC correspond model L61;
	The trademark iSWAG correspond model PRIME;
	The trademark UNONU correspond model UN61.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: CCISE200608202V01

5.3 Test environment and mode, and test samples plans

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

Nο

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
3M SAC	SAEMIC	9111.0111.0111	966	07-22-2020	07-21-2023
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	4005	06-22-2017	06-21-2020
Hom Antenna	SCHWARZBECK	DDHA9120D	1805	06-22-2020	06-21-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LION	Dahda 9 Cahusara	E0110 75	0.400004/040	07-21-2017	07-20-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

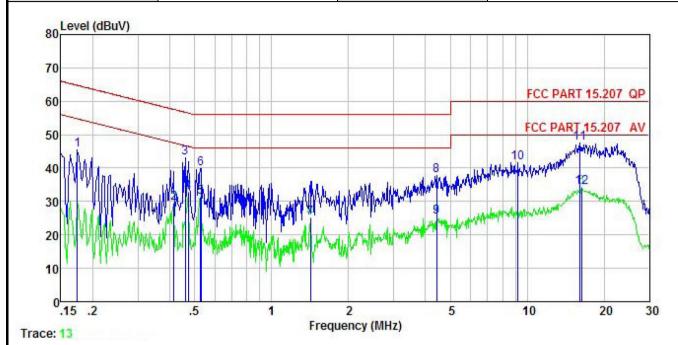
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

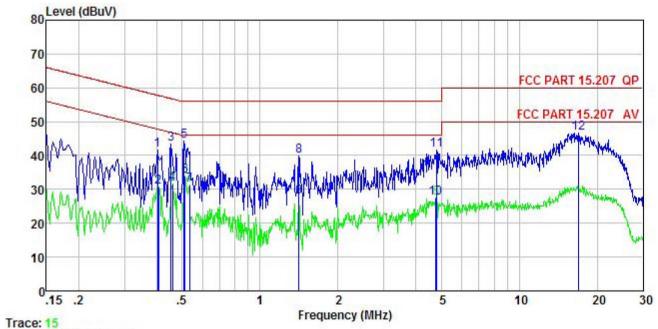
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -0.47 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Frequency range (MHz)	Limit (dBuV)		
		Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure:	 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	Reference LISN 40cm AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	BOCM Filter EMI Receiver	– AC power		
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

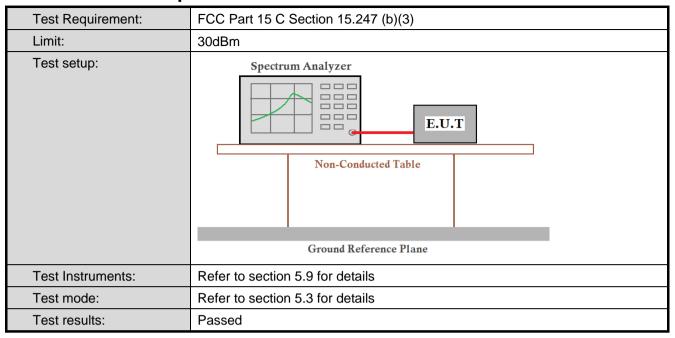
Product name:	6.09 inch 4G Smart Phone	Product model:	L61
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
1_	MHz	dBuV	<u>dB</u>	<u>ā</u> B	<u>dB</u>	dBu₹	dBuV	<u>d</u> B	
1	0.174	35.24	-0.58	10.77	-0.11	45.32	64.77	-19.45	QP
2	0.415	19.02	-0.47	10.73	0.31	29.59	47.55	-17.96	Average
3	0.459	32.96	-0.45	10.74	-0.06	43.19	56.71	-13.52	QP
4	0.471	22.50	-0.44	10.75	-0.15	32.66	46.49	-13.83	Average
1 2 3 4 5 6 7 8 9	0.527	21.46	-0.45	10.76	-0.36	31.41			Average
6	0.529	30.00	-0.45	10.76	-0.36	39.95	56.00	-16.05	QP
7	1.418	14.64	-0.56	10.92	0.07	25.07	46.00	-20.93	Average
8	4.430	27.33	-0.40	10.87	0.01	37.81	56.00	-18.19	QP
9	4.430	14.93	-0.40	10.87	0.01	25.41	46.00	-20.59	Average
10	9.204	29.63	-0.69	10.91	1.80	41.65	60.00	-18.35	QP
11	16.055	34.23	-0.73	10.91	2.99	47.40	60.00	-12.60	QP
12	16.312	21.23	-0.74	10.91	2.83	34.23	50.00	-15.77	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

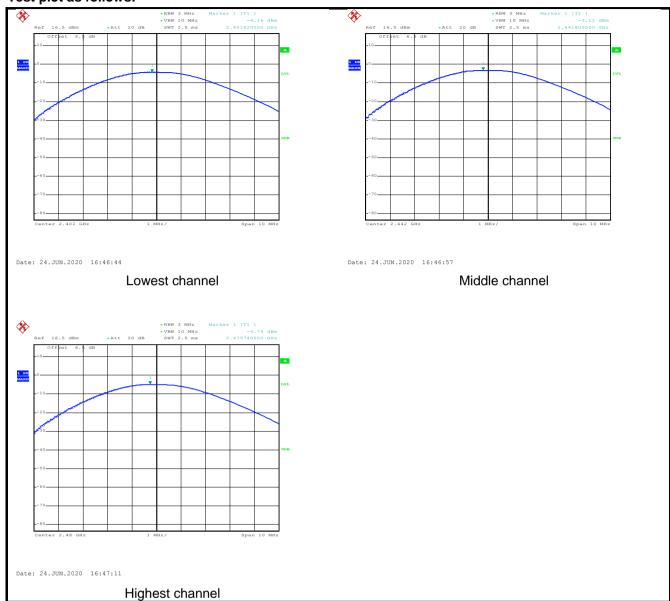
Product name:	6.09 inch 4G Smart Phone	Product model:	L61			
Test by:	Mike	Test mode:	BLE Tx mode			
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral			
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%			
Loyal (dBul/)						


	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
=	MHz	dBu∀	₫B		<u>d</u> B	₫₿u₹	dBu₹	<u>d</u> B	
1	0.402	31.56	-0.63	10.72	-0.06	41.59	57.81	-16.22	QP
2	0.406	20.80	-0.63	10.72	-0.05	30.84	47.73	-16.89	Average
3	0.454	33.17	-0.64	10.74	-0.01	43.26	56.80	-13.54	QP
2 3 4 5 6 7 8 9	0.459	21.58	-0.64	10.74	0.00	31.68	46.71	-15.03	Average
5	0.510	34.08	-0.65	10.76	0.03	44.22	56.00	-11.78	QP
6	0.513	23.80	-0.65	10.76	0.03	33.94	46.00	-12.06	Average
7	0.535	21.15	-0.65	10.76	0.03	31.29	46.00	-14.71	Average
8	1.411	29.47	-0.69	10.91	0.12	39.81	56.00	-16.19	QP
9	1.411	17.52	-0.69	10.91	0.12	27.86	46.00	-18.14	Average
10	4.772	16.66	-0.64	10.86	0.64	27.52	46.00	-18.48	Average
11	4.797	30.65	-0.64	10.86	0.64	41.51		-14.49	
12	16.928	34.71	-1.00	10.91	1.96	46.58	60.00	-13.42	QP

Notes

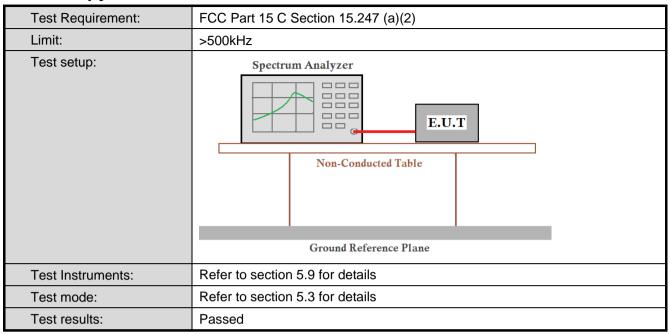
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power



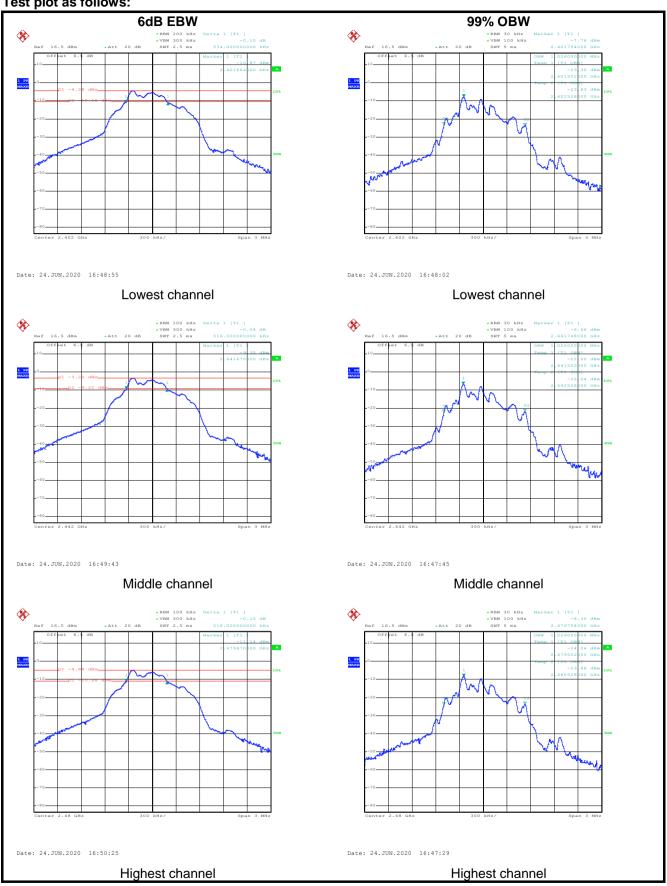
Measurement Data:

mododi omone Batai			
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-4.16		
Middle	-3.12	30.00	Pass
Highest	-4.74		



Test plot as follows:

6.4 Occupy Bandwidth



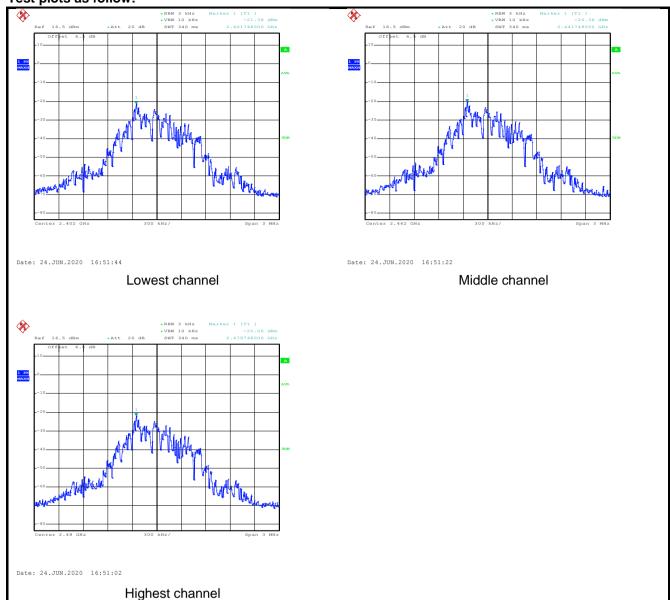
Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.534		
Middle	0.516	>500	Pass
Highest	0.516		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1026		
Middle	1026	N/A	N/A
Highest	1026		

Test plot as follows:

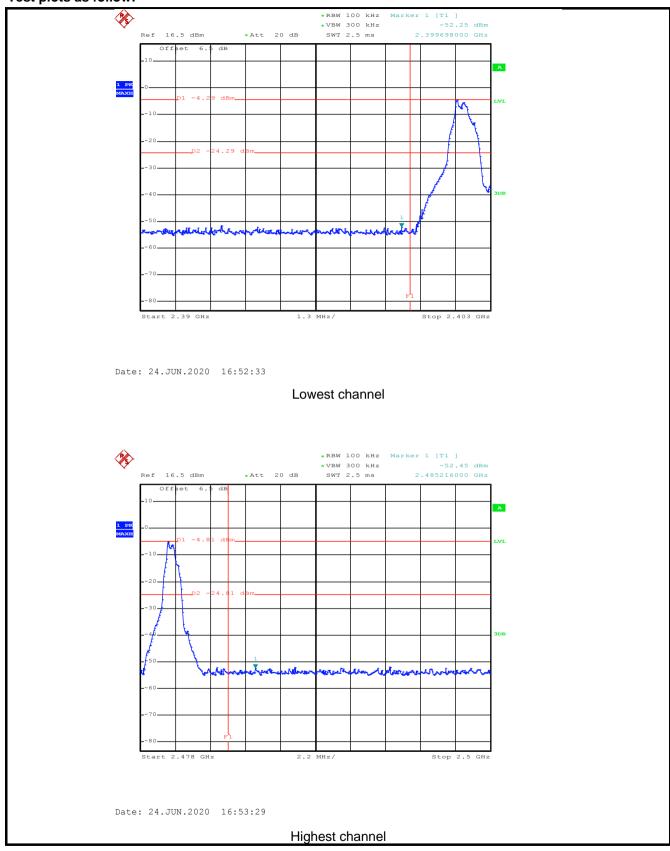
6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Limit:	8 dBm/3kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				


Measurement Data:

Measurement Data.			
Test CH	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-21.38		
Middle	-20.36	8.00	Pass
Highest	-22.00		

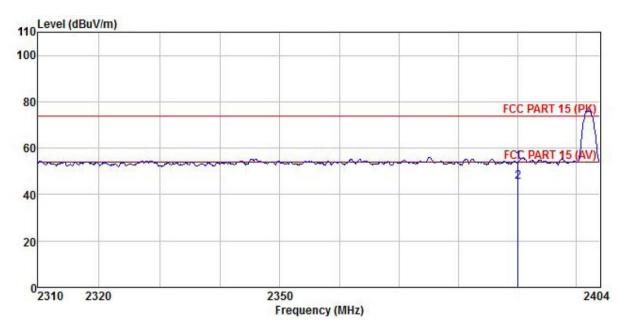
Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

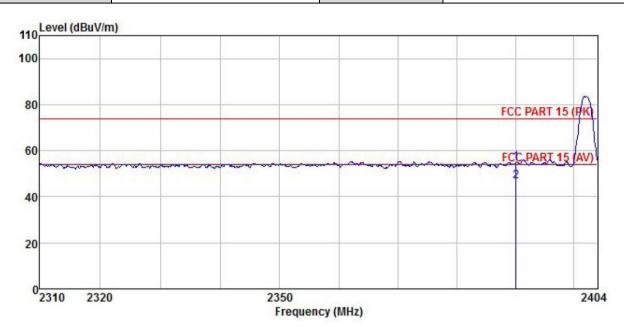
Test plots as follow:



6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	2310 MHz to 2	2310 MHz to 2390 MHz and 2483.5MHz to 2500 MHz					
Test Distance:	3m	3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		RMS	1MHz	3MHz	Average Value		
Limit:	Frequer	ncy Lir	nit (dBuV/m @3		Remark		
	Above 10	GHz —	54.00 74.00		verage Value Peak Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet. 						
Test setup:	AE Wangs (T	Ground Test Receiver	Horn Anienna Reference Plane Pre- Amplifier Contr	Antenna Tower			
Test Instruments:	Refer to section	on 5.9 for detail	S				
Test mode:	Refer to section	Refer to section 5.3 for details					
Test results:	Passed						
	•						

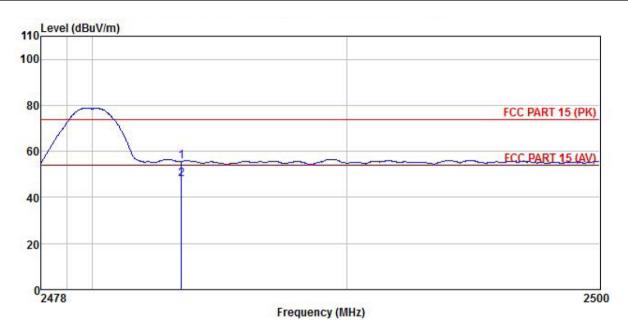
Product Name:	6.09 inch 4G Smart Phone	Product Model:	L61
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



Freq Le		Antenna Factor							
MHz	—dBu∇	dB/π	<u>d</u> B	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dB} \overline{uV}/\overline{m}$	<u>d</u> B	
2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

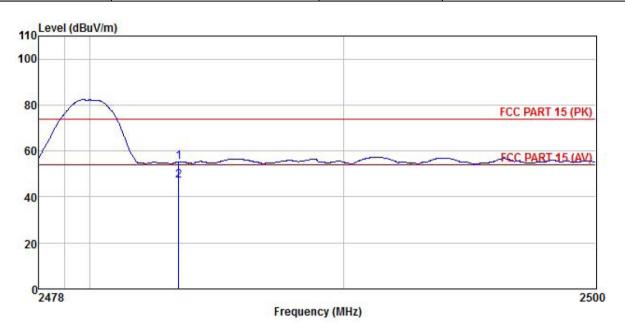
Product Name:	6.09 inch 4G Smart Phone	Product Model:	L61
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	 <u>ab</u>	<u>dB</u>	$\overline{dB}\overline{uV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	6.09 inch 4G Smart Phone	Product Model:	L61
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



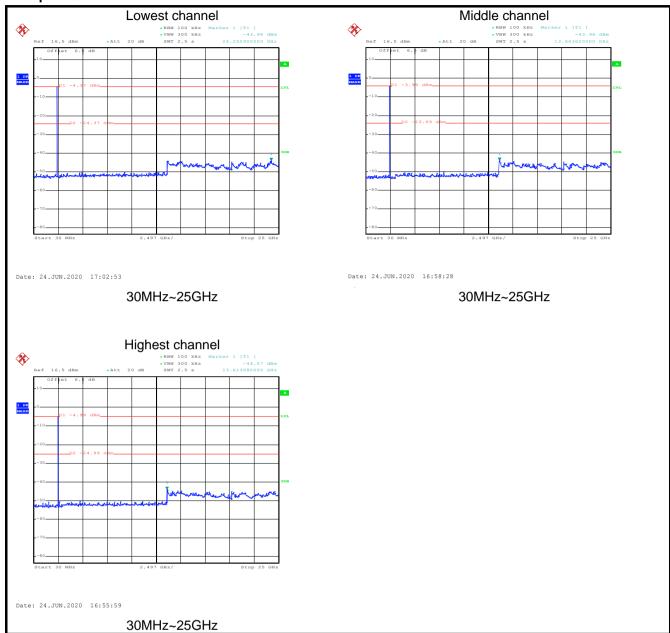
	Freq		Antenna Factor							
	MHz	dBu∇	dB/m		<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500	22.37 14.44	27.27 27.27	4.38 4.38	1.70 1.70	0.00 0.00	55.72 47.79	74.00 54.00	-18.28 -6.21	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	6.09 inch 4G Smart Phone	Product Model:	L61
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor				Limit Line		
	MHz	—dBu⊽	— <u>d</u> B/m	 <u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

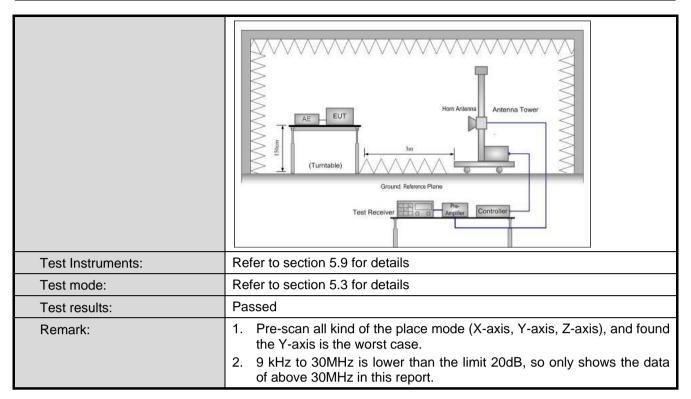
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

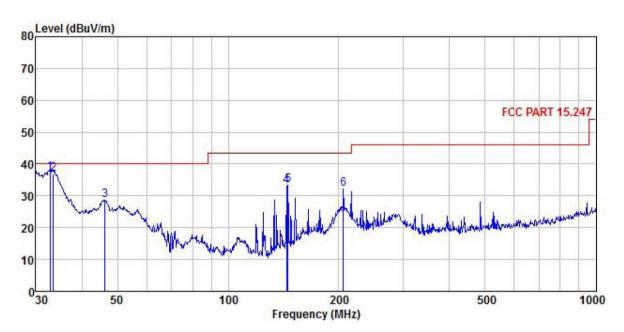
0.7.1 Conducted Links	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:



6.7.2 Radiated Emission Method

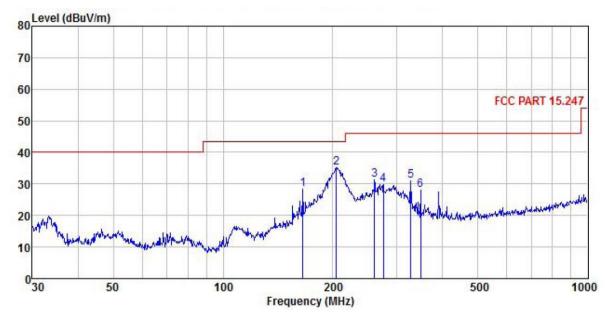
Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW		Remark		
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3M		Peak Value		
	Above Toriz	RMS	1MHz	3M	Hz	Average Value		
Limit:	Frequency		mit (dBuV/m @	3m)		Remark		
	30MHz-88M		40.0			Quasi-peak Value		
	88MHz-216N		43.5			Quasi-peak Value		
	216MHz-960I		46.0			Quasi-peak Value		
	960MHz-1G	Hz	54.0		(,	Quasi-peak Value		
	Above 1GF	łz 🖳	54.0 74.0			Average Value Peak Value		
Test Procedure:	1GHz)/1.5r The table of highest rad 2. The EUT antenna, we tower. 3. The antennathe ground Both horizon make the number of the test-result of find the number of the limit spoof the EUT have 10 de	m(above 1GHwas rotated 3 liation. was set 3 methich was more and height is with the different and very measurement. Suspected end the rota table maximum read the rota table maximum read and width with sion level of the cified, then would be read margin wou	dz) above the 360 degrees to seters away unted on the set one the maximitical polarizations was turned ding. It was set of the maximum Hamal was set of the maximum Hamal	e ground of determined the method of a second of a sec	d at a rmine ne inter to ue of the a degree de was ped an e emipy one	table 0.8m(below a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and as 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data		
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m 4m 0.8m 1m			Antenna Search Antenn Test zeiver	1		



Measurement Data (worst case):

Below 1GHz:

Product Name:	6.09 inch 4G Smart Phone	Product Model:	L61
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq	ReadAn Freq Level F				Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	32.749	54.59	12.25	0.37	0.00	29.96	37.25	40.00	-2.75	QP
2	33.445	54.27	12.36	0.36	0.00	29.96	37.03	40.00	-2.97	QP
2	46.178	45.20	12.97	0.38	0.00	29.85	28.70	40.00	-11.30	QP
4	144.335	47.70	13.89	0.61	0.00	29.25	32.95	43.50	-10.55	QP
5	145.351	48.16	13.94	0.61	0.00	29.24	33.47	43.50	-10.03	QP
6	205.675	41.85	18.32	0.73	0.00	28.79	32.11	43.50	-11.39	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	6.09 inch 4G Smart Phone	Product Model:	L61
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	165.487	41.05	15.70	0.64	0.00	29.09	28.30	43.50	-15.20	QP
2	204.238	44.91	18.32	0.72	0.00	28.80	35.15	43.50	-8.35	QP
2	260.144	40.44	18.54	0.80	0.00	28.52	31.26	46.00	-14.74	QP
4	275.157	38.82	18.60	0.83	0.00	28.49	29.76	46.00	-16.24	QP
5	326.740	39.89	18.75	0.90	0.00	28.51	31.03	46.00	-14.97	QP
4 5 6	348.027	36.74	18.80	0.93	0.00	28.56	27.91	46.00	-18.09	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

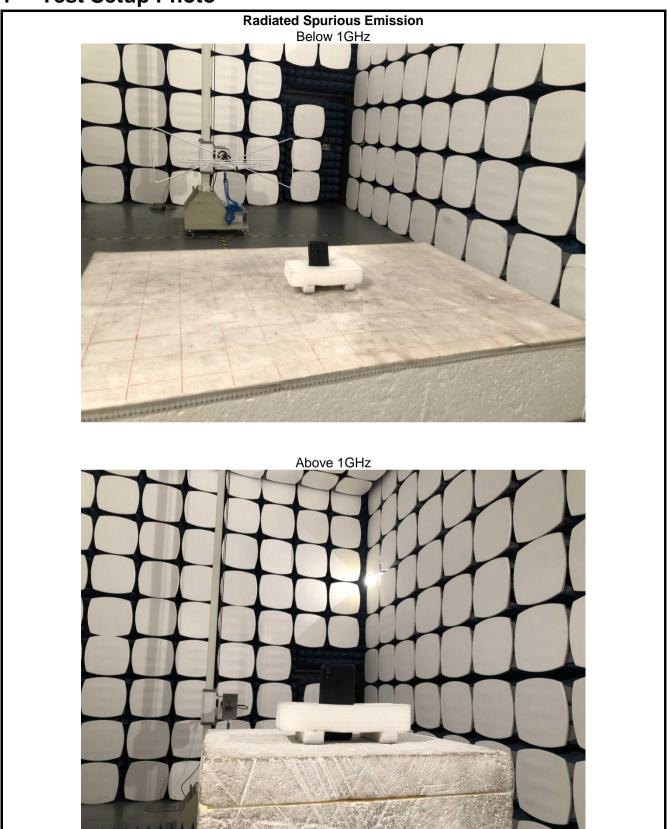
Above 1GHz

Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	48.07	30.78	6.80	2.44	41.81	46.28	74.00	-27.72	Vertical
4804.00	47.47	30.78	6.80	2.44	41.81	45.68	74.00	-28.32	Horizontal
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	40.61	30.78	6.80	2.44	41.81	38.82	54.00	-15.18	Vertical
4804.00	40.00	30.78	6.80	2.44	41.81	38.21	54.00	-15.79	Horizontal

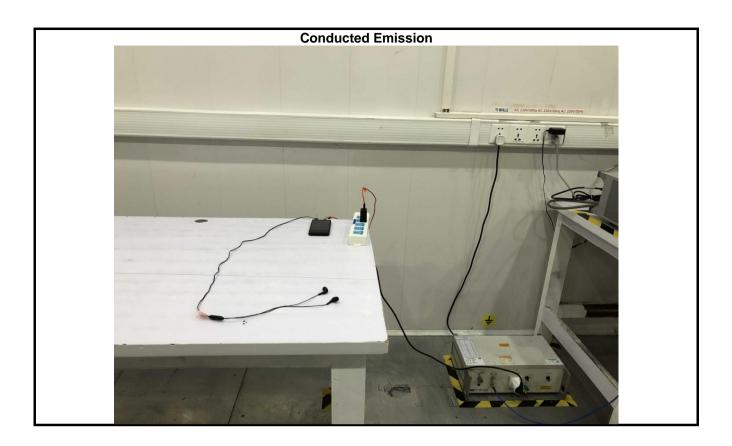
Test channel: Middle channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	48.06	30.96	6.86	2.47	41.84	46.51	74.00	-27.49	Vertical
4884.00	47.57	30.96	6.86	2.47	41.84	46.02	74.00	-27.98	Horizontal
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	40.87	30.96	6.86	2.47	41.84	39.32	54.00	-14.68	Vertical
4884.00	39.89	30.96	6.86	2.47	41.84	38.34	54.00	-15.66	Horizontal

Test channel: Highest channel									
Detector: Peak Value									
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
47.59	31.11	6.91	2.49	41.87	46.23	74.00	-27.77	Vertical	
47.11	31.11	6.91	2.49	41.87	45.75	74.00	-28.25	Horizontal	
Detector: Average Value									
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
40.50	31.11	6.91	2.49	41.87	39.14	54.00	-14.86	Vertical	
39.92	31.11	6.91	2.49	41.87	38.56	54.00	-15.44	Horizontal	
	Level (dBuV) 47.59 47.11 Read Level (dBuV) 40.50	Level (dBuV) (dB/m) 47.59 31.11 47.11 31.11 Read Antenna Factor (dBuV) (dB/m) 40.50 31.11	Read Level (dBuV) Antenna (dB/m) Cable Loss (dB) 47.59 31.11 6.91 47.11 31.11 6.91 Read Level (dBuV) Antenna Loss (dB) Cable Loss (dB) 40.50 31.11 6.91	Read Level (dBuV) Antenna (dB/m) Cable Loss (dB) Aux Factor (dB) 47.59 31.11 6.91 2.49 47.11 31.11 6.91 2.49 Detector: Read Antenna Level Factor (dBuV) Cable Loss Factor (dB) Aux Factor (dB) (dB/m) (dB) (dB) 40.50 31.11 6.91 2.49	Detector: Peak Value Read	Detector: Peak Value	Detector: Peak Value Read Antenna Cable Loss Factor (dBuV) (dB/m) (dB) (dB) (dB) (dB) (dB) (dB) (dBuV/m) (dBuV/	Read Antenna Cable Level Loss Factor (dBuV) (dB/m) (dB) (dB	

Remark:


^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No.: CCISE200608201.

----End of report-----