

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200602103V01

FCC REPORT

Applicant:	SWAGTEK		
Address of Applicant:	10205 NW 19th St. Suite 101, Miami, FL, 33172		
Equipment Under Test (E	EUT)		
Product Name:	5.7 inch 4G Smart Phone		
Model No.:	L57, UN57, OMEGA		
Trade mark:	LOGIC, iSWAG, UNONU		
FCC ID:	O55572220		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	08 Jun., 2020		
Date of Test:	09 Jun., to 28 Jun., 2020		
Date of report issued:	06 Jul., 2020		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Jun., 2020	Original
01	06 Jul., 2020	Update FCC ID

Tested by:

Date: 06 Jul., 2020

Janet Wei Test Engineer Winner Thang

Reviewed by:

Project Engineer

Date:

06 Jul., 2020

CCIS

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	
3		ITENTS	
			-
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND TEST MODE	-
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5		-
	5.6 5.7	Additions to, deviations, or exclusions from the method Laboratory Facility	
	5.7 5.8	LABORATORY FACILITY	
	5.9	Test Instruments List	
6	TES	T RESULTS AND MEASUREMENT DATA	8
Ŭ			
	6.1 6.2	ANTENNA REQUIREMENT:	
	6.2 6.3	CONDUCTED EMISSION	-
	6.4	Occupy Bandwidth	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2		-
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	2 Radiated Emission Method	27
7	TES	T SETUP PHOTO	
8	EUT	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass
the customer).	ential requirements in the standard. Output Power" and other conduction measu	rement items is 0.5dB (provided by
ANSI C63.4-2014		

Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

Product Name:	5.7 inch 4G Smart Phone
Model No.:	L57, UN57, OMEGA
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-1.2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2350mAh
AC adapter:	Input:100-240V AC,50/60Hz 0.2A
	Output:5.0V DC 1A
Remark:	L57, UN57, OMEGA were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
	_ := • • • • •						

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
			1005	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-19-2020	06-20-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919t)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No. Serial No.	Serial No.	Cal. Date	Cal. Due date
	Manadaloi			(mm-dd-yy)	(mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
responsible party shall be u antenna that uses a unique so that a broken antenna ca electrical connector is prohi 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anter power from the intentional r	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or bited. ower limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
	ha antenna which cannot replace by end-user, the best-case gain of the

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit (dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logarithm	60	50
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im The peripheral devices at LISN that provides a 500 termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fi positions of equipment ar according to ANSI C63.10 	s are connected to the ma on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of e checked for maximum and the maximum emission and all of the interface cab	nich provides a ng equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed
Test setup:	Reference	80cm Filter EMI Receiver	– AC power
Test Instruments:	Refer to section 5.9 for details	i	
Test mode:	Refer to section 5.3 for details	i	
Test results:	Passed		

Measurement Data:

Product name:	5.7 inch 4G Sm	art Phone	Product model:	L57
Гest by:	Janet		Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 N	IHz	Phase:	Line
Fest voltage:	AC 120 V/60 Hz	2	Environment:	Temp: 22.5℃ Huni: 55%
80 Level (dBuV) 70 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40	2 M////////////////////////////////////			FCC PART 15.207 QP FCC PART 15.207 AV
	Read Freq Level			Over Limit Remark
	MHz dBuV	BB	dBuV dBuV	B
	Mars and t			

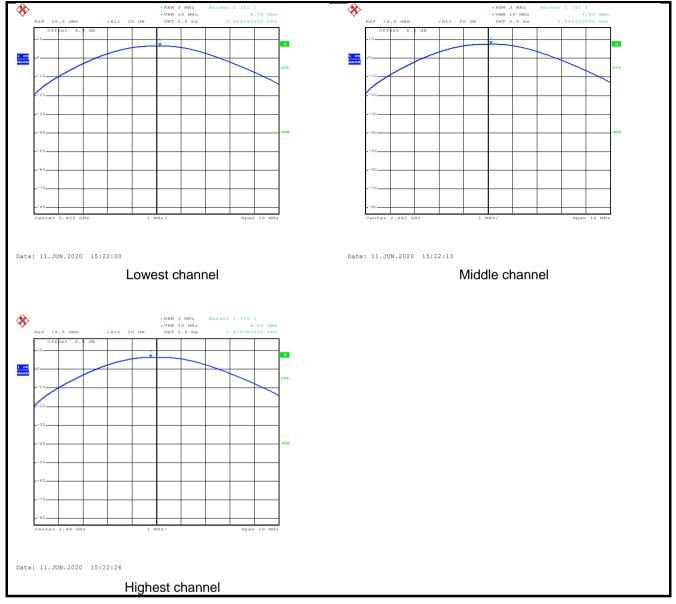
3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

	z ~ 30 MH) V/60 Hz	Ηz		Test mo Phase: Enviror		Neu	Tx mode tral np: 22.5°C	Huni: 55%
								Huni: 55%
AC 120) V/60 Hz			Enviror	nment:	Ten	וף: 22.5℃	Huni: 55%
				4			1	
The second se							FCC PART 15	207 QP
1 3	6 7	0		755			FCC PART 15	.207 AV
MM MM	Moundal	Man Manut	L. R. Ladala	2				
PRV V	8118	10 M	ALA ANALAN	"Willingthe work	rhight have	-		non with the man
n A A	A A AMAN	WAR MANYA	hanna dayman	an at	Here have	MANNAN	Marking Mar	
(MUN'	A MAL M		Manuel .	- Martin	Lie .		- marine	mon
- rr								A
	1							
	.5	1	2		5		10	20 30
	-		Frequen	cy (MHz)	-			
					20200-000			
Freq				[eue]			Remark	
		ractor		rever		THEFT	ICEMAIN	2661
MHz	dBuV	dB	dB	dBu∛	dBuV	dB		_
0.334	37.75	-0.66	10.73	47.80	59.35 -1	1.55	QP	
0.346	25.81	-0.65	10.73	35.86	49.05 -1	3.19	Average	
0.505	26.66	-0.65	10.72	36.80			Average	
						9.70		
	36.16	-0.65	10.76	40.00	00.00 -	9.10	91	
0.513	36.16 35.58	-0.65 -0.64	10.76 10.77	46.30 45.75	56.00 - 56.00 -1			
0.513						0.25	QP	
0.513 0.651 0.651 0.871	35.58 24.52 35.91	-0.64 -0.64 -0.66	10.77 10.77 10.83	45.75 34.69 46.14	56.00 -1 46.00 -1 56.00 -	0.25 1.31 9.86	QP Average QP	
0.513 0.651 0.651 0.871 0.904	35.58 24.52 35.91 25.71	-0.64 -0.64 -0.66 -0.67	10.77 10.77 10.83 10.84	45.75 34.69 46.14 35.95	56.00 -1 46.00 -1 56.00 - 46.00 -1	0.25 1.31 9.86 0.05	QP Average QP Average	
0.513 0.651 0.651 0.871	35.58 24.52 35.91	-0.64 -0.64 -0.66	10.77 10.77 10.83	45.75 34.69 46.14	56.00 -1 46.00 -1 56.00 - 46.00 -1	0.25 1.31 9.86 0.05 3.15	QP Average QP Average Average	
	MHz 0.334	MHz dBuV 0.334 37.75 0.346 25.81 0.410 38.93	Read LISN Freq Level Factor MHz dBuV dB 0.334 37.75 -0.66 0.346 25.81 -0.65 0.410 38.93 -0.63	Read LISN Cable Freq Level Factor Loss MHz dBuV dB dB 0.334 37.75 -0.66 10.73 0.346 25.81 -0.65 10.73 0.410 38.93 -0.63 10.72	Read LISN Cable Freq Level Factor Loss Level MHz dBuV dB dB dBuV 0.334 37.75 -0.66 10.73 47.80 0.346 25.81 -0.65 10.73 35.86 0.410 38.93 -0.63 10.72 48.97	.5 1 2 5 Frequency (MHz) 5 5 5 Frequency (MHz) 1 1 1 MHz Level Factor Loss Level Limit MHz dBuV dB dB dBuV dBuV 0.334 37.75 -0.66 10.73 47.80 59.35 -1 0.346 25.81 -0.65 10.73 35.86 49.05 -1 0.410 38.93 -0.63 10.72 48.97 57.64 -	.5 1 2 5 Frequency (MHz) Freq Limit Over Limit Over Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dB dB 0.334 37.75 -0.66 10.73 47.80 59.35 -11.55 0.346 25.81 -0.65 10.73 35.86 49.05 -13.19 0.410 38.93 -0.63 10.72 48.97 57.64 -8.67	6 7 9 12 2 0 0 10 2 0 0 10 2 0 0 10 1 2 5 10 Frequency (MHz) Limit Over Limit Remark MHz dBuV dB dB dBuV dB 0.334 37.75 -0.66 10.73 47.80 59.35 -11.55 QP 0.346 25.81 -0.65 10.73 35.86 49.05 -13.19 Average 0.410 38.93 -0.63 10.72 48.97 57.64 -8.67 QP

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.


6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	6.70		
Middle	7.65	30.00	Pass
Highest	6.52		

Test plot as follows:

6.4 Occupy Bandwidth

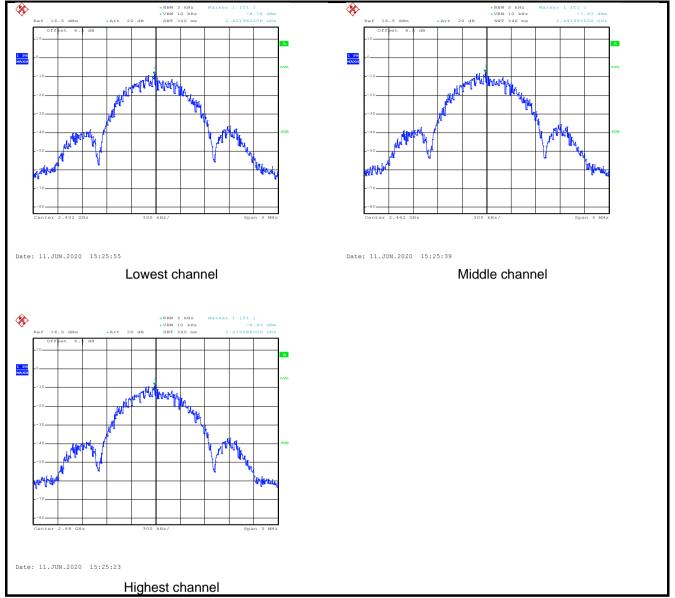
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.708		
Middle	0.714	>500	Pass
Highest	0.708		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.032		
Middle	1.032	N/A	N/A
Highest	1.032		

Test plot as follows:

6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)
Limit:	8 dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

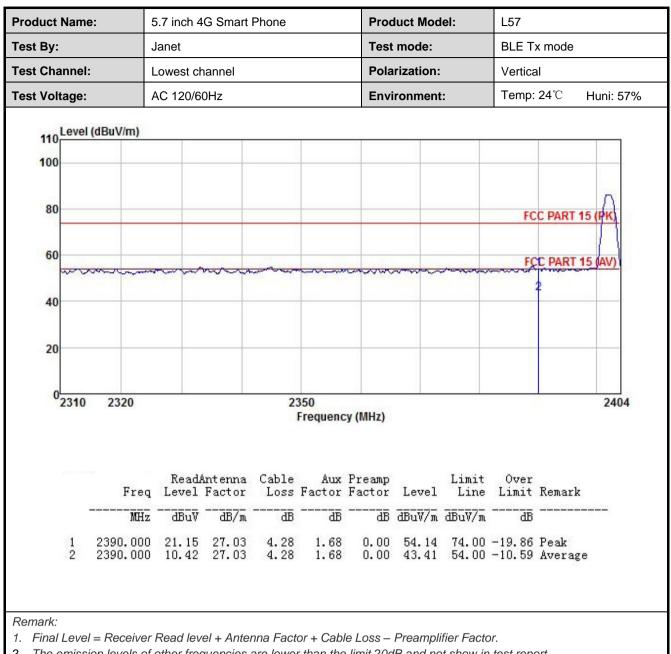
Test CH	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-8.78		
Middle	-7.83	8.00	Pass
Highest	-8.93		

Test plots as follow:

6.6 Band Edge

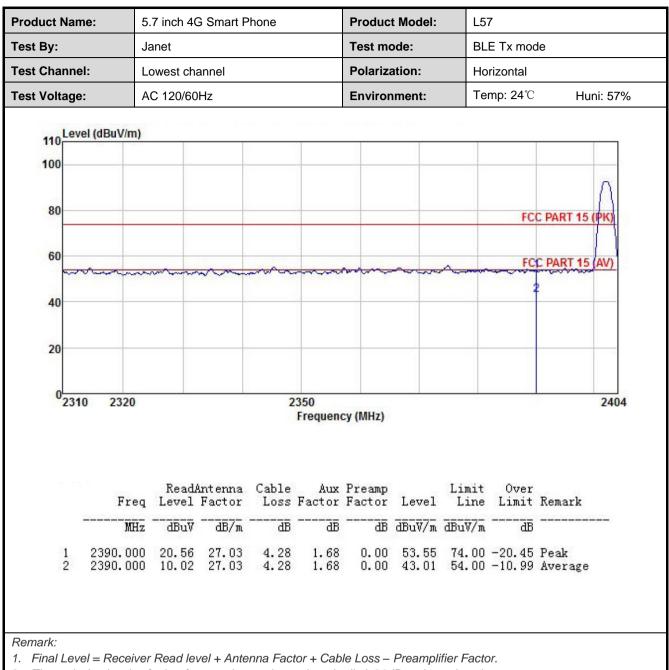
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed


Test plots as follow:

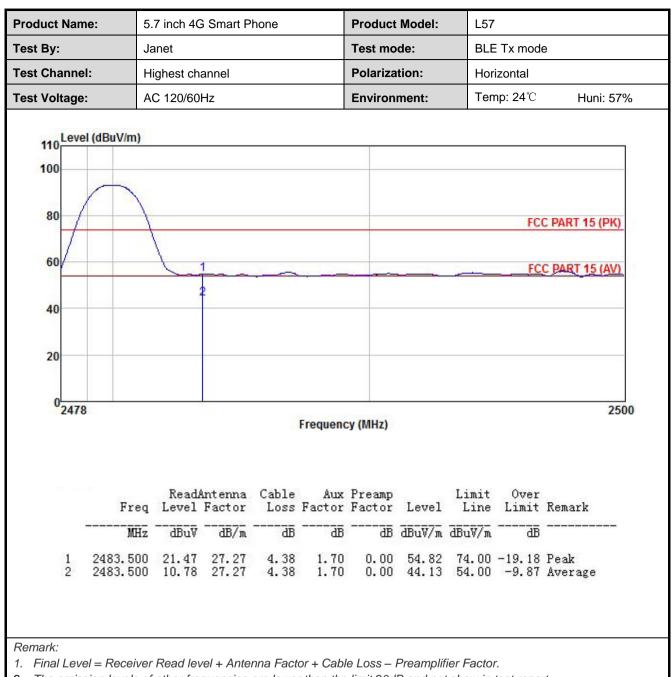
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	C Section 15	5.205	5 and 15.209			
Test Frequency Range:	2310 MHz to 2	2390 MHz ar	nd 2	2483.5MHz to 2	2500 I	MHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	•	RBW		/BW	Remark
	Above 1GHz	Peak		1MHz		MHz	Peak Value
	Frequen	RMS	Lim	1MHz nit (dBuV/m @3		MHz	Average Value Remark
Limit:		-		54.00)))	A	verage Value
	Above 10	3Hz —		74.00			Peak Value
Test Procedure:	 the groun to determ The EUT antenna, tower. The anter the groun Both horiz make the For each case and meters ar to find the The test-r Specified If the emist the limit s of the EU have 10 c 	d at a 3 met ine the positives was set 3 met which was n and height is d to determine contal and v measurement suspected et then the and the rota ta maximum Bandwidth ssion level of pecified, the T would be B margin w	ter c tion tion nete mou s val rention territo ent. territo te	camber. The tal of the highest rs away from the nted on the top ried from one not the maximum v cal polarizations assion, the EUT ha was turned from bing. was set to Peat a Maximum Hol e EUT in peak esting could be ported. Otherwis	ble wa radia ne intro o of a neter value s of the was a o heigo om 0 o ak De d Mode stopp e the one by	as rotat tion. erference variable to four of the fi he anter arrange the for degrees tect Fur de was 10 ped and emissio y one us	e-height antenna meters above feld strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-
Test setup:		LEUT urntable) Gi Test Receiv	iround Ri	Horn Antenna Horn Antenna tam eference Plane	Antenna Tr	ower	
Test Instruments:	Refer to section	on 5.9 for de	tails	6			
Test mode:	Refer to section	on 5.3 for de	tails	3			
Test results:	Passed						



The emission levels of other frequencies are lower than the limit 20dB and not show in test report. 2

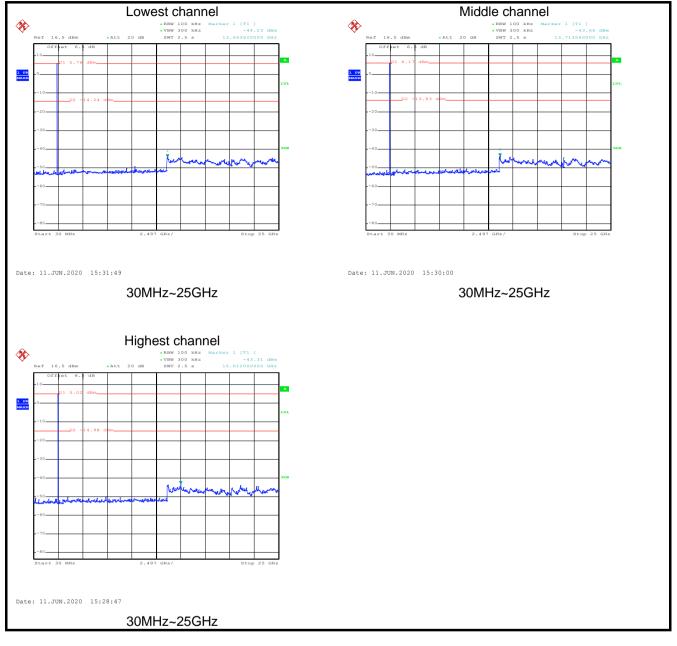
2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



oduct Name:	5.7 inch 4G Smart	Phone	Product Mo	odel:	L57	
est By:	Janet		Test mode	:	BLE Tx mode	
est Channel:	Highest channel		Polarizatio	Polarization: Vertical		
est Voltage:	AC 120/60Hz		Environme	nt:	Temp: 24℃	Huni: 57%
110 Level (dBuV/m) 100 80 60 40 20	2				FCC PART	
02478		Freque	ncy (MHz)			2500
	ReadAntenna Level Factor	Cable Au	x Preamp	Limit el Line	Over Limit Remar	
	Level Factor	Cable Au Loss Facto	x Preamp r Factor Leve	Limit 21 Line 7m dBuV/m	Limit Remar	

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 5.9 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Test plot as follows:

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	.205	and 15.209						
Test Frequency Range:	9kHz to 25GHz									
Test Distance:	3m									
Receiver setup:	Frequency	Detector	tor RBW		VB	W	Remark			
·	30MHz-1GHz	Quasi-pea	ak	120KHz	300KHz		Quasi-peak Value			
	Above 1GHz	Peak	1MHz		3M	3MHz Peak Valu				
	Above 10112	RMS		1MHz	3M	Hz	Average Value			
Limit:	Frequency Limit (dBuV/m @3m) Re									
	30MHz-88M	lHz	40.0			C	Quasi-peak Value			
	88MHz-216N		43.5			Quasi-peak Value				
	216MHz-960I			46.0			aasi-peak Value			
	960MHz-1G	Hz		54.0			aasi-peak Value			
	Above 1GH	17		54.0			Average Value			
				74.0			Peak Value table 0.8m(below			
	 The table of highest race of highest of h	was rotated liation. was set 3 which was m na height is to determ ontal and v neasuremen suspected then the an d the rota ta maximum ro eceiver sys Bandwidth v sion level o ecified, the would be B margin wo	d 360 met noun s val nine verticent. emis ntenn able readil stem with f of the en tes repo ould	0 degrees to ters away for the don the to the maximu- cal polarizato ssion, the Ena was tuned maximum H e EUT in persting could to ported. Other be re-tested	o deter from the op of a ne met um vali ions of UT was d to he from 0 to Pea old Mo oak moo be stop wise the d one b	mine ne inten varial er to f ue of the a as arra eights degre k Def de. de was ped ar e emis y one	a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 set to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data			
Test setup:	Below 1GHz	3m <	-			Antenna Search Antenn Test eiver –				

	AE EUT Horn Arlenna Tower Horn Arlenna Tower Ground Reference Plane Test Receiver Anglier Controller
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

roduct Name:	5.7 inch 4G Smart Phone					Product Model:			L57			
est By:	Janet				Test	Test mode:			BLE Tx mode			
est Frequency:	30 MHz ~ 1 GHz					Polarization:			Vertical			
est Voltage:	AC 120/	60Hz			Envir	onment:		Temp: 24°C Huni				
80 Level (dBuV/m 70 60 50 40 30 20 10		2		du faither		34	5 Julutabern	6	PART 15			
030	50		100	Frequen	200 cy (MHz)			500		1000		
Freq	ReadA Level	ntenna Factor		Aux Factor	Preamp Factor			Over Limit		ζ		
Freq MHz				Aux Factor dB	Factor				Remark	ε		

Product Name	:	5.7 inch 4G Smart Phone Janet 30 MHz ~ 1 GHz					Product Model: Test mode: Polarization:			L57			
est By:										BLE Tx mode Horizontal			
Test Frequenc	;y:												
Fest Voltage:		AC 120/60Hz					Environment:			₽°C	Huni: 57%		
		31				·							
80 Level	(dBuV/m)												
70				-									
60									FCC	PART 15	247		
50													
40	_												
						4	5 6	5					
30				2	3	Mart	WWW WHW		1	1 1			
20				1 mm	Nort			Josephille Landa	h. huberson with	Whenman			
10	Manhaman	hundret	with the man										
030	5	0		100	-	200			500		1000		
					Frequence	Ly (MHZ)							
	E		Antenna					Limit	Over	B1			
		distantion of	Factor	and the second second					Limit	Kemari			
	MHz	dBuV	dB/m	dB	dB	dB	dBuV/m	dBuV/m	ďB				
	77.865 07.888	42.90	12.25 9.77	$0.47 \\ 0.54$	0.00		25.96 24.12		-14.04 -19.38				
3 1	29.923	42.83	11.80	0.59	0.00	29.33	25.89	43.50	-17.61	QP			
5 2	82.559 75.157	43.05 40.27	17.05 18.60	0.69 0.83	0.00	28.49	31.21	46.00	-11.66	QP			
63	37.216	38.34	18.77	0.91	0.00	28.53	29.49		-16.51				
Remark:													

Above 1GHz

			Te	est channe	el: Lowest cl	nannel				
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	46.60	30.78	6.80	2.44	41.81	44.81	74.00	-29.19	Vertical	
4804.00	46.96	30.78	6.80	2.44	41.81	45.17	74.00	-28.83	Horizontal	
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	40.57	30.78	6.80	2.44	41.81	38.78	54.00	-15.22	Vertical	
4804.00	40.93	30.78	6.80	2.44	41.81	39.14	54.00	-14.86	Horizontal	
					el: Middle ch					
	Deed	A . 1	Oshla	1	or: Peak Val	ue	1.1	0.00	Γ	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	46.42	30.96	6.86	2.47	41.84	44.87	74.00	-29.13	Vertical	
4884.00	47.24	30.96	6.86	2.47	41.84	45.69	74.00	-28.31	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	40.33	30.96	6.86	2.47	41.84	38.78	54.00	-15.22	Vertical	
4884.00	40.73	30.96	6.86	2.47	41.84	39.18	54.00	-14.82	Horizontal	
			Te	est channe	el: Highest c	hannel				
				Detecto	or: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	46.68	31.11	6.91	2.49	41.87	45.32	74.00	-28.68	Vertical	
4960.00	46.75	31.11	6.91	2.49	41.87	45.39	74.00	-28.61	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	40.78	31.11	6.91	2.49	41.87	39.42	54.00	-14.58	Vertical	
4960.00	41.02	31.11	6.91	2.49	41.87	39.66	54.00	-14.34	Horizontal	
Remark: 1. Final Lev	/el =Receiv	ver Read leve	el + Anteni	na Factor +	Cable Loss	+ Aux Factor	– Preamplifie	r Factor.		

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.