RF TEST REPORT

Report No.: 18070406-FCC-R2
Supersede Report No.: N/A

Applicant SWAGTEK			
4 inch 3G Smart Phone			
LOGIC X40	3		
iSWAG Alp	ha, UNONU X4G		
FCC Part 1	5.247, ANSI C63.10: 2013		
May 03 to 2	20, 2018		
May 21, 2018			
Test Result Pass Fail			
Equipment complied with the specification			
Equipment did not comply with the specification			
Jaron Liong David Huang			
ıng	David Huang		
neer	Checked By		
	4 inch 3G S LOGIC X4C iSWAG Alp FCC Part 1 May 03 to 2 May 21, 20 Pass ied with the s t comply with	4 inch 3G Smart Phone LOGIC X4G iSWAG Alpha, UNONU X4G FCC Part 15.247, ANSI C63.10: 2013 May 03 to 20, 2018 May 21, 2018 Pass Fail ied with the specification t comply with the specification David Huang David Huang	

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	18070406-FCC-R2
Page	2 of 54

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope	
USA	EMC, RF/Wireless, SAR, Telecom	
Canada	EMC, RF/Wireless, SAR, Telecom	
Taiwan	EMC, RF, Telecom, SAR, Safety	
Hong Kong	RF/Wireless, SAR, Telecom	
Australia	EMC, RF, Telecom, SAR, Safety	
Korea	EMI, EMS, RF, SAR, Telecom, Safety	
Japan	EMI, RF/Wireless, SAR, Telecom	
Singapore	EMC, RF, SAR, Telecom	
Europe	EMC, RF, SAR, Telecom, Safety	

Test Report	18070406-FCC-R2
Page	3 of 54

This page has been left blank intentionally.

Test Report	18070406-FCC-R2
Page	4 of 54

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1	ANTENNA REQUIREMENT	9
6.2	CHANNEL SEPARATION	10
6.3	20DB BANDWIDTH	14
6.4	PEAK OUTPUT POWER	18
6.5	NUMBER OF HOPPING CHANNEL	22
6.6	TIME OF OCCUPANCY (DWELL TIME)	24
6.7	BAND EDGE & RESTRICTED BAND	28
8.6	AC POWER LINE CONDUCTED EMISSIONS	36
6.9	RADIATED EMISSIONS & RESTRICTED BAND	42
INA	NEX A. TEST INSTRUMENT	49
INA	NEX B. TEST SETUP AND SUPPORTING EQUIPMENT	50
	NEX C. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST/ DECLARATION OF	54

Test Report	18070406-FCC-R2
Page	5 of 54

1. Report Revision History

Report No.	Report Version	Description	Issue Date
18070406-FCC-R2	NONE	Original	May 21, 2018

2. Customer information

Applicant Name	SWAGTEK
Applicant Add	10205 NW 19th Street, STE 101, Miami, FL 33172
Manufacturer	SWAGTEK
Manufacturer Add	10205 NW 19th Street, STE 101, Miami, FL 33172

3. Test site information

Test Lab A:

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	535293	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

Test Lab B:

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Address	2-1 Longcang Avenue Yuhua Economic and
	Technology Development Park, Nanjing, China
FCC Test Site No.	694825
IC Test Site No.	4842B-1
Test Software	EZ_EMC(ver.lcp-03A1)

Note: We just perform Radiated Spurious Emission above 18GHz in the test Lab. B.

Test Report	18070406-FCC-R2
Page	6 of 54

4. Equipment under Test (EUT) Information

Description of EUT: 4	inch 3G Smart Phone
•	

Main Model: LOGIC X4G

Serial Model: iSWAG Alpha, UNONU X4G

Date EUT received: May 03, 2018

Test Date(s): May 03 to 20, 2018

Equipment Category: DSS

Antenna Gain: Bluetooth: -1dBi

Antenna Type: PIFA antenna

Type of Modulation: Bluetooth: GFSK, π /4DQPSK, 8DPSK

RF Operating Frequency (ies): Bluetooth: 2402-2480 MHz

Max. Output Power: -1.971dBm

Number of Channels: Bluetooth: 79CH

Port: USB Port, Earphone Port

Test Report	18070406-FCC-R2
Page	7 of 54

Adapter 1:

Model: A31A-050055U-US1

Input: AC100-240V~50/60Hz,0.2Amps

Output: DC 5.0V, 550mA

Adapter 2:

Model: A31A-050055U-US1

Input Power: Input: AC100-240V~50/60Hz,0.2Amps

Output: DC 5.0V, 550mA

Battery 1:

Spec: 3.8V, 1500mAh, 5.7Wh

Battery 2:

Spec: 3.8V, 1500mAh, 5.7Wh

Trade Name : LOGIC, iSWAG, UNONU

FCC ID: 055401618

Test Report	18070406-FCC-R2
Page	8 of 54

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247(a)(1)	Channel Separation	Compliance
§15.247(a)(1)	20 dB Bandwidth	Compliance
§15.247(b)(1)	Peak Output Power	Compliance
§15.247(a)(1)(iii)	Number of Hopping Channel	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(d)	Band Edge& Restricted Band	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions& Restricted Band	Compliance

Measurement Uncertainty

Emissions				
Test Item	Description	Uncertainty		
Band Edge& Restricted Band and Radiated Emissions& Restricted Band	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB		
-	-	-		

Test Report	18070406-FCC-R2
Page	9 of 54

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 2 antennas:

A permanently attached PIFA antenna for Bluetooth/BLE/WIF/GPS, the gain is -1dBi for Bluetooth/BLE, the gain is -1.5dBi for WIFI, the gain is 1dBi for GPS.

A permanently attached PIFA antenna for GSM/PCS/UMTS, the gain is -2dBi for GSM850, 0.5dBi for PCS1900, -3dBi for UMTS-FDD Band V, 0dBi for UMTS-FDD Band II.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

Test Report	18070406-FCC-R2
Page	10 of 54

6.2 Channel Separation

Temperature	27°C
Relative Humidity	58%
Atmospheric Pressure	1010mbar
Test date :	May 10, 2018
Tested By :	Aaron Liang

Requirement(s):

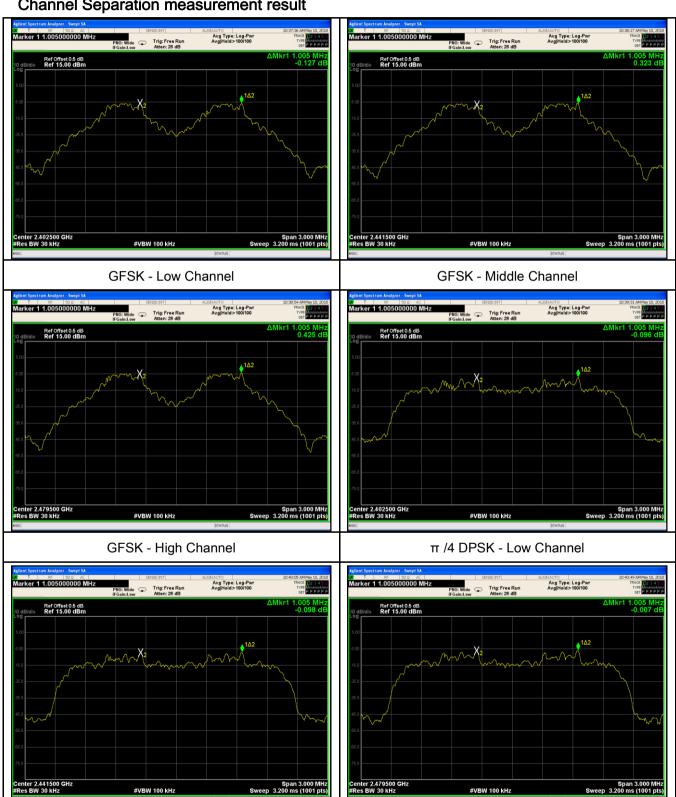
Requirement(s):					
Spec	Item	Applicable			
0.45.047(.)(4)		Channel Separation < 20dB BW and 20dB BW <			
	۵۱	25KHz;Channel Separation Limit=25KHz	V		
§ 15.247(a)(1)	(a)	Chanel Separation < 20dB BW and 20dB BW >			
		25kHz; Channel Separation Limit=2/3 20dB BW			
Test Setup	Spectrum Analyzer EUT				
	The t	est follows FCC Public Notice DA 00-705 Measurement	Guidelines.		
	Use the following spectrum analyzer settings:				
	The EUT must have its hopping function enabled				
	- Span = wide enough to capture the peaks of two adjacent				
	channels				
	- Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span				
Test Procedure	- Video (or Average) Bandwidth (VBW) ≥ RBW				
Tool Toolaaro	- Sweep = auto				
	- Detector function = peak				
	- Trace = max hold				
	- Allow the trace to stabilize. Use the marker-delta function to				
	determine the separation between the peaks of the adjacent				
		channels. The limit is specified in one of the subparagraphs of this			
		Section. Submit this plot.			

Test Report	18070406-FCC-R2	
Page	11 of 54	

Remark					
Resu	lt	Pass	Fail		
Test Data	Data Yes		□ _{N/A}		
Test Plot Yes (See below)		□ _{N/A}			

Channel Separation measurement result

Type/ Modulation	СН	CH Frequency (MHz)	CH Separation (MHz)	Limit (MHz)	Result
	Low Channel	2402	1.005	0.965	Pass
	Adjacency Channel	2403	1.005	0.905	F d 5 5
CH Separation	Mid Channel	2440	1.005	0.689	Pass
GFSK	Adjacency Channel	2441	1.005	0.009	P d 5 5
	High Channel	2480	1 005	0.964	Door
	Adjacency Channel	2479	1.005	0.964	Pass
	Low Channel	2402	1.005	0.856	Pass
	Adjacency Channel	2403	1.005		
CH Separation	Mid Channel	2440	1.005	0.873	Pass
π /4 DQPSK	Adjacency Channel	2441	1.005	0.873	Pass
	High Channel	2480	1.005	0.057	Dees
	Adjacency Channel	2479	1.005	0.857	Pass
	Low Channel	2402	4.005	0.000	Desa
	Adjacency Channel	2403	1.005	0.868	Pass
CH Separation	Mid Channel	2440	4.005	0.000	Dana
8DPSK	Adjacency Channel	2441	1.005	0.860	Pass
	High Channel	2480	1.005	0.057	Dess
	Adjacency Channel	2479	1.005	0.857	Pass


Test Report	18070406-FCC-R2	
Page	12 of 54	

 π /4 DQPSK - High Channel

Test Plots

Channel Separation measurement result

 π /4 DQPSK - Middle Channel

Test Report	18070406-FCC-R2	
Page	13 of 54	

8DPSK - Low Channel

8DPSK - Middle Channel

8DPSK - High Channel

Test Report	18070406-FCC-R2
Page	14 of 54

6.3 20dB Bandwidth

Temperature	27°C
Relative Humidity	58%
Atmospheric Pressure	1010mbar
Test date :	May 10, 2018
Tested By :	Aaron Liang

Requirement(s):	_				
Spec	Item	Requirement Applicable			
		Frequency hopping systems shall have hopping			
§15.247(a)	2)	channel carrier frequencies separated by a minimum	V		
(1)	(a)	of 25 kHz or the 20 dB bandwidth of the hopping			
		channel, whichever is greater.			
Test Setup					
		Spectrum Analyzer EUT			
	The te	st follows FCC Public Notice DA 00-705 Measurement Gu	uidelines.		
	Use th	Use the following spectrum analyzer settings:			
	- Span = approximately 2 to 3 times the 20 dB bandwidth, centered on				
	a hopping channel				
	- RBW ≥ 1% of the 20 dB bandwidth				
	- VBW≥ RBW				
Test	-	Sweep = auto			
Procedure	-	Detector function = peak			
rioccurc	-	Trace = max hold.			
	- The EUT should be transmitting at its maximum data rate. Allow the				
	trace to stabilize. Use the marker-to-peak function to set the marker				
	to the peak of the emission. Use the marker-delta function to				
	measure 20 dB down one side of the emission. Reset the marker-				
		delta function, and move the marker to the other side of the	he		
		emission, until it is (as close as possible to) even with the	reference		

Test Report	18070406-FCC-R2	
Page	15 of 54	

		marker level. The marker-delta reading at this point is the 20 dB		
		bandwidth of the emission. If this value varies with different modes of		
		operation (e.g., data rate, modulation format, etc.), repeat this test for		
		each variation. The limit is specified in one of the subparagraphs of		
		this Sec	ction. Submit this plot(s).	
Remark				
Result	į	Pass	☐ Fail	
Test Data	Ye	s	N/A	
Test Plot	Yes	s (See below)	□ _{N/A}	

Measurement result

Modulation	СН	CH Frequency	20dB Bandwidth	99% Occupied
Modulation	Сп	(MHz)	(MHz)	Bandwidth (MHz)
	Low	2402	1.038	0.905
GFSK	Mid	2441	1.036	0.896
	High	2480	1.029	0.899
π /4 DQPSK	Low	2402	1.289	1.1804
	Mid	2441	1.288	1.1747
	High	2480	1.284	1.1718
8-DPSK	Low	2402	1.283	1.1800
	Mid	2441	1.302	1.1857
	High	2480	1.299	1.1867

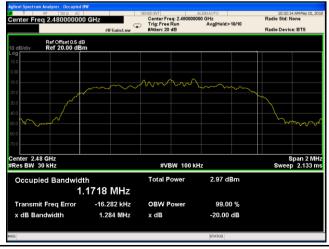
Test Report	18070406-FCC-R2	
Page	16 of 54	

Test Plots

20dB Bandwidth measurement result

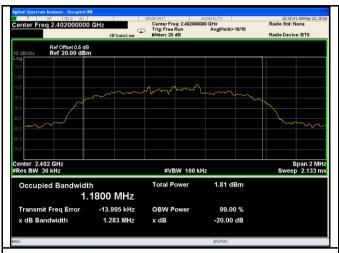
GFSK - Low Channel

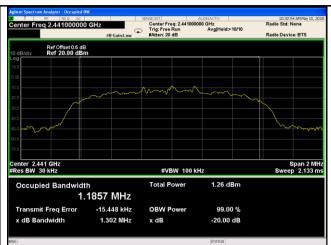
GFSK - Middle Channel



GFSK - High Channel

π /4 DPSK - Low Channel




π /4 DQPSK - Middle Channel

π /4 DQPSK - High Channel

Test Report	18070406-FCC-R2
Page	17 of 54

8DPSK - Low Channel

8DPSK - High Channel

8DPSK - Middle Channel

Test Report	18070406-FCC-R2
Page	18 of 54

6.4 Peak Output Power

Temperature	27°C
Relative Humidity	58%
Atmospheric Pressure	1010mbar
Test date :	May 10, 2018
Tested By:	Aaron Liang

Requirement(s):

Item	Requirement Applicable		
a)	FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1	<u>\</u>	
a)	Watt	•	
b)	FHSS in 5725-5850MHz: ≤ 1 Watt		
6)	For all other FHSS in the 2400-2483.5MHz band:		
<i>C)</i>	≤ 0.125 Watt.	•	
d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt		
٥)	FHSS in 902-928MHz with ≥ 25 & <50 channels:	1	
e)	≤ 0.25 Watt		
f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt		
	Spectrum Analyzer EUT		
The test follows FCC Public Notice DA 00-705 Measurement Guidelines.			
Use the following spectrum analyzer settings:			
-	Span = approximately 5 times the 20 dB bandwidth, center	ered on a	
	hopping channel		
- RBW > the 20 dB bandwidth of the emission being measured			
-	VBW ≥ RBW		
-	Sweep = auto		
-	Detector function = peak		
-	Trace = max hold		
- Allow the trace to stabilize.			
	a) b) c) d) e) f) The tender the	a) FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1 Watt b) FHSS in 5725-5850MHz: ≤ 1 Watt c) For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt. d) FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤ 0.25 Watt f) DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt The test follows FCC Public Notice DA 00-705 Measurement Gu Use the following spectrum analyzer settings: - Span = approximately 5 times the 20 dB bandwidth, center hopping channel - RBW > the 20 dB bandwidth of the emission being measured between the companion of the	

Test Report	18070406-FCC-R2
Page	19 of 54

		- Use the marker-to-peak function to set the marker to the peak of the
		emission. The indicated level is the peak output power (see the note
		above regarding external attenuation and cable loss). The limit is
		specified in one of the subparagraphs of this Section. Submit this
		plot. A peak responding power meter may be used instead of a
		spectrum analyzer.
Remark		
Result		Pass Fail
Test Data	Y	es N/A
Test Plot	V	es (See below)

Peak Output Power measurement result


Туре	Modulation	СН	Frequenc y (MHz)	Conducted Power (dBm)	Limit (mW)	Result
		Low	2402	-3.617	125	Pass
	GFSK	Mid	2441	-3.222	125	Pass
		High	2480	-1.971	125	Pass
O v stan v st		Low	2402	-3.774	125	Pass
Output	π /4 DQPSK	Mid	2441	-3.470	125	Pass
power		High	2480	-2.296	125	Pass
		Low	2402	-3.612	125	Pass
	8-DPSK	Mid	2441	-3.437	125	Pass
		High	2480	-2.249	125	Pass

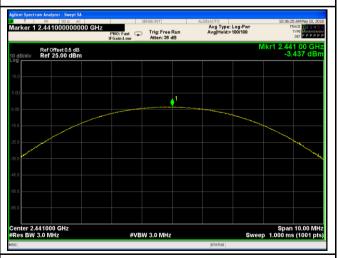
Test Report	18070406-FCC-R2
Page	20 of 54

Test Plots

Output Power measurement result

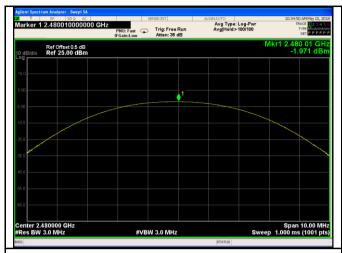
GFSK Output power - Low CH 2402

| April | Septemble | Septembl


GFSK Output power - Mid CH 2441

GFSK Output power - High CH 2480

 π /4 DQPSK Output power - Low CH 2402



 π /4 DQPSK Output power - Mid CH 2441

 π /4 DQPSK Output power - High CH 2480

Test Report	18070406-FCC-R2
Page	21 of 54

8DPSK Output power - Low CH 2402

8DPSK Output power - Mid CH 2441

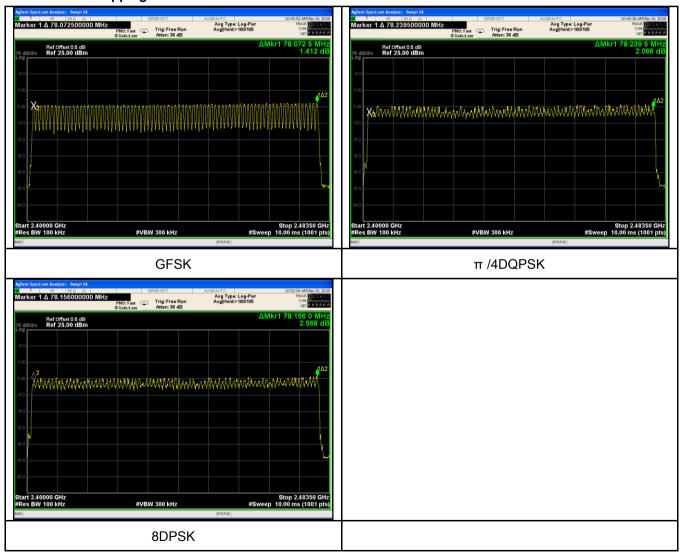
8DPSK Output power - High CH 2480

Test Report	18070406-FCC-R2
Page	22 of 54

6.5 Number of Hopping Channel

Temperature	27°C
Relative Humidity	58%
Atmospheric Pressure	1010mbar
Test date :	May 10, 2018
Tested By :	Aaron Liang

Requirement(s):					
Spec	Item	Requirement	Applicable		
§15.247(a) (1)(iii)	a)	FHSS in 2400-2483.5MHz ≥ 15 channels	V		
Test Setup		Spectrum Analyzer EUT			
	The to	st follows FCC Public Notice DA 00-705 Measurement Gu	uidolinos		
			iluelli les.		
		e following spectrum analyzer settings:			
		The EUT must have its hopping function enabled.			
	- Span = the frequency band of operation				
		- RBW ≥ 1% of the span			
Test	- Sweep = auto				
Procedure					
Trocedure	- Detector function = peak				
	- Trace = max hold				
	- Allow trace to fully stabilize.				
	-	It may prove necessary to break the span up to sections,	in order to		
	clearly show all of the hopping frequencies. The limit is specified in				
	one of the subparagraphs of this Section. Submit this plot(s).				
Remark					
Result	Pas	s Fail			
Test Data	Yes	□ _{N/A}			
Test Plot	Yes (See	below)			


Test Report	18070406-FCC-R2
Page	23 of 54

Number of Hopping Channel measurement result

Туре	Modulation	Frequency Range	Number of Hopping Channel	Limit
Number	GFSK	2400-2483.5	79	15
Number of	π /4 DQPSK	2400-2483.5	79	15
Hopping Channel	8-DPSK	2400-2483.5	79	15

Test Plots

Number of Hopping Channels measurement result

Test Report	18070406-FCC-R2
Page	24 of 54

6.6 Time of Occupancy (Dwell Time)

Temperature	27°C
Relative Humidity	58%
Atmospheric Pressure	1010mbar
Test date :	May 10, 2018
Tested By :	Aaron Liang

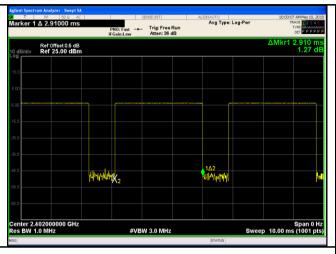
Requirement(s):

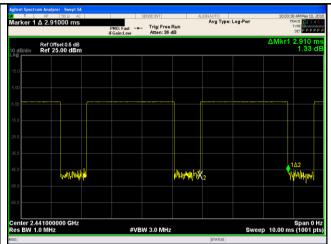
Spec	Item	Requirement	Applicable
§15.247(a) (1)(iii)	a)	Dwell Time < 0.4s	•
Test Setup		Spectrum Analyzer EUT	
	The te	st follows FCC Public Notice DA 00-705 Measurement G	Guidelines.
	Use the	e following spectrum analyzer	
	-	Span = zero span, centered on a hopping channel	
	-	RBW = 1 MHz	
Test	-	VBW ≥ RBW	
Procedure	-	Sweep = as necessary to capture the entire dwell time p	er hopping
		channel	
	-	Detector function = peak	
	-	Trace = max hold	
	-	use the marker-delta function to determine the dwell time	e
Remark			
Result	Pas	s Fail	

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

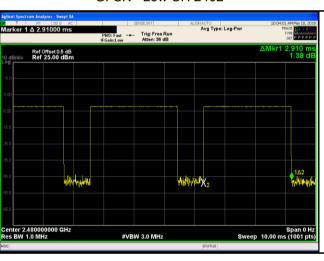
Test Report	18070406-FCC-R2
Page	25 of 54

Dwell Time measurement result

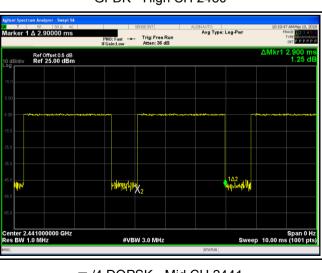

Туре	Modulation	СН	Pulse Width (ms)	Dwell Time (ms)	Limit (ms)	Result
		Low	2.910	310.400	400	Pass
	GFSK	Mid	2.910	310.400	400	Pass
		High	2.910	310.400	400	Pass
Dwell Time	π /4 DQPSK	Low	2.900	309.333	400	Pass
		Mid	2.900	309.333	400	Pass
		High	2.900	309.333	400	Pass
	8-DPSK	Low	2.900	309.333	400	Pass
		Mid	2.900	309.333	400	Pass
		High	2.900	309.333	400	Pass
Note: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6						



Test Report	18070406-FCC-R2
Page	26 of 54


Test Plots

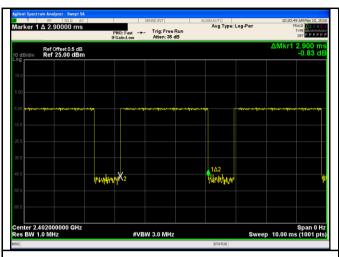
Dwell Time measurement result


GFSK - Low CH 2402

GFSK - Mid CH 2441

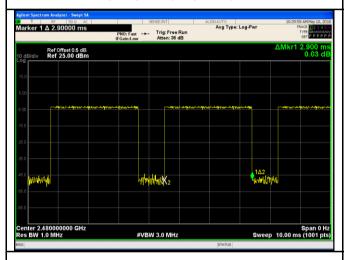
GFDK - High CH 2480

π /4 DQPSK - Low CH 2402



 π /4 DQPSK - Mid CH 2441

 π /4 DQPSK - High CH 2480 $\,$


Test Report	18070406-FCC-R2
Page	27 of 54

8DPSK - Low CH 2402

8DPSK - Mid CH 2441

8DPSK - High CH 2480

Test Report	18070406-FCC-R2
Page	28 of 54

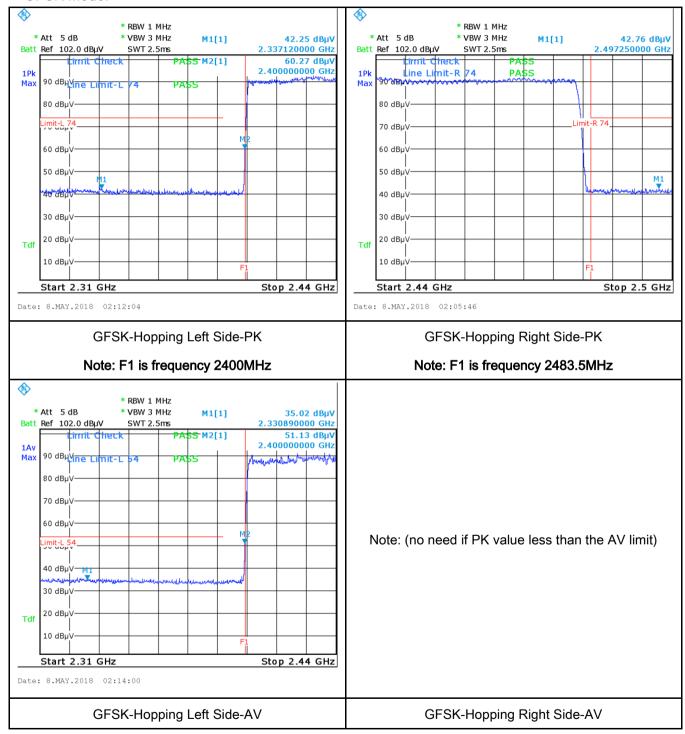
6.7 Band Edge & Restricted Band

Temperature	25°C
Relative Humidity	50%
Atmospheric Pressure	1008mbar
Test date :	May 08, 2018
Tested By:	Aaron Liang

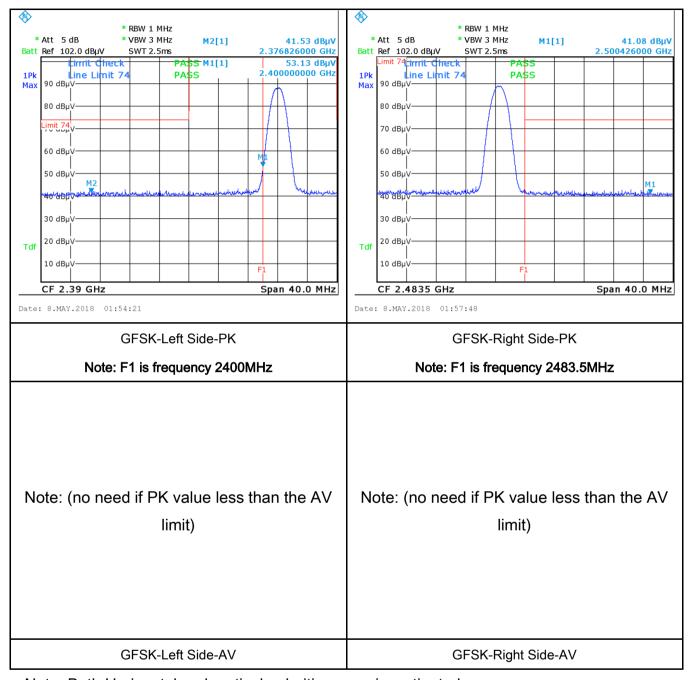
Requirement(s):

Spec	Item	Requirement	Applicable
§15.247(a) (1)(iii)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	
Test Setup	Ant. Tower Support Units Ground Plane Test Receiver		
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Radiated Method Only - 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range,		

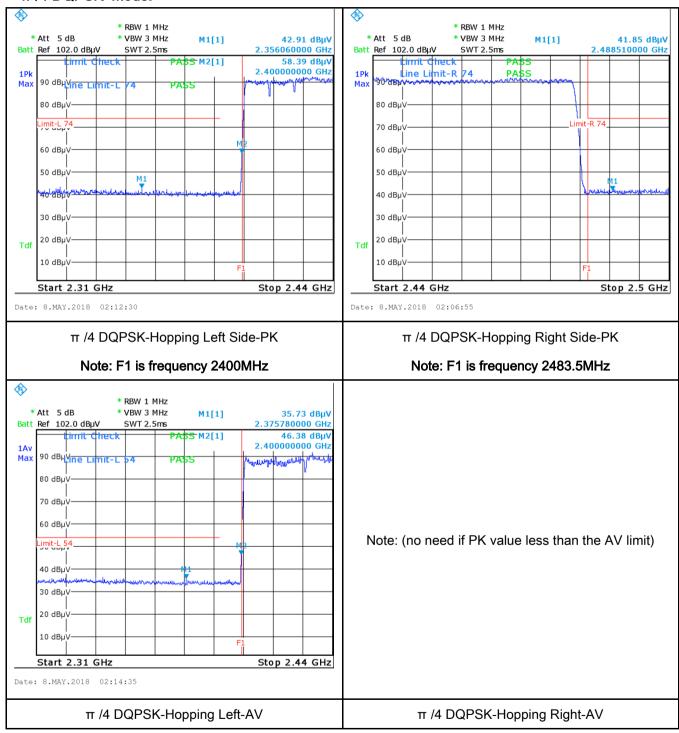
Test Report	18070406-FCC-R2
Page	29 of 54


	and make sure the instrument is operated in its linear range.
	- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a
	convenient frequency span including 100kHz bandwidth from band edge, check
	the emission of EUT, if pass then set Spectrum Analyzer as below:
	a. The resolution bandwidth and video bandwidth of test receiver/spectrum
	analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
	b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and
	video bandwidth is 3MHz with Peak detection for Peak measurement at
	frequency above 1GHz.
	c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the
	video bandwidth is 10Hz with Peak detection for Average Measurement as
	below at frequency above 1GHz.
	- 4. Measure the highest amplitude appearing on spectral display and set it as a
	reference level. Plot the graph with marking the highest point and edge
	frequency.
	- 5. Repeat above procedures until all measured frequencies were complete.
Remark	
Tterriark	
Result	Pass Fail
Test Data	T _{Yes} V _{N/A}
I ESI Dala	165 IVA
Test Plot	Yes (See below)

Test Report	18070406-FCC-R2	
Page	30 of 54	

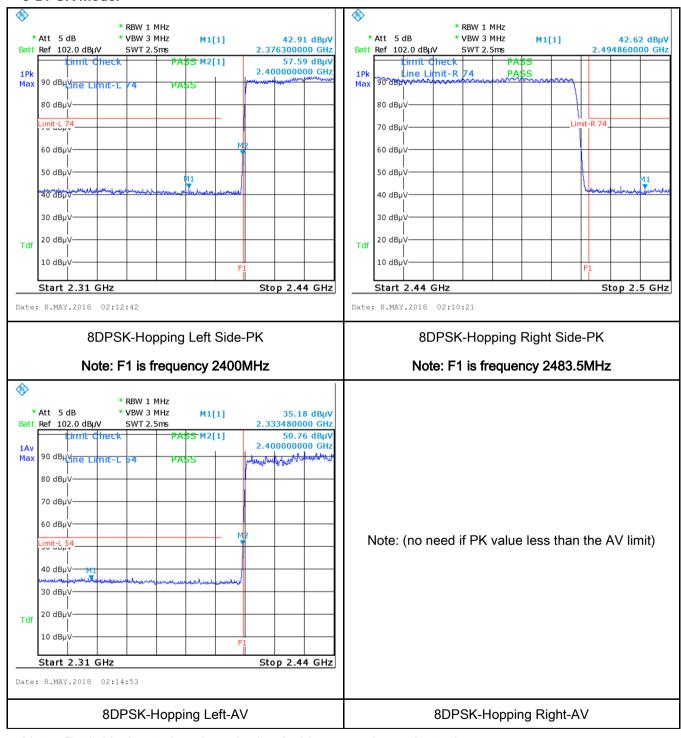

Test Plots

GFSK Mode:


Test Report	18070406-FCC-R2
Page	31 of 54


Test Report	18070406-FCC-R2	
Page	32 of 54	

π /4 DQPSK Mode:


Test Report	18070406-FCC-R2
Page	33 of 54

Test Report	18070406-FCC-R2
Page	34 of 54

8-DPSK Mode:

Test Report	18070406-FCC-R2
Page	35 of 54

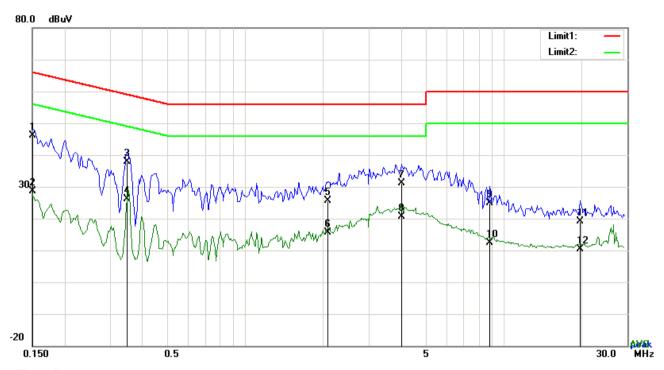
Test Report	18070406-FCC-R2
Page	36 of 54

6.8 AC Power Line Conducted Emissions

Temperature	25°C
Relative Humidity	50%
Atmospheric Pressure	1008mbar
Test date :	May 08, 2018
Tested By :	Aaron Liang

Requirement(s):

Spec	Item	Requirement	Requirement		
47CFR§15. 207, RSS210	a)	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.			
(A8.1)		Frequency ranges	Limit (. ,	
		(MHz) 0.15 ~ 0.5	QP 66 – 56	Average 56 – 46	
		0.15 0.5	56	46	
		5 ~ 30	60	50	
Test Setup	Vertical Ground Reference Plane Horizontal Ground Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm				
Procedure	1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. 2. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains.				
	3. The	RF OUT of the EUT LIS	SN was connected to the	ne EMI test receiver via	a low-loss

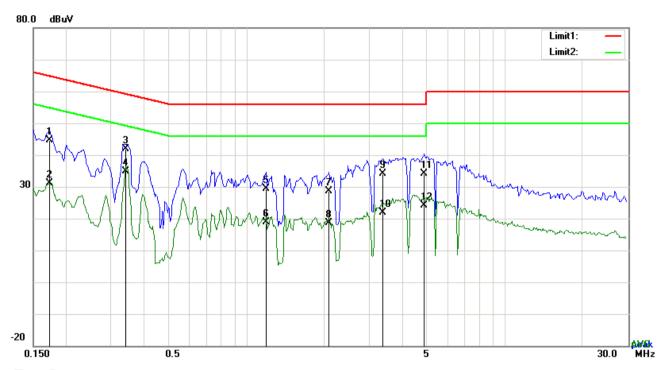


Test Report	18070406-FCC-R2
Page	37 of 54

	coaxial cable.					
	4. All other supporting equipment were powered separately from another main supply.					
	5. The EUT was switched on and allowed to warm up to its normal operating condition.					
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)					
	over the required frequency range using an EMI test receiver.					
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the					
	selected frequencies and the necessary measurements made with a receiver bandwidth					
	setting of 10 kHz.					
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).					
Remark						
Result	Pass Fail					
Test Data	Yes N/A					
Test Plot	Yes (See below)					

Test Report	18070406-FCC-R2
Page	38 of 54

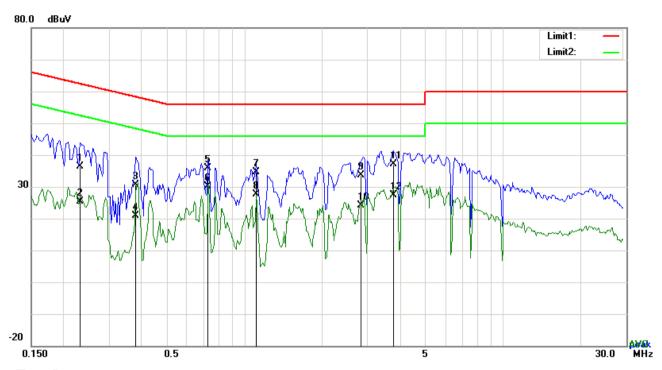
Test Data


Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	L1	0.1500	36.08	QP	10.03	46.11	66.00	-19.89
2	L1	0.1500	18.66	AVG	10.03	28.69	56.00	-27.31
3	L1	0.3489	27.91	QP	10.03	37.94	58.99	-21.05
4	L1	0.3489	16.21	AVG	10.03	26.24	48.99	-22.75
5	L1	2.0922	15.65	QP	10.04	25.69	56.00	-30.31
6	L1	2.0922	5.57	AVG	10.04	15.61	46.00	-30.39
7	L1	4.0179	21.07	QP	10.07	31.14	56.00	-24.86
8	L1	4.0179	10.48	AVG	10.07	20.55	46.00	-25.45
9	L1	8.8539	14.64	QP	10.13	24.77	60.00	-35.23
10	L1	8.8539	2.13	AVG	10.13	12.26	50.00	-37.74
11	L1	19.6686	8.75	QP	10.30	19.05	60.00	-40.95
12	L1	19.6686	0.06	AVG	10.30	10.36	50.00	-39.64

Test Report	18070406-FCC-R2
Page	39 of 54

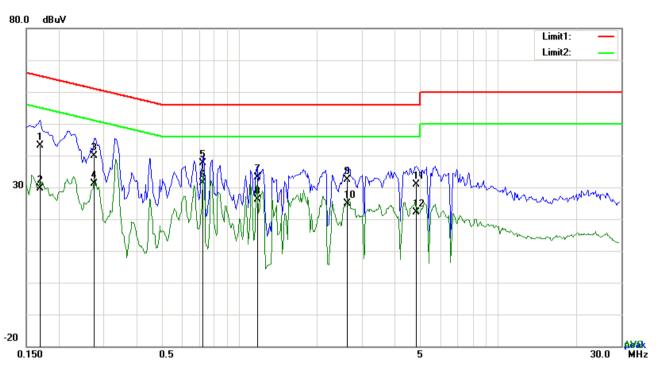
Test Mode:	Bluetooth Mode


Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.1734	34.67	QP	10.02	44.69	64.80	-20.11
2	N	0.1734	21.11	AVG	10.02	31.13	54.80	-23.67
3	N	0.3411	31.81	QP	10.02	41.83	59.18	-17.35
4	N	0.3411	24.74	AVG	10.02	34.76	49.18	-14.42
5	N	1.1952	19.25	QP	10.03	29.28	56.00	-26.72
6	N	1.1952	8.86	AVG	10.03	18.89	46.00	-27.11
7	N	2.0922	18.59	QP	10.04	28.63	56.00	-27.37
8	N	2.0922	8.58	AVG	10.04	18.62	46.00	-27.38
9	N	3.3705	24.03	QP	10.05	34.08	56.00	-21.92
10	N	3.3705	11.94	AVG	10.05	21.99	46.00	-24.01
11	N	4.8759	24.07	QP	10.07	34.14	56.00	-21.86
12	N	4.8759	14.03	AVG	10.07	24.10	46.00	-21.90

Test Report	18070406-FCC-R2
Page	40 of 54


Test Data

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	L1	0.2319	26.45	QP	10.03	36.48	62.38	-25.90
2	L1	0.2319	15.28	AVG	10.03	25.31	52.38	-27.07
3	L1	0.3801	20.62	QP	10.03	30.65	58.28	-27.63
4	L1	0.3801	10.82	AVG	10.03	20.85	48.28	-27.43
5	L1	0.7272	25.79	QP	10.03	35.82	56.00	-20.18
6	L1	0.7272	20.02	AVG	10.03	30.05	46.00	-15.95
7	L1	1.1133	24.62	QP	10.03	34.65	56.00	-21.35
8	L1	1.1133	17.66	AVG	10.03	27.69	46.00	-18.31
9	L1	2.8240	23.67	QP	10.05	33.72	56.00	-22.28
10	L1	2.8240	14.12	AVG	10.05	24.17	46.00	-21.83
11	L1	3.7644	27.01	QP	10.06	37.07	56.00	-18.93
12	L1	3.7644	17.36	AVG	10.06	27.42	46.00	-18.58

Test Report	18070406-FCC-R2
Page	41 of 54

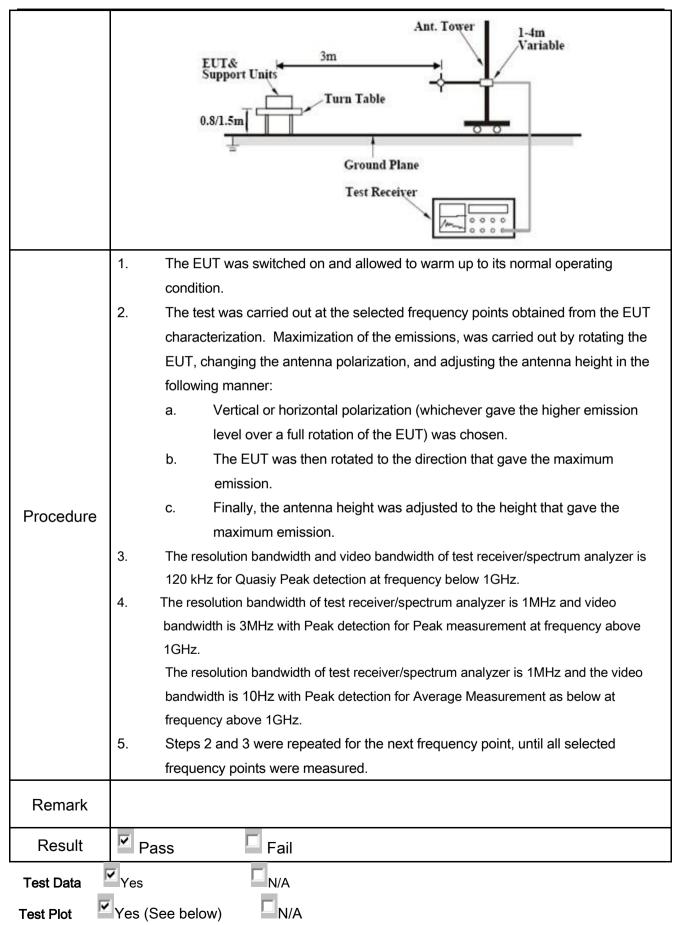
Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	N	0.1695	33.08	QP	10.02	43.10	64.98	-21.88
2	N	0.1695	19.72	AVG	10.02	29.74	54.98	-25.24
3	N	0.2748	29.98	QP	10.02	40.00	60.97	-20.97
4	N	0.2748	21.09	AVG	10.02	31.11	50.97	-19.86
5	N	0.7233	27.52	QP	10.02	37.54	56.00	-18.46
6	N	0.7233	21.47	AVG	10.02	31.49	46.00	-14.51
7	N	1.1757	22.98	QP	10.03	33.01	56.00	-22.99
8	N	1.1757	16.03	AVG	10.03	26.06	46.00	-19.94
9	N	2.6109	22.24	QP	10.05	32.29	56.00	-23.71
10	N	2.6109	14.72	AVG	10.05	24.77	46.00	-21.23
11	N	4.8369	20.71	QP	10.07	30.78	56.00	-25.22
12	N	4.8369	12.09	AVG	10.07	22.16	46.00	-23.84

Test Report	18070406-FCC-R2
Page	42 of 54

6.9 Radiated Emissions & Restricted Band


Temperature	25°C
Relative Humidity	50%
Atmospheric Pressure	1008mbar
Test date :	May 08, 2018
Tested By :	Aaron Liang

Requirement(s):

Spec	Item	equirement Applicable								
47CFR§15.		Except higher limit as specified else emissions from the low-power radio exceed the field strength levels specified the level of any unwanted emissions the fundamental emission. The tight edges								
205,	a)	Frequency range (MHz) 0.009~0.490	Field Strength (µV/m) 2400/F(KHz)	V						
§15.209,		0.490~1.705	24000/F(KHz)							
§15.247(d)		1.705~30.0	30							
		30 - 88	100							
		88 – 216	150							
		216 960	200							
		Above 960	500							
Test Setup		EUT 0.8m	3 meter RF Tes Receive	nana hana						

Test Report	18070406-FCC-R2
Page	43 of 54

Test Report	18070406-FCC-R2
Page	44 of 54

Test Result:

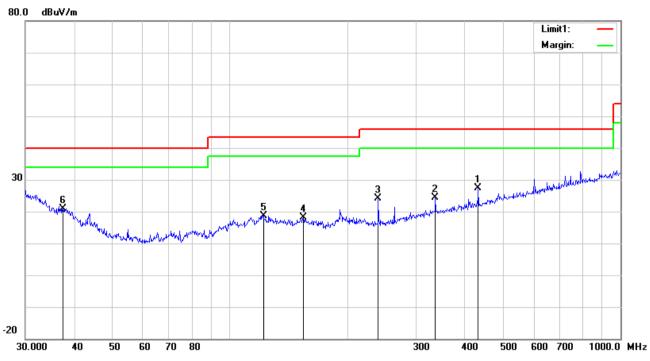
Test Mode: Transmitting Mode

Frequency range: 9KHz - 30MHz

Freq.	Detection	Factor	Reading	Result	Limit@3m	Margin
(MHz)	value	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
						>20
						>20

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

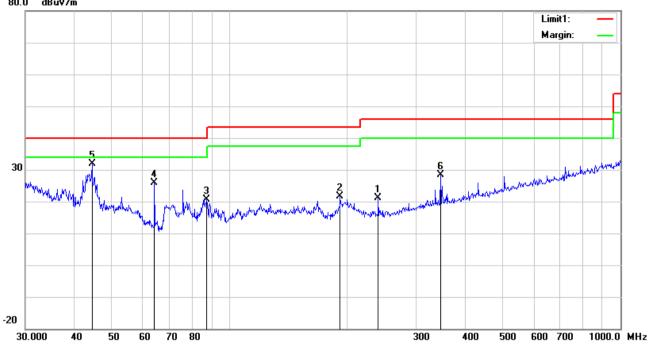
Limit line = specific limits(dBuv) + distance extrapolation factor.

Test Report	18070406-FCC-R2
Page	45 of 54

30MHz -1GHz

Test Data

Horizontal Polarity Plot @3m


No.	P/L	Frequency	Reading	Detect	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
	- , -			or								ее
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	Н	432.5457	30.80	peak	16.35	21.94	2.09	27.30	46.00	-18.70	100	251
2	Н	336.0352	30.17	peak	14.36	22.19	1.97	24.31	46.00	-21.69	100	205
3	Н	239.9873	33.19	peak	11.54	22.31	1.67	24.09	46.00	-21.91	100	123
4	Н	154.2786	26.59	peak	12.60	22.31	1.36	18.24	43.50	-25.26	100	49
5	Н	121.9755	26.15	peak	13.77	22.36	1.17	18.73	43.50	-24.77	100	320
6	Н	37.4165	26.69	peak	15.79	22.26	0.77	20.99	40.00	-19.01	200	52

Test Report	18070406-FCC-R2
Page	46 of 54

30MHz -1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Detect or	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
		(MHz)	(dBuV/m)	OI .	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	٧	239.9873	30.33	peak	11.54	22.31	1.67	21.23	46.00	-24.77	100	212
2	٧	191.7450	30.80	peak	11.65	22.33	1.54	21.66	43.50	-21.84	100	203
3	٧	87.4177	33.96	peak	7.90	22.35	1.01	20.52	40.00	-19.48	100	250
4	٧	64.2075	39.92	peak	7.51	22.40	0.86	25.89	40.00	-14.11	100	198
5	V	44.4308	42.39	peak	10.98	22.29	0.75	31.83	40.00	-8.17	100	299
6	٧	346.8092	33.91	peak	14.58	22.16	2.02	28.35	46.00	-17.65	100	355

Test Report	18070406-FCC-R2
Page	47 of 54

Above 1GHz

nsmitting Mode

Low Channel: 8-DPSK Mode (Worst Case) (2402 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4804	47.89	AV	V	33.39	7.22	48.46	40.04	54	-13.96
4804	43.34	AV	Н	33.39	7.22	48.46	35.49	54	-18.51
4804	68.11	PK	V	33.39	7.22	48.46	60.26	74	-13.74
4804	65.04	PK	Н	33.39	7.22	48.46	57.19	74	-16.81
7962	36.04	AV	V	37.24	7.44	47.48	33.24	54	-20.76
7962	33.05	AV	Н	37.24	7.44	47.48	30.25	54	-23.75
7962	51.96	PK	V	37.24	7.44	47.48	49.16	74	-24.84
7962	53.56	PK	Н	37.24	7.44	47.48	50.76	74	-23.24

Middle Channel: GFSK Mode (Worst Case) (2441 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4882	47.99	AV	V	33.62	7.53	48.36	40.78	54	-13.22
4882	43.72	AV	Н	33.62	7.53	48.36	36.51	54	-17.49
4882	68.71	PK	V	33.62	7.53	48.36	61.5	74	-12.5
4882	64.32	PK	Н	33.62	7.53	48.36	57.11	74	-16.89
10632	27.67	AV	V	40.14	11.81	46.93	32.69	54	-21.31
10632	24.52	AV	Н	40.14	11.81	46.93	29.54	54	-24.46
10632	43.7	PK	V	40.14	11.81	46.93	48.72	74	-25.28
10632	46.93	PK	Н	40.14	11.81	46.93	51.95	74	-22.05

Test Report	18070406-FCC-R2
Page	48 of 54

High Channel: GFSK Mode (Worst Case) (2480 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4960	43.25	AV	V	33.89	7.86	48.31	36.69	54	-17.31
4960	48.27	AV	Н	33.89	7.86	48.31	41.71	54	-12.29
4960	69.12	PK	V	33.89	7.86	48.31	62.56	74	-11.44
4960	64.27	PK	Н	33.89	7.86	48.31	57.71	74	-16.29
17830	22.09	AV	V	41.94	16.19	46.91	33.31	54	-20.69
17830	21.47	AV	Н	41.94	16.19	46.91	32.69	54	-21.31
17830	42.98	PK	V	41.94	16.19	46.91	54.2	74	-19.8
17830	42	PK	Н	41.94	16.19	46.91	53.22	74	-20.78

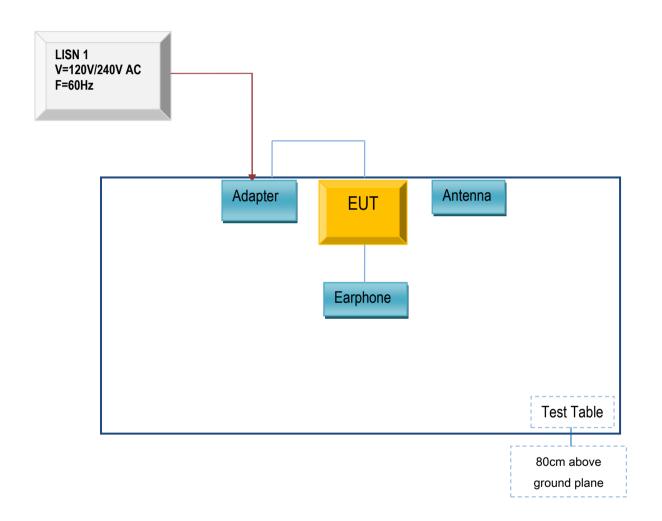
Note:

- 1, The testing has been conformed to 10*2480MHz=24,800MHz
- 2, All other emissions more than 30 dB below the limit
- 3, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.
- 4, The radiated spurious test above 18GHz is subcontracted to SIEMIC (Nanjing-China) Laboratories. and found 30dB below the limit at least.

Test Report	18070406-FCC-R2
Page	49 of 54

Annex A. TEST INSTRUMENT

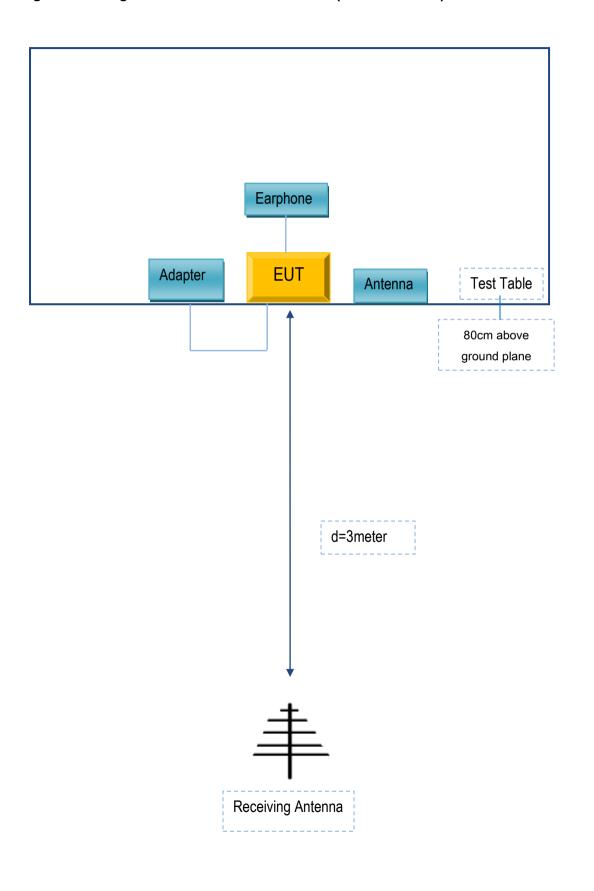
			0.15.4	0.15	
Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/15/2017	09/14/2018	~
Line Impedance	LI-125A	191106	09/23/2017	09/22/2018	~
Line Impedance	LI-125A	191107	09/23/2017	09/22/2018	~
ISN	ISN T800	34373	09/23/2017	09/22/2018	
Transient Limiter	LIT-153	531118	08/30/2017	08/29/2018	✓
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/15/2017	09/14/2018	>
Power Splitter	1#	1#	08/30/2017	08/29/2018	>
DC Power Supply	E3640A	MY40004013	09/15/2017	09/14/2018	>
Radiated Emissions					
EMI test receiver	ESL6	100262	09/15/2017	09/14/2018	~
Positioning Controller	UC3000	MF780208282	11/17/2017	11/16/2018	~
OPT 010 AMPLIFIER	0.4.475	0707400400	00/00/00/7	00/00/0040	_
(0.1-1300MHz)	8447E	2727A02430	08/30/2017	08/29/2018	V
Horn Antenna	BBHA9170	3145226D1	09/27/2017	09/26/2018	V
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/22/2018	03/21/2019	>
Active Antenna (9kHz-30MHz)	AL-130	121031	10/12/2017	10/11/2018	\
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/19/2017	09/18/2018	V
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/22/2017	09/21/2018	V
Universal Radio Communication Tester	CMU200	121393	09/23/2017	09/22/2018	V



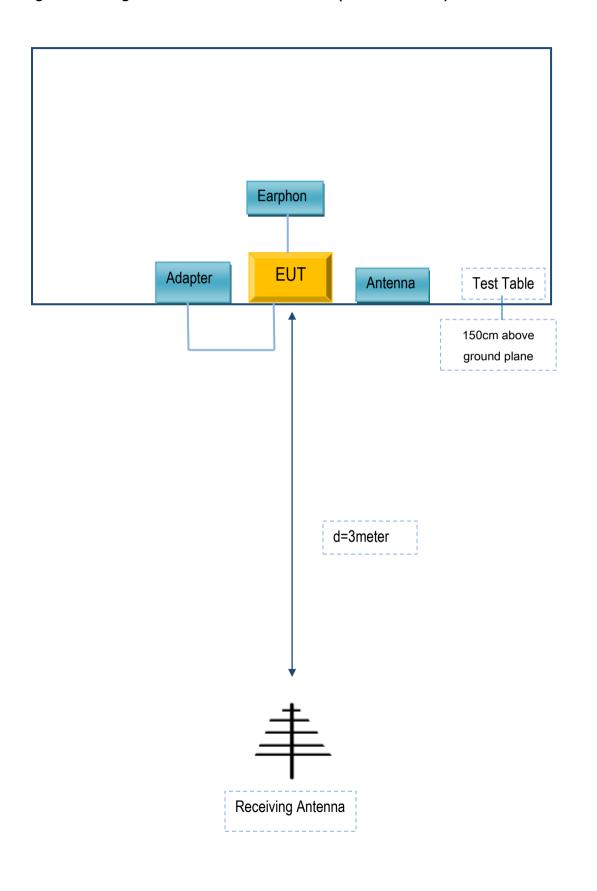
Test Report	18070406-FCC-R2
Page	50 of 54

Annex B. TEST SETUP AND SUPPORTING EQUIPMENT

Annex B.i. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Test Report	18070406-FCC-R2
Page	51 of 54


Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report	18070406-FCC-R2
Page	52 of 54

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report	18070406-FCC-R2
Page	53 of 54

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
SWAGTEK	Adapter 1	A31A-050055U-US1	N/A
SWAGTEK	Earphone	LOGIC X4G	N/A
Agilent	Agilent Wireless Connectivity Test Set		N/A
OEM	omnidirectional antenna	AntSuck	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8m	N/A

Test Report	18070406-FCC-R2
Page	54 of 54

Annex C. User Manual / Block Diagram / Schematics / Partlist/ DECLARATION OF SIMILARITY

Please see the attachment