

Report No: JYTSZB-R12-2101461

FCC REPORT (Bluetooth)

Applicant:	SWAGTEK
Address of Applicant:	10205 NW 19th Street, STE 101, Miami, FL33172, USA
Equipment Under Test (E	EUT)
Product Name:	2.4 inch 3G Feature phone
Model No.:	B8K, Kite, K8
Trade mark:	LOGIC, iSWAG, UNONU
FCC ID:	O55243221
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	02 Aug., 2021
Date of Test:	02 Aug., to 20 Aug., 2021
Date of report issued:	23 Aug., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	23 Aug., 2021	Original

Tested by:

Mike.OU Test Engineer

Date: 23 Aug., 2021

Winner Thang

Date: 23 Aug., 2021

Reviewed by:

Project Engineer

Project No.: JYTSZE2108006

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	з
4 TEST SUMMARY	-
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF E.U.T.	-
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.5 MEASUREMENT UNCERTAINTY	
5.7 LABORATORY FACILITY	
5.8 LABORATORY LOCATION	
5.9 Test Instruments list	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED EMISSIONS	-
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH.	-
6.5 CARRIER FREQUENCIES SEPARATION	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
6.9 Band Edge	18
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 SPURIOUS EMISSION 6.10.1 Conducted Emission Method	
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix A – BT	Pass
Hopping Channel Number	15.247 (a)(1)	Appendix A – BT	Pass
Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass
Conducted Band Edge	45 005 8 45 000	Appendix A – BT	Pass
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass
Conducted Spurious Emission		Appendix A – BT	Pass
Radiated Spurious Emission	15.247(d)	See Section 6.10.2	Pass
Remark:			

Pass: The EUT complies with the essential requirements in the standard. 1.

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Test Method:	ANSI C63.10-2013
rest method:	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th Street, STE 101, Miami, FL33172, USA
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th Street, STE 101, Miami, FL33172, USA

5.2 General Description of E.U.T.

Product Name:	2.4 inch 3G Feature phone
Model No.:	B8K, Kite, K8
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	1.45 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 1400mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.1A
	Output: DC 5.0V, 500mA
Remark:	Model No.: B8K, Kite, K8 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being trademark.LOGIC is for B8K. iSWAG is for Kite.UNONU is for K8.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel for GFSK, π /4-DQPSK, 8DPSK							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19	19 2421MHz 39 2441MHz 59 2461MHz							
Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.								

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.
Padiated Emission: The same	he was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://www.ccis-cb.com</u>

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	V	/ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2021	07-21-2022
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40	

Conducted Emission:							
Test Equipment	Test Equipment Manufacturer Model No. Serial No.		Cal. Date	Cal. Due date			
				(mm-dd-yy)	(mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022		
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2021	06-17-2022		
Cable	HP	10503A	N/A	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2108006

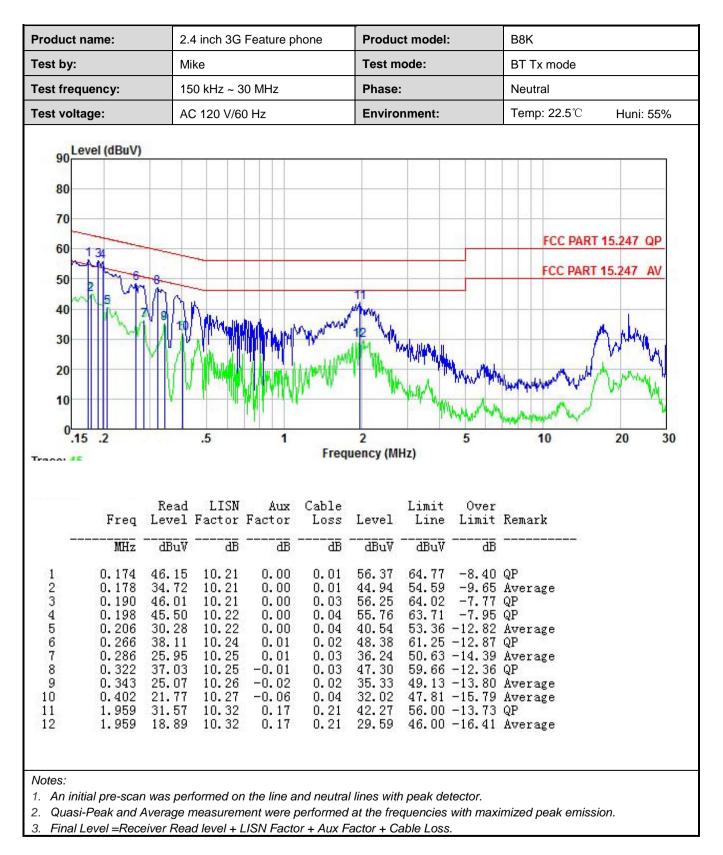
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310		Version: 2.0.0.0	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
15.203 requirement: An intentional radiator shall responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohil 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anter power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or
E.U.T Antenna:	
The Bluetooth antenna is an the antenna is 1.45 dBi.	Internal antenna which permanently attached, and the best case gain of

6.2 Conducted Emissions

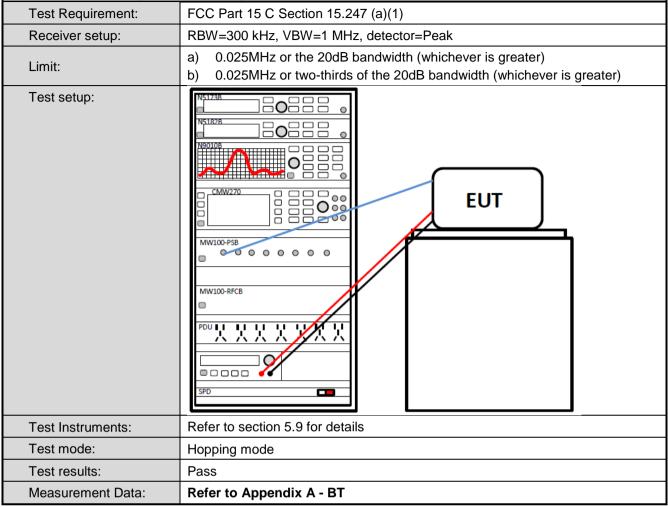

Test Requirement:	FCC Part 15 C Section 15.	207	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz	, Sweep time=auto	
Limit:	Frequency range (MHz)	Limit (dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logari	60 thm of the frequency	50
Test setup:	Reference Pl		
Test constants	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Networ Test table height=0.8m		
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipmen 	tion network (L.I.S.N.). Th npedance for the measuri	his provides a ng equipment. main power through a lance with 500hm the test setup and n conducted sion, the relative ables must be changed
Test Instruments:	Refer to section 5.9 for det	ails	
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Product name:	2.4 inch 3G Feature phone	Product model:	B8K
est by:	Mike	Test mode:	BT Tx mode
est frequency:	150 kHz ~ 30 MHz	Phase:	Line
est voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
90 80 70 60 356 50 2 4 40 30 20 10 0.15 .2 30		2 5 ency (MHz)	FCC PART 15.247 QP FCC PART 15.247 AV
Freq Lev MHz dB 1 0.150 46. 2 0.158 35. 3 0.174 46. 4 0.178 34. 5 0.190 46. 6 0.198 44. 7 0.258 39. 8 0.282 27. 9 0.343 24. 10 0.406 22. 11 1.908 32.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Limit Over Level Line Limit Re dBuV dBuV dB 56.94 66.00 -9.06 QF 45.40 55.56 -10.16 Ax 56.85 64.77 -7.92 QF 44.61 54.59 -9.98 Ax 56.43 64.02 -7.59 QF 55.03 63.71 -8.68 QF 49.30 61.51 -12.21 QF 37.77 50.76 -12.99 Ax 34.72 49.13 -14.41 Ax 33.56 47.73 -14.17 Ax 43.03 56.00 -12.97 QF 31.49 46.00 -14.51 Ax	verage verage verage verage verage verage verage

0.5 Conducted Out	
Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

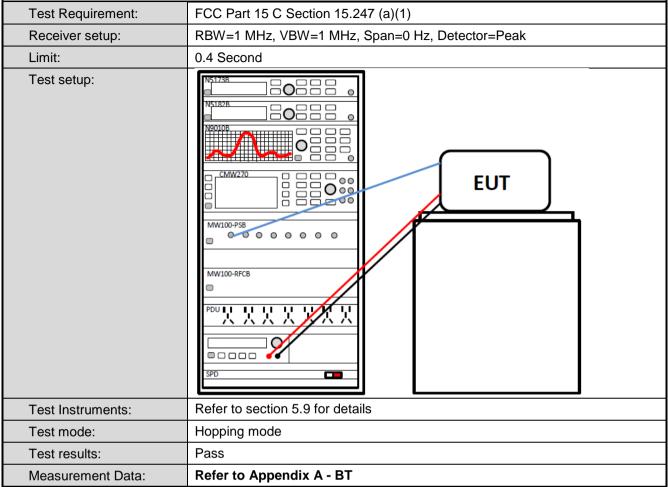
6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	Within authorization band
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.5 Carrier Frequencies Separation



6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz, Frequency Range: 2400MHz~2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.7 Dwell Time

6.8 Pseudorandom Frequency Hopping Sequence

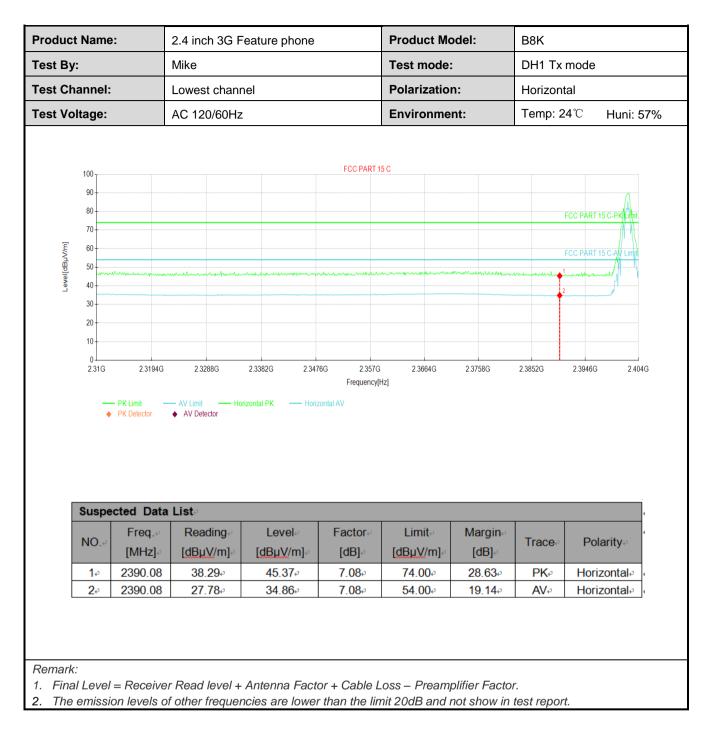
Test Requirement:	FCC Part 15 C Section 15.247 (a)	(1) requirement:
	s shall have hopping channel carrier f dth of the hopping channel, whicheve	
		-
	oping systems operating in the 2400- that are separated by 25 kHz or two-	
	is greater, provided the systems ope	
	shall hop to channel frequencies that	
	ordered list of hopping frequencies. E	
	ismitter. The system receivers shall h	
	s of their corresponding transmitters a	
synchronization with the trai	nsmitted signals.	
UT Pseudorandom Frequ	Jency Hopping Sequence	
he pseudorandom sequen	ce may be generated in a nine-stage	shift register whose 5th and 9th sta
	ulo-two addition stage. And the result	
	s with the first ONE of 9 consecutive	ONEs; i.e. the shift register is initialize
with nine ones.	<u>,</u>	
Number of shift register sta		
 Length of pseudo-random Longest sequence of zeros 		
Longest sequence of zeros	s. o (non-inverted signal)	
	.	
Linear Feedback S	hift Register for Generation of the I	PRBS sequence
An example of Pseudorando	om Frequency Hopping Sequence as	follow:
0 2 4 6	62 64 78 1	73 75 77
Each frequency used equal	y on the average by each transmitter	
	input bandwidths that match the hopp	
corresponding transmitters a	and shift frequencies in synchronizati	on with the transmitted signals.

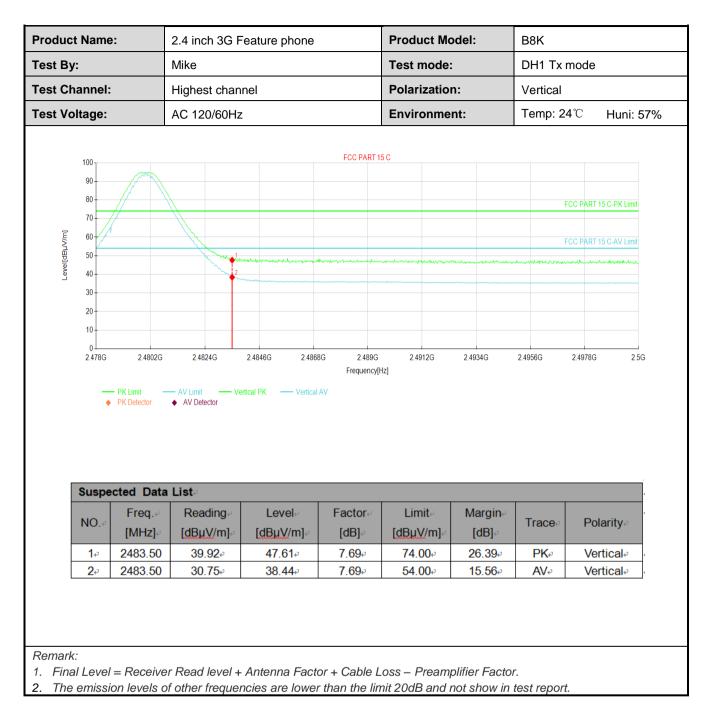
6.9 Band Edge

6.9.1 Conducted Emission Method

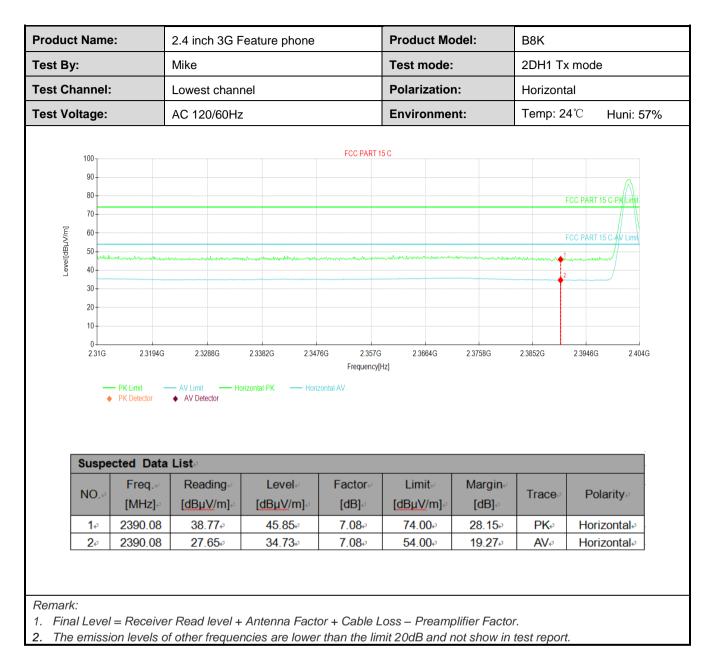
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

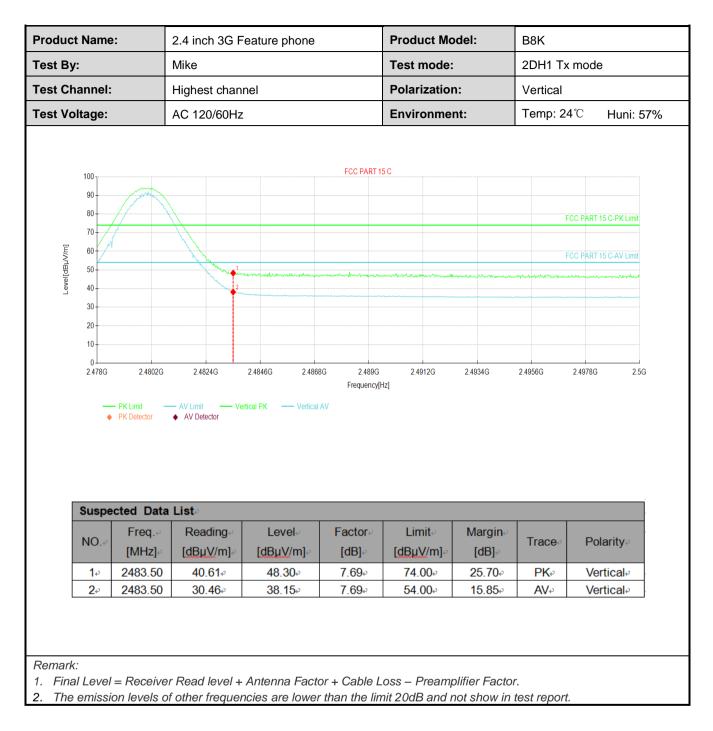
6.9.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C	Section 15.2	209 a	and 15.205			
Test Frequency Range:	2310 MHz to 23	90 MHz and	d 248	83.5 MHz to 2	500 M	lHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	r	RBW	V	BW	Remark
		Peak		1MHz	31	MHz	Peak Value
	Above 1GHz	RMS		1MHz	31	MHz	Average Value
Limit:	Frequenc	су	Lim	it (dBuV/m @3	3m)		Remark
	Above 1G			54.00		Av	verage Value
		112		74.00		F	Peak Value
Test setup:		EUT Itable) Groun Test Receiver	3m md Referen		enna Towe		
Test Procedure:	 determine the The EUT was antenna, whi tower. The antenna ground to de horizontal an measuremen For each sus and then the the rota table maximum rea The test-rece Bandwidth w If the emission limit specified EUT would b margin would 	a meter cam e position of s set 3 meter ch was mouth height is vant termine the id vertical point. spected emistion antenna water was turned ading. eiver system ith Maximum on level of the d, then testime reported. Of the re-tested	ber. f the ers a untec mied max blariz ssior as tun f fror u was n Ho ne EL ong co Othe ed or	The table was highest radiati way from the in d on the top of from one mete imum value of zations of the a h, the EUT was ned to heights n 0 degrees to s set to Peak E old Mode. JT in peak mo build be stoppe	rotation. Interfe a vari er to fo the fi antenr s arran from 0 360 o Detect de wa d and ssions g peal	ed 360 of rence-re able-he our meto eld strein a are s nged to 1 meter degrees Function as 10dB I the pea s that dio k, quasi	degrees to ecciving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB -peak or
Test Instruments:	Refer to section	5.9 for deta	ails				
Test mode:	Non-hopping m	ode					
Test results:	Passed						

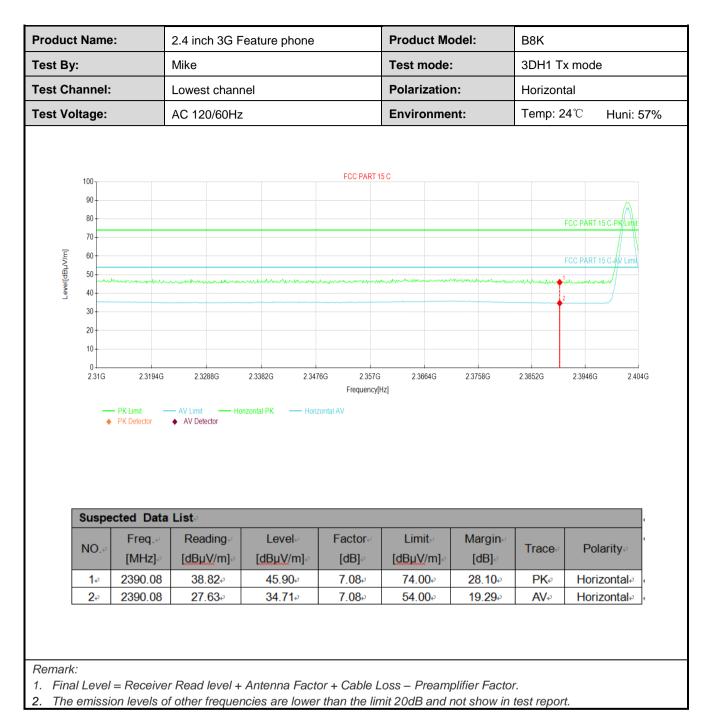

GFSK Mode:

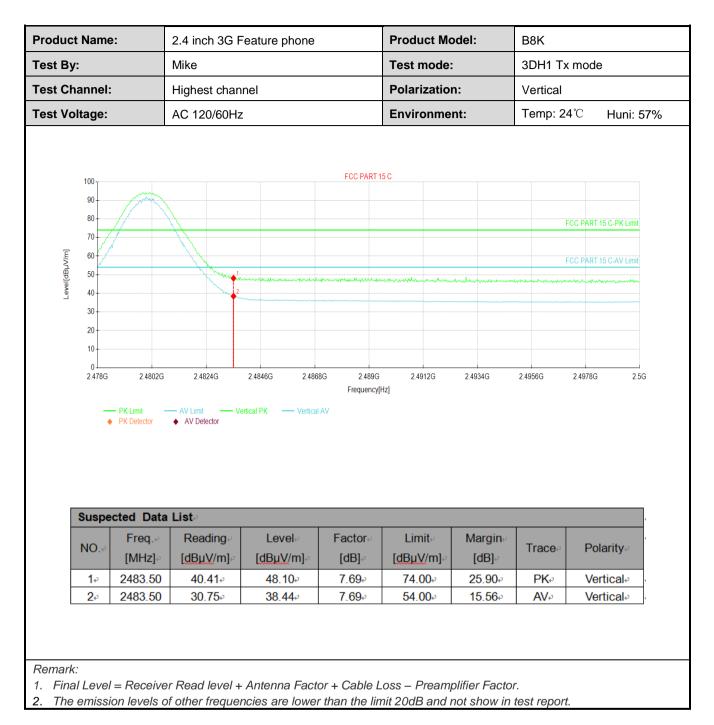
		: :	2.1.11011.00	eature phone		Product Mo		B8K		
est By:			Mike			Test mode:	:	DH1 Tx m	node	
Fest Cha	annel:		Lowest chan	nel		Polarization:		Vertical		
Fest Vol	tage:		AC 120/60Hz Environment: Temp: 24°C					°℃ Huni: 57%		
	100				FCC PART 1	5 C				
	90								4	
	80									
	70							FC	C PART 15 C-PK Limit	
[W)	60							FC	C PART 15 C-AV Limit	
Level[dBµV/m]	50	maria	un man anna martina	and a show the first and the f		han market warden w	malennen			
Leve	40							2		
	30							T		
	20+									
	10 0 2.31G	2.3194G - PK Limit -		2.3382G 2.347 ertical PK — Vertical	Frequency[I		2.3758G	2.3852G	2.3946G 2.404G	
	10 0 2.31G	– PK Limit –	AV Limit Ve		Frequency[I		2.3758G	2.3852G	2.3946G 2.404G	
-	10 0 2.31G	PK Limit - PK Detector	AV Limit Ve AV Detector	ertical PK — Vertical	Frequency[tz]		2 3852G	2.3946G 2.404G	
	10 0 2.31G	– PK Limit –	AV Limit Ve		Frequency[I		23758G 23758G Margin.~ [dB]2	2 3852G	23946G 2.404G	
	10 0 2.31G • Suspe	PK Limit - PK Detector -	AV Limit Ve AV Detector Ve	ertical PK — Vertical	Frequency[AV Factor	tz] Limit⊷	Margine			


	Name	; :	2.4 inch 3G F	eature phone		Product Mo	odel:	B8K		
est By:			Mike			Test mode:		DH1 Tx mode		
Test Ch	annel:		Highest channel			Polarization:		Horizontal		
Test Vo	Itage:		AC 120/60Hz	<u>Z</u>		Environme	nt:	Temp: 2	2 4℃	Huni: 57%
	100				FCC PART 1	15 C				
	90									
	80								FCC PART 15	C-PK Limit
F	70 60									
Level[dBµV/m]	50								FCC PART 15	C-AV Limit
evel[d	40		2	menter and a second and a second s	and an	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man and a second second	man and a start and a start and a start and a start a s	Moneum	man
-	30					~~~~~				
	20									
	10									
	0 2.478G	2.4802G	2.4824G	2.4846G 2.486	58G 2.489G Frequency		2.4934G	2.4956G	2.4978G	2.5G
	2.478G	2.4802G - PK Limit > PK Detector	AV Limit H AV Detector				2.4934G	2.4956G	2.4978G	2.56
F	2.478G	─ PK Limit → PK Detector	AV Limit H AV Detector		Frequency[2.4934G Margin⊮			4
F	2.478G	PK Limit PK Detector	AV Limit — H ◆ AV Detector	orizontal PK — Hor	Frequency[Hz]		2.4956G	2.4978G Pola	4
	2.478G	PK Limit PK Detector PK Detector PK Detector Freq.*	AV Limit H AV Detector H A Liste Reading	orizontal PK — Hor	Frequency(izontal AV Factore	Hz] Limit+	Margin∉		Pola	4

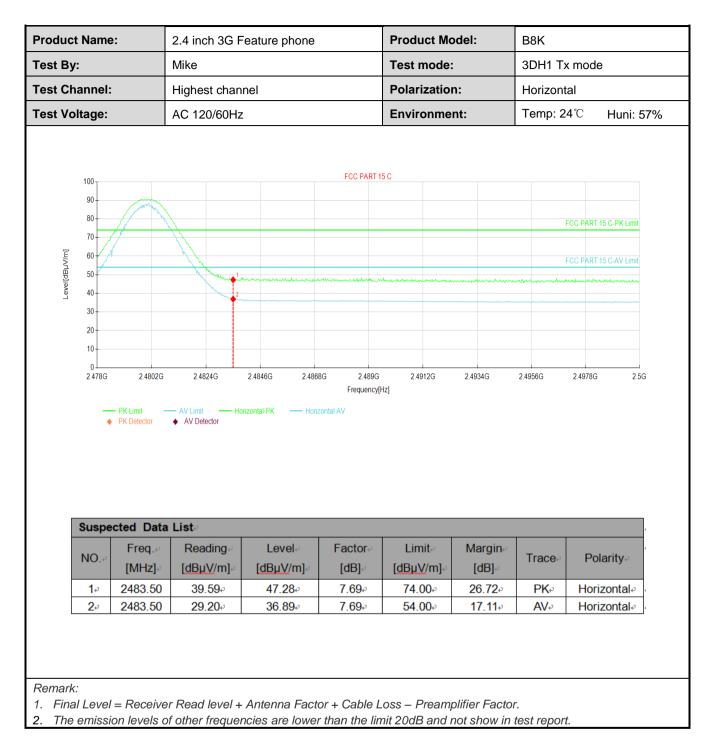

π /4-DQPSK mode

Product Name:			2.4 inch 3G Feature phone			Product Model:		B8K		
est By: est Channel:			Mike Lowest channel			Test mode: Polarization:		2DH1 Tx mode Vertical		
	100				FCC PART 1	5 C				
	90								A	
	80							F	CC PART 15 C-PK Limit	
	70								/	
[ɯ//	60							F	CC PART 15 C-AV Limit	
Level[dBµV/m]	50	munny	manuman	un and a second second	mound	Ashamman	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm			
Leve	40							2		
	30									
	20									
	20	2.3194G	2.3288G	2.3382G 2.347			2.3758G	2.3852G	2.3946G 2.4	04G
	10 0 2.31G	2.3194G PK Limit – PK Detector		2.3382G 2.347 ertical PK — Vertical	Frequency[2.3758G	2 3852G	2.3946G 2.4	04G
	10 0 2.31G	— PK Limit —	AV Limit Ve AV Detector		Frequency[2.3758G	2.3852G	2.3946G 2.4	04G
	10 0 2.31G	PK Limit PK Detector	AV Limit Ve AV Detector		Frequency[2.3758G 2.3758G Margin/ [dB]->	2.3852G	2.3946G 2.4	04G
	10 0 2.31G	PK Limit - PK Detector -	AV Limit Ve AV Detector Ve	ertical PK Vertical Level	Frequency[AV Factor	tz] Limite	Margine			04G


	roduct Name:		2.4 inch 3G Feature phone			Product Model:		B8K		
est By: est Channel:			Mike Highest channel			Test mode: Polarization:		2DH1 Tx mode Horizontal		
st Voltage:			AC 120/60Hz	2		Environme	nt:	Temp: 2	24 ℃	Huni: 57%
Level[dBµV/m]	00 90 80 70 60 40 30		2		FCC PART 1	5 C			FCC PART 1	
		2 4802G - PK Limit - PK Detector	2.4824G AV Limit Ho AV Detector	2.4846G 2.486 prizontal PK — Hori;	Frequency[ł	2.4912G Hz]	2.4934G	2.4956G	2.4978G	2.5G
	10 0 2.478G	– PK Limit –	AV Limit Ho		Frequency[ł		2.4934G	2 4956G	2.4978G	2.5G
Si	10 0 2.478G	- PKLimit PK Detector cted Data Freq.**	AV Limit Ha ◆ AV Detector Ha List Reading -	orizontal PK — Horiz	Frequency[I zontal AV Factor	tz] Limit⇔	Margine	2 4956G		
St	10 0 2.478G	- PK Limit PK Detector cted Data Freq.↔ [MHz]↔	AV Limit He AV Detector He List Reading [dBuV/m]	orizontal PK — Hori: Level⊷ [dBuV/m].∘	Frequency[zontal AV Factor⊷ [dB]⊷	tz] Limit⊮ [dBμV/m]↔	Margin.∉ [dB].∘	Trace	Pol	arity⇔
SI	10 0 2.478G	- PKLimit PK Detector cted Data Freq.**	AV Limit Ha ◆ AV Detector Ha List Reading -	orizontal PK — Horiz	Frequency[I zontal AV Factor	tz] Limit⇔	Margine		Pol	


8DPSK mode

nnel: age:		Mike Lowest chan	nel		Test mode: Polarization		3DH1 T	k mode	
			nel		Polarizatio	n:	Vertical		
age:		10 100 /001			Polarization:		Vertical		
		AC 120/60Hz	<u>/</u>		Environme	nt:	Temp: 2	4℃ ŀ	luni: 57%
							- -		
				500 0407 4					
00				FCC PART 1	50				
									Â
								FCC PART 15 C	-PK Limit
								FCC PART 15 C	-AV Limit
40	have been and the second of th	mummun	mermunhanharithere	and person more than the second s	manyaman	mmmmm	emen e	······································	
30							2		
20									
10									
0									
2.31G	2.3194G	2.3288G	2.3382G 2.347			2.3758G	2.3852G	2.3946G	2.404G
	PK Detector	 AV Detector 	Pilical PK — Venical	AV					Ţ
uspe			Laval	Fastar	Limit	Manain			
IO.@		_					Trace	Polar	ity∉
1							DK.	Vortic	
1₽ 2₽									
	90 70 70 40 50 40 50 40 10 0 231G 40 10 0 231G 40 10 12 12 12 12 12 12 12 12 12 12	90 90 90 90 90 90 90 90 90 90	90 90 90 90 90 90 90 90 90 90	90 90 90	80	200 2	80	20	00 FCC PART 15 C 01 FCC PART 15 C 02 2316 23194G 23288G 23282G 2382G 2316 23194G 23282G 2382G 2316 23194G 23282G 2382G PK Limit AV Unit Vertical PK Vertical AV



6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.2	209		
Test Frequency Range:	9 kHz to 25 GHz	2			
Test Distance:	3m or 10m				
Receiver setup:	Frequency	Detector	r RBW	VBW	Remark
	30MHz-1GHz	Quasi-pea	ak 120kHz	300kH	z Quasi-peak Value
		Peak	1MHz	3MHz	Peak Value
	Above 1GHz	RMS	1MHz	3MHz	Average Value
Limit:	Frequenc	y I	Limit (dBuV/m	@10m)	Remark
	30MHz-88N	ЛНz	30.0		Quasi-peak Value
	88MHz-216	MHz	33.5		Quasi-peak Value
	216MHz-960	MHz	36.0		Quasi-peak Value
	960MHz-10	GHz	44.0		Quasi-peak Value
	Frequenc	у	Limit (dBuV/m	@3m)	Remark
	Above 1G	H7	54.0		Average Value
	7,6070 10		74.0		Peak Value
	EUT Tur Tal Ground Above 1GHz				Search Antenna RF Test Receiver
Test Procedure:		was placed	Ground Reference Plane	Angulier Contro	ting table 0.8m(below
	(below 1GH 360 degree	lz)or 3 mete s to determi	er chamber(aborine the position	ve 1GHz) of the hig	at a 10 meter chamber . The table was rotated hest radiation. 3 meters(above 1GHz)

Project No.: JYTSZE2108006

	away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.				
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.				
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.				
	 The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 				
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Non-hopping mode				
Test results:	Pass				
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report. 				

Measurement Data (worst case):

Below 1GHz:

Product Name:	2.4 inch 3G Feature phone	Product Model:	В8К		
Test By:	Mike	Test mode:	BT Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		
45 40 30 30 20 10 10	Full Spec	tru m	ECC PART 15.247 10m		
30M	50 60 80 100M 200 300 400 500 800 1G Frequency in Hz				

Critical Freqs.

-	Frequency↓	MaxPeak↓	Limit↓	Margin 4	Height↓	Pol~	Azimuth +	Corr.↓
	(MHz)↩	(dBµ V/m)⊮	(dBµ V/m)↩	(dB)↩	(cm)↩		(deg)∉	(dB/m)↩
-	30.873000∉	20.36 ¢	30.00↩	<mark>9.64</mark> ↩	100.0 ₽	V	308.0↩	-17.5 ₽
•	33.880000∉	17.06↩	30.00↩	1 2.94 ↩	100.0 ₽	V	322.0↩	-16.9₽
-	37.954000↔	15.05	30.00↩	14 . 95↩	100.0₽	V	29.0 ₽	-16.1↩
-	171.329000 ↔	18.22 ₽	33.50↩	1 5.28 ↩	100.0₽	V	50.0↩	-16.5 ₽
-	687.466000 ↔	24.78 ₽	36.00↩	11.22 ↩	100.0₽	V	101.0↩	-5.1 ₽∙
-	902.03000 ¢	27.49↩	36.00↩	<mark>8.51</mark> ∂	100.0 ₽	H₽	189.0↩	-1.2 ₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

		Test ch	annel: Lowest ch	annel		
		De	tector: Peak Valu	e		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	55.95	-9.60	46.35	74.00	27.65	Vertical
4804.00	55.33	-9.60	45.73	74.00	28.27	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	46.99	-9.60	37.39	54.00	16.61	Vertical
4804.00	47.94	-9.60	38.34	54.00	15.66	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4882.00	55.95	-9.05	46.90	74.00	27.10	Vertical
4882.00	55.45	-9.05	46.40	74.00	27.60	Horizonta
		Dete	ctor: Average Va	llue		·
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4882.00	46.53	-9.05	37.48	54.00	16.52	Vertical
4882.00	48.06	-9.05	39.01	54.00	14.99	Horizonta
			annel: Highest ch tector: Peak Valu	Ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	55.69	-8.45	47.24	74.00	26.76	Vertical
4960.00	55.46	-8.45	47.01	74.00	26.99	Horizonta
		Dete	ctor: Average Va	lue		
	Read Level	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
Frequency (MHz)	(dBuV)					
	(dBuV) 46.27	-8.45	37.82	54.00	16.18	Vertical

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

8 EUT Constructional Details

Reference to the test report No.: JYTSZB-R12-2101459

-----End of report-----