

## JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101462

# FCC REPORT (WIFI)

Applicant: SWAGTEK

Address of Applicant: 10205 NW 19th Street, STE 101, Miami, FL33172, USA

## **Equipment Under Test (EUT)**

Product Name: 2.4 inch 3G Feature phone

Model No.: B8K, Kite, K8

Trade mark: LOGIC, iSWAG, UNONU

**FCC ID:** O55243221

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 02 Aug., 2021

**Date of Test:** 02 Aug., to 20 Aug., 2021

Date of report issued: 23 Aug., 2021

Test Result: PASS\*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 23 Aug., 2021 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Reviewed by: Date: 23 Aug., 2021

Project Engineer

Page 2 of 43



## **Contents**

|   |       |                                 | Page                                   |
|---|-------|---------------------------------|----------------------------------------|
| 1 | CO    | VER PAGE                        | 1                                      |
| 2 | VER   | RSION                           | 2                                      |
| 3 | CON   | NTENTS                          | 2                                      |
|   |       |                                 |                                        |
| 4 |       | ST SUMMARY                      |                                        |
| 5 | GEN   | NERAL INFORMATION               | 5                                      |
|   | 5.1   | CLIENT INFORMATION              | 5                                      |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T    |                                        |
|   | 5.3   | TEST ENVIRONMENT AND MODE       | 6                                      |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS    |                                        |
|   | 5.5   | MEASUREMENT UNCERTAINTY         | 6                                      |
|   | 5.6   | LABORATORY FACILITY             |                                        |
|   | 5.7   | LABORATORY LOCATION             |                                        |
|   | 5.8   | TEST INSTRUMENTS LIST           | 7                                      |
| 6 | TES   | ST RESULTS AND MEASUREMENT DATA | 8                                      |
|   | 6.1   | ANTENNA REQUIREMENT             | 8                                      |
|   | 6.2   | CONDUCTED EMISSION              |                                        |
|   | 6.3   | CONDUCTED OUTPUT POWER          |                                        |
|   | 6.4   | OCCUPY BANDWIDTH                | 13                                     |
|   | 6.5   | POWER SPECTRAL DENSITY          | 14                                     |
|   | 6.6   | BAND EDGE                       |                                        |
|   | 6.6.  |                                 |                                        |
|   | 6.6.2 |                                 |                                        |
|   | 6.7   | Spurious Emission               |                                        |
|   | 6.7.  |                                 |                                        |
|   | 6.7.2 | 2 Radiated Emission Method      | 34                                     |
| 7 | TES   | ST SETUP PHOTO                  | 41                                     |
| 8 | FLIT  | CONSTRUCTIONAL DETAILS          | /12                                    |
| J | _01   |                                 | ······································ |





4 Test Summary

| Test Items                                    | Section in CFR 47   | Test Data               | Result |
|-----------------------------------------------|---------------------|-------------------------|--------|
| Antenna requirement                           | 15.203 & 15.247 (b) | See Section 6.1         | Pass   |
| AC Power Line Conducted Emission              | 15.207              | See Section 6.2         | Pass   |
| Duty Cycle                                    | ANSI C63.10-2013    | Appendix A – 2.4G Wi-Fi | Pass   |
| Conducted Peak Output Power                   | 15.247 (b)(3)       | Appendix A – 2.4G Wi-Fi | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth | 15.247 (a)(2)       | Appendix A – 2.4G Wi-Fi | Pass   |
| Power Spectral Density                        | 15.247 (e)          | Appendix A – 2.4G Wi-Fi | Pass   |
| Conducted Band Edge                           | 45 247 (4)          | Appendix A – 2.4G Wi-Fi | Pass   |
| Radiated Band Edge                            | 15.247 (d)          | See Section 6.6.2       | Pass   |
| Conducted Spurious Emission                   | 15 205 8 15 200     | Appendix A – 2.4G Wi-Fi | Pass   |
| Radiated Spurious Emission                    | 15.205 & 15.209     | See Section 6.7.2       | Pass   |

#### Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





## 5 General Information

## **5.1 Client Information**

| Applicant:             | SWAGTEK                                            |
|------------------------|----------------------------------------------------|
| Address:               | 10205 NW 19th Street, STE 101, Miami, FL33172, USA |
| Manufacturer/ Factory: | SWAGTEK                                            |
| Address:               | 10205 NW 19th Street, STE 101, Miami, FL33172, USA |

## 5.2 General Description of E.U.T.

| Product Name:                                    | 2.4 inch 3G Feature phone                                                                                                                                                                                             |  |  |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Model No.:                                       | B8K, Kite, K8                                                                                                                                                                                                         |  |  |  |  |
| Operation Frequency:                             | 2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)                                                                                                                                                                        |  |  |  |  |
|                                                  | 2422MHz~2452MHz: 802.11n(HT40)                                                                                                                                                                                        |  |  |  |  |
| Channel numbers:                                 | 11: 802.11b/802.11g/802.11(HT20)                                                                                                                                                                                      |  |  |  |  |
|                                                  | 7: 802.11n(HT40)                                                                                                                                                                                                      |  |  |  |  |
| Channel separation:                              | 5MHz                                                                                                                                                                                                                  |  |  |  |  |
| Modulation technology:<br>(IEEE 802.11b)         | Direct Sequence Spread Spectrum (DSSS)                                                                                                                                                                                |  |  |  |  |
| Modulation technology:<br>(IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM)                                                                                                                                                                      |  |  |  |  |
| Data speed (IEEE 802.11b):                       | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                                                                                                                                                                                         |  |  |  |  |
| Data speed (IEEE 802.11g):                       | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps                                                                                                                                                          |  |  |  |  |
| Data speed (IEEE 802.11n):                       | Up to 150Mbps                                                                                                                                                                                                         |  |  |  |  |
| Antenna Type:                                    | Internal Antenna                                                                                                                                                                                                      |  |  |  |  |
| Antenna gain:                                    | 1.45dBi                                                                                                                                                                                                               |  |  |  |  |
| Power supply:                                    | Rechargeable Li-ion Battery DC3.7V, 1400mAh                                                                                                                                                                           |  |  |  |  |
| AC adapter:                                      | Input: AC100-240V, 50/60Hz, 0.1A                                                                                                                                                                                      |  |  |  |  |
|                                                  | Output: DC 5.0V, 500mA                                                                                                                                                                                                |  |  |  |  |
| Remark:                                          | Model No.: B8K, Kite, K8 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being trademark.LOGIC is for B8K. iSWAG is for Kite.UNONU is for K8. |  |  |  |  |
| Test Sample Condition:                           | The test samples were provided in good working order with no visible defects.                                                                                                                                         |  |  |  |  |

| Operation Frequency each of channel for 802.11b/g/n(HT20) |           |         |           |         |           |         |           |
|-----------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                                                   | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                                         | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2                                                         | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3                                                         | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

#### Note:

<sup>1.</sup> For 802.11n-HT40 mode, the channel number is from 3 to 9;

<sup>2.</sup> Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.



#### 5.3 Test environment and mode

| Operating Environment: |                                                         |
|------------------------|---------------------------------------------------------|
| Temperature:           | 24.0 °C                                                 |
| Humidity:              | 54 % RH                                                 |
| Atmospheric Pressure:  | 1010 mbar                                               |
| Test mode:             |                                                         |
| Transmitting mode      | Keep the EUT in continuous transmitting with modulation |

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

| Per-scan all kind of data rate, the follow list were the worst case. |          |  |  |  |  |
|----------------------------------------------------------------------|----------|--|--|--|--|
| Mode Data rate                                                       |          |  |  |  |  |
| 802.11b                                                              | 1Mbps    |  |  |  |  |
| 802.11g                                                              | 6Mbps    |  |  |  |  |
| 802.11n(HT20)                                                        | 6.5Mbps  |  |  |  |  |
| 802.11n(HT40)                                                        | 13.5Mbps |  |  |  |  |

## 5.4 Description of Support Units

The EUT has been tested as an independent unit.

### 5.5 Measurement Uncertainty

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | ±1.60 dB (k=2)       |
| Radiated Emission (9kHz ~ 30MHz)    | ±3.12 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.16 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±3.20 dB (k=2)       |

## 5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### • ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <a href="https://portal.a2la.org/scopepdf/4346-01.pdf">https://portal.a2la.org/scopepdf/4346-01.pdf</a>

## 5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.



## 5.8 Test Instruments list

| Test Equipment                  | Manufacturer    | Model No.     | Serial No.        | Cal. Date         | Cal. Due date |
|---------------------------------|-----------------|---------------|-------------------|-------------------|---------------|
| 100t Equipment                  |                 |               | Goriai itoi       | (mm-dd-yy)        | (mm-dd-yy)    |
| 3m SAC                          | ETS             | 9m*6m*6m      | 966               | 01-19-2021        | 01-18-2024    |
| BiConiLog Antenna               | SCHWARZBECK     | VULB9163      | 497               | 03-03-2021        | 03-02-2022    |
| Biconical Antenna               | SCHWARZBECK     | VUBA9117      | 359               | 06-18-2021        | 06-17-2022    |
| Horn Antenna                    | SCHWARZBECK     | BBHA9120D     | 916               | 03-03-2021        | 03-02-2022    |
| Horn Antenna                    | SCHWARZBECK     | BBHA9120D     | 1805              | 06-18-2021        | 06-17-2022    |
| Horn Antenna                    | SCHWARZBECK     | BBHA 9170     | BBHA9170582       | 11-18-2020        | 11-17-2021    |
| EMI Test Software               | AUDIX           | E3            | \                 | ersion: 6.110919b |               |
| Pre-amplifier                   | HP              | 8447D         | 2944A09358        | 03-03-2021        | 03-02-2022    |
| Pre-amplifier                   | CD              | PAP-1G18      | 11804             | 03-03-2021        | 03-02-2022    |
| Spectrum analyzer               | Rohde & Schwarz | FSP30         | 101454            | 03-03-2021        | 03-02-2022    |
| Spectrum analyzer               | Rohde & Schwarz | FSP40         | 100363            | 11-18-2020        | 11-17-2021    |
| EMI Test Receiver               | Rohde & Schwarz | ESRP7         | 101070            | 03-03-2021        | 03-02-2022    |
| Spectrum Analyzer               | Agilent         | N9020A        | MY50510123        | 11-18-2020        | 11-17-2021    |
| Signal Generator                | Rohde & Schwarz | SMX           | 835454/016        | 03-03-2021        | 03-02-2022    |
| Signal Generator                | R&S             | SMR20         | 1008100050        | 03-03-2021        | 03-02-2022    |
| RF Switch Unit                  | MWRFTEST        | MW200         | N/A               | N/A               | N/A           |
| Test Software                   | MWRFTEST        | MTS8200       | Version: 2.0.0.0  |                   |               |
| Cable                           | ZDECL           | Z108-NJ-NJ-81 | 1608458           | 03-03-2021        | 03-02-2022    |
| Cable                           | MICRO-COAX      | MFR64639      | K10742-5          | 03-03-2021        | 03-02-2022    |
| Cable                           | SUHNER          | SUCOFLEX100   | 58193/4PE         | 03-03-2021        | 03-02-2022    |
| DC Power Supply                 | XinNuoEr        | WYK-10020K    | 1409050110020     | 09-25-2020        | 09-24-2021    |
| Temperature<br>Humidity Chamber | HengPu          | HPGDS-500     | 20140828008       | 11-01-2020        | 10-31-2021    |
| Simulated Station               | Rohde & Schwarz | CMW500        | 140493            | 07-22-2021        | 07-21-2022    |
| 10m SAC                         | ETS             | RFSD-100-F/A  | Q2005             | 03-31-2021        | 04-01-2024    |
| BiConiLog Antenna               | SCHWARZBECK     | VULB 9168     | 1249              | 03-31-2021        | 04-01-2022    |
| BiConiLog Antenna               | SCHWARZBECK     | VULB 9168     | 1250              | 03-31-2021        | 04-01-2022    |
| EMI Test Receiver               | R&S             | ESR 3         | 102800            | 04-06-2021        | 04-07-2022    |
| EMI Test Receiver               | R&S             | ESR 3         | 102802            | 04-06-2021        | 04-07-2022    |
| Pre-amplifier                   | Bost            | LNA 0920N     | 2016              | 04-06-2021        | 04-07-2022    |
| Pre-amplifier                   | Bost            | LNA 0920N     | 2019              | 04-06-2021        | 04-07-2022    |
| Test Software                   | R&S             | EMC32         | Version: 10.50.40 |                   |               |

| Conducted Emission: |                 |            |                    |                         |                             |
|---------------------|-----------------|------------|--------------------|-------------------------|-----------------------------|
| Test Equipment      | Manufacturer    | Model No.  | Serial No.         | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| EMI Test Receiver   | Rohde & Schwarz | ESCI       | 101189             | 03-03-2021              | 03-02-2022                  |
| Pulse Limiter       | SCHWARZBECK     | OSRAM 2306 | 9731               | 03-03-2021              | 03-02-2022                  |
| LISN                | CHASE           | MN2050D    | 1447               | 03-03-2021              | 03-02-2022                  |
| LISN                | Rohde & Schwarz | ESH3-Z5    | 8438621/010        | 06-18-2021              | 06-17-2022                  |
| Cable               | HP              | 10503A     | N/A                | 03-03-2021              | 03-02-2022                  |
| EMI Test Software   | AUDIX           | E3         | Version: 6.110919b |                         |                             |

| Conducted method:       |                 |            |             |                         |                             |  |
|-------------------------|-----------------|------------|-------------|-------------------------|-----------------------------|--|
| Test Equipment          | Manufacturer    | Model No.  | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| Spectrum Analyzer       | Keysight        | N9010B     | MY60240202  | 11-27-2020              | 11-26-2021                  |  |
| Vector Signal Generator | Keysight        | N5182B     | MY59101009  | 11-27-2020              | 11-26-2021                  |  |
| Analog Signal Generator | Keysight        | N5173B     | MY59100765  | 11-27-2020              | 11-26-2021                  |  |
| Power Detector Box      | MWRF-test       | MW100-PSB  | MW201020JYT | 11-27-2020              | 11-26-2021                  |  |
| Simulated Station       | Rohde & Schwarz | CMW270     | 102335      | 11-27-2020              | 11-26-2021                  |  |
| RF Control Box          | MWRF-test       | MW100-RFCB | MW200927JYT | N/A                     | N/A                         |  |



Report No: JYTSZB-R12-2101462

| PDU             | MWRF-test | XY-G10   | N/A              | N/A        | N/A        |
|-----------------|-----------|----------|------------------|------------|------------|
| Test Software   | MWRF-tes  | MTS 8310 | Version: 2.0.0.0 |            |            |
| DC Power Supply | Keysight  | E3642A   | MY60296194       | 11-27-2020 | 11-26-2021 |

## 6 Test results and Measurement Data

## 6.1 Antenna requirement

| Standard requirement: | FCC Part 15 C Section 15.203 /247(t | b) |
|-----------------------|-------------------------------------|----|
|-----------------------|-------------------------------------|----|

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

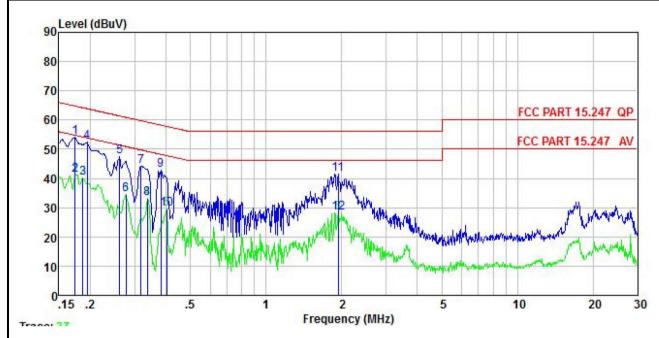
#### **E.U.T Antenna:**

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.45 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



## 6.2 Conducted Emission


|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | -             |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|--|--|
| Test Requirement:     | FCC Part 15 C Section 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 207                  |               |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |               |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |               |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |               |  |  |
| Limit:                | Fraguenov rango (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit (d             | dBuV)         |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quasi-peak           | Average       |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66 to 56*            | 56 to 46*     |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56                   | 46            |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                   | 50            |  |  |
|                       | * Decreases with the logarit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hm of the frequency. |               |  |  |
| Test procedure        | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement.</li> </ol> |                      |               |  |  |
| Test setup:           | LISN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st                   | er — AC power |  |  |
| Test Instruments:     | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |               |  |  |
| Test mode:            | Refer to section 5.3 for deta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nils                 |               |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |               |  |  |

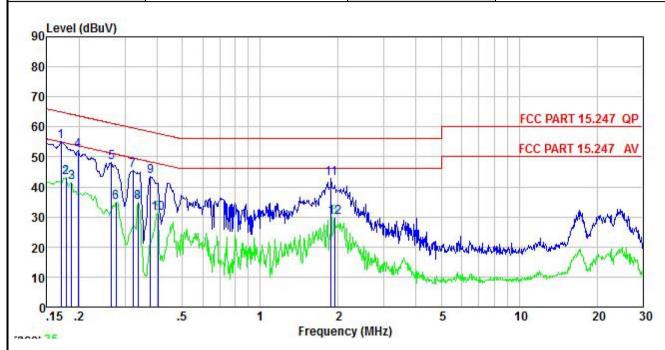
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



#### **Measurement Data:**

| Product name:   | 2.4 inch 3G Feature phone | Product model: | B8K                   |
|-----------------|---------------------------|----------------|-----------------------|
| Test by:        | Mike                      | Test mode:     | Wi-Fi Tx mode         |
| Test frequency: | 150 kHz ~ 30 MHz          | Phase:         | Line                  |
| Test voltage:   | AC 120 V/60 Hz            | Environment:   | Temp: 22.5℃ Huni: 55% |




|                                      | Freq  | Read<br>Level | LISN<br>Factor | Aux<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|--------------------------------------|-------|---------------|----------------|---------------|---------------|-------|---------------|---------------|---------|
| =                                    | MHz   | dBu∇          | <u>dB</u>      | <u>dB</u>     | <u>ab</u>     | dBu∜  | —dBu∜         | <u>dB</u>     |         |
| 1                                    | 0.174 | 43.93         | 10.23          | -0.11         | 0.01          | 54.06 | 64.77         | -10.71        | QP      |
| 2                                    | 0.174 | 31.21         | 10.23          | -0.11         | 0.01          | 41.34 | 54.77         | -13.43        | Average |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 0.186 | 30.08         | 10.23          | -0.13         | 0.02          | 40.20 | 54.20         | -14.00        | Average |
| 4                                    | 0.194 | 42.35         | 10.23          | -0.15         | 0.03          | 52.46 | 63.84         | -11.38        | QP      |
| 5                                    | 0.262 | 37.38         | 10.25          | -0.23         | 0.01          | 47.41 | 61.38         | -13.97        | QP      |
| 6                                    | 0.277 | 24.48         | 10.25          | -0.24         | 0.02          | 34.51 | 50.90         | -16.39        | Average |
| 7                                    | 0.318 | 34.13         | 10.26          | -0.11         | 0.03          | 44.31 | 59.75         | -15.44        | QP      |
| 8                                    | 0.337 | 22.79         | 10.27          | 0.02          | 0.02          | 33.10 | 49.27         | -16.17        | Average |
| 9                                    | 0.381 | 32.15         | 10.27          | 0.31          | 0.03          | 42.76 | 58.25         | -15.49        | QP      |
| 10                                   | 0.402 | 18.95         | 10.28          | 0.42          | 0.04          | 29.69 | 47.81         | -18.12        | Average |
| 11                                   | 1.939 | 31.35         | 10.33          | -0.28         | 0.20          | 41.60 | 56.00         | -14.40        | QP      |
| 12                                   | 1.939 | 17.97         | 10.33          | -0.28         | 0.20          | 28.22 | 46.00         | -17.78        | Average |

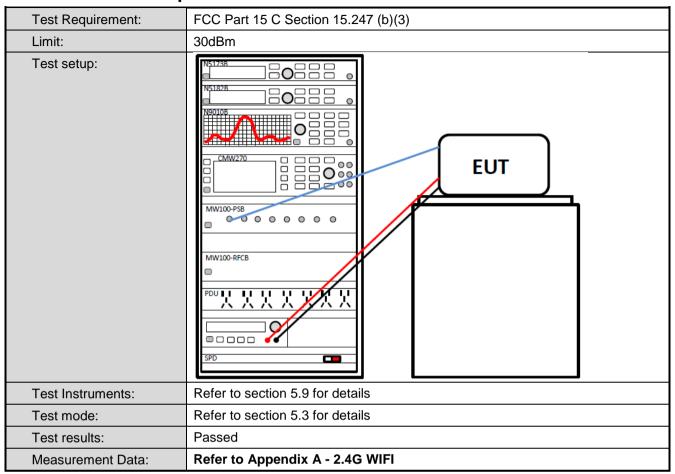
#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



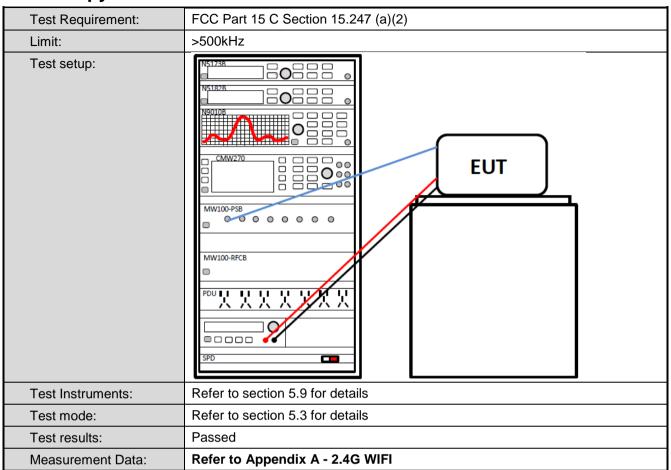
| Product name:   | 2.4 inch 3G Feature phone | Product model: | B8K                   |
|-----------------|---------------------------|----------------|-----------------------|
| Test by:        | Mike                      | Test mode:     | Wi-Fi Tx mode         |
| Test frequency: | 150 kHz ~ 30 MHz          | Phase:         | Neutral               |
| Test voltage:   | AC 120 V/60 Hz            | Environment:   | Temp: 22.5℃ Huni: 55% |




|                                           | Freq  | Read<br>Level | LISN<br>Factor |           | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|-------|---------------|----------------|-----------|---------------|-------|---------------|---------------|---------|
| <u></u>                                   | MHz   | dBu∜          | <u>dB</u>      | <u>db</u> | <u>ap</u>     | dBu₹  | dBu∜          | <u>dB</u>     |         |
| 1                                         | 0.170 | 44.83         | 10.20          | 0.01      | 0.01          | 55.05 | 64.94         | -9.89         | QP      |
| 2                                         | 0.178 | 32.81         | 10.21          | 0.00      | 0.01          | 43.03 | 54.59         | -11.56        | Average |
| 3                                         | 0.186 | 31.41         | 10.21          | 0.00      | 0.02          | 41.64 | 54.20         | -12.56        | Average |
| 4                                         | 0.198 | 42.03         | 10.22          | 0.00      | 0.04          | 52.29 | 63.71         | -11.42        | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.266 | 37.74         | 10.24          | 0.01      | 0.02          | 48.01 | 61.25         | -13.24        | QP      |
| 6                                         | 0.277 | 24.72         | 10.24          | 0.01      | 0.02          | 34.99 | 50.90         | -15.91        | Average |
| 7                                         | 0.322 | 35.17         | 10.25          | -0.01     | 0.03          | 45.44 | 59.66         | -14.22        | QP      |
| 8                                         | 0.337 | 24.48         | 10.26          | -0.02     | 0.02          | 34.74 | 49.27         | -14.53        | Average |
| 9                                         | 0.377 | 33.11         | 10.26          | -0.04     | 0.03          | 43.36 | 58.34         | -14.98        | QP      |
| 10                                        | 0.402 | 21.02         | 10.27          | -0.06     | 0.04          | 31.27 | 47.81         | -16.54        | Average |
| 11                                        | 1.878 | 32.28         | 10.32          | 0.16      | 0.19          | 42.95 | 56.00         | -13.05        | QP      |
| 12                                        | 1.939 | 19.32         | 10.32          | 0.17      | 0.20          | 30.01 |               |               | Average |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

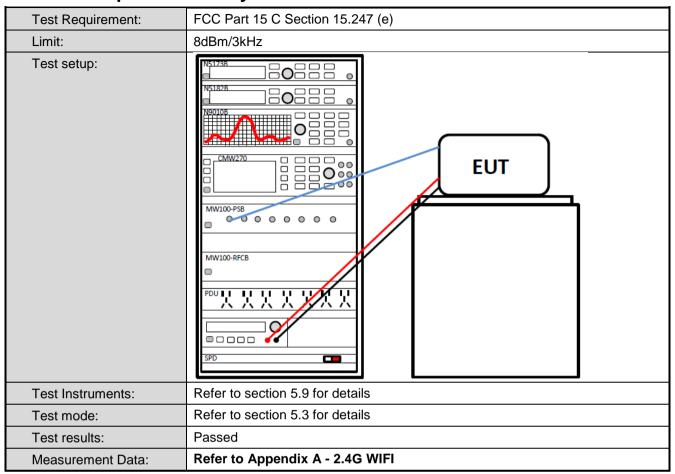



## **6.3 Conducted Output Power**





## 6.4 Occupy Bandwidth




Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 13 of 43



## 6.5 Power Spectral Density



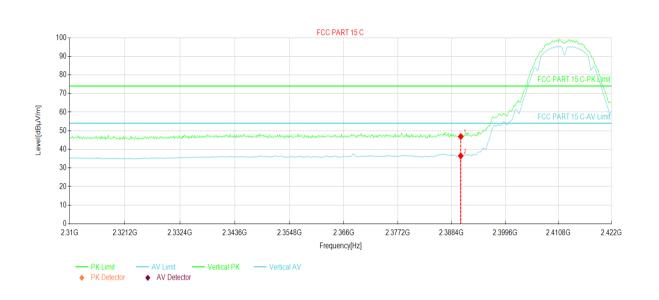


## 6.6 Band Edge

## 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. |
| Test setup:       | NS112B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Measurement Data: | Refer to Appendix A - 2.4G WIFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |




#### 6.6.2 Radiated Emission Method

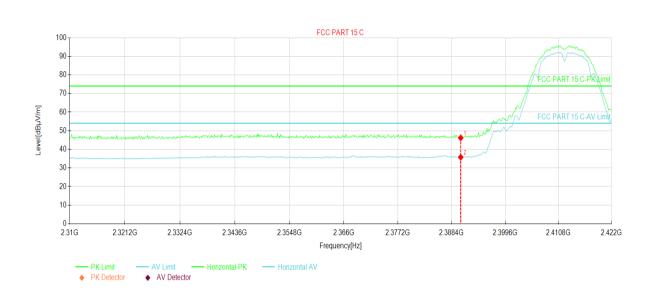
| Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                        |       |            |                     |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|-------|------------|---------------------|--|
| Test Frequency Range: | 2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                        |       |            |                     |  |
| Test Distance:        | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                        |       |            |                     |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Detector           | RBW                    | VBW   |            | Remark              |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peak               | 1MHz                   | 3MH   |            | eak Value           |  |
| l insta               | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RMS                | 1MHz<br>nit (dBuV/m @  | 3MH   |            | erage Value<br>nark |  |
| Limit:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 54.00                  | 3111) |            | e Value             |  |
|                       | Above 1GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z                  | 74.00                  |       |            | Value               |  |
| Test Procedure:       | <ol> <li>The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</li> </ol> |                    |                        |       |            |                     |  |
| Test setup:           | 150cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AE EUT (Turntable) | Ground Reference Plane |       | enna Tower |                     |  |
| Test Instruments:     | Refer to section 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9 for details     |                        |       |            |                     |  |
| Test mode:            | Refer to section 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .3 for details     |                        |       |            |                     |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                        |       |            |                     |  |



#### 802.11b mode:

| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                 |
|---------------|---------------------------|----------------|---------------------|
| Test By:      | Mike                      | Test mode:     | 802.11b Tx mode     |
| Test Channel: | Lowest channel            | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24℃ Huni: 57% |




| Suspected Data List∂ |                  |                       |                    |                  |                     |                  |        |           |
|----------------------|------------------|-----------------------|--------------------|------------------|---------------------|------------------|--------|-----------|
| NO.₽                 | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level√<br>[dBµV/m] | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∂ |
| 1₽                   | 2390.30          | 39.77₽                | 46.85₽             | 7.08₽            | 74.00₽              | 27.15₽           | PK₽    | Vertical₽ |
| 2↩                   | 2390.30          | 29.40₽                | 36.48₽             | 7.08₽            | 54.00₽              | 17.52₽           | AV₽    | Vertical₽ |

### Remark:

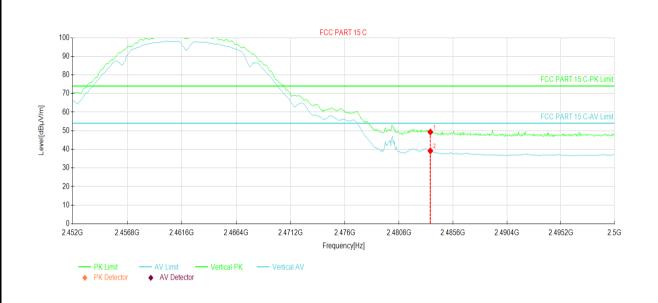
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                  |
|---------------|---------------------------|----------------|----------------------|
| Test By:      | Mike                      | Test mode:     | 802.11b Tx mode      |
| Test Channel: | Lowest channel            | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24°C Huni: 57% |



| Suspected Data List |     |                  |                       |                    |                  |                     |                  |        |             |
|---------------------|-----|------------------|-----------------------|--------------------|------------------|---------------------|------------------|--------|-------------|
|                     | .ON | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level√<br>[dBµV/m] | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity₽   |
|                     | 1₽  | 2390.30          | 39.08₽                | 46.16₽             | 7.08₽            | 74.00₽              | 27.84₽           | PK₽    | Horizontal₽ |
|                     | 2₽  | 2390.30          | 28.69₽                | 35.77₽             | 7.08₽            | 54.00₽              | 18.23₽           | AV₽    | Horizontal₽ |


#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

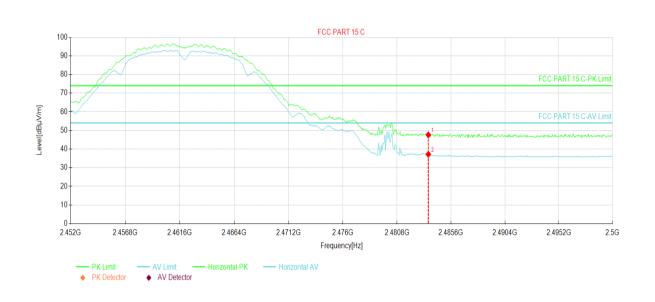
Page 18 of 43



| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                  |  |
|---------------|---------------------------|----------------|----------------------|--|
| Test By:      | Mike                      | Test mode:     | 802.11b Tx mode      |  |
| Test Channel: | Highest channel           | Polarization:  | Vertical             |  |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24°C Huni: 57% |  |



| Suspe | ected Data       | List∂                 |                     |                  |                     |                  |        |           |
|-------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| NO.₽  | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊲<br>[dBµV/m]⊲ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity₽ |
| 1₽    | 2483.58          | 41.61₽                | 49.30₽              | 7.69₽            | 74.00₽              | 24.70₽           | PK₽    | Vertical₽ |
| 2₄∍   | 2483.58          | 31.51₽                | 39.20₽              | 7.69₽            | 54.00₽              | 14.80₽           | AV₽    | Vertical₽ |


#### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

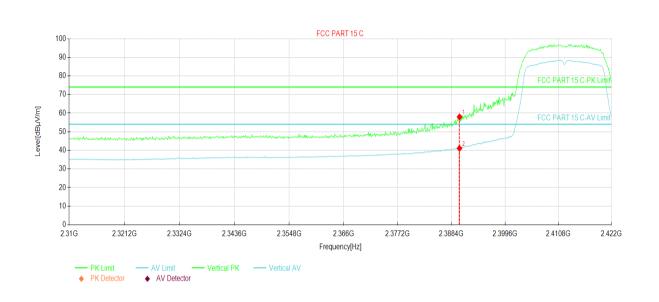


| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                 |  |  |
|---------------|---------------------------|----------------|---------------------|--|--|
| Test By:      | Mike                      | Test mode:     | 802.11b Tx mode     |  |  |
| Test Channel: | Highest channel           | Polarization:  | Horizontal          |  |  |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24℃ Huni: 57% |  |  |



| Suspe | ected Data       | List∂                 |                    |                  |                     |                  |       | •           |
|-------|------------------|-----------------------|--------------------|------------------|---------------------|------------------|-------|-------------|
| NO.₽  | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level√<br>[dBµV/m] | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace | Polarity∂   |
| 1₽    | 2483.58          | 39.94₽                | 47.63₽             | 7.69₽            | 74.00₽              | 26.37₽           | PK₽   | Horizontal₽ |
| 2↩    | 2483.58          | 29.51₽                | 37.20₽             | 7.69₽            | 54.00₽              | 16.80₽           | AV₽   | Horizontal₽ |

#### Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

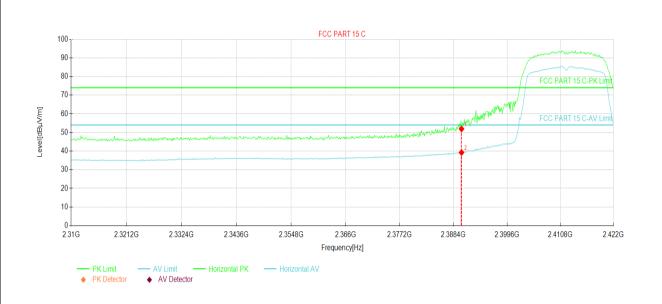
Page 20 of 43



#### 802.11g mode:

| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                 |  |
|---------------|---------------------------|----------------|---------------------|--|
| Test By:      | Mike                      | Test mode:     | 802.11g Tx mode     |  |
| Test Channel: | Lowest channel            | Polarization:  | Vertical            |  |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24℃ Huni: 57% |  |




| Suspected Data List∂ |                  |                       |                     |                  |                     |                  |        |           |
|----------------------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| NO.₽                 | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]⊲ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊲ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity  |
| 1₽                   | 2390.08          | 50.89₽                | 57.97₽              | 7.08₽            | 74.00₽              | 16.03₽           | PK₽    | Vertical₽ |
| 2₽                   | 2390.08          | 34.01₽                | 41.09₽              | 7.08₽            | 54.00₽              | 12.91₽           | AV₽    | Vertical₽ |

#### Remark

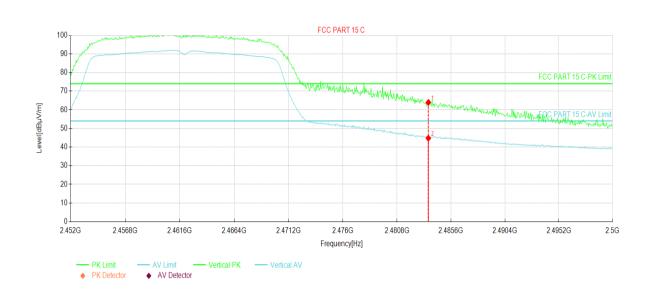
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                  |  |
|---------------|---------------------------|----------------|----------------------|--|
| Test By:      | Mike                      | Test mode:     | 802.11g Tx mode      |  |
| Test Channel: | Lowest channel            | Polarization:  | Horizontal           |  |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24°C Huni: 57% |  |



| Suspected Data List⊲ |                  |                       |                     |                  |                     |                  |        |             |
|----------------------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| NO.₽                 | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]₽ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]∉ | Trace₽ | Polarity∂   |
| 1₽                   | 2390.08          | 44.79₽                | 51.87₽              | 7.08₽            | 74.00₽              | 22.13₽           | PK₽    | Horizontal₽ |
| 2₽                   | 2390.08          | 32.14₽                | 39.22₽              | 7.08₽            | 54.00₽              | 14.78₽           | AV₽    | Horizontal₽ |


#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

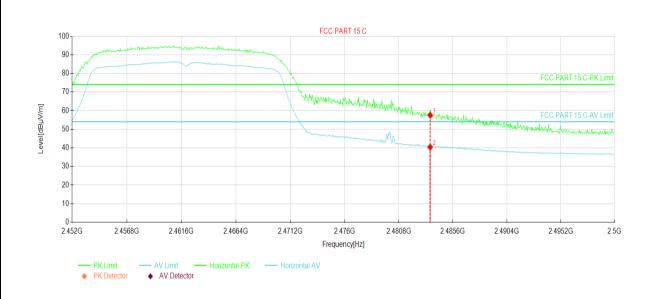
Project No.: JYTSZE2108006



| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                  |  |
|---------------|---------------------------|----------------|----------------------|--|
| Test By:      | Mike                      | Test mode:     | 802.11g Tx mode      |  |
| Test Channel: | Highest channel           | Polarization:  | Vertical             |  |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24°C Huni: 57% |  |



| Susp | ected Data       | List∂                 |                     |                  |                     |                  |        |           | ÷ |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|---|
| NO.  | Freq.⊌<br>[MHz]⊌ | Reading⊬<br>[dBµV/m]⊬ | Level⊬<br>[dBµV/m]∉ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]∉ | Trace₽ | Polarity∂ | ÷ |
| 1₽   | 2483.58          | 56.25₽                | 63.94₽              | 7.69₽            | 74.00₽              | 10.06₽           | PK₽    | Vertical₽ | ÷ |
| 2₽   | 2483.58          | 37.08₽                | 44.77₽              | 7.69₽            | 54.00₽              | 9.23₽            | AV₽    | Vertical₽ | ÷ |


#### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 23 of 43

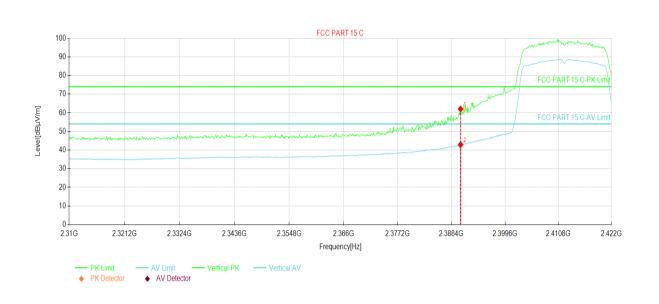


| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                  |  |
|---------------|---------------------------|----------------|----------------------|--|
| Test By:      | Test By: Mike             |                | 802.11g Tx mode      |  |
| Test Channel: | Highest channel           | Polarization:  | Horizontal           |  |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24°C Huni: 57% |  |



| Susp | Suspected Data List |                       |                     |                  |                     |                  |        |              |
|------|---------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|--------------|
| NO.₽ | Freq.⊬<br>[MHz]₽    | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]₽ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity₽    |
| 1₽   | 2483.58             | 49.85₽                | 57.54₽              | 7.69₽            | 74.00₽              | 16.46₽           | PK₽    | Horizontal₽  |
| 2↩   | 2483.58             | 32.72₽                | 40.41₽              | 7.69₽            | 54.00₽              | 13.59₽           | AV₽    | Horizontal₽⊸ |

#### Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 24 of 43

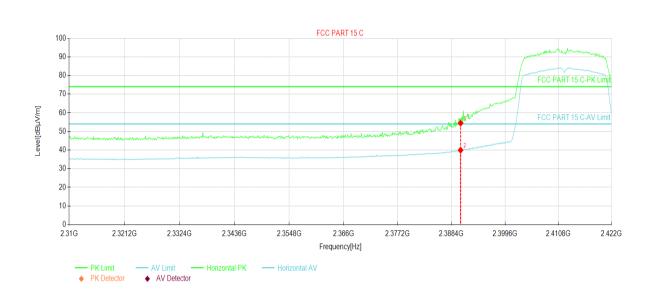


#### 802.11n(HT20):

| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                   |
|---------------|---------------------------|----------------|-----------------------|
| Test By:      | Mike                      | Test mode:     | 802.11n(HT20) Tx mode |
| Test Channel: | Lowest channel            | Polarization:  | Vertical              |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24℃ Huni: 57%   |



| Suspe | Suspected Data List |                       |                     |                  |                     |                  |        |           |
|-------|---------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| NO.₽  | Freq.⊬<br>[MHz]∂    | Reading√<br>[dBµV/m]∞ | Level.<br>[dBµV/m]. | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity₽ |
| 1₽    | 2390.30             | 54.96₽                | 62.04₽              | 7.08₽            | 74.00₽              | 11.96₽           | PK₽    | Vertical₽ |
| 2₽    | 2390.30             | 35.79₽                | 42.87₽              | 7.08₽            | 54.00₽              | 11.13₽           | AV₽    | Vertical₽ |


#### Remark:

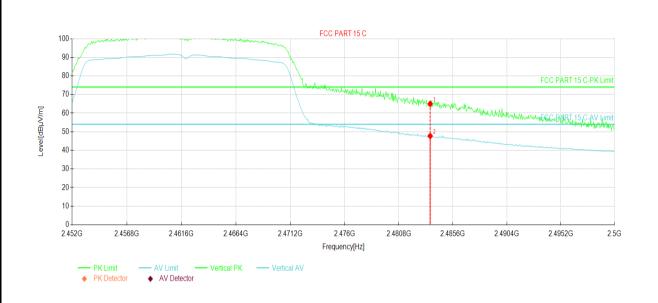
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                   |
|---------------|---------------------------|----------------|-----------------------|
| Test By:      | Mike                      | Test mode:     | 802.11n(HT20) Tx mode |
| Test Channel: | Lowest channel            | Polarization:  | Horizontal            |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24°C Huni: 57%  |




| Suspe | Suspected Data List |                       |                     |                  |                     |                  |        |             |
|-------|---------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| NO.₽  | Freq.⊬<br>[MHz]∂    | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]⊬ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∂   |
| 1₽    | 2390.30             | 47.38₽                | 54.46₽              | 7.08₽            | 74.00₽              | 19.54₽           | PK₽    | Horizontal₽ |
| 2₽    | 2390.30             | 32.87₽                | 39.95₽              | 7.08₽            | 54.00₽              | 14.05₽           | AV₽    | Horizontal₽ |

#### Remark

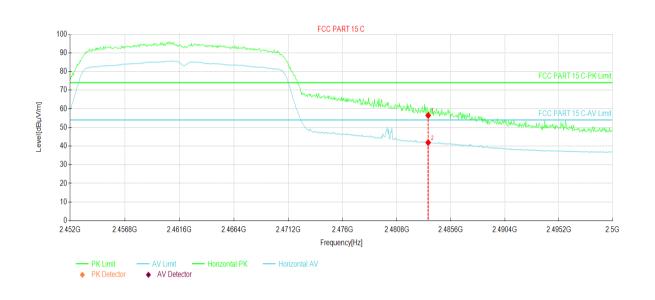
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                   |
|---------------|---------------------------|----------------|-----------------------|
| Test By:      | Mike                      | Test mode:     | 802.11n(HT20) Tx mode |
| Test Channel: | Highest channel           | Polarization:  | Vertical              |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24°C Huni: 57%  |



| Susp | Suspected Data List |                       |                     |                  |                     |                  |        |           |
|------|---------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| NO.∂ | Freq.⊬<br>[MHz]∂    | Reading√<br>[dBµV/m]∞ | Level.<br>[dBµV/m]. | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]∉ | Trace₽ | Polarity∉ |
| 1₽   | 2483.58             | 57.31₽                | 65.00₽              | 7.69₽            | 74.00₽              | 9.00₽            | PK₽    | Vertical₽ |
| 2₽   | 2483.58             | 40.02₽                | 47.71₽              | 7.69₽            | 54.00₽              | 6.29₽            | AV₽    | Vertical₽ |


#### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

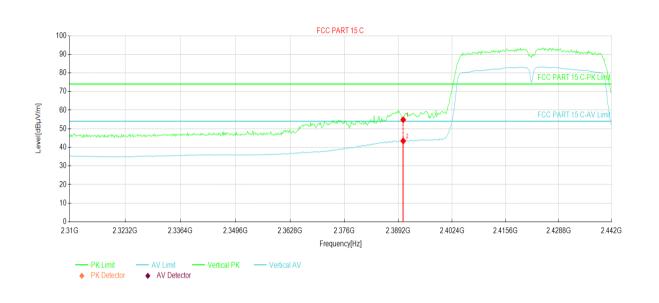


| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                   |
|---------------|---------------------------|----------------|-----------------------|
| Test By:      | Mike                      | Test mode:     | 802.11n(HT20) Tx mode |
| Test Channel: | Highest channel           | Polarization:  | Horizontal            |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24°C Huni: 57%  |



| Susp | Suspected Data List |                       |                     |                  |                     |                  |        |             |
|------|---------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| NO.∂ | Freq.⊬<br>[MHz]∂    | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]₽ | Factor⊬<br>[dB]∉ | Limit⊬<br>[dBµV/m]⊲ | Margin⊬<br>[dB]∉ | Trace₽ | Polarity₽   |
| 1₽   | 2483.58             | 48.71₽                | 56.40₽              | 7.69₽            | 74.00₽              | 17.60₽           | PK₽    | Horizontal₽ |
| 2↩   | 2483.58             | 34.18₽                | 41.87₽              | 7.69₽            | 54.00₽              | 12.13₽           | AV₽    | Horizontal₽ |

#### Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

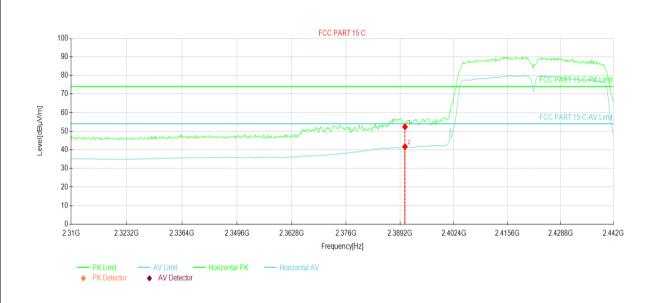


#### 802.11n(HT40):

| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                   |
|---------------|---------------------------|----------------|-----------------------|
| Test By:      | Mike                      | Test mode:     | 802.11n(HT40) Tx mode |
| Test Channel: | Lowest channel            | Polarization:  | Vertical              |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24℃ Huni: 57%   |



| Susp | Suspected Data List |                       |                     |                  |                     |                  |        |           |
|------|---------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| NO.₽ | Freq.⊬<br>[MHz]∂    | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]⊲ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]∉ | Trace₽ | Polarity∂ |
| 1₽   | 2390.38             | 47.74₽                | 54.82₽              | 7.08₽            | 74.00₽              | 19.18₽           | PK₽    | Vertical₽ |
| 2₽   | 2390.38             | 36.37₽                | 43.45₽              | 7.08₽            | 54.00₽              | 10.55₽           | AV₽    | Vertical₽ |


#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

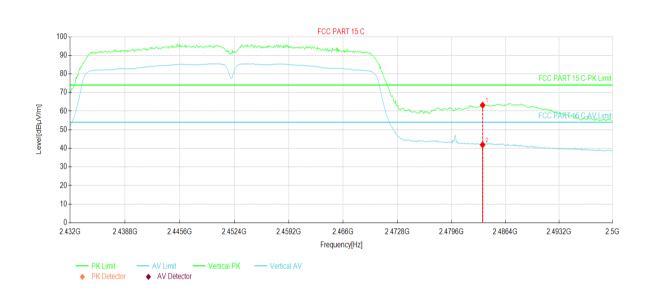
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                   |
|---------------|---------------------------|----------------|-----------------------|
| Test By:      | Mike                      | Test mode:     | 802.11n(HT40) Tx mode |
| Test Channel: | Lowest channel            | Polarization:  | Horizontal            |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24℃ Huni: 57%   |



| Susp | Suspected Data List |                       |                     |                  |                     |                  |        |             |  |  |  |
|------|---------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|--|--|--|
| NO.  | Freq.⊬<br>[MHz]∂    | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]⊲ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊲ | Margin⊬<br>[dB]∉ | Trace₽ | Polarity    |  |  |  |
| 1.₽  | 2390.38             | 45.26₽                | 52.34₽              | 7.08₽            | 74.00₽              | 21.66₽           | PK₽    | Horizontal₽ |  |  |  |
| 2₽   | 2390.38             | 34.59₽                | 41.67₽              | 7.08₽            | 54.00₽              | 12.33₽           | AV₽    | Horizontal₽ |  |  |  |


#### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

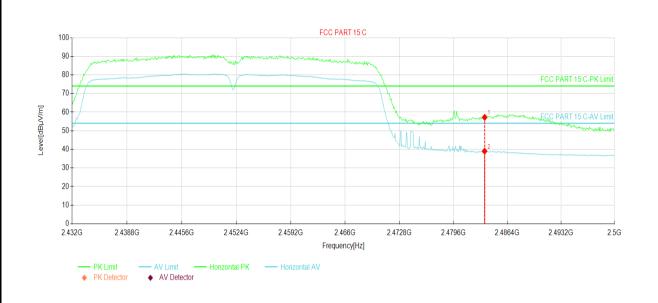
Page 30 of 43



| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                   |  |  |
|---------------|---------------------------|----------------|-----------------------|--|--|
| Test By: Mike |                           | Test mode:     | 802.11n(HT40) Tx mode |  |  |
| Test Channel: | Highest channel           | Polarization:  | Vertical              |  |  |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24℃ Huni: 57%   |  |  |



| Suspe | Suspected Data List |                       |                     |                  |                     |                  |       |           |  |  |
|-------|---------------------|-----------------------|---------------------|------------------|---------------------|------------------|-------|-----------|--|--|
| NO.₽  | Freq.⊬<br>[MHz]∂    | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]⊲ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace | Polarity₀ |  |  |
| 1₽    | 2483.54             | 55.51₽                | 63.20₽              | 7.69₽            | 74.00₽              | 10.80₽           | PK₽   | Vertical₽ |  |  |
| 2₽    | 2483.54             | 34.21₽                | 41.90₽              | 7.69₽            | 54.00₽              | 12.10₽           | AV₽   | Vertical₽ |  |  |


#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Product Name: | 2.4 inch 3G Feature phone | Product Model: | B8K                   |  |
|---------------|---------------------------|----------------|-----------------------|--|
| Test By:      | Mike                      | Test mode:     | 802.11n(HT40) Tx mode |  |
| Test Channel: | Highest channel           | Polarization:  |                       |  |
| Test Voltage: | AC 120/60Hz               | Environment:   | Temp: 24℃ Huni: 57%   |  |



| Susp | Suspected Data List |                       |                    |                  |                     |                  |        |             |  |  |
|------|---------------------|-----------------------|--------------------|------------------|---------------------|------------------|--------|-------------|--|--|
| NO.₽ | Freq.⊬<br>[MHz]∂    | Reading√<br>[dBµV/m]∞ | Level√<br>[dBµV/m] | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∉   |  |  |
| 1₽   | 2483.54             | 49.49₽                | 57.18₽             | 7.69₽            | 74.00₽              | 16.82₽           | PK₽    | Horizontal₽ |  |  |
| 2↩   | 2483.54             | 31.33₽                | 39.02₽             | 7.69₽            | 54.00₽              | 14.98₽           | AV₽    | Horizontal₽ |  |  |

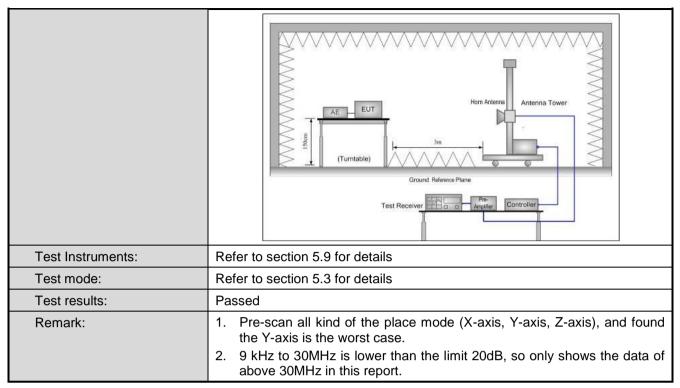
#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



## 6.7 Spurious Emission

## 6.7.1 Conducted Emission Method


| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Test setup:       | NS173R NS182R NS182R NS006 NS006 NS006 NS007 NS0 |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Measurement Data: | Refer to Appendix A - 2.4G WIFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

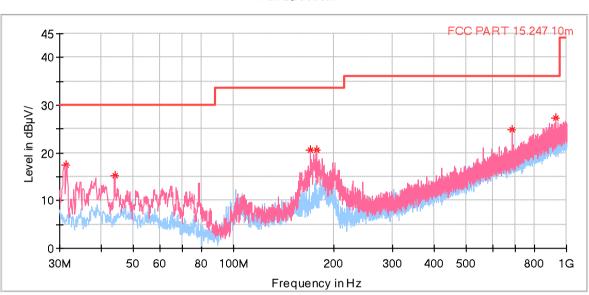


### 6.7.2 Radiated Emission Method

| 6.7.2 Radiated Emission  Test Requirement: | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                   |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Frequency Range:                      | 9kHz to 25GHz                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                   |  |
| Test Distance:                             | 3m or 10m                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                   |  |
| Receiver setup:                            | Frequency                                                                                                                                                                                                                                                                          | Detecto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or                                                                                                    | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | BW                                                                                                    | Remark                                                                                                                                                                                                                                                            |  |
|                                            | 30MHz-1GHz                                                                                                                                                                                                                                                                         | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       | 120KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                                                                                                          | )KHz                                                                                                  | Quasi-peak Value                                                                                                                                                                                                                                                  |  |
|                                            | Above 1CHz                                                                                                                                                                                                                                                                         | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ž.                                                                                                    | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31                                                                                                           | ИHz                                                                                                   | Peak Value                                                                                                                                                                                                                                                        |  |
|                                            | Above IGHZ                                                                                                                                                                                                                                                                         | Above 1GHz RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | ЛHz                                                                                                   | Average Value                                                                                                                                                                                                                                                     |  |
| Limit:                                     | Frequency                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit                                                                                                 | (dBuV/m @10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )m)                                                                                                          |                                                                                                       | Remark                                                                                                                                                                                                                                                            |  |
|                                            | 30MHz-88MH                                                                                                                                                                                                                                                                         | lz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                                                                                       | uasi-peak Value                                                                                                                                                                                                                                                   |  |
|                                            |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                       | uasi-peak Value                                                                                                                                                                                                                                                   |  |
|                                            | 216MHz-960M                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                                                                                       | Quasi-peak Value                                                                                                                                                                                                                                                  |  |
|                                            | 960MHz-1GH                                                                                                                                                                                                                                                                         | łz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       | 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | Q                                                                                                     | uasi-peak Value                                                                                                                                                                                                                                                   |  |
|                                            | Frequency                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit                                                                                                 | (dBuV/m @3i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m)                                                                                                           |                                                                                                       | Remark                                                                                                                                                                                                                                                            |  |
|                                            | Above 1GHz                                                                                                                                                                                                                                                                         | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | ,                                                                                                     | Average Value                                                                                                                                                                                                                                                     |  |
| Test Procedure:                            | 1. The EUT w                                                                                                                                                                                                                                                                       | as placed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l on                                                                                                  | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a rot                                                                                                        | ating                                                                                                 | Peak Value<br>table 0.8m(below                                                                                                                                                                                                                                    |  |
|                                            | 1GHz)/1.5m(i (below 1GHz) 360 degrees 2. The EUT wa away from the top of a v 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to maximum reasored Bar 6. If the emission limit specified the EUT wou 10dB margin average metholes. | above 1GI c) or 3 metero to determine interfered ariable-hein the divertical part.  pected emantenna was table was table was table was table was table in level of table to the divertical part.  picted emantenna was table was t | Hz) a er cha er cha er cha ence-right a varied e max colariz m was turned the El ting corted. (re-tes | bove the gromber (above to position of to be position of to be position of the ceeiving anto the positions of the ceeiving and to height of the positions of the ceep to peak ximum Hold JT in peak mould be stopp Otherwise the top of the positions of the ceep of the positions of | ound 1GHz the hid z) or enna, teter to of the ante as arr s fror ees to Dete Mode ode v oed are e emis ne us | at a 1 c). The ghest r 3 me which of our m field sinna are co 360 c ct Function the pssions ing pears | O meter chamber table was rotated adiation. ters(above 1GHz) was mounted on neters above the trength. Both e set to make the to its worst case ter to 4 meters degrees to find the ction and dB lower than the peak values of that did not have ak, quasi-peak or |  |
| Test setup:                                | Below 1GHz  EUT  Turn Table  Ground Pl.  Above 1GHz                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m<br>1m                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                                                                                                  | Searce Anter                                                                                          | nna                                                                                                                                                                                                                                                               |  |








#### Measurement Data (worst case):

#### **Below 1GHz:**

| Product Name:   | 2.4 inch 3G Feature phone | Product Model: | B8K                   |  |
|-----------------|---------------------------|----------------|-----------------------|--|
| Test By:        | Mike                      | Test mode:     | Wi-Fi Tx mode         |  |
| Test Frequency: | 30 MHz ~ 1 GHz            | Polarization:  | Vertical & Horizontal |  |
| Test Voltage:   | AC 120/60Hz               | Environment:   | Temp: 24℃ Huni: 57%   |  |





## Critical\_Freqs.

|   | -: <u>-</u> : : •    | 90                     |                               |                  |                  |      |                    |                   |
|---|----------------------|------------------------|-------------------------------|------------------|------------------|------|--------------------|-------------------|
| • | Frequency↓<br>(MHz)∂ | MaxPeak↓<br>(dB ₩V/m)₽ | Limit↓<br>(dB <b>⊬ V</b> /m)∂ | Margin↓<br>(dB)∂ | Height↓<br>(cm)∂ | Pol∉ | Azimuth↓<br>(deg)∂ | Corr.↓<br>(dB/m)₽ |
|   | 31.455000₽           | 17.57∉                 | 30.00₽                        | 12.43₽           | 100.0₽           | V₽   | 289.0₽             | -17.4₽            |
| F | 43.968000₽           | 15.12₽                 | 30.00₽                        | 14.88₽           | 100.0₽           | V₽   | 216.0₽             | -15.7↔            |
| F | 170.262000₽          | 20.70₽                 | 33.50₽                        | 12.80₽           | 100.0₽           | V₄∍  | 0.0₽               | -16.4∤            |
| F | 177.246000₽          | 20.51∂                 | 33.50₽                        | 12.99₽           | 100.0₽           | V₄∍  | 0.0₽               | -17.1↩            |
| F | 687.563000₽          | 24.85₽                 | 36.00₽                        | 11.15₽           | 100.0₽           | V₽   | 338.0₽             | -5.1∻             |
| F | 930.451000₽          | 27.37₽                 | 36.00                         | 8.63₽            | 100.0₽           | V₽   | 170.0↩             | -0.3₽             |

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.





#### **Above 1GHz**

| Above 1GHz           |                              |            |                   |                        |                |              |  |  |
|----------------------|------------------------------|------------|-------------------|------------------------|----------------|--------------|--|--|
|                      |                              |            | 802.11b           |                        |                |              |  |  |
|                      | Test channel: Lowest channel |            |                   |                        |                |              |  |  |
| Detector: Peak Value |                              |            |                   |                        |                |              |  |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4824.00              | 54.20                        | -9.46      | 44.74             | 74.00                  | 29.26          | Vertical     |  |  |
| 4824.00              | 55.99                        | -9.46      | 46.53             | 74.00                  | 27.47          | Horizontal   |  |  |
|                      |                              | Dete       | ctor: Average Va  | alue                   |                | •            |  |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4824.00              | 47.03                        | -9.46      | 37.57             | 54.00                  | 16.43          | Vertical     |  |  |
| 4824.00              | 46.74                        | -9.46      | 37.28             | 54.00                  | 16.72          | Horizontal   |  |  |
|                      |                              | Toot ob    | annel: Middle ch  | annol .                |                |              |  |  |
|                      |                              |            | tector: Peak Valu |                        |                |              |  |  |
| Fraguenov            | Read Level                   | Dei        | Level             | Limit Line             | Margin         |              |  |  |
| Frequency<br>(MHz)   | (dBuV)                       | Factor(dB) | (dBuV/m)          | (dBuV/m)               | Margin<br>(dB) | Polarization |  |  |
| 4874.00              | 54.08                        | -9.11      | 44.97             | 74.00                  | 29.03          | Vertical     |  |  |
| 4874.00              | 55.67                        | -9.11      | 46.56             | 74.00                  | 27.44          | Horizontal   |  |  |
|                      |                              | Dete       | ctor: Average Va  | alue                   |                |              |  |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4874.00              | 46.57                        | -9.11      | 37.46             | 54.00                  | 16.54          | Vertical     |  |  |
| 4874.00              | 46.48                        | -9.11      | 37.37             | 54.00                  | 16.63          | Horizontal   |  |  |
|                      |                              |            |                   |                        |                |              |  |  |
|                      |                              |            | annel: Highest cl |                        |                |              |  |  |
| _                    | T                            | Det        | tector: Peak Valu |                        |                |              |  |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4924.00              | 53.85                        | -8.74      | 45.11             | 74.00                  | 28.89          | Vertical     |  |  |
| 4924.00              | 56.07                        | -8.74      | 47.33             | 74.00                  | 26.67          | Horizontal   |  |  |
|                      |                              | Dete       | ctor: Average Va  | alue                   |                |              |  |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4924.00              | 46.58                        | -8.74      | 37.84             | 54.00                  | 16.16          | Vertical     |  |  |
| 4924.00              | 46.97                        | -8.74      | 38.23             | 54.00                  | 15.77          | Horizontal   |  |  |
|                      |                              |            |                   |                        |                |              |  |  |

#### Remark:

<sup>1.</sup> Final Level = Receiver Read level + Factor.

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





|                    | 802.11g                      |            |                   |                        |                |              |  |  |
|--------------------|------------------------------|------------|-------------------|------------------------|----------------|--------------|--|--|
|                    | Test channel: Lowest channel |            |                   |                        |                |              |  |  |
|                    |                              | De         | tector: Peak Valu | ie                     |                |              |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4824.00            | 54.06                        | -9.46      | 44.60             | 74.00                  | 29.40          | Vertical     |  |  |
| 4824.00            | 55.90                        | -9.46      | 46.44             | 74.00                  | 27.56          | Horizontal   |  |  |
|                    |                              | Dete       | ctor: Average Va  | alue                   |                |              |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4824.00            | 47.05                        | -9.46      | 37.59             | 54.00                  | 16.41          | Vertical     |  |  |
| 4824.00            | 46.72                        | -9.46      | 37.26             | 54.00                  | 16.74          | Horizontal   |  |  |
|                    |                              |            |                   |                        |                |              |  |  |

| Test channel: Middle channel                                                   |                                                |                          |                      |                                                                                  |  |  |  |  |
|--------------------------------------------------------------------------------|------------------------------------------------|--------------------------|----------------------|----------------------------------------------------------------------------------|--|--|--|--|
| Detector: Peak Value                                                           |                                                |                          |                      |                                                                                  |  |  |  |  |
| actor(dB)                                                                      | Level<br>(dBuV/m)                              | Limit Line<br>(dBuV/m)   | Margin<br>(dB)       | Polarization                                                                     |  |  |  |  |
| -9.11                                                                          | 44.88                                          | 74.00                    | 29.12                | Vertical                                                                         |  |  |  |  |
| -9.11                                                                          | 46.69                                          | 74.00                    | 27.31                | Horizontal                                                                       |  |  |  |  |
| Dete                                                                           | ctor: Average Va                               | llue                     |                      |                                                                                  |  |  |  |  |
| Frequency Read Level Factor(dB) Level Limit Line Margin (dBuV/m) (dBuV/m) (dB) |                                                |                          |                      |                                                                                  |  |  |  |  |
| -9.11                                                                          | 38.24                                          | 54.00                    | 15.76                | Vertical                                                                         |  |  |  |  |
| -9.11                                                                          | 37.72                                          | 54.00                    | 16.28                | Horizontal                                                                       |  |  |  |  |
|                                                                                | Det actor(dB) -9.11 -9.11 Dete actor(dB) -9.11 | Detector: Peak Valuation | Detector: Peak Value | Detector: Peak Value   Limit Line   Margin   (dBuV/m)   (dBuV/m)   (dB)    -9.11 |  |  |  |  |

| Test channel: Highest channel |                      |            |                   |                        |                |              |  |
|-------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|
| Detector: Peak Value          |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4924.00                       | 54.21                | -8.74      | 45.47             | 74.00                  | 28.53          | Vertical     |  |
| 4924.00                       | 55.63                | -8.74      | 46.89             | 74.00                  | 27.11          | Horizontal   |  |
| Detector: Average Value       |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4924.00                       | 47.05                | -8.74      | 38.31             | 54.00                  | 15.69          | Vertical     |  |
| 4924.00                       | 46.89                | -8.74      | 38.15             | 54.00                  | 15.85          | Horizontal   |  |

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





|                               |                      |            | 802.11n(HT20)     |                        |                |              |
|-------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|
|                               |                      |            | annel: Lowest ch  | nannel                 |                |              |
|                               |                      | De         | tector: Peak Valu | ie                     |                |              |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4824.00                       | 54.42                | -9.46      | 44.96             | 74.00                  | 29.04          | Vertical     |
| 4824.00                       | 55.15                | -9.46      | 45.69             | 74.00                  | 28.31          | Horizontal   |
|                               |                      | Dete       | ctor: Average Va  | alue                   |                |              |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4824.00                       | 46.68                | -9.46      | 37.22             | 54.00                  | 16.78          | Vertical     |
| 4824.00                       | 47.21                | -9.46      | 37.75             | 54.00                  | 16.25          | Horizontal   |
|                               |                      | Test ch    | nannel: Middle ch | annel                  |                |              |
|                               |                      | De         | tector: Peak Valu | ie                     |                |              |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4874.00                       | 53.95                | -9.11      | 44.84             | 74.00                  | 29.16          | Vertical     |
| 4874.00                       | 55.17                | -9.11      | 46.06             | 74.00                  | 27.94          | Horizontal   |
|                               |                      | Dete       | ctor: Average Va  | alue                   |                |              |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4874.00                       | 46.74                | -9.11      | 37.63             | 54.00                  | 16.37          | Vertical     |
| 4874.00                       | 47.24                | -9.11      | 38.13             | 54.00                  | 15.87          | Horizontal   |
|                               |                      | Test ch    | annel: Highest cl | nannel                 |                |              |
|                               |                      |            | tector: Peak Valu |                        |                |              |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4924.00                       | 53.45                | -8.74      | 44.71             | 74.00                  | 29.29          | Vertical     |
| 4924.00                       | 55.31                | -8.74      | 46.57             | 74.00                  | 27.43          | Horizontal   |
|                               |                      | Dete       | ctor: Average Va  | alue                   |                |              |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4924.00                       | 46.50                | -8.74      | 37.76             | 54.00                  | 16.24          | Vertical     |
| 4924.00                       | 46.76                | -8.74      | 38.02             | 54.00                  | 15.98          | Horizontal   |
| Remark:<br>1. Final Level = 1 | Receiver Read level  | + Factor.  |                   |                        |                |              |

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



|                    |                      | -          | 802.11n(HT40)     |                        |                |              |
|--------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|
|                    |                      | Test ch    | annel: Lowest ch  | nannel                 |                |              |
|                    |                      | Det        | tector: Peak Valu | ıe                     |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4844.00            | 53.77                | -9.32      | 44.45             | 74.00                  | 29.55          | Vertical     |
| 4844.00            | 55.63                | -9.32      | 46.31             | 74.00                  | 27.69          | Horizontal   |
|                    |                      | Dete       | ctor: Average Va  | lue                    |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4844.00            | 46.81                | -9.32      | 37.49             | 54.00                  | 16.51          | Vertical     |
| 4844.00            | 47.01                | -9.32      | 37.69             | 54.00                  | 16.31          | Horizontal   |
|                    |                      |            |                   |                        |                |              |
|                    |                      | Test ch    | annel: Middle ch  | annel                  |                |              |
|                    | _                    | Det        | tector: Peak Valu | ıe                     |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4874.00            | 53.57                | -9.11      | 44.46             | 74.00                  | 29.54          | Vertical     |
| 4874.00            | 55.54                | -9.11      | 46.43             | 74.00                  | 27.57          | Horizontal   |
|                    |                      | Dete       | ctor: Average Va  | lue                    |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4874.00            | 46.59                | -9.11      | 37.48             | 54.00                  | 16.52          | Vertical     |
| 4874.00            | 46.54                | -9.11      | 37.43             | 54.00                  | 16.57          | Horizontal   |
|                    |                      | Test cha   | annel: Highest cl | nannel                 |                |              |
|                    |                      |            | tector: Peak Valu |                        |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4904.00            | 53.45                | -8.90      | 44.55             | 74.00                  | 29.45          | Vertical     |
| 4904.00            | 55.69                | -8.90      | 46.79             | 74.00                  | 27.21          | Horizontal   |
|                    |                      | Dete       | ctor: Average Va  | lue                    |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarizatio  |
| 1001.00            | 46.10                | -8.90      | 37.20             | 54.00                  | 16.80          | Vertical     |
| 4904.00            |                      |            |                   |                        |                |              |

<sup>1.</sup> Final Level = Receiver Read level + Factor.

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





## 8 EUT Constructional Details

Reference to the test report No.: JYTSZB-R12-2101459

-----End of report-----