

Report No: JYTSZB-R12-2102455

FCC REPORT (Bluetooth)

Applicant:	SWAGTEK		
Address of Applicant:	10205 NW 19th St. Suite 101, Miami, FL, 33172		
Equipment Under Test (E	EUT)		
Product Name:	1.8-inch 2G Bar Phone		
Model No.:	J8, A8, QUARTZ		
Trade mark:	LOGIC, iSWAG, UNONU		
FCC ID:	O55185121		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	05 Nov., 2021		
Date of Test:	06 Nov., to 23 Dec., 2021		
Date of report issued:	24 Dec., 2021		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	24 Dec., 2021	Original

Janet Wei Test Engineer Winner Thang

Tested by:

24 Dec., 2021 Date:

Reviewed by:

Project Engineer

Date: 24 Dec., 2021

Project No.: JYTSZE2111030

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	
4 TEST SUMMARY	
5 GENERAL INFORMATION	-
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T.	-
5.3 TEST ENVIRONMENT AND MODE	-
5.5 MEASUREMENT UNCERTAINTY	-
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY	
5.8 LABORATORY LOCATION	
5.9 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	9
6.1 ANTENNA REQUIREMENT	9
6.2 CONDUCTED EMISSIONS	10
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH	
6.5 CARRIER FREQUENCIES SEPARATION	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
6.9 BAND EDGE	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 SPURIOUS EMISSION	
6.10.1 Conducted Emission Method 6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result		
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass		
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass		
Conducted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass		
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass		
Carrier Frequencies Separation	15.247 (a)(1)	Appendix A – BT	Pass		
Hopping Channel Number	15.247 (a)(1)	Appendix A – BT	Pass		
Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass		
Conducted Band Edge	15 205 8 15 200	Appendix A – BT	Pass		
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass		
Conducted Spurious Emission	1E 047(d)	Appendix A – BT	Pass		
Radiated Spurious Emission	15.247(d)	See Section 6.10.2	Pass		
<i>Remark:</i> 1. Pass: The EUT complies with the essential requirements in the standard.					

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Test Method:	ANSI C63.10-2013
	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer Factory:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

Product Name:	1.8-inch 2G Bar Phone
Model No.:	J8, A8, QUARTZ
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-0.9 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 800mAh
Remark:	J8, A8, QUARTZ were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being trademark.LOGIC is for A8. iSWAG is for QUARTZ.UNONU is for J8.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel for GFSK, π /4-DQPSK, 8DPSK						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	19 2421MHz 39 2441MHz 59 2461MHz						
Remark: Channel 0, 39 &78 selected for GFSK, π /4-DQPSK and 8DPSK.							

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark	GFSK (1 Mbps) is the worst case mode.			
Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane				

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-044	03-07-2021	03-06-2022	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022	
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022	
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022	
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022	
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022	
Test Software	R&S	EMC32	١	/ersion: 10.50.4	0	

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022		
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022		
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022		
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022		
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022
Test Software	MWRF-tes	MTS 8310	N N	/ersion: 2.0.0.0	

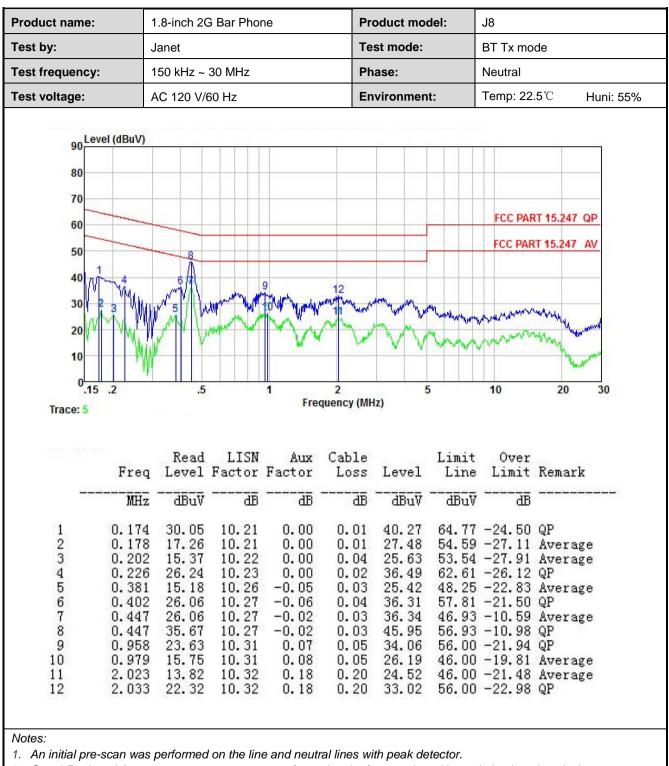
6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be antenna that uses a unique so that a broken antenna c electrical connector is proh 15.247(b) (4) requirement: (4) The conducted output p antennas with directional g section, if transmitting ante power from the intentional	I be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an e coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or ibited. wower limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this nnas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ction, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Bluetooth antenna is ar the antenna is -0.9 dBi.	Internal antenna which permanently attached, and the best case gain of

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.	207	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz	z, Sweep time=auto	
Limit:	Frequency range (MHz)	Limit (d	dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
Test setup:	* Decreases with the logari Reference Pl		
	AUX E.U.T Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN. Line Impedence Stabilization Networ Test table height=0.8m		
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipmen 	tion network (L.I.S.N.). Th npedance for the measuri	is provides a ng equipment. main power through a lance with 50ohm the test setup and n conducted sion, the relative ables must be changed
Test Instruments:	Refer to section 5.9 for det	ails	
Test mode:	Hopping mode		
Test results:	Pass		



Measurement Data:

	1.8-inch 2	G Bar Pho	ne	Pr	oduct mo	del:	J8		
est by:	Janet			Те	est mode:		BT Tx m	ode	
est frequency:	150 kHz ~	30 MHz		Pł	nase:		Line		
est voltage:	AC 120 V	/60 Hz		Er	nvironmer	nt:	Temp: 22	2.5 ℃	Huni: 55%
90 Level (dB 80 70 60 50 40 30 2 4		www.w		tra for when the			FCC P	ART 15.247 ART 15.247	
20 10 0.15 .2 Trace: 7	Www 1	in mathy	1 Fre	2 equency (M	Hz)	5	10	20	30
10 0.15 .2 Trace: 7	Read		Fre		Hz) Level	5 Limit Line	Over	20 Remark	30
10 0.15 .2 Trace: 7	Read	LISN Factor	Fre	equency (M Cable	1	Limit	Over		30

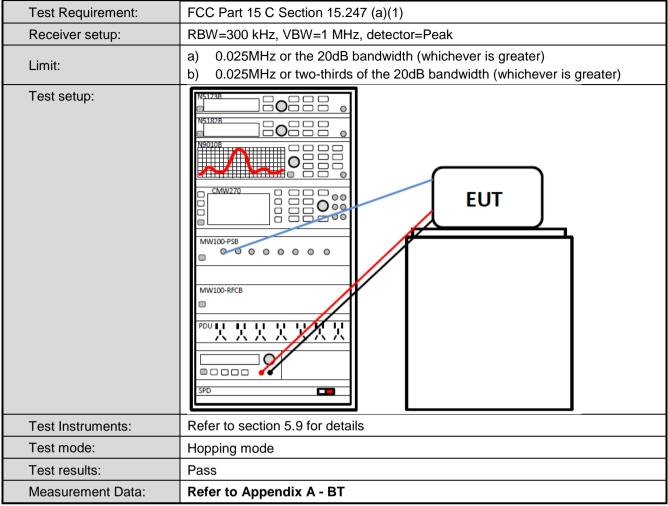
3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

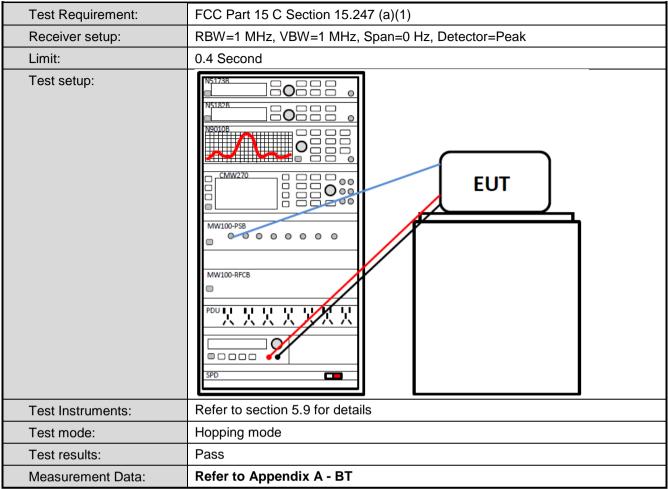
6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

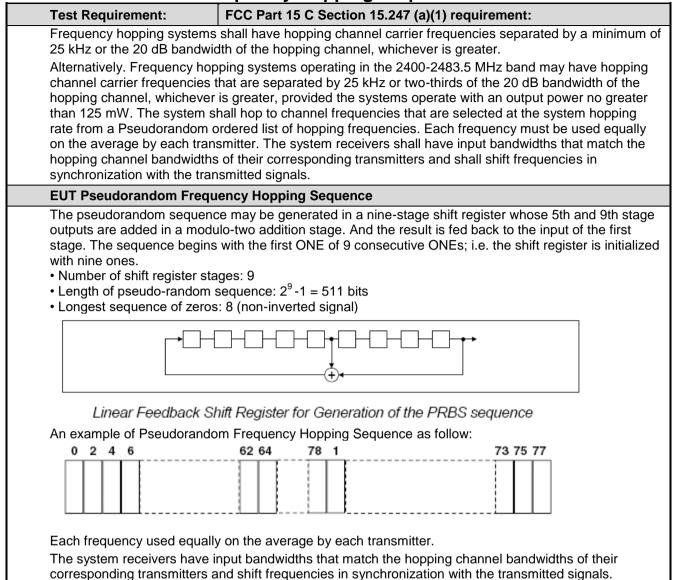
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	Within authorization band
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.5 Carrier Frequencies Separation



6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz,
	Frequency Range: 2400MHz~2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT



6.7 Dwell Time

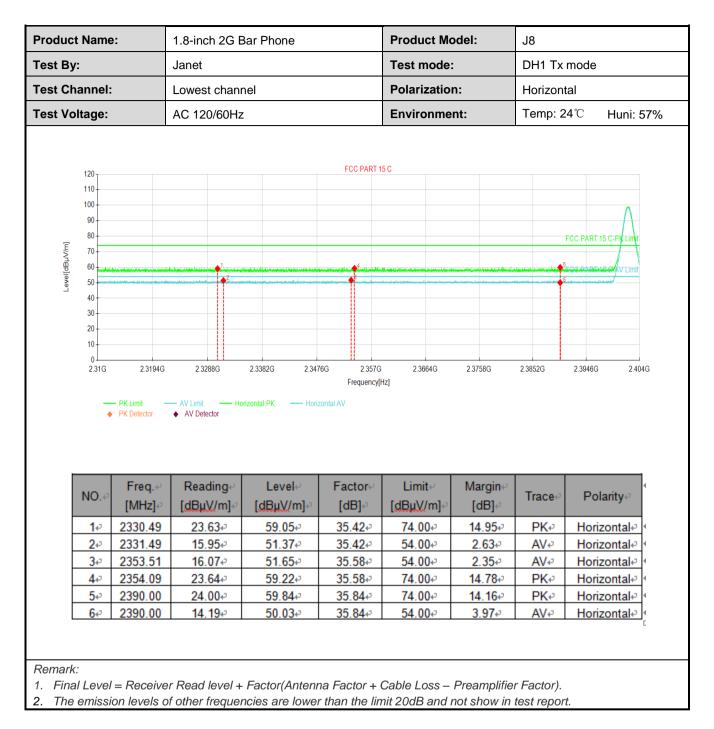
6.8 Pseudorandom Frequency Hopping Sequence

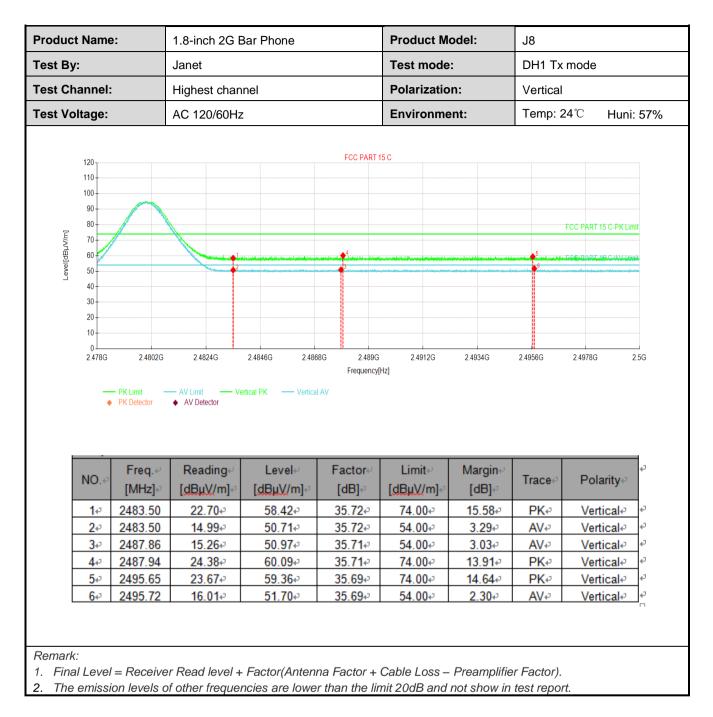
6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.9.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C	Section 15.2	209 a	and 15.205			
Test Frequency Range:	2310 MHz to 23	390 MHz and	d 248	83.5 MHz to 2	500 M	lHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	r	RBW	V	BW	Remark
	Above 1GHz	Peak		1MHz	31	MHz	Peak Value
	Above IGH2	RMS		1MHz	31	MHz	Average Value
Limit:	Frequenc	су	Lim	it (dBuV/m @3	3m)		Remark
	Above 1G	H7		54.00		A۱	/erage Value
	7,5076 10	112		74.00		F	Peak Value
Test setup:	AE ungel (Tum	EUT Itable) Grour Test Receiver	3m Marketerer Marketerer		tenna Towe	*	
Test Procedure:	 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremen 4. For each sus and then the the rota table maximum rea 5. The test-rece Bandwidth w 6. If the emission limit specified EUT would b margin would 	a meter camb e position of s set 3 meter ch was mouth height is vanter termine the position of vertical posi- termine the posi- termine th	ber. f the ers a untec mied max blariz ssior as tui f fror a was n Hc ne El ong cc Othe ed or	The table was highest radiation way from the in a on the top of from one meter imum value of cations of the a h, the EUT was ned to heights n 0 degrees to s set to Peak E old Mode. JT in peak mo- build be stoppe	s rotat ion. nterfe a vari er to fe the fi antenr s arran from 0 360 0 Detect de wa d and ssions g pea	ed 360 rence-re able-he our met eld stre ha are s nged to 1 meter degrees Function as 10dB I the pea s that dii k, quasi	degrees to ecceiving sight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB i-peak or
Test Instruments:	Refer to section	5.9 for deta	ails	· · ·			
Test mode:	Non-hopping m	ode					
Test results:	Passed						


GFSK Mode:

Product Name:		1.8-inch 2G Bar Phone			Product M	lodel:	J8					
Test Channel: Lowest channel Polarization: Vertical		Janet			Test mode	ə:	DH1 T>	DH1 Tx mode				
		I										
st Vol	tage:		AC 120/60Hz	<u>Z</u>		Environm	ent:	Temp:	Temp: 24°C Huni: 57			
Level[dBµV/m]	120 110 90 80 70 60 50				FCC PART	15 C			FCC PART 15 C-P/ Lin			
Lev	40 30 20 10 0 2.31G	2.3194G PK Limit – PK Detector	2.3288G AV Limit Vi AV Detector	2.3382G 2.34 ertical PK — Vertica	Frequency		2.3758G	2.3852G	2.3946G 2			
	30 20 10 0	— PK Limit —	— AV Limit — V		Frequency		2.3758G Margin⊷ [dB]⊷	2.3852G	2.3946G 2 Polarity₽	.404G		
	30 20 10 2.31G	PK Limit - PK Detector	AV Limit Vi AV Detector Vi	ertical PK — Vertica Levele	Frequency IAV Factor⊷	(Hz)	Margin⇔			-		
	30 20 10 0 2.31G	PK Limit PK Detector Freq↓ [MHz]-₽ 2334.53 2334.82	AV Limit V	ertical PK — Vertica Level↩ [dBµV/m]↩ 59.95↩ 51.05↩	Frequency IAV Factor [dB] 35.45+ 35.45+	Hz] Limit.⊍ [dBµV/m].⊍ 74.00.₽ 54.00.₽	Margin↩ [dB]↩ 14.05↩ 2.95↩	Trace≓ PK+³ AV+³	Polarity.∂ Vertical-∂ Vertical-∂	-		
	30 20 10 0 2.31G ■ NO.↓ 1.↓ 2.↓ 3.↓	PK Limit PK Detector [MHz] 2 2334.53 2334.82 2374.29	AV Limit	Eevel↔ [dBµV/m]↔ 59.95↔ 51.05↔ 59.22↔	Frequency IAV Factor (-) [dB](-) 35.45+-) 35.45+- 35.73+-)	Hz] Limit.↓ [dBµV/m].↓ 74.00.↓ 54.00.↓ 74.00.↓	Margin.⊌ [dB].⊎ 14.05+ ³ 2.95.₽ 14.78+ ³	Trace+ PK+ AV₊ PK+	Polarity⊮ Vertical⊮ Vertical⊮ Vertical⊮	-		
	30 20 10 0 2.31G NO.4 14 24	PK Limit PK Detector Freq↓ [MHz]-₽ 2334.53 2334.82	AV Limit V	ertical PK — Vertica Level↩ [dBµV/m]↩ 59.95↩ 51.05↩	Frequency IAV Factor [dB] 35.45+ 35.45+	Hz] Limit.⊍ [dBµV/m].⊍ 74.00.₽ 54.00.₽	Margin↩ [dB]↩ 14.05↩ 2.95↩	Trace≓ PK+³ AV+³	Polarity.∂ Vertical-∂ Vertical-∂	-		
	30 20 10 0 2.31G ■ NO.↓ 1.↓ 2.↓ 3.↓	PK Limit PK Detector [MHz] 2 2334.53 2334.82 2374.29	AV Limit	Eevel↔ [dBµV/m]↔ 59.95↔ 51.05↔ 59.22↔	Frequency IAV Factor (-) [dB](-) 35.45+-) 35.45+- 35.73+-)	Hz] Limit.↓ [dBµV/m].↓ 74.00.↓ 54.00.↓ 74.00.↓	Margin.⊌ [dB].⊎ 14.05+ ³ 2.95.₽ 14.78+ ³	Trace+ PK+ AV₊ PK+	Polarity⊮ Vertical⊮ Vertical⊮ Vertical⊮	-		

Product Name	e:	1.8-inch 2G E	Bar Phone		Product Mo	odel:	J8		
est By:		Janet			Test mode:	:	DH1 Tx	mode	
Test Channel:		Highest channel			Polarization:		Horizontal		
est Voltage:		AC 120/60Hz			Environment:				
120 110 100 90 80 80 70 70 70 60 80 50				FCC PART 1	15 C			FCC PART 15 C-PK Limit	
40 30 20 10 0 2.478G	i 2.4802G PK Limit - ♦ PK Detector	2.4824G	2.4846G 2.486 prizontal PK — Hori	Frequency[2.4934G	2.4956G	2.4978G 2.5G	
40 30 20 10 0 2.478G	PK Limit - ◆ PK Detector -	— AV Limit — Ho		Frequency[2.4934G Margin.e [dB].e	2.4956G Trace+3	2.4978G 2.5G	
40 30 20 10 0 2.478G	PK Limit ◆ PK Detector Freq. ↓	AV Limit Ho AV Detector	orizontal PK — Hori: Levele:	Frequency(zontal AV Factor⊷	Hz] Limit⊷	Margin⊬			
40 30 20 10 0 2.478G	PK Limit → PK Detector Freq.+ ² [MHz]+ ²	AV Limit He AV Detector He Reading +1 [dBµV/m]+1	orizontal PK — Hori: Level⊷ [dBµV/m]≁ ²	Frequency(zontal AV Factor	Hz] Limit⊷ [dBµV/m]↩	Margin⊷ [dB]⊷	Trace∉	Polarity₀	
40 30 20 10 0 2.478G	PK Limit PK Detector Freq.4 [MHz]4 2483.50	AV Limit He AV Detector He Reading⊮ [dBµV/m]₽ 21.80₽ ³	Level↩ [dBµV/m]↩ 57.52↩	Frequency[zontal AV Factor⊮ [dB]⊮ 35.72+3	Limit.⊷ [dBµV/m].↩ 74.00.↩	Margin⊮ [dB]⊮ 16.48₽	Trace₽ PK₽	Polarity∂ Horizontal୶ *	
40 30 20 10 0 2.478G NO 1+ 2+3	PK Limit PK Detector Freq. ↓ [MHz] ↓ 2483.50 2483.50	AV Limit → AV Detector Reading ← [dBµV/m] ← ² 21.80 ← ² 14.06 + ³	Levele [dBµV/m] 57.52↔ 49.78↔	Frequency zontal AV Factor.e [dB].e 35.72.e 35.72.e	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩	Margin.⊌ [dB].₽ 16.48+ ³ 4.22+ ³	Trace+ ² PK+ ² AV+ ²	Polarity.∂ Horizontal.₂ Horizontal.₂ *	
40 30 20 10 0 2.478G NO.4 14 2 478G	 PK Limit PK Detector Freq. ↓ [MHz] ↓ 2483.50 2483.50 2488.36 	AV Limit He AV Detector He Reading ← [dBµV/m] ← 21.80 ← 14.06 ← 15.05 ←	Eevel↔ [dBµV/m]↔ 57.52↔ 49.78↔ 50.76↔	Frequency zontal AV Factor (-) [dB] (-) 35.72(-) 35.72(-) 35.71(-)	Limit [dBµV/m] 74.00+ 54.00+ 54.00+	Margin (4 [dB] (4) 16.48 (4) 4.22 (4) 3.24 (4)	Trace+3 PK+3 AV+3 AV+3	Polarity. Horizontal. Horizontal. + Horizontal. *	

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

π /4-DQPSK mode

Product Name: Test By: Test Channel:		1.8-inch 2G Bar Phone			Product M	odel:	J8			
		Janet			Test mode	Test mode:		2DH1 Tx mode		
		Lowest channel			Polarizatio	Polarization:		Vertical		
est Voltage	:	AC 120/60Hz	7		Environme	ent:	Temp: 24°C Huni:			
120 ₁				FCC PART	15 C					
110-										
100-								Δ		
90 -								/\		
80- E 70-								FCC PART 15 C-PK Lin	T	
P 60			1				3	Second and the owner	J	
[W/V1GD] 60 50	delandelen en delandelen en delandelen en delandelen et delandelen et delandelen et delandelen et delandelen e	******	and a landour		an a ha h	ulasteteelisseslaadeelisteeliseeliseelis	lenti butulante	FICE PARTAS AV Lin		
40-										
30-										
20-										
20 - 10 -										
20-	G 2.3194G	2.3288G	2.3382G 2.34			2.3758G	2.3852G	2.3946G 2.	 404G	
20	G 2.3194G	2.3288G	2.3382G 2.34	76G 2.3570 Frequency		2.3758G	2.3852G	2.3946G 2.	404G	
20	PK Limit	— AV Limit — Ve	2.3382G 2.34 ertical PK Vertica	Frequency		2.3758G	2.3852G	2.3946G 2.	 404G	
20				Frequency		2.3758G	2.3852G	2.3946G 2.	404G	
20- 10- 2.310	PK Limit - PK Detector	AV Limit Ve AV Detector		Frequency					404G	
20	PK Limit - PK Detector	— AV Limit — Ve	ertical PK — Vertica	Frequency I AV	[Hz]	2.3758G Margin.↩ [dB]↩	2.3852G	2.3946G 2. Polarity+	404G	
20- 10- 2.310	PK Limit PK Detector PK Detector	AV Limit Va AV Detector Va Reading	ertical PK Vertica	Frequency IAV Factor® [dB]®	^[Hz]	Margin.⊍ [dB].∂		Polarity₽	404G	
20- 10- 0- 2.310	PK Limit PK Detector Freq. 4	AV Limit AV Detector Reading [dBµV/m]	ertical PK — Vertica Level↔ [dBµV/m]₽	Frequency	Hz) Limit⊮ [dBµV/m]-∂	Margin ~	Trace⊮		404G	
20 10 0 2.310 NO.		AV Limit Ve AV Detector Reading V [dBµV/m] V 24.56+3	ertical PK — Vertica Level↩ [dBµV/m]↩ 60.03↩	Frequency IAV Factor⊌ [dB]₽ 35.47+3	Hz] Limit⊮ [dBµV/m]⊮ 74.00₽	Margin∉ [dB]∉ 13.974	Trace⊷ PK⊷	Polarity⊮ Vertical⊮	404G	
20 10 2.310 NO. 1+ ² 2.4 ³	 PK Limit PK Detector Freq. 4 [MHz] 4 2337.92 2338.24 	AV Limit V AV Detector Reading	ertical PK — Vertica Level↔ [dBµV/m]↔ 60.03↔ 51.07↔	Frequency IAV Factor (J [dB] (2) 35.47(2) 35.47(2)	لنmit⊮ [dBµV/m]₽ 74.00₽ 54.00₽	Margin.⊌ [dB].ø 13.97€ 2.93₽	Trace+ ³ PK+ ³ AV+ ³	Polarity⊮ Vertical∗ Vertical∗	404G	
20- 10- 2.310 NO. 1+ ² 2+ ² 3+ ²	 PK Limit PK Detector Freq.+/ [MHz] 2337.92 2338.24 2385.37 	AV Limit AV Detector Reading [dBµV/m] 24.56+ ³ 15.60+ ³ 24.09+ ³	ertical PK — Vertica Level↔ [dBµV/m]↔ 60.03↔ 51.07↔ 59.90↔	Frequency Factor [dB] 35.47+ 35.47+ 35.81+	لنسند. [dBµV/m]- 74.00ج 54.00ج 74.00ج	Margin.↓ [dB].↓ 13.97.↓ 2.93.↓ 14.10.↓	Trace≓ PK+² AV⊷ PK+²	Polarity⊮ Vertical∗ Vertical∗ Vertical∗	404G	

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

	ne:	1.8-inch 2G Bar Phone			Product Me	odel:	J8		
est By:		Janet			Test mode	:	2DH1 Tx mode		
est Channe	el:	Highest chan	inel	Polarization:		Vertical			
est Voltage	:	AC 120/60Hz	2		Environme	nt:	Temp: 2	4℃ Huni	: 57%
120 110 100 90 80 70 60 50				FCC PART 1	5 C			FCC PART 15 C-PK Lin	
40- 30- 20- 10- 0- 2.478	G 2.4802G	2.4824G AV Limit Ve AV Detector	2.4846G 2.486G ertical PK — Vertical	Frequency[2.4912G Hz]	2.4934G	2 4956G	2.4978G	2.5G
40 - 30 - 20 - 10 -	PK Limit - PK Detector	— AV Limit — Ve		Frequency[2.4934G Margin₄J [dB]¢J	2.4956G	2.4978G Polarity	2.5G
40- 30- 20- 10- 2.478 NO.	 PK Limit PK Detector Freq. 4 [MHz] 4 2483.50 	AV Limit Ve AV Detector Ve	ertical PK — Vertical Level↔ [dBµV/m]↔ 57.88↔	Frequency AV Factor [dB] 35.72+3	Limit.↔ [dBµV/m].↔ 74.00.↔	Margin⊮ [dB]⊮ 16.12⊀			2.5G
40- 30- 20- 10- 0- 2.478	 PK Limit PK Detector Freq. ℓ [MHz] ℓ 2483.50 2483.50 	AV Limit Ve AV Detector Ve Reading.e [dBµV/m]e ³ 22.16e ³ 14.74e ³	ertical PK — Vertical Level [dBµV/m] 57.88 - 50.46 - - - - - - - - - - - - -	Frequency AV Factor [dB] 35.72 35.72	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩	Margin⊮ [dB]⊮ 16.12⊮ 3.54⊮	Trace₀	Polarity- Vertical- Vertical-	2.5G
40- 30- 20- 10- 0- 2.478 NO. 14- 2.478	 PK Limit PK Detector Freq. ℓ [MHz] ℓ 2483.50 2483.50 2487.72 	AV Limit	Evele [dBµV/m]. 57.88. 50.46. 51.59.	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩ 54.00↩	Margin.⊌ [dB].₽ 16.12₽ 3.54₽ 2.41₽	Trace PK AV AV AV	Polarity- Vertical- Vertical- Vertical-	\$ * *
40- 30- 20- 10- 0- 2.478 NO. 14- 2.47	 PK Limit PK Detector Freq.4 [MHz]4 2483.50 2483.50 2487.72 2487.78 	AV Limit Ve AV Detector Ve (dBµV/m]+ 22.16+ 14.74+ 15.88+ 24.15+ 3	Eevel↔ [dBµV/m]↔ 57.88↔ 50.46↔ 51.59↔ 59.86↔	Frequency AV Factor [dB] 35.72 35.72 35.71 35.71 35.71	Limit↔ [dBµV/m]↔ 74.00↔ 54.00↔ 54.00↔ 74.00↔	Margin [dB] 16.12 3.54 2.41 14.14	Trace PK↔ AV↔ AV↔ PK↔	Polarity⊮ Vertical≁ Vertical≁ Vertical≁ Vertical⊀	2.5G
40- 30- 20- 10- 0- 2.478 NO. 14- 2.478	 PK Limit PK Detector Freq. 4 [MHz] 4 2483.50 2487.72 2487.78 	AV Limit	Evele [dBµV/m]. 57.88. 50.46. 51.59.	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩ 54.00↩	Margin.⊌ [dB].₽ 16.12₽ 3.54₽ 2.41₽	Trace PK AV AV AV	Polarity- Vertical- Vertical- Vertical-	* * * *


roduct Name:			1.8-inch 2G Bar Phone			Product Model:		J8		
Fest By: Fest Channel:			Janet Highest channel			Test mode: Polarization:		2DH1 Tx mode Horizontal		
11 10 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20 10 00 90 80 70 60 50		1		FCC PART 1	5 C		5	FCC PART 1	15 C-PK Limit
		2.4802G PK Limit PK Detector	2.4824G AV Limit Ho AV Detector	2.4846G 2.486 prizontal PK — Hori	Frequency[2.4934G	2.4956G	2.4978G	25G
	30 20 10 0 2.478G	- PK Limit —	— AV Limit — Ho		Frequency[2.4934G Margin⊷ [dB]⊷	2.4956G		2.5G
	30 20 10 0 2.478G	PK Limit - PK Detector -	AV Limit Ho ◆ AV Detector Ho Reading	orizontal PK – Hori: Leveled	Frequency(zontal AV Factor⊷	Hz] Limit+/	Margin⊷		Pola	ته
	30 20 10 0 2.478G	PK Limit PK Detector Freq. 4 [MHz] 4	AV Limit Ho AV Detector Ho Reading (J [dBµV/m] (J	orizontal PK — Hori Level↩ [dBµV/m]₽	Frequency zontal AV Factor	Limit⊮ [dBµV/m]⊷	Margin⊷ [dB]⊷	Trace₽	Pola	arity <i>⇔</i>
	30 20 10 0 2.478G ▼ NO. ₹	• PK Limit PK Detector	AV Limit He AV Detector He Reading ([dBµV/m] (23.12+3	Level↩ [dBµV/m]↩ 58.84↩	Frequency zontal AV Factor [dB] 35.72+ ³	Limit⊮ [dBµV/m]⊮ 74.00ℯ ³	Margin⊮ [dB]⊮ 15.16⊮	Trace.₀ PK.₀	Pola Horizo Horizo	arity∂ ontal∂ ₽
	30 20 10 0 2.478G • NO.₽ 1₽ 2₽	PK Limit PK Detector Freq. ↔ [MHz] ↔ 2483.50 2483.50	AV Limit Ho AV Detector Ho Reading (J [dBµV/m] (J 23.12+J 14.35+J	Level [dBµV/m] 58.84↔ 50.07↔	Frequency zontal AV [dB]- ² 35.72+ ³	Limit-/ [dBµV/m]-/ 74.00+/ 54.00+/	Margin.⊌ [dB].₀ 15.16.₽ 3.93.₽	Trace-∂ PK+∂ AV+∂	Pola Horizo Horizo	arity∂ ontal∂ ontal∂
	30 20 10 0 2.478G • NO.₽ 1₽ 2₽ 3₽	PK Limit PK Detector Freq. 4 [MHz] 2 2483.50 2483.50 2488.35	AV Limit Ho AV Detector Ho AV Detector Reading 4 ² [dBµV/m] 4 ³ 23.124 ³ 14.354 ³ 23.494 ³	Level↔ [dBµV/m]↔ 58.84↔ 50.07↔ 59.20↔	Frequency(zontal AV [dB]- ^[2] 35.72+ ² 35.72+ ² 35.71+ ²	Limit-/ [dBµV/m]-/ 74.00-/ 54.00-/ 74.00-/	Margin.↓ [dB].↓ 15.16.↓ 3.93.↓ 14.80.↓	Trace- PK- AV- PK-	Pola Horizo Horizo Horizo Horizo	arity ontal ontal ontal ontal

8DPSK mode

roduct Name:		1.8-inch 2G Bar Phone			Product Model:		J8			
est By	est By:		Janet			Test mode:		3DH1 Tx mode		
est Ch	annel	I: Lowest channel Polarization: Vertical								
est Vo	AC 120/60Hz			2		Environme	nt:	Temp: 2	24℃ H	uni: 57%
Level(dBµV/m]	120 110 100 90 80 70 60 50 40				FCC PART 1	5 C		6	FCC PART 15 C-F	PR Linit
	30 20 10 0 2.31G	2.3194G PK Limit PK Detector	2.3288G AV Limit Ve AV Detector	2.3382G 2.341 ertical PK — Vertical	Frequency[2.3758G	2.3852G	2.3946G	2.404G
	20	— PK Limit -	— AV Limit — Ve		Frequency[2.3758G Margin+ ^J [dB]+ ^J	2.3852G	2.3946G Polarit	
	20 10 2.31G	PK Limit PK Detector Freq. € ¹	AV Limit Ve AV Detector	ertical PK — Vertical Level	Frequency(IAV Factor⊷	Hz] Limit⊷'	Margin⊎			ty₀⊃
	20 10 0 2.31G	PK Limit PK Detector Freq. 4 [MHz]4	AV Limit Ve ◆ AV Detector Ve Reading V [dBµV/m] V	ertical PK — Vertical Levele [dBµV/m]	Frequency[IAV Factor↩ [dB]↩	Limit↩ [dBµV/m]↩	Margin⊮ [dB]₽	Trace+3	Polarit	ty⊷ al+³
	20 10 0 231G	PK Limit PK Detector Freq. € ³ [MHz] € ³ 2336.51 2336.82 2366.41	AV Limit Ve ◆ AV Detector Ve [dBµV/m] 24.14+ 16.28+ 24.11+ 24.11+	ertical PK — Vertical Level [dBµV/m]+ 59.60+ 51.74+ 59.78+	Frequency AV Factor [dB] 35.46 35.46 35.46 35.67 4	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩ 74.00↩	Margin.⊌ [dB].₽ 14.40.₽ 2.26.₽ 14.22.₽	Trace+ PK+ AV+ PK+	Polarit Vertica Vertica	ty≁ al≁ al≁ 4 al≁
	20 10 0 231G	PK Limit PK Detector Freq.e ^J [MHz]e ^J 2336.51 2336.82	AV Limit Ve AV Detector Ve Reading-U [dBµV/m]4 ² 24.14+ ³ 16.28+ ³	ertical PK — Vertical Level↔ [dBµV/m]↔ 59.60↔ 51.74↔	Frequency(AV Factor [dB] 35.46+ 35.46+	Limit.↩ [dBµV/m]↩ 74.00↩ 54.00↩	Margin⊮ [dB]₽ 14.40₽ 2.26₽	Trace≓ PK+³ AV-₽	Polarit Vertica Vertica	ty≁ al≁ al≁ 4 al≁
	20 10 0 2.316 NO. 4 1+7 2+7 3+7	PK Limit PK Detector Freq. € ³ [MHz] € ³ 2336.51 2336.82 2366.41	AV Limit Ve ◆ AV Detector Ve [dBµV/m] 24.14+ 16.28+ 24.11+ 24.11+	ertical PK — Vertical Level [dBµV/m]+ 59.60+ 51.74+ 59.78+	Frequency AV Factor [dB] 35.46 35.46 35.46 35.67 4	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩ 74.00↩	Margin.⊌ [dB].₽ 14.40.₽ 2.26.₽ 14.22.₽	Trace+ PK+ AV+ PK+	Polarit Vertica Vertica	ty -> 1 al +> 1 al +> 1 al +> 1 al +> 1 al +> 1 al +> 1

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

		1.8-inch 2G Bar Phone			Product Mo	odel:	J8		
est By:		Janet			Test mode:		3DH1 Tx mode		
est Channe	l:	Highest chan	nel	Polarization:		Horizontal			
est Voltage	:	AC 120/60Hz	Z		Environme	nt:	Temp: 2	24℃ Huni: 57%	
120 110 100 90 80 100 80 80 80 80 80 80 80 80				FCC PART 1	5 C			FCC PART 15 C-PK Limit	
	G 2.4802G → PK Limit - ◆ PK Detector	2.4824G	2.4846G 2.486 orizontal PK — Hori	Frequency[2.4912G 12]	2 4934G	2.4956G	2.4978G 2.5G	
40 30 20 10 0	PK Limit - PK Detector -	— AV Limit — He		Frequency[2.4934G Margin√ [dB]√	2.4956G	24978G 25G	
40 30 20 10 2.478	PKLimit ◆ PK Detector	AV Limit He AV Detector He Reading	onzontal PK — Hon. Level+J	Frequency[zontal AV Factor⊌	tz] Limit⊷	Margin⊎		*	
40 30 20 10 2.4780	PK Limit PK Detector Freq.↔ [MHz]↔	AV Limit He AV Detector He Reading (J [dBµV/m] (J	orizontal PK — Hori Level⊷ [dBµV/m]↩	Frequency[zontal AV Factor& [dB]&	Limit. [dBµV/m]+	Margin≓ [dB]₽	Trace₊	Polarity₀	
40 30 20 10 2.4780 NO	 PK Limit PK Detector Freq. 4³ [MHz] 4³ 2483.50 	AV Limit He AV Detector He Reading ↓ [dBµV/m] ↓ 22.34↓ ³	Level↩ [dBµV/m]↩ 58.06↩	Frequency[zontal AV Factor⊌ [dB]⊎ 35.72+3	Limit.↓ [dBµV/m]↓ 74.004	Margin⊮ [dB]⊮ 15.94≁	Trace.₀ PK.₀	Polarity↩ Horizontal↩ *	
40 30 20 10 0 2.478 NO 1+ ² 2.4 ³	 PK Limit PK Detector Freq. ↔ [MHz] ↔ 2483.50 2483.50 	AV Limit He AV Detector He Reading ↓ [dBµV/m] ↓ 22.34 ↓ 14.45 ↓	Level [dBµV/m] 58.06 50.17 2	Frequency[zontal AV Factor.J [dB].J 35.72+J 35.72+J	Limit-/ [dBµV/m]-/ 74.00+/ 54.00+/	Margin.⊌ [dB].₽ 15.94.₽ 3.83.₽	Trace-∂ PK+∂ AV-∂	Polarity.∂ Horizontal.∂ Horizontal.2	
40 30 20 10 0 2.478 NO1 1+ ³ 2+ ² 3+ ³	 PK Limit PK Detector Freq. ↔ [MHz] ↔ 2483.50 2483.50 2488.42 	AV Limit He AV Detector He Reading 4 ³ [dBµV/m] 4 ³ 22.34 4 ³ 14.45 4 ³ 15.32 4 ³	Eevel↔ [dBµV/m]↔ 58.06↔ 50.17↔ 51.03↔	Frequency zontal AV Factor [dB] 35.72 35.72 35.72 35.71 3 35.71 1 3	Limit. [dBµV/m]+ 74.00+ 54.00+ 54.00+	Margin.↓ [dB].↓ 15.94↓ 3.83↓ 2.97↓	Trace-∂ PK+∂ AV+∂ AV+∂	Polarity↩ Horizontal↩ Horizontal↩ * Horizontal↩	

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.2	209						
Test Frequency Range:	9 kHz to 25 GHz								
Test Distance:	3m or 10m								
Receiver setup:	Frequency	Frequency Detector				/	Remark		
	30MHz-1GHz	Quasi-pea	ak	120kHz	300kH	lz	Quasi-peak Value		
		Peak		1MHz	3MH:	z	Peak Value		
	Above 1GHz	RMS		1MHz	3MH:	z	Average Value		
Limit:	Frequenc	;y	Limit	: (dBuV/m @	@10m)		Remark		
	30MHz-88N	ЛНz		30.0		C	Quasi-peak Value		
	88MHz-216	MHz		33.5		C	Quasi-peak Value		
	216MHz-960	MHz		36.0		C	Quasi-peak Value		
	960MHz-10	GHz		44.0		C	Quasi-peak Value		
	Frequenc	у	Lim	nit (dBuV/m @	@3m)		Remark		
	Above 1G	H7		54.0			Average Value		
				74.0			Peak Value		
	EUT Tur Tal Ground Above 1GHz	m 0.8m	1m			— An	arch itenna eiver		
Test Procedure:		was placed	Test Rec	3m Ground Reference Plane ceiver	Pre- Cont	ating	table 0.8m(below		
	1GHz)/1.5m (below 1GH 360 degree	n(above 1G lz)or 3 mete s to determi	GHz) er cha iine th	above the amber(abov ne position o	ground ve 1GHz of the hig	at a). Th ghes	10 meter chamber ne table was rotated		

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2111030

	away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

	ame:	1.8-inch 2G Bar Phone			Product Model:		J8	J8		
est By:		Janet 30 MHz ~ 1 GHz			Test mod	Test mode: Polarization:		BT Tx mode Vertical & Horizontal		
est Frequ	uency:				Polarizat					
est Volta	ge:	AC 120/60Hz			Environm	nent:	Temp: 24	4℃ Huni: 57		
				Full Spect	rum					
	45 -					·	FCC PART 1	15.247 10 <u>m</u>		
	40+									
-	30									
7										
2.	<u></u> 20 									
		%		*	**		a half all all and a second	A PARTY A		
<u> </u>	⊐ <u>†</u> ⊿∕	*.	<u>*</u>	و الناري ا	M.	اللو استخور الرق	a support of the second second			
	10+		<u> </u>							
		h	1 			A DATA AND A				
					and the second					
						100000000000000000000000000000000000000				
	0 30M		80 100	A	200	300 40		+ + + + + + + + + + + + + + + + + + +		
	о Зом	50 60	80 100		200	300 40	00 500	800 1G		
	• •	50 60	80 100		200 ncy in Hz	300 40	0 500	800 1G		
	• •	50 60	80 100N			300 40	0 500	800 1G		
	30M			Frequer	ncy in Hz					
	30M	MaxPeak⊥∣	Limit↓	Frequer Margin↓	ncyin Hz Height⊥	300 40	Azimuth↓	Corr.⊥ ,		
	30M Frequency⊥ (MHz),	MaxPeak ↓ (dB ዞ V/m),	Limit⊥ (dB ዞ V/m).	Frequer Margin↓ (dB),	ncyin Hz Height↓ (cm),	Pola	Azimuth↓ (deg),	Corr.↓ (dB/m),		
	30M Frequency⊥ (MHz), 40.573000	МахРеак↓ (dB μ V/m), , 17.47,	Limit⊥ (dB ዞ V/m). 30.00.,	Frequer Margin↓ (dB), 12.53,	Height↓ (cm), 100.0,	Pol.,	Azimuth↓ (deg), 100.0.,	Corr.↓ (dB/m), -15.6, ,		
	30M Frequency1 (MHz), 40.573000 54.832000	MaxPeak ↓ (dB ዞ V/m), 17.47, 12.93,	Limit⊥ (dB ዞ V/m)., 30.00., 30.00.,	Frequer Margin↓ (dB), 12.53, 17.07,	Height L (cm), 100.0, 100.0,	Pol.,	Azimuth↓ (deg), 100.0, 168.0,	Corr.↓ (dB/m),		
	30M Frequency⊥ (MHz), 40.573000	MaxPeak ↓ (dB µ V/m), 17.47, 12.93, 14.08,	Limit⊥ (dB ዞ V/m). 30.00.,	Frequer Margin↓ (dB), 12.53,	Height↓ (cm), 100.0,	Pol.,	Azimuth↓ (deg), 100.0.,	Corr.↓ (dB/m), -15.6, , -16.0, ,		
	30M Frequency↓ (MHz)., 40.573000 54.832000 95.378000	MaxPeak ↓ (dB µ V/m), 17.47, 12.93, 14.08, 17.24, 17.29,	Limit↓ (dB ዞ V/m)., 30.00., 30.00., 33.50.,	Frequer Margin↓ (dB), 12.53, 17.07, 19.42,	Height L (cm), 100.0, 100.0, 100.0,	Pol.,	Azimuth↓ (deg), 100.0, 168.0, 75.0,	Corr.↓ (dB/m), -15.6., -16.0., -19.4.,		

Remark:

1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Above 1GHz:

		Test ch	annel: Lowest ch	nannel		
		Det	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	46.41	-9.60	36.81	74.00	37.19	Vertical
4804.00	46.98	-9.60	37.38	74.00	36.62	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	39.70	-9.60	30.10	54.00	23.90	Vertical
4804.00	39.04	-9.60	29.44	54.00	24.56	Horizontal
		Test ch	annel: Middle ch	nannel		
		Det	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4882.00	46.24	-9.05	37.19	74.00	36.81	Vertical
4882.00	46.88	-9.05	37.83	74.00	36.17	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4882.00	39.37	-9.05	30.32	54.00	23.68	Vertical
4882.00	39.12	-9.05	30.07	54.00	23.93	Horizontal
			annel: Highest cl			
	1	Det	tector: Peak Valu	Je	T	T
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	45.84	-8.45	37.39	74.00	36.61	Vertical
4960.00	47.30	-8.45	38.85	74.00	35.15	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	39.07	-8.45	30.62	54.00	23.38	Vertical
4960.00	39.01	-8.45	30.56	54.00	23.44	Horizontal
4960.00 Remark: 1. Final Level =F	39.01 Receiver Read level	-8.45 + Factor.	30.56		23.44	