

Report No: JYTSZB-R12-2101818

FCC REPORT (Bluetooth)

Applicant:	SWAGTEK
Address of Applicant:	10205 NW 19th Street, STE 101, Miami, FL33172, USA
Equipment Under Test (E	EUT)
Product Name:	1.8 inch 3G Feature Phone
Model No.:	A5G, Force, Q5G
Trade mark:	LOGIC, iSWAG, UNONU
FCC ID:	O55183321
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	07 Sep., 2021
Date of Test:	08 Sep., to 27 Sep., 2021
Date of report issued:	28 Sep., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Sep., 2021	Original

Tested by:

Mike.OU Test Engineer

Date: 28 Sep., 2021

Winner Thang

Date: 28 Sep., 2021

Reviewed by:

Project Engineer

Project No.: JYTSZE2109043

3 Contents

1 COVER PAGE 1 2 VERSION 2 3 CONTENTS 3 4 TEST SUMMARY 4 5 GENERAL INFORMATION 5 5 1 CLIENT INFORMATION 5 5 2 GENERAL DESCRIPTION OF E. U.T. 5 5 3 TEST ENVIRONMENT AND MODE 6 5 4 DESCRIPTION OF SUPPORT UNITS 6 5 5 MEASUREMENT UNCERTAINTY 6 5 6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5 7 LABORATORY FACILITY 6 5 8 LABORATORY FACILITY 6 5 9 TEST INSTRUMENTS LIST 7 6 TEST RESULTS AND MEASUREMENT DATA 8 6.1 ANTENNA REQUIREMENT 8 6.1 ANTENNA REQUIREMENT 12 6.4 20DB OCCUPY BANDWIDTH. 13 6.5 CONDUCTED DUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH. 13 6.5 CARRIER FREQUENCIES SEPARATION 14 6.6 ADSPEUDORANDOM FREQUENCY HOPPING SEQUENCE 17 6.7 DWELL TIME 15 6.7 DWELL TIME 16 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 19 <		Page
3 CONTENTS 3 4 TEST SUMMARY 4 5 GENERAL INFORMATION 5 5 GENERAL DESCRIPTION OF E.U.T. 5 5.3 TEST ENVIRONMENT AND MODE 6 5.4 DESCRIPTION OF SUPPORT UNITS 6 5.6 A DDITIONS TO, DEVENDENT UNITS 6 5.6 A DESCRIPTION OF SUPPORT UNITS 6 5.6 A ADITIONS TO, DEVENTIONS, OR EXCLUSIONS FROM THE METHOD 6 5.7 LABORATORY FACILITY. 6 5.8 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.9 TEST INSTRUMENTS LIST 7 6 TEST RESULTS AND MEASUREMENT DATA 8 6.1 ANTENNA REQUIREMENT 8 6.2 CONDUCTED EMISSIONS 99 6.3 CONDUCTED OUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH 13 6.5 ARRIER FREQUENCIES SEPARATION 14 6.6 APSELDORANDOM FREQUENCY HOPPING SEQUENCE 17 6.7 DWELL TIME 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 18 6.9.1 Conducted Emission Method 32 6.10.1 Conducted Emission Method 32 6.10.2 Radiated Emission Method	1 COVER PAGE	1
4 TEST SUMMARY 4 5 GENERAL INFORMATION 5 5 GENERAL DESCRIPTION OF E.U.T. 5 5.2 GENERAL DESCRIPTION OF F.U.T. 5 5.3 TEST ENVIRONMENT AND MODE 6 5.4 DESCRIPTION OF SUPPORT UNITS 6 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.7 LABORATORY FACILITY. 6 5.8 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.9 TEST INSTRUMENTS LIST. 7 6 TEST RESULTS AND MEASUREMENT DATA 8 6.1 ANTENNA REQUIREMENT 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED OUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH. 13 6.5 ADUGORD CHANNEL NUMBER 15 6.7 DWELL TIME 15 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE. 17 6.9 AND EDGE 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 32 6.10.1 Conducted Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37	2 VERSION	2
4 TEST SUMMARY 4 5 GENERAL INFORMATION 5 5 GENERAL DESCRIPTION OF E.U.T. 5 5.2 GENERAL DESCRIPTION OF F.U.T. 5 5.3 TEST ENVIRONMENT AND MODE 6 5.4 DESCRIPTION OF SUPPORT UNITS 6 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.7 LABORATORY FACILITY. 6 5.8 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.9 TEST INSTRUMENTS LIST. 7 6 TEST RESULTS AND MEASUREMENT DATA 8 6.1 ANTENNA REQUIREMENT 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED OUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH. 13 6.5 ADUGORD CHANNEL NUMBER 15 6.7 DWELL TIME 15 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE. 17 6.9 AND EDGE 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 32 6.10.1 Conducted Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37	3 CONTENTS	3
5 GENERAL INFORMATION 5 5.1 CLIENT INFORMATION 5 5.2 GENERAL DESCRIPTION OF E. U.T. 5 5.3 TEST ENVIRONMENT AND MODE 6 5.4 DESCRIPTION OF SUPPORT UNITS 6 5.6 A DESCRIPTION OF DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.7 LABORATORY FACILITY 6 5.8 LABORATORY FACILITY 6 5.9 TEST INSTRUMENTS LIST 7 6 TEST RESULTS AND MEASUREMENT DATA 8 6.1 ANTENNA REQUIREMENT 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED OUTPUT POWER 12 6.4 OPPING CHANNEL NUMBER 13 6.5 CARRIER FREQUENCIES SEPARATION 14 6.6 HOPPING CHANNEL NUMBER 16 6.7 DWELL TIME 16 6.8 PSELDORANDOM FREQUENCY HOPPING SEQUENCE 17 6.9 BAND EDGE 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 32 6.10.1 Conducted Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37		
5.1 CLIENT INFORMATION. 5 5.2 GENERAL DESCRIPTION OF E.U.T. 5 5.3 TEST ENVIRONMENT AND MODE 6 5.4 DESCRIPTION OF SUPPORT UNITS 6 5.5 MEASUREMENT UNCERTAINTY. 6 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.7 LABORATORY FACILITY. 6 5.8 LABORATORY FACILITY. 6 5.9 TEST INSTRUMENTS LIST 7 6 TEST RESULTS AND MEASUREMENT DATA. 8 6.1 ANTENNA REQUIREMENT. 8 6.1 ANTENNA REQUIREMENT. 8 6.2 CONDUCTED OUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH. 13 6.5 CARRIER FREQUENCIES SEPARATION. 14 6.6 HOPPING CHANNEL NUMBER. 16 6.7 DWELL TIME 16 6.9.2 Radiated Emission Method 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 32 6.10.1 Conducted Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37		
5.2 GENERAL DESCRIPTION OF E.U.T. 5 5.3 TEST ENVIRONMENT AND MODE 6 5.4 DESCRIPTION OF SUPPORT UNITS 6 5.5 MEASUREMENT UNCERTAINTY. 6 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.7 LABORATORY FACILITY. 6 5.8 LABORATORY FACILITY. 6 5.9 TEST INSTRUMENTS LIST 7 6 TEST RESULTS AND MEASUREMENT DATA. 8 6.1 ANTENNA REQUIREMENT 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED OUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH. 13 6.5 CORDUCTED OUTPUT POWER 14 6.6 HOPPING CHANNEL NUMBER. 15 6.7 DWELL TIME 16 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE. 17 6.9 BAND EDGE 18 6.9.1 Conducted Emission Method 19 6.10.2 Radiated Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37	5 GENERAL INFORMATION	5
5.3 TEST ENVIRONMENT AND MODE 6 5.4 DESCRIPTION OF SUPPORT UNITS 6 5.5 MEASUREMENT UNCERTAINTY 6 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.7 LABORATORY FACILITY 6 5.8 LABORATORY FACILITY 6 5.9 TEST INSTRUMENTS LIST 7 6 TEST RESULTS AND MEASUREMENT DATA 8 6.1 ANTENNA REQUIREMENT 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED OUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH 13 6.5 CARRIER FREQUENCIES SEPARATION 14 6.6 HOPPING CHANNEL NUMBER 16 6.7 DWELL TIME 16 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 17 6.9 BAND EDGE 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 19 6.10.2 Radiated Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37	5.1 CLIENT INFORMATION	5
5.4 DESCRIPTION OF SUPPORT UNITS 6 5.5 MEASUREMENT UNCERTAINTY. 6 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.7 LABORATORY FACILITY. 6 5.8 LABORATORY FACILITY. 6 5.9 TEST INSTRUMENTS LIST. 6 6 TEST RESULTS AND MEASUREMENT DATA. 8 6.1 ANTENNA REQUIREMENT. 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED MISSIONS 9 6.4 CONDUCTED MISSIONS 9 6.5 CARRIER FREQUENCIES SEPARATION 12 6.4 HOPPING CHANNEL NUMBER 13 6.5 CARRIER FREQUENCY HOPPING SEQUENCE 17 6.9 BAND EDGE 17 6.9.1 CONDUCTED EMISSION Method 18 6.9.2 Radiated Emission Method 18 6.9.2 Radiated Emission Method 19 6.10.1 CONDUCTED EMISSION Method 32 6.10.2 Radiated Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37		-
5.5 MEASUREMENT UNCERTAINTY. 6 5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6 5.7 LABORATORY FACILITY 6 5.8 LABORATORY FACILITY 6 5.9 TEST INSTRUMENTS LIST 7 6 TEST RESULTS AND MEASUREMENT DATA. 8 6.1 ANTENNA REQUIREMENT 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED EMISSIONS 9 6.4 20DB OCCUPY BANDWIDTH 13 6.5 CARRIER FREQUENCIES SEPARATION 14 6.6 HOPPING CHANNEL NUMBER 15 6.7 DWELL TIME 16 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 17 6.9 BAND EDGE 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 19 6.10.1 Conducted Emission Method 32 6.10.2 Radiated Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37		
5.6 Additions to, deviations, or exclusions from the method 6 5.7 LABORATORY FACILITY. 6 5.8 LABORATORY LOCATION 6 5.9 Test INSTRUMENTS LIST 7 6 TEST RESULTS AND MEASUREMENT DATA 8 6.1 ANTENNA REQUIREMENT 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED OUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH. 13 6.5 CARRIER FREQUENCIES SEPARATION 14 6.6 HOPPING CHANNEL NUMBER. 15 6.7 DWELL TIME 16 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE. 17 6.9 BAND EDGE. 18 6.9.1 Conducted Emission Method. 18 6.9.2 Radiated Emission Method. 18 6.9.2 Radiated Emission Method. 32 6.10.1 Conducted Emission Method. 32 6.10.2 Radiated Emission Method. 33 7 TEST SETUP PHOTO. 37		-
5.7 LABORATORY FACILITY65.8 LABORATORY LOCATION65.9 TEST INSTRUMENTS LIST76 TEST RESULTS AND MEASUREMENT DATA86.1 ANTENNA REQUIREMENT86.2 CONDUCTED EMISSIONS96.3 CONDUCTED DUTPUT POWER126.4 20DB OCCUPY BANDWIDTH126.4 20DB OCCUPY BANDWIDTH136.5 CARRIER FREQUENCIES SEPARATION146.6 HOPPING CHANNEL NUMBER156.7 DWELL TIME166.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE176.9 BAND EDGE186.9.1 Conducted Emission Method186.9.2 Radiated Emission Method196.10.1 Conducted Emission Method326.10.2 Radiated Emission Method337 TEST SETUP PHOTO37		
5.9 TEST INSTRUMENTS LIST 7 6 TEST RESULTS AND MEASUREMENT DATA 8 6.1 ANTENNA REQUIREMENT 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED OUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH. 13 6.5 CARRIER FREQUENCIES SEPARATION 14 6.6 HOPPING CHANNEL NUMBER 15 6.7 DWELL TIME 16 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 17 6.9 BAND EDGE 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 19 6.10.1 Conducted Emission Method 32 6.10.1 Conducted Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37		
6 TEST RESULTS AND MEASUREMENT DATA 8 6.1 ANTENNA REQUIREMENT 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED OUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH 13 6.5 CARRIER FREQUENCIES SEPARATION 14 6.6 HOPPING CHANNEL NUMBER 15 6.7 DWELL TIME 16 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 17 6.9 BAND EDGE 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 19 6.10.1 Conducted Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37		
6.1 ANTENNA REQUIREMENT. 8 6.2 CONDUCTED EMISSIONS 9 6.3 CONDUCTED OUTPUT POWER 12 6.4 20DB OCCUPY BANDWIDTH. 13 6.5 CARRIER FREQUENCIES SEPARATION 14 6.6 HOPPING CHANNEL NUMBER 15 6.7 DWELL TIME 16 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 17 6.9 BAND EDGE 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 19 6.10 SPURIOUS EMISSION 32 6.10.1 Conducted Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37	5.9 TEST INSTRUMENTS LIST	7
6.2 CONDUCTED EMISSIONS96.3 CONDUCTED OUTPUT POWER126.4 20DB OCCUPY BANDWIDTH.136.5 CARRIER FREQUENCIES SEPARATION146.6 HOPPING CHANNEL NUMBER156.7 DWELL TIME166.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE176.9 BAND EDGE186.9.1 Conducted Emission Method186.9.2 Radiated Emission Method196.10 SPURIOUS EMISSION326.10.1 Conducted Emission Method326.10.2 Radiated Emission Method337 TEST SETUP PHOTO37	6 TEST RESULTS AND MEASUREMENT DATA	8
6.3 CONDUCTED OUTPUT POWER126.4 20DB OCCUPY BANDWIDTH.136.5 CARRIER FREQUENCIES SEPARATION146.6 HOPPING CHANNEL NUMBER156.7 DWELL TIME166.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE176.9 BAND EDGE186.9.1 Conducted Emission Method186.9.2 Radiated Emission Method196.10 SPURIOUS EMISSION.326.10.1 Conducted Emission Method326.10.2 Radiated Emission Method337 TEST SETUP PHOTO37	6.1 ANTENNA REQUIREMENT	8
6.4 20DB OCCUPY BANDWIDTH.136.5 CARRIER FREQUENCIES SEPARATION146.6 HOPPING CHANNEL NUMBER156.7 DWELL TIME166.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE176.9 BAND EDGE186.9.1 Conducted Emission Method186.9.2 Radiated Emission Method196.10 SPURIOUS EMISSION326.10.1 Conducted Emission Method326.10.2 Radiated Emission Method337 TEST SETUP PHOTO37		
6.5 CARRIER FREQUENCIES SEPARATION146.6 HOPPING CHANNEL NUMBER156.7 DWELL TIME166.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE176.9 BAND EDGE186.9.1 Conducted Emission Method186.9.2 Radiated Emission Method196.10 SPURIOUS EMISSION326.10.1 Conducted Emission Method326.10.2 Radiated Emission Method337 TEST SETUP PHOTO37		
6.6 HOPPING CHANNEL NUMBER156.7 DWELL TIME166.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE176.9 BAND EDGE186.9.1 Conducted Emission Method186.9.2 Radiated Emission Method196.10 SPURIOUS EMISSION326.10.1 Conducted Emission Method326.10.2 Radiated Emission Method337 TEST SETUP PHOTO37		
6.7 DWELL TIME166.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE176.9 BAND EDGE186.9.1 Conducted Emission Method186.9.2 Radiated Emission Method196.10 SPURIOUS EMISSION326.10.1 Conducted Emission Method326.10.2 Radiated Emission Method337 TEST SETUP PHOTO37		
6.9 BAND EDGE 18 6.9.1 Conducted Emission Method 18 6.9.2 Radiated Emission Method 19 6.10 SPURIOUS EMISSION 32 6.10.1 Conducted Emission Method 32 6.10.2 Radiated Emission Method 33 7 TEST SETUP PHOTO 37		
6.9.1Conducted Emission Method186.9.2Radiated Emission Method196.10 SPURIOUS EMISSION326.10.1Conducted Emission Method326.10.2Radiated Emission Method337 TEST SETUP PHOTO37		
6.9.2Radiated Emission Method196.10 SPURIOUS EMISSION326.10.1Conducted Emission Method326.10.2Radiated Emission Method337 TEST SETUP PHOTO37		
6.10 SPURIOUS EMISSION. .32 6.10.1 Conducted Emission Method. .32 6.10.2 Radiated Emission Method. .33 7 TEST SETUP PHOTO .37		
6.10.1 Conducted Emission Method		
6.10.2 Radiated Emission Method		
8 EUT CONSTRUCTIONAL DETAILS	7 TEST SETUP PHOTO	
	8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result		
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass		
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass		
Conducted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass		
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass		
Carrier Frequencies Separation	15.247 (a)(1)	Appendix A – BT	Pass		
Hopping Channel Number	15.247 (a)(1)	Appendix A – BT	Pass		
Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass		
Conducted Band Edge	15 205 8 15 200	Appendix A – BT	Pass		
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass		
Conducted Spurious Emission	1E 047(d)	Appendix A – BT	Pass		
Radiated Spurious Emission	15.247(d)	See Section 6.10.2	Pass		
<i>Remark:</i> 1. Pass: The EUT complies with the essential requirements in the standard.					

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Teat Nathad	ANSI C63.10-2013
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th Street, STE 101, Miami, FL33172, USA
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th Street, STE 101, Miami, FL33172, USA

5.2 General Description of E.U.T.

Product Name:	1.8 inch 3G Feature Phone		
Model No.:	A5G, Force, Q5G		
Operation Frequency:	2402MHz~2480MHz		
Transfer rate:	1/2/3 Mbits/s		
Number of channel:	79		
Modulation type:	GFSK, π/4-DQPSK, 8DPSK		
Modulation technology:	FHSS		
Antenna Type:	Internal Antenna		
Antenna gain:	0.40 dBi		
Power supply:	Rechargeable Li-ion Battery DC3.7V, 600mAh		
AC adapter:	Model: YLT-Y02A-2		
	Input: AC100-240V, 50/60Hz, 0.2A		
	Output: DC 5.0V, 600mA		
Remark:	Model No.: A5G, Force, Q5G were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being trademark.		
	LOGIC is for A5G.		
	iSWAG is for Force.		
	UNONU is for Q5G.		
Test Sample Condition:	The test samples were provided in good working order with no visible defects.		

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		
Remark: Channel 0, 39 &78 selected for GFSK, π /4-DQPSK and 8DPSK.							

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.
Padiated Emission: The same	have placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-044	03-07-2021	03-06-2022	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022	
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022	
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022	
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022	
Test Software	R&S	EMC32	Version: 10.50.40			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
ISN	Schwarzbeck	CAT3 8158	#96	03-03-2021	03-02-2022	
ISN	Schwarzbeck	CAT5 8158	#166	03-03-2021	03-02-2022	
ISN	Schwarzbeck	NTFM 8158	#126	03-03-2021	03-02-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Project No.: JYTSZE2109043

Report No: JYTSZB-R12-2101818

Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021
Temperature Humidity Chamber	ZhongZhi	CZ-C-150D	ZH16491	11-01-2020	10-31-2021
Test Software	MWRF-tes	MTS 8310	N	/ersion: 2.0.0.0	

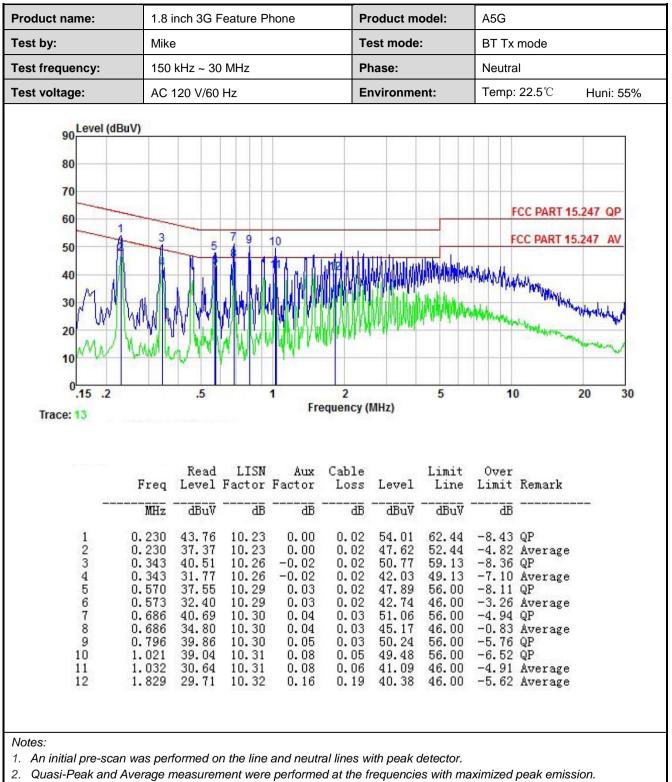
6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohil 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anter power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. be the use of a standard antenna jack or bited. be the use of direction is based on the use of this that do not exceed 6 dBi. Except as shown in paragraph (c) of this anas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Bluetooth antenna is an the antenna is 0.40 dBi.	Internal antenna which permanently attached, and the best case gain of

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.	207	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz	z, Sweep time=auto	
Limit:	Frequency range (MHz)	Limit (c	dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logari		
Test setup:	AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Netword Test table height=0.8m	Creation Contraction Contracti	
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipmen 	tion network (L.I.S.N.). Th npedance for the measuri	is provides a ng equipment. main power through a lance with 500hm the test setup and n conducted sion, the relative ables must be changed
Test Instruments:	Refer to section 5.9 for det	ails	
Test mode:	Hopping mode		
Test results:	Pass		



Measurement Data:

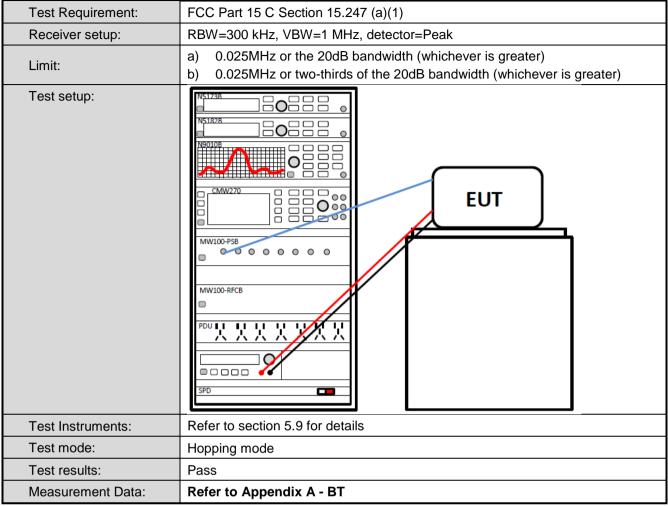
	1.0 11	ich 3G Fe	eature Pr	none	Pro	oduct mo	odel:	A5G		
ſest by:	Mike				Те	st mode:		BT Tx I	mode	
Test frequency:	150 k	Hz ~ 30	MHz		Ph	ase:		Line		
Fest voltage:	AC 1	20 V/60 I	Ηz		En	vironmei	nt:	Temp:	22.5 ℃	Huni: 5
90 Level (dB 80 70 60 50 40		5	7 9				Whereadurity	FC	C PART 15	.247 AV
30 20 10 0.15 .2	Mappy Mr	.5		CIRCUIT.	2 quency (M	. Wart	5	10	Ale and the second s	20 30
20	Freq MHz 0.230	Read	LISN	Aux Factor dB	-	. Wart	5 Limit Line dBuV	10 Over	Remark	all

Project No.: JYTSZE2109043

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

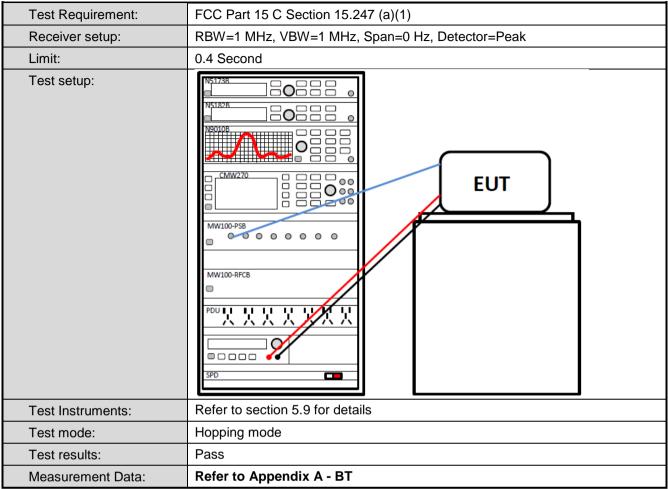
6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

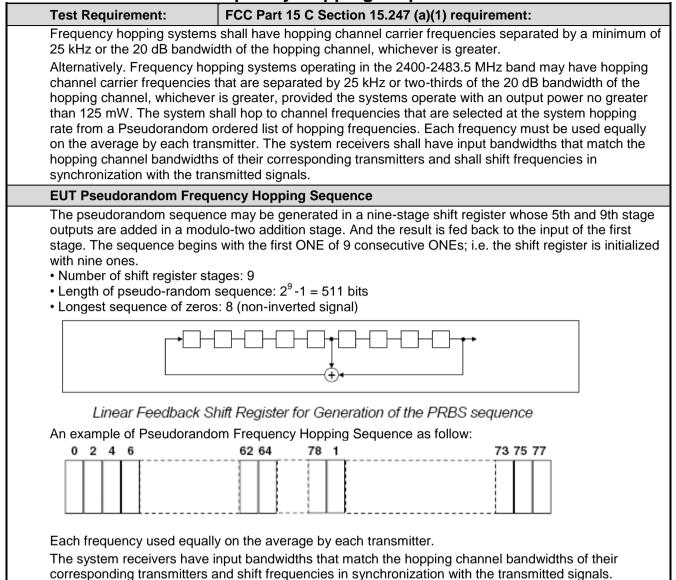
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	Within authorization band
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.5 Carrier Frequencies Separation



6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz,
	Frequency Range: 2400MHz~2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT



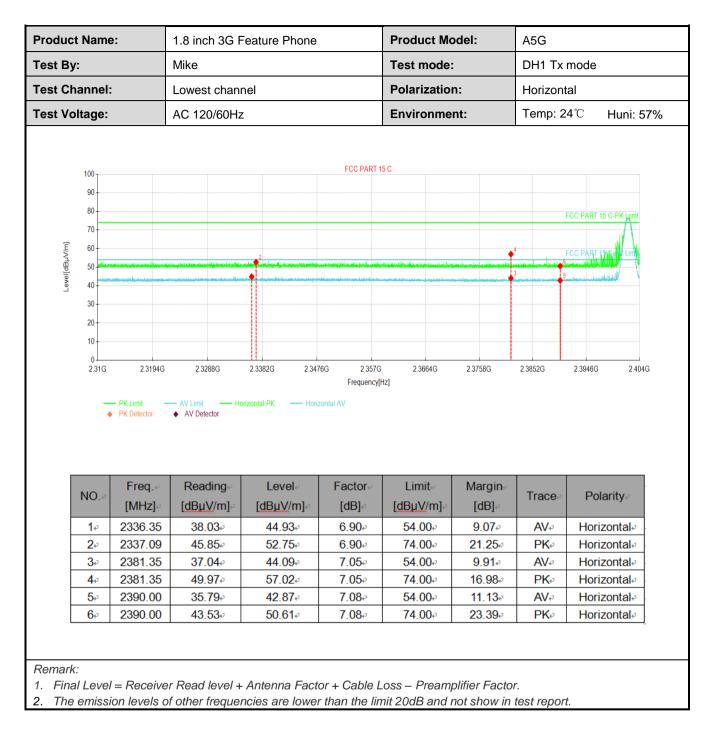
6.7 Dwell Time

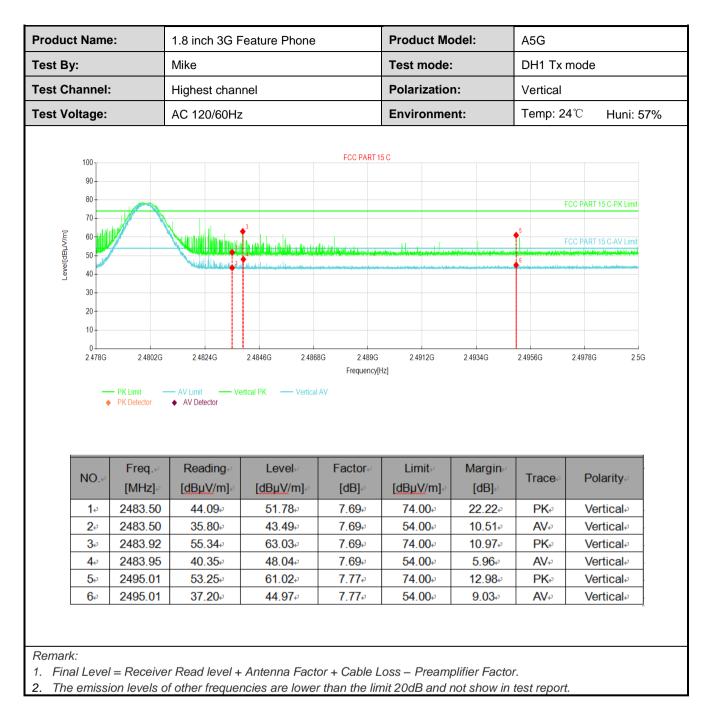
6.8 Pseudorandom Frequency Hopping Sequence

6.9 Band Edge

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.9.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C	Section 15.2	209 a	and 15.205			
Test Frequency Range:	2310 MHz to 23	390 MHz and	1248	33.5 MHz to 2	500 M	lHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	-	RBW	V	BW	Remark
	Above 1GHz	Peak		1MHz	31	MHz	Peak Value
	Above IGH2	RMS		1MHz	31	MHz	Average Value
Limit:	Frequency		Limit (dBuV/m @3m)		Remark		
	Above 1G	H7		54.00		Average Value	
	7,6070 10	112		74.00		I	Peak Value
Test setup:	AE ungsi (Turn	EUT ttable) Groun Test Receiver	3m		tenna Towe		
Test Procedure:	 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measurement 4. For each sus and then the the rota table maximum reat 5. The test-rece Bandwidth w 6. If the emission limit specified EUT would b margin would 	a meter camil e position of s set 3 meter ich was mouth height is van termine the n id vertical point. spected emise antenna wa was turned ading. eiver system ith Maximum on level of the d, then testin be reported. (d	ber. the rrs aver ried max blariz ssior s tur from was n Ho e EL ng cc Othe	The table was highest radiation way from the in a on the top of from one meter imum value of cations of the a n, the EUT was ned to heights n 0 degrees to s set to Peak E old Mode. JT in peak mo- build be stoppe	s rotation. Interfe a vari er to fo the fi antenr s arran from 0 360 o Detect de wa d and ssions g peal	ed 360 rence-re able-he our met eld stre ha are s nged to 1 meter degrees Function as 10dB I the pea s that dia k, quasi	degrees to eceiving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB -peak or
Test Instruments:	Refer to section	5.9 for deta	ails	-			
Test mode:	Non-hopping m	ode					
Test results:	Passed						

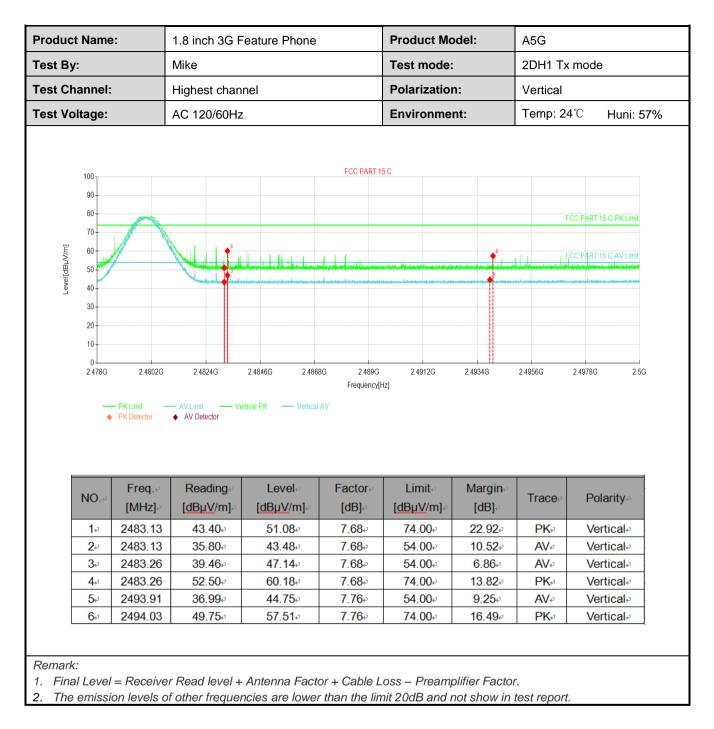

GFSK Mode:

				eature Phone		Product Mo	Jael:	A5G		
est By:	y:		Mike			Test mode:	:	DH1 Tx	mode	
est Char	nnel:		Lowest channel Polarization: Vertical							
est Volta	age:		AC 120/60Hz			Environme	Environment:		Temp: 24°C Huni: 57%	
11 9 7 7	100 90 80 70 60 50				FCC PART 1				FCC PART 15 C-PK Limit	
:	40 30 20 10 0 2.31G	2.3194G – PK Limit – PK Detector	2.3288G — AV Limit — Ve ♦ AV Detector	2 3382G 2 347 ertical PK — Vertical	Frequency[2.3758G	2.3852G	2.3946G 2.404G	
	30 20 10	– PK Limit –	— AV Limit — Ve		Frequency[2.3758G Margin⊮ [dB].∞	2.3852G	2.3946G 2.404G	
N	30 20 10 0 2.31G	PK Limit PK Detector	AV Limit Ve AV Detector	ertical PK — Vertical	Frequency[AV Factor	^{+z]}	Margin⊭			
N	30 20 10 0 2.31G	Freq.« [MHz].»	AV Limit Ve AV Detector Reading ([dBµV/m].	ertical PK — Vertical Level [dBuV/m]+2	Frequency[AV Factor [dB]	tz] Limit⊷ [dBµV/m]⊷	Margin⊮ [dB]∉	Trace	Polarity₽	
N	30 20 10 0 2.31G	Freq.44 [MHz]49 2343.11	AV Limit Ve AV Detector Ve	Level [dBµV/m] 52.43	Frequency AV Factor [dB] 6.92 ¢	Limit.₀ [dBµV/m].₀ 74.00.₀	Margin⊮ [dB]₀ 21.57₊	Trace.₀ PK₀	Polarity <i>₀</i> Vertical₀	
N	30 20 10 0 2,31G	Freq.** [MHz].* 2343.11 2343.62	AV Limit Ve ♦ AV Detector Reading-/ [dBµV/m]-/ 45.51+/ 37.70+/	Eevel↔ [dBµV/m]↔ 52.43↔ 44.62↔	Frequency[AV Factor [dB] 6.92 6.92	Limit. [dBµV/m]. 74.00. 54.00.	Margin⊷ [dB]₊ 21.57₊ 9.38₊	Trace PK AV	Polarity Vertical Vertical	
	30 20 10 0 2.31G NO. • • • • • • • • • •	PK Limit PK Delector Freq.* [MHz].* 2343.11 2343.62 2364.26	AV Limit Ve ♦ AV Detector Reading [dBµV/m]e ² 45.51e ³ 37.70e ³ 37.60e ³	Level+ [dBµV/m]+ 52.43+ 44.62+ 44.59+	Frequency[AV Factor.* [dB].* 6.92.* 6.92.* 6.99.*	Limit. [dBµV/m]. 74.00. 54.00. 54.00.	Margin.∉ [dB].∉ 21.57.∉ 9.38.¢ 9.41.€	Trace PK AV AV	Polarity Vertical Vertical Vertical	

est By: est Cha est Vol	annel:		Mike						
						Test mode:		DH1 Tx	mode
est Vol			Highest chan	nel		Polarizatio	n:	Horizont	al
	tano.		AC 120/60Hz			Environme	nt·	Temp: 2	
	lage.		AC 120/00112	-		LINIONNE		Temp. 2	
	100				FCC PART 1	15 C			
	90								
	80								
	70								FCC PART 15 C-PK Limit
[m]/	60			4			5		FCC PART 15 C-AV Limit
Level[dBµV/m]	50	/			a her a substitution of the second		alinoandinatic <mark>hiatadi</mark> n		the way a start of the second start of the sec
	all and a second second		Matur Laurana	ومقاصرونه أرارة المسامر وورار المأسق والأفاص ويوسأوه	eneralemiteterenaneranderen	and the second state of the second	enteriore estimate in the strategic line	เขาะอาสรีปรัญหี 10 สีประกอบให้สุดเหลือการไ	han an a
Leve	40								
Leve	40								
Leve	30								
Leve									
Leve	30								
Leve	30 20 10 0								
Leve	30 20 10	2.4802G	2 4824G	2 4846G 2 486			2.4934G	2.4956G	2.4978G 2.5G
Leve	30 20 10 0	2.4802G	2.4824G	2.4846G 2.486	8G 2.489G Frequency[2.4934G	2.4956G	2.4978G 2.5G
Leve	30 20 10 0 2.478G	2.4802G – PK Limit –		2.4846G 2.486 orizontal PK — Horiz	Frequency[2.4934G	2.4956G	24978G 2.5G
Leve	30 20 10 0 2.478G				Frequency[2.4934G	2.4956G	2.4978G 2.5G
Leve	30 20 10 0 2.478G	– PK Limit –	— AV Limit — He		Frequency[2.4934G	2.4956G	2.4978G 2.5G
	30 20 10 0 2.478G	– PK Limit –	— AV Limit — He		Frequency[2.4934G Margin⊮		
	30 20 10 0 2.478G	– PK Limit – PK Detector	→ AV Limit → He AV Detector	orizontal PK — Horiz	Frequency[Hz]		2.4956G Trace	2.4978G 2.5G Polarity
	30 20 10 0 2.478G	PK Limit - PK Detector - Freq .41	AV Limit He AV Detector	orizontal PK — Horiz	Frequency(zontal AV Factor	Hz] Limit⇔	Margin⊬		
	30 20 10 0 2.478G	PK Limit PK Detector Freq .44 [MHz].43	AV Limit He AV Detector He Reading ([dBuV/m] (orizontal PK — Horiz Level↔ [dBµV/m].₂	Frequency[zontal AV Factor [dB]	Hz] Limit⊷ [dBµV/m]⊷	Margin⊬ [dB]∂	Trace₀	Polarity₀
	30 20 10 0 2.478G	- PK Limit PK Detector Freq .↔ [MHz]↔ 2483.50	AV Limit H AV Detector H Reading P [dBµV/m]P 43.42P	Level [dBµV/m]₀ 51.11₽	Frequency[zontal AV Factor [dB] 7.69.43	Hz] Limit.↓ [dBµV/m].↓ 74.00.↓	Margin.₀ [dB].₀ 22.89.₀	Trace∍ PK,₀	Polarity∉ Horizontale
	30 20 10 0 2.478G	- PK Limit PK Detector Freq .↓ [MHz]↓ 2483.50 2483.50	AV Limit → H AV Detector → H Reading → [dBµV/m] → 43.42 → 35.11 →	orizontal PK — Horiz Level [dBµV/m] 51.11ء 42.80ء	Frequency contal AV Factor [dB] 7.69 2 7.69	Hz] Limit [dBµV/m] 74.00 54.00	Margin⊮ [dB]⊮ 22.89⊮ 11.20⊮	Trace PK+ AV+	Polarity₀ Horizontal₀ Horizontal₀
	30 20 10 0 2.478G • NO.• 1.• 2.• 3.•	Freq. • [MHz] • 2483.50 2483.75	AV Limit H AV Detector Reading ([dBµV/m] (43.42.0 35.11.0 39.68.0	Eevel↔ [dBµV/m]↔ 51.11↔ 42.80↔ 47.37↔	Frequency(zontal AV Factor [dB] 7.69 7.69 7.69 7.69 7.69	Limit [dBµV/m] 74.00+ 54.00+ 54.00+	Margin [dB]. 22.89. 11.20. 6.63.	Trace PK AV AV	Polarity Horizontal Horizontal Horizontal

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

$\pi/4$ -DQPSK mode

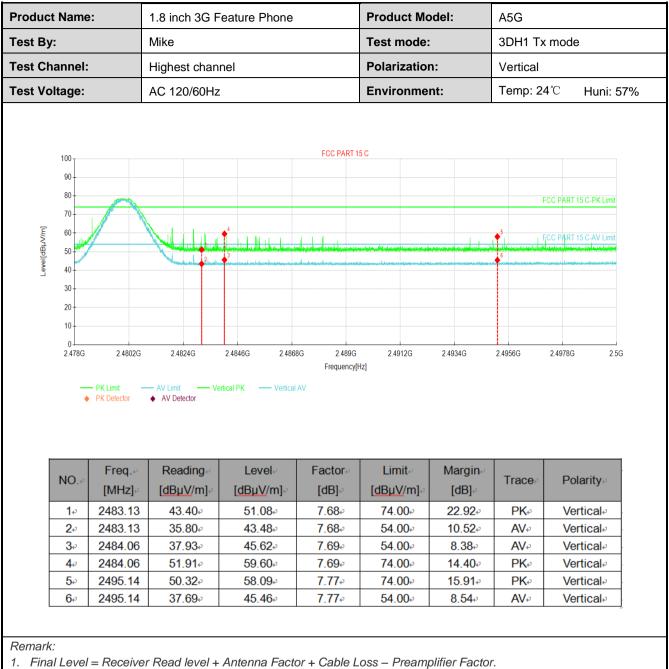

	Name	e :	1.8 inch 3G Feature Phone			Product Mo	odel:	A5G		
est By	:		Mike			Test mode:		2DH1 Tx mode		
fest Ch	annel:	:	Lowest chan	inel		Polarization	n:	Vertical		
est Vo	Itage:		AC 120/60H	Z		Environme	nt:	Temp: 2	4℃ Huni: 57%	
								1		
	100				FCC PART 1	5 C				
	90									
	80								FCC PART 15 C-PK kimit	
	70									
Level[dBµV/m]	60			2		3			FCC PART 15 C-AY Limit	
el[dBj	50	nasilinin na kanainan tahu	lege durchten in sind deuentiet te zur eine	an indian ida kutin dahadan ata mata matalah da	an a	hand eine Alada gestaal kerne an op behave in hier soort. A	hild for a structure and a construction of the state of the	a, bireketi esterini ile 6	with being all and a state of the	
Lev	40									
	30									
	20									
	10	22100	2,22000	222000 2.22	20 22570	226640	2 27500	2,20520	220460 24040	
	10 0 2.31G	2.3194G − PK Limit − → PK Detector		2.3382G 2.347 Vertical PK — Vertical	Frequency[ł		2.3758G	2.3852G	2.3946G 2.404G	
_	10 0 2.31G	─ PK Limit → PK Detector	AV Limit V AV Detector	Vertical PK — Vertical	Frequency[ł	Hz]		2.3852G	2.3946G 2.404G	
	10 0 2.31G	PK Limit - PK Detector -	AV Limit V ◆ AV Detector V Reading e	Vertical PK Vertical Level+-	Frequency[! AV Factor	^{+z]}	Margine	2.3852G		
	10 0 2.31G	─ PK Limit → PK Detector	AV Limit V AV Detector	Vertical PK — Vertical	Frequency[ł	Hz]			2.3946G 2.404G Polarity	
	10 0 2.31G NO.~ 1.~	PK Limit PK Detector Freq. 4 [MHz] 4 2333.21	AV Limit V AV Detector V Reading ([dBµV/m] (37.35+)	Level [dBuV/m]. ² 44.24. ²	Frequency[AV Factor.e [dB].e 6.89.e	لنسنلہ [dBuV/m] 54.00	Margin⊮ [dB]⊮ 9.76⊮	Trace AV+		
	10 0 2316 NO.€ 1€ 2€	PK Limit PK Detector [MHZ]. ² 2333.21 2333.74	AV Limit V ♦ AV Detector V Reading 4 [dBµV/m] -2 37.35+2 46.12+2	Level	Frequency[I AV Factor [dB] 6.89 6.89	Limit [dBµV/m] 54.00 74.00	Margin [dB] 9.76 20.99	Trace AV PK	Polarity Vertical Vertical	
	10 0 2.31G NO.~ 1~ 2~ 3~	PK Limit PK Detector [MHZ].∞ 2333.21 2333.74 2365.29	AV Limit V AV Detector V Reading ([dBµV/m] (37.35+) 46.12+) 45.25+)	Level [dBµV/m] 44.24 53.01 52.25	Frequency[I AV Factor	Limit [dBµV/m] 54.00 74.00 74.00	Margin. [dB]. 9.76. 20.99. 21.75.	Trace AV PK PK	Polarity Vertical Vertical Vertical	
	10 0 2.31G NO.~ 1.~ 2.~ 3.~ 4.~	PK Limit PK Detector [MHz] 2333.21 2333.74 2365.29 2365.85	AV Limit V AV Detector V Reading ([dBµV/m] (37.35+) 46.12+) 45.25+) 37.46+)	Level	Frequency[! AV Factor [dB] 6.89 6.89 7.00 7.00	Limit [dBµV/m] 54.00 74.00 54.00 54.00	Margin. [dB]. 9.76. 20.99. 21.75. 9.54.	Trace AV. PK. PK. AV.	Polarity₀ Vertical₀ Vertical₀ Vertical₀ Vertical₀	
	10 0 2.31G NO.~ 1~ 2~ 3~	PK Limit PK Detector [MHZ].∞ 2333.21 2333.74 2365.29	AV Limit V AV Detector V Reading ([dBµV/m] (37.35+) 46.12+) 45.25+)	Level [dBµV/m] 44.24 53.01 52.25	Frequency[I AV Factor	Limit [dBµV/m] 54.00 74.00 74.00	Margin. [dB]. 9.76. 20.99. 21.75.	Trace AV PK PK	Polarity Vertical Vertical Vertical	

louuci	Name	e :	1.8 inch 3G Feature Phone			Product Model:		A5G	
est By	:		Mike			Test mode:	:	2DH1 T	x mode
est Ch	annel:	:	Lowest chan	nel		Polarizatio	n:	Horizon	tal
est Vo	ltago:		AC 120/60Hz			Environme	nt:	Temp: 2	24℃ Huni: 57%
621 10	naye.		AC 120/0002	-		Environme		Temp. 2	4 C Hulli. 37 %
					FCC PART 1	15.0			
	100				TOUTAILT				
	90 80								
	70								FCC PART 15 C-PK Limit
E	60								
Level[dBµV/m]	50	in deal of the last day as a second	2 Minter Company and the proved bits	a triata manfalos a desta da ser da ser da terratoria	an a hundrid ida tar mata	undhaalada 🔶 daan aa intaa ah midda	e, a de la Marilla de parte destantementa da se	ka je na ka je na stala st	FCC PART 15 C-AY Lim
evel[d	40	eresten etterkensen stark hydrigt forsten sitterk	a an	Lanta ya Malaya Malaya Malaya ka wa kata ka	allensische installensischen anderen in	3 Angelinda andrea andrea andrea andrea	tini dapatranyi kadala mila-nalah	ad basis for the day of the distance	E
Ľ	30								
	20								
	20-								
	40		ii ii			\$ I			
	10								
	10 0 2.31G	2.3194G	2.3288G	2.3382G 2.34			2.3758G	2.3852G	2.3946G 2.404G
	0	2.3194G	2.3288G	2.3382G 2.34	76G 2.357G Frequency[2.3758G	2.3852G	2.3946G 2.404G
	0 2.31G	– PK Limit –	— AV Limit — Ho	2.3382G 2.34i	Frequency[2.3758G	2.3852G	2.3946G 2.404G
	0 2.31G				Frequency[2.3758G	2.3852G	2 3946G 2.404G
	0 2.31G	PK Limit - PK Detector	AV Limit Ho AV Detector	prizontal PK — Hori:	Frequency[Hz]		2 3852G	
ſ	0 2.31G	PK Limit - PK Detector	AV Limit Ho AV Detector Ho Reading H	orizontal PK Horizontal PK Horizontal PK	Frequency[zontal AV Factor.e)	Hz] Limit⊷	Margin⊭	23852G	2.3946G 2.404G Polarity.e
	0 231G	PK Limit PK Detector Freq. 44 [MHz] 43	AV Limit Ho AV Detector Ho Reading → [dBµV/m] →	orizontal PK — Hori Level↔ [dBuV/m].₂	Frequency zontal AV Factor & [dB] &	Hz] Limit↩ [dBµV/m]↩	Margin⊮ [dB]∉	Trace	Polarity
-	0 2.31G NO.₽ 1₽	PK Limit PK Detector Freq [MHz].2 2323.98	AV Limit Ho AV Detector Ho Reading ↓ [dBµV/m] ↓ 37.23↓	nizontal PK — Horr Level⊬ [dBµV/m]↔ 44.09₽	Frequency zontal AV Factor [dB] ^{e2} 6.86e	Hz] Limit [dBµ.V/m] 54.00	Margin⊷ [dB]⊷ 9.91⊷	Trace.	Polarity Horizontal
-	0 231G NO.∞ 1.∞ 2.∞	PK Limit PK Detector Freq [MHz] 2323.98 2324.39	AV Limit Ho AV Detector Reading ([dBµV/m] (37.23+) 45.48+)	Eevel [dBµV/m] 44.09 52.34	Frequency zontal AV Factor J [dB] J 6.86 J 6.86 J	Hz] Limit [dBµV/m] 54.00 74.00	Margin.⊮ [dB].∘ 9.91.∘ 21.66.∘	Trace AV PK	Polarity Horizontal Horizontal
	0 2.31G NO.₽ 1₽	PK Limit PK Detector [MHz] 2323.98 2324.39 2363.05	AV Limit Ho AV Detector Ho Reading ([dBuV/m]= 37.23+ 45.48+ 37.60+ 37.60+	Level↔ [dBµV/m]↔ 44.09↔ 52.34↔ 44.59↔	Frequency zontal AV Factor 4 [dB] 4 6.864 6.864 6.864 6.994	Limit. [dBµV/m]. 54.00. 74.00. 54.00.	Margin [dB] 9.91 21.66 9.41	Trace AV PK AV	Polarity Horizontal Horizontal Horizontal
	0 231G NO.~ 1~ 2~ 3~	PK Limit PK Detector Freq [MHz] 2323.98 2324.39	AV Limit Ho AV Detector Reading ([dBµV/m] (37.23+) 45.48+)	Eevel [dBµV/m] 44.09 52.34	Frequency zontal AV Factor J [dB] J 6.86 J 6.86 J	Hz] Limit [dBµV/m] 54.00 74.00	Margin.⊮ [dB].∘ 9.91.∘ 21.66.∘	Trace AV PK	Polarity Horizontal Horizontal

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

			Feature Phone	Product Mo	odel:	A5G			
est By:		Mike			Test mode:		2DH1 T	x mode	
est Channe	l:	Highest char	nnel		Polarizatio	า:	Horizont	tal	
est Voltage	:	AC 120/60H	Z		Environme	nt:	t: Temp: 24℃ Huni: 5		
100 90 80 70 <u>E</u> 60 50 40				FCC PART 1	5 C	6		FCC PART 15 C-PK Limit	
40 30 20 10 2478	G 2.4802G → PK Limit - ◆ PK Detector	2.4824G AV Limit H AV Detector	2.4846G 2.486 orizontal PK — Horiz	Frequency[ł	2.4912G iz]	2.4934G	2.4956G	2.4978G 2.5G	
30 20 10	PK Limit - ◆ PK Detector -	— AV Limit — H		Frequency[ł		2.4934G 2.4934G Margin [dB]	2.4956G	2.4978G 2.5G	
30 20 10 2.478	PK Limit PK Detector Freq.€	AV Limit H AV Detector H	orizontal PK — Horiz	Frequency[I contal AV Factor.e	tz] Limit⇔	Margin⊭			
30 20 10 2478 NO.	PK Limit ◆ PK Detector • Freq.↔ [MHz]↔	AV Limit → H AV Detector ← H Reading ← [dBµV/m] →	Levele [dBuV/m].2	Frequency[i contal AV Factorei [dB].e	Limit⊷ [dBµV/m]⊷	Margin⊮ [dB]∛	Trace	Polarity	
30 20 10 2478 NO.	 PK Limit PK Detector Freq.e [MHz] 2483.13 	AV Limit H AV Detector H Reading ([dBuV/m] 44.04 (Level+ [dBuV/m]+ ² 51.72+	Frequency[tontal AV Factor.e [dB].e 7.68.e	Limit [dBµV/m] 74.00	Margin⊮ [dB]⊮ 22.28⊷	Trace∍ PK⊷	Polarity⊮ Horizontal⊮	
30 20 10 2.478 NO. 1+ ² 2. ²	 PK Limit PK Detector Freq [MHz].₀ 2483.13 2483.13 	AV Limit H AV Detector H Reading ([dBuV/m] (44.04.2 35.35.2	Level Horiz [dBuV/m] 51.72 43.03 3	Frequency[contal AV Factor - [dB] - 7.68 - 7.68 - 7.68 -	Limit [dBµV/m] 74.00 54.00	Margin. [dB]. 22.28₊ 10.97₊	Trace PK AV	Polarity⊮ Horizontal⊮ Horizontal⊮	
30 20 10 2.478 NO. 1+ ² 2. ² 3+ ³	 PK Limit PK Detector Freq. ∉ [MHz] ≠ 2483.13 2483.13 2487.90 	AV Limit H AV Detector H Reading ([dBµV/m]) 44.04.0 35.35.0 36.59.0	Level↔ [dBµV/m]↔ 51.72↔ 43.03↔ 44.31↔	Frequency[I contal AV Factor [dB] 7.68 7.68 7.72	Limit. [dBµV/m]. 74.00. 54.00. 54.00.	Margin. [dB]. 22.28. 10.97. 9.69.	Trace PK AV AV	Polarity Horizontal Horizontal Horizontal	

8DPSK mode


	Name		1.8 inch 3G Feature Phone			Product Mo	/401.	A5G		
est By:	:		Mike			Test mode:	:	3DH1 T	x mode	
est Ch	annel	:	Lowest chan	nel		Polarizatio	n:	Vertical		
est Vol	Itage:		AC 120/60Hz	2		Environme	nt:	Temp: 2	24℃ Huni: 57	
Level[dBµV/m]	100 90 80 70 60 50 40 30		2		FCC PART 1				FCC PART 15 C-PK jumit	
_	20	2.3194G PK Limit - PK Detector	2.3288G AV Limit Ve AV Detector	2.3382G 2.347 erfical PK — Vertical	Frequency[2.3758G	2.3852G	2.3946G 2.404G	
	10 0 2.31G	— PK Limit –	— AV Limit — Ve		Frequency[23758G Margin⊮ [dB]-2	2.3852G	2.3946G 2.404G Polarity <i>⇔</i>	
	10 0 2.31G	PK Limit PK Detector Freq [MHz] 2328.48	AV Limit Ve AV Detector	ertical PK — Vertical Level&	Frequency[AV Factor	Hz] Limit≓	Margin			
	10 0 2316	PK Limit PK Detector Freq [MHz]	AV Limit Ve AV Detector Ve	ertical PK — Vertical Levele [dBµV/m]+2	Frequency[AV Factor- [dB]-	Hz] Limit⊮ [dBµV/m]⊷	Margin⊮ [dB]₽	Trace	Polarity₀	
	10 0 2.31G NO.¢	PK Limit PK Detector Freq [MHz] 2328.48	AV Limit Ve AV Detector Ve	Level [dBµV/m] 44.35	Frequency[AV Factor [dB] 6.87+-	Limit.⊷ [dBµV/m].∘ 54.00.∘	Margin⊮ [dB]₽ 9.65₽	Trace≓ AV₄	Polarity⇒ Verticale	
	10 0 2.31G NO.¢ 1¢ 2¢	PK Limit PK Detector Freq [MHz] 2328.48 2328.89	AV Limit Ve	Level [dBµV/m],0 44.35,0 52.59,0	Frequency[AV Factor [dB] 6.87 6.88 6.88	Limit [dBµV/m] 54.00 74.00	Margin⊮ [dB]₽ 9.65₽ 21.41₽	Trace≓ AV∉ PK∉	Polarity⇒ Vertical⊷ Vertical⊷	
	10 0 2.31G NO.¢ 1¢ 2¢ 3¢	PK Limit PK Detector Freq4 [MHz]-4 2328.48 2328.89 2361.19	AV Limit Ve AV Detector Ve (dBµV/m) 37.48+ ³ 45.71+ ³ 37.14+ ³	ertical PK — Vertical Level↔ [dBµV/m]↔ 44.35↔ 52.59↔ 44.12↔	Frequency[AV Factor [dB] 6.87 6.88 6.98 -	Hz] Limit [dBµV/m] 54.00 74.00 54.00	Margin. [dB]- 9.65+ 21.41+ 9.88+	Trace AV PK AV	Polarity₀ Vertical₀ Vertical₀ Vertical₀	

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

Product Name:		1.8 inch 3G Feature Phone			Product Mo	del:	A5G		
Fest By:		Mike			Test mode:		3DH1 T>	k mode	
Fest Channel	:	Highest chan	inel		Polarization	ו:	Horizont	al	
Fest Voltage:		AC 120/60Hz	2		Environme	nt:	Temp: 2	4℃ Huni: 579	
100 90 80 70 60 90 40				FCC PART 1	5 C			FCC PART 15 C-PK Limit	
40 30 20 10 0 2.4786		2.4824G AV Limit Ho AV Detector	2.4846G 2.4860 orizontal PK — Horiz	Frequency[2.4912G iz]	2.4934G	2.4956G	2.4978G 2.5G	
30 20 10 0	— PK Limit —	— AV Limit — Ho		Frequency[2.4934G 2.4934G Margin⊮ [dB]⊷	2.4956G	24978G 25G	
30 20 10 0 2.478G	PK Limit PK Detector	AV Limit Ho AV Detector Ho Reading	orizontal PK — Horiz Level++	Frequency[contal AV	tz] Limit∉	Margine			
30 20 10 0 2.478G	PK Limit → PK Detector Freq [MHz]	AV Limit He AV Detector He Reading ([dBuV/m] ()	orizontal PK — Horiz Level⊷ [dBµV/m].∘	Frequency[contal AV Factor [dB]	tz] Limit⊮ [dBµV/m]⊮	Margin⊮ [dB]∘	Trace₀	Polarity₀	
30 20 10 0 2.478G	Freq.+ [MHz]+ 2483.13	AV Limit Ho AV Detector Ho Reading ([dBµV/m] (44.04)	Level [dBµV/m] 51.72	Frequency contal AV Factor [dB] 7.68	Limit.e [dBuV/m].e 74.00.e	Margin⊮ [dB]∞ 22.28₽	Trace∘ PK∘	Polarity. Horizontal.	
30 20 10 0 2.478G 2.478G	PK Limit - PK Detector - Freq₽ [MHz].₽ 2483.13 2483.13	AV Limit → Ho AV Detector →	Level [dBµV/m] 51.72 43.03	Frequency[contal AV Factor.e ¹ [dB].e ² 7.68.e ³ 7.68.e ³	Limit [dBµV/m] 74.00 54.00	Margin.⊍ [dB]-∘ 22.28₽ 10.97₽	Trace PK+3 AV+3	Polarity₀ Horizontal₀ Horizontal₀	
30 20 10 0 2.478G 10 0 2.478G	PK Limit PK Detector [MHz]. ² 2483.13 2483.13 2488.17	AV Limit He AV Detector He Reading ([dBµV/m] (44.04(35.35(44.87()	Level↔ [dBµV/m]↔ 51.72↔ 43.03↔ 52.59↔	Frequency[contal AV Factor [dB] 7.68 7.68 7.72	Limite [dBµV/m]e 74.00e 54.00e 74.00e	Margin. [dB]- 22.28- 10.97- 21.41-	Trace PK AV PK	Polarity Horizontal Horizontal Horizontal	

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.	209			
Test Frequency Range:	9 kHz to 25 GHz	-				
Test Distance:	3m or 10m					
Receiver setup:	Frequency	Detecto	or	RBW	VBW	/ Remark
	30MHz-1GHz	Quasi-pe	eak	120kHz	300kH	Iz Quasi-peak Value
		Peak		1MHz	3MHz	z Peak Value
	Above 1GHz	RMS		1MHz	3MHz	z Average Value
Limit:	Frequenc	;y	Lim	it (dBuV/m @	⊉10m)	Remark
	30MHz-88N	ЛНz		30.0		Quasi-peak Value
	88MHz-216	MHz		33.5		Quasi-peak Value
	216MHz-960	MHz		36.0		Quasi-peak Value
	960MHz-10	GHz		44.0		Quasi-peak Value
	Frequenc	у	Li	mit (dBuV/m @	@3m)	Remark
	Above 1G	H7		54.0		Average Value
	7.0000 10			74.0		Peak Value
	EUT Tur Tal Ground Above 1GHz	m 0.8m	4m			Search Antenna RF Test Receiver
Test Procedure:			Test R	Ground Reference Plane ecciver	Pre- Contr	ating table 0.8m(below
restribledure.	1GHz)/1.5m (below 1GH 360 degree	n(above 10 lz)or 3 met s to detern	GHz) ter cl	above the namber(abov the position o	ground a ve 1GHz) of the hig	at a 10 meter chambe). The table was rotated ghest radiation. 3 meters(above 1GHz

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2109043

	away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Product Name:	1.8 inch 3G Feature Phone	Product Model:	A5G		
Гest By:	Mike	Test mode:	BT Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal		
Fest Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		
	Full Sr	pectrum			
45 T			FCC PART 15.247 10m		
40 +					
30					
			الغريبي المعريني المحمد المحم		
	Muniham Mt				
Muther Ma	Mar Martin Contraction				
о зом	50 60 80 100M	200 300 400	500 800 1G		
		juency in Hz			

•	Frequency↓ (MHz)↩	MaxPeak↓ (dBµ V/m)∂	Limit↓ (dBµ V/m)∛	Margin↓ (dB)∂	Height↓ (cm)∂	Pole	Azimuth↓ (deg)∂	Corr.↓ (dB/m)ℯ
•	31.067000↩	18.83 ₽	30.00↩	11.17↩	100.0 ₽	V ₄2	324.0↔	-17.5 ₽
•	37.663000↩	19.65₽	30.00↩	10.35↩	100.0↩	V ₽	33.0↩	-16.1 ₽
•	71.710000↩	14.15↩	30.00↩	15.85↩	100.0↩	V ₄2	302.0∉	-18.6e
•	75.008000↩	13.77₽	30.00↩	16.23 ↩	100.0↩	V ₄2	125.0↩	-19.2 <i>₽</i>
•	174.045000↩	14.13↩	33.50₽	19.37↩	100.0 ₽	V ₄2	240.0⊬	-16.8e
-	928.220000 4	26.27↩	36.00₽	<mark>9.73</mark> ₽	100.0 ₽	V ₽	350.0∉	-0.4

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

		Test ch	annel: Lowest ch	annel		
		Det	tector: Peak Valu	Ie		-
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	55.65	-9.60	46.05	74.00	27.95	Vertical
4804.00	55.19	-9.60	45.59	74.00	28.41	Horizontal
		Dete	ctor: Average Va	lue		·
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	47.86	-9.60	38.26	54.00	15.74	Vertical
4804.00	47.25	-9.60	37.65	54.00	16.35	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4882.00	55.47	-9.05	46.42	74.00	27.58	Vertical
4882.00	55.67	-9.05	46.62	74.00	27.38	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4882.00	47.92	-9.05	38.87	54.00	15.13	Vertical
4882.00	47.45	-9.05	38.40	54.00	15.60	Horizonta
		Test cha	annel: Highest ch	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	55.84	-8.45	47.39	74.00	26.61	Vertical
4960.00	55.61	-8.45	47.16	74.00	26.84	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
	47.92	-8.45	39.47	54.00	14.53	Vertical
4960.00						Horizonta