

RADIO TEST REPORT FCC ID: 055182722

Product:1.8 inch 2G Bar PhoneTrade Mark:LOGIC, iSWAG, UNONUModel No.:A5Family Model:FUSION, Q5Report No.:STR220722003001EIssue Date:Aug 24.2022

Prepared for

SWAGTEK

10205 NW 19th Street STE101 Miami, FL 33172

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED Certificate #4298.01

ilac-MR/

1 TE	1 TEST RESULT CERTIFICATION			
2 SU	MMARY OF TEST RESULTS	4		
3 FA	CILITIES AND ACCREDITATIONS	5		
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5 5		
4 GE	NERAL DESCRIPTION OF EUT	6		
5 DE	SCRIPTION OF TEST MODES	8		
6 SE	TUP OF EQUIPMENT UNDER TEST	9		
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS			
7 TE	ST REQUIREMENTS	13		
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	16 25 26 27 29 30 31 32 33 34		
8 TE	ST RESULTS			
8.1 8.2 8.3 8.4 8.5 8.6 8.7	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL. BAND EDGE CONDUCTED RF SPURIOUS EMISSION	40 45 50 55 56		

1 TEST RESULT CERTIFICATION

Applicant's name:	SWAGTEK
Address:	10205 NW 19th Street STE101 Miami, FL 33172
Manufacturer's Name:	SWAGTEK
Address:	10205 NW 19th Street STE101 Miami, FL 33172
Product description	
Product name:	1.8 inch 2G Bar Phone
Model and/or type reference:	A5
Family Model	FUSION, Q5
TestSample Number	STR220722003

Certificate #4298.01

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

(Mary Hu)
Ades
Gerbar
(Alex Li)

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

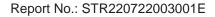
The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	1.8 inch 2G Bar Phone		
Trade Mark	LOGIC, iSWAG, UNONU		
FCC ID	O55182722		
Model No.	A5		
Family Model	FUSION, Q5		
Model Difference	All models are the same circuit and RF module, except the Model name.		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK, π/4-DQPSK, 8-DPSK		
Number of Channels	79 Channels		
Antenna Type	Cable Antenna		
Antenna Gain	0.8 dBi		
Power supply	DC 3.7V,600mAh from battery or DC 5V from Adapter.		
Adapter	Model: YLT-Y02A-2 Input: AC 100-240V~50/60Hz 0.2A Output: DC 5.0V600mA		
HW Version	E301_V2.0_20200618		
SW Version	UNONU_Q5_GENERIC_V3.0_26072022		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.



Revision History

Report No.	Version	Description	Issued Date
STR220722003001E	Rev.01	Initial issue of report	Aug 24. 2022

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Certificate #4298.01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

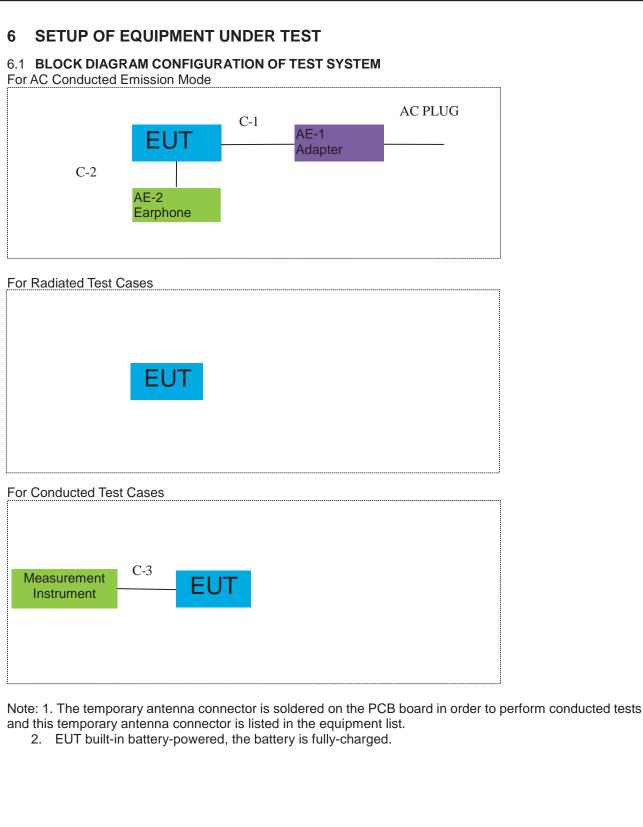
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1	normal link mode	

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	


Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases					
Final Test Mode	Description				
Mode 2	CH00(2402MHz)				
Mode 3	CH39(2441MHz)				
Mode 4	CH78(2480MHz)				
Mode 5	Hopping mode				
Note: The engineering	test program was provided and the EUT was programmed to be in continuously				

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	YLT-Y02A-2	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	0.8m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

 		estequipment					
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.03.30	2023.03.29	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.06.16	2023.06.15	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.06.16	2023.06.15	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.06.16	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2022.06.17	2025.06.16	3 year
16	Filter	TRILTHIC	2400MHz	29	2022.03.30	2023.03.29	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

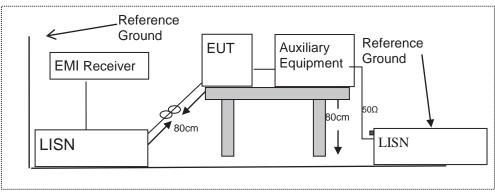
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


Frequency (MHz)	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

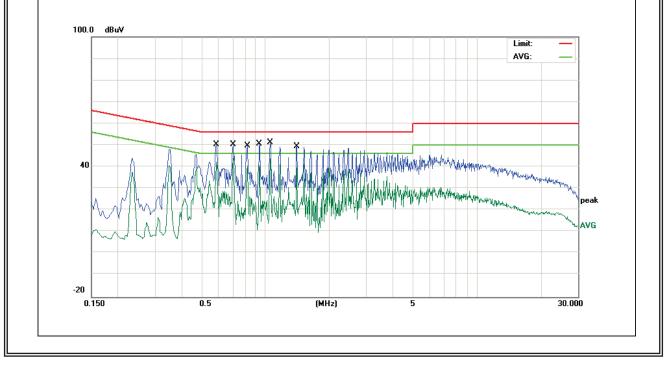
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

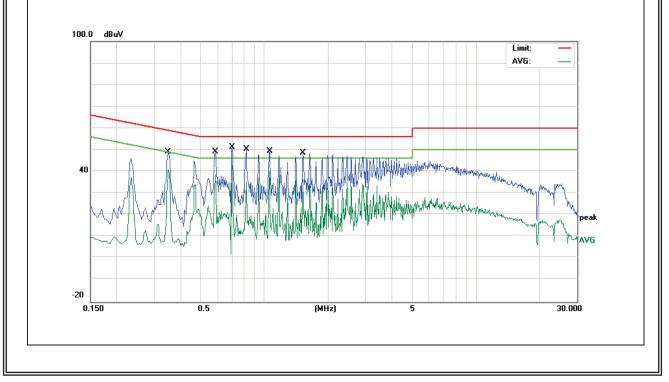

EUT:	1.8 inch 2G Bar Phone	Model Name :	A5
Temperature:	22.1 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demende
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5860	40.79	9.67	50.46	56.00	-5.54	QP
0.5860	32.58	9.67	42.25	46.00	-3.75	AVG
0.7019	40.53	9.67	50.20	56.00	-5.80	QP
0.7019	34.51	9.67	44.18	46.00	-1.82	AVG
0.8220	39.92	9.68	49.60	56.00	-6.40	QP
0.8220	30.79	9.68	40.47	46.00	-5.53	AVG
0.9380	41.08	9.68	50.76	56.00	-5.24	QP
0.9380	30.97	9.68	40.65	46.00	-5.35	AVG
1.0540	41.49	9.68	51.17	56.00	-4.83	QP
1.0540	34.13	9.68	43.81	46.00	-2.19	AVG
1.4060	39.76	9.67	49.43	56.00	-6.57	QP
1.4060	29.78	9.67	39.45	46.00	-6.55	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.



EUT:	1.8 inch 2G Bar Phone	Model Name :	A5
Temperature:	22.1 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1
	•	•	•

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3500	39.34	9.66	49.00	58.96	-9.96	QP
0.3500	31.07	9.66	40.73	48.96	-8.23	AVG
0.5860	39.39	9.67	49.06	56.00	-6.94	QP
0.5860	28.94	9.67	38.61	46.00	-7.39	AVG
0.7019	41.53	9.67	51.20	56.00	-4.80	QP
0.7019	33.14	9.67	42.81	46.00	-3.19	AVG
0.8180	40.81	9.68	50.49	56.00	-5.51	QP
0.8180	25.72	9.68	35.40	46.00	-10.60	AVG
1.0580	39.84	9.68	49.52	56.00	-6.48	QP
1.0580	30.57	9.68	40.25	46.00	-5.75	AVG
1.5220	39.01	9.67	48.68	56.00	-7.32	QP
1.5220	26.87	9.67	36.54	46.00	-9.46	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art 19:200, Restricted bands							
MHz	MHz	GHz					
16.42-16.423	399.9-410	4.5-5.15					
16.69475-16.69525	608-614	5.35-5.46					
16.80425-16.80475	960-1240	7.25-7.75					
25.5-25.67	1300-1427	8.025-8.5					
37.5-38.25	1435-1626.5	9.0-9.2					
73-74.6	1645.5-1646.5	9.3-9.5					
74.8-75.2	1660-1710	10.6-12.7					
123-138	2200-2300	14.47-14.5					
149.9-150.05	2310-2390	15.35-16.2					
156.52475-156.52525	2483.5-2500	17.7-21.4					
156.7-156.9	2690-2900	22.01-23.12					
162.0125-167.17	3260-3267	23.6-24.0					
167.72-173.2	3332-3339	31.2-31.8					
240-285	3345.8-3358	36.43-36.5					
322-335.4	3600-4400	(2)					
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358					

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

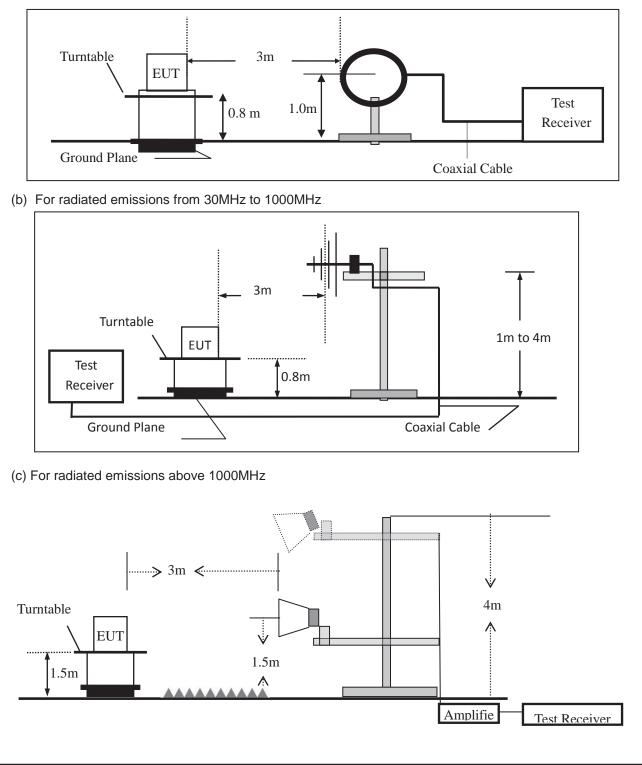
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

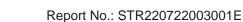
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Certificate #4298.01

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

	Spurious	Emission	below 3	30MHz ((9KHz to	30MHz)
--	----------	----------	---------	---------	----------	--------

EUT:	1.8 inch 2G Bar Phone	Model No.:	A5
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

ACCREDITED Certificate #4298.01

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

7 th the meddlata										
EUT:	1.8 inch 2G Bar Phone	Model Name :	A5							
Temperature:	25.4 ℃	Relative Humidity:	54%							
Pressure:	1010hPa	Test Mode:	Mode 1							
Test Voltage :	DC 3.7V									

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits Margin		Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.2111	5.99	25.81	31.80	40.00	-8.20	QP
V	40.4172	6.85	20.28	27.13	40.00	-12.87	QP
V	90.8554	12.47	17.02	29.49	43.50	-14.01	QP
V	174.4241	8.97	17.25	26.22	43.50	-17.28	QP
V	568.6127	5.99	26.08	32.07	46.00	-13.93	QP
V	900.1473	6.78	30.22	37.00	46.00	-9.00	QP

Remark:

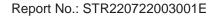
Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Remark
Н	30.2110	5.41	25.81	31.22	40.00	-8.78	QP
Н	94.0979	7.64	17.27	24.91	43.50	-18.59	QP
Н	145.8611	6.53	18.58	25.11	43.50	-18.39	QP
Н	574.6258	6.30	26.15	32.45	46.00	-13.55	QP
Н	869.1301	6.90	30.32	37.22	46.00	-8.78	QP
Н	948.7609	6.84	30.87	37.71	46.00	-8.29	QP
3	21.					Wingerson with the state	p.
	2 Tright Marthan walnut and the second	www.www.www.www.	man when the state with	ndagelahitetan tan kalendara kalendara kalendara kalendara kalendara kalendara kalendara kalendara kalendara ka	adu manada da ana ada ad		
-8	30.000 40 50	60 70 80	(MI	421 3	00 400 500	600 700 100	

Spurious	Emissio	n Above 1	GHz (1GH	z to 25G	Hz)						
EUT:	1.8	3 inch 2G	Bar Phone	Mod	lel No.:	A5	; ;				
Temperature	mperature: 20 ℃			Relative Humidity:			48%				
Test Mode:	Mo	ode2/Mod	e3/Mode4	Tes	t By:	Ma	ary Hu				
All the modul	ation mo	des have	been tested	d, and th	e worst resul	t was re	port as belov	V:			
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limit	s Margin	Remark	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/	m) (dB)]			
	Low Channel (2402 MHz)(8-DPSK)Above 1G										
4804.97	67.50	5.21	35.59	44.30	64.00	74.00	-10.00	Pk	Vertical		
4804.97	43.48	5.21	35.59	44.30	39.98	54.00) -14.02	AV	Vertical		
7206.67	64.16	6.48	36.27	44.60	62.31	74.00) -11.69	Pk	Vertical		
7206.67	42.13	6.48	36.27	44.60	40.28	54.00) -13.72	AV	Vertical		
4804.77	60.03	5.21	35.55	44.30	56.49	74.00) -17.51	Pk	Horizontal		
4804.77	42.67	5.21	35.55	44.30	39.13	54.00) -14.87	AV	Horizontal		
7206.72	61.03	6.48	36.27	44.52	59.26	74.00) -14.74	Pk	Horizontal		
7206.72	40.90	6.48	36.27	44.52	39.13	54.00		AV	Horizontal		
		-	Mid Channe	el (2441 N	/Hz)(8-DPSk	()Above	e 1G				
4882.51	66.07	5.21	35.66	44.20	62.74	74.00) -11.26	Pk	Vertical		
4882.51	43.66	5.21	35.66	44.20	40.33	54.00) -13.67	AV	Vertical		
7323.59	61.44	7.10	36.50	44.43	60.61	74.00) -13.39	Pk	Vertical		
7323.59	43.74	7.10	36.50	44.43	42.91	54.00) -11.09	AV	Vertical		
4882.00	62.25	5.21	35.66	44.20	58.92	74.00	-15.08	Pk	Horizontal		
4882.00	41.05	5.21	35.66	44.20	37.72	54.00	-16.28	AV	Horizontal		
7324.51	59.40	7.10	36.50	44.43	58.57	74.00	-15.43	Pk	Horizontal		
7324.51	42.13	7.10	36.50	44.43	41.30	54.00		AV	Horizontal		
		-	High Chann	el (2480 l	MHz)(8-DPSk	< <mark>)</mark> Abov	e 1G				
4959.92	64.73	5.21	35.52	44.21	61.25	74.00) -12.75	Pk	Vertical		
4959.92	43.46	5.21	35.52	44.21	39.98	54.00) -14.02	AV	Vertical		
7439.20	61.89	7.10	36.53	44.60	60.92	74.00) -13.08	Pk	Vertical		
7439.20	42.98	7.10	36.53	44.60	42.01	54.00) -11.99	AV	Vertical		
4960.57	62.48	5.21	35.52	44.21	59.00	74.00) -15.00	Pk	Horizontal		
4960.57	41.40	5.21	35.52	44.21	37.92	54.00) -16.08	AV	Horizontal		
7440.51	60.50	7.10	36.53	44.60	59.53	74.00) -14.47	Pk	Horizontal		
7440.51	42.44	7.10	36.53	44.60	41.47	54.00) -12.53	AV	Horizontal		

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.



Report No.: STR220722003001E

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz												
EUT:	1.8 inch 2G Bar Phone			Mod	Model No.:			A5				
Temperature:	20 ℃			Rela	tive Humidi	ty:	48%					
Test Mode:	Mode2/ M	lode4		Test	By:		Mary	/ Hu				
All the modul	All the modulation modes have been tested, and the worst result was report as below:											
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)	Туре	Common		
	3Mbps(8-DPSK)- Non-hopping											
2310.00	50.17	2.97	27.80	43.80	37.14	74	1	-36.86	Pk	Horizontal		
2310.00	44.78	2.97	27.80	43.80	31.75	54	1	-22.25	AV	Horizontal		
2310.00	50.34	2.97	27.80	43.80	37.31	74	1	-36.69	Pk	Vertical		
2310.00	44.16	2.97	27.80	43.80	31.13	54	1	-22.87	AV	Vertical		
2390.00	50.16	3.14	27.21	43.80	36.71	74	1	-37.29	Pk	Vertical		
2390.00	43.18	3.14	27.21	43.80	29.73	54	1	-24.27	AV	Vertical		
2390.00	54.10	3.14	27.21	43.80	40.65	74	1	-33.35	Pk	Horizontal		
2390.00	40.67	3.14	27.21	43.80	27.22	54	1	-26.78	AV	Horizontal		
2483.50	52.61	3.58	27.70	44.00	39.89	74	1	-34.11	Pk	Vertical		
2483.50	42.15	3.58	27.70	44.00	29.43	54	1	-24.57	AV	Vertical		
2483.50	54.48	3.58	27.70	44.00	41.76	74	1	-32.24	Pk	Horizontal		
2483.50	43.16	3.58	27.70	44.00	30.44	54	1	-23.56	AV	Horizontal		
			3	3Mbps(8-D	PSK) hop	oing						
2310.00	51.87	2.97	27.80	43.80	38.84	74	1	-35.16	Pk	Horizontal		
2310.00	42.10	2.97	27.80	43.80	29.07	54	1	-24.93	AV	Horizontal		
2310.00	52.42	2.97	27.80	43.80	39.39	74	1	-34.61	Pk	Vertical		
2310.00	45.76	2.97	27.80	43.80	32.73	54	1	-21.27	AV	Vertical		
2390.00	54.88	3.14	27.21	43.80	41.43	74	1	-32.57	Pk	Vertical		
2390.00	40.77	3.14	27.21	43.80	27.32	54	1	-26.68	AV	Vertical		
2390.00	52.04	3.14	27.21	43.80	38.59	74	1	-35.41	Pk	Horizontal		
2390.00	40.14	3.14	27.21	43.80	26.69	54	1	-27.31	AV	Horizontal		
2483.50	50.90	3.58	27.70	44.00	38.18	74	1	-35.82	Pk	Vertical		
2483.50	40.24	3.58	27.70	44.00	27.52	54	1	-26.48	AV	Vertical		
2483.50	52.01	3.58	27.70	44.00	39.29	74	1	-34.71	Pk	Horizontal		
2483.50	42.33	3.58	27.70	44.00	29.61	54	1	-24.39	AV	Horizontal		

Note: (1) All other emissions more than 20dB below the limit.

Spurious	Emission	in Restric	ted Band 3	260MHz-	18000MHz					
EUT:	1.8	inch 2G E	Bar Phone	Model	No.:		A5			
Temperature:	20	°C		Relativ	e Humidity	':	48%			
Test Mode:	Мо	de2 / Mod	e3 / Mode4	Test B	sy:		Mary H	Hu		
All the modu	lation mo	des have	been teste	d, and the	worst resu	lt was	s repo	rt as belov	w:	
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lir	mits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	uV/m)	(dB)	Туре	
3260	58.60	4.04	29.57	44.70	47.51	7	74	-26.49	Pk	Vertical
3260	47.83	4.04	29.57	44.70	36.74	Ę	54	-17.26	AV	Vertical
3260	54.41	4.04	29.57	44.70	43.32	7	74	-30.68	Pk	Horizontal
3260	43.27	4.04	29.57	44.70	32.18	Ę	54	-21.82	AV	Horizontal
3332	64.04	4.26	29.87	44.40	53.77	7	74	-20.23	Pk	Vertical
3332	47.39	4.26	29.87	44.40	37.12	Ę	54	-16.88	AV	Vertical
3332	62.39	4.26	29.87	44.40	52.12	7	74	-21.88	Pk	Horizontal
3332	45.04	4.26	29.87	44.40	34.77	Ę	54	-19.23	AV	Horizontal
17797	49.23	10.99	43.95	43.50	60.67	7	74	-13.33	Pk	Vertical
17797	34.87	10.99	43.95	43.50	46.31	Ę	54	-7.69	AV	Vertical
17788	54.85	11.81	43.69	44.60	65.75	7	74	-8.25	Pk	Horizontal
17788	35.26	11.81	43.69	44.60	46.16	Ę	54	-7.84	AV	Horizontal

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

Certificate #4298.01

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	1.8 inch 2G Bar Phone	Model No.:	A5
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

7.4.6 Test Results

EUT:	1.8 inch 2G Bar Phone	Model No.:	A5
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

 $\text{RBW} \geq 1\text{MHz}$

 $VBW \ge RBW$

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

Measure the maximum time duration of one single pulse.

Set the EUT for DH5, DH3 and DH1 packet transmitting.

Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	1.8 inch 2G Bar Phone	Model No.:	A5
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	1.8 inch 2G Bar Phone	Model No.:	A5
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	1.8 inch 2G Bar Phone	Model No.:	A5
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	1.8 inch 2G Bar Phone	Model No.:	A5
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

b) Set the RBW = 100 kHz.

c) Set the VBW \geq [3 × RBW].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached Cable antenna (Gain: 0.8 dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298 01

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

TEST RESULTS 8

8.1 **DWELL TIME**

Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
Condition	mode	(MHz)	(ms)	Time (ms)	(ms)	(ms)	voraiot
NVNT	1-DH1	2441	0.405	129.6	31600	400	Pass
NVNT	1-DH3	2441	1.655	264.8	31600	400	Pass
NVNT	1-DH5	2441	2.904	309.76	31600	400	Pass
NVNT	2-DH1	2441	0.378	120.96	31600	400	Pass
NVNT	2-DH3	2441	1.645	263.2	31600	400	Pass
NVNT	2-DH5	2441	2.888	308.053	31600	400	Pass
NVNT	3-DH1	2441	0.387	123.84	31600	400	Pass
NVNT	3-DH3	2441	1.64	262.4	31600	400	Pass
NVNT	3-DH5	2441	2.872	306.347	31600	400	Pass

SGL TR										
∎1Pk Cl	rw				1	М	1[1]			-7.12 dBn
20 dBm						D	1[1]			2.00 µ -2.31 d
10 dBm										405.00 µ
0 dBm—				M1						
-10 dBn					■ • • • • • • • • • • • • • • • • • • •					
-20 dBn		RG -20.0	20 dBm							
-30 dBn										
e Hotelk w	ւհու	المدايلات	adath cumbro	el tot	աժեն	a bada abir	allah Buth	ALLANDA MARK	an name	والمتعادية الم
a k allhi	AL BALL	ulla llada	al a lleadarad ab	ulri All	a Ha	hills All hales	aall daa daa Mad	difference former	a, dialità marilitria	ddi analada
-50 dBn										
-60 dBr										
00 000										
	ı—				-	<u> </u>				
		z			1001	pts				300.0 µs/
-70 dBn CF 2.4	41 GH									
	+1 GH Ref	Trc	X-value	.	Y-value	Func	tion	Fund	tion Result	t

Report No.: STR220722003001E

Ref Level 27			7.78 dB 👄 F						
Att SGL TRG: VID		■ SWT	5 ms 👄 🕻	BW 1 MHz					
●1Pk Clrw									
					M	l[1]			-5.23 dBm
20 dBm					D1	[1]			5.00 μs 2.03 dB
10 dBm							I	1	1.65500 ms
0 dBm	M	1			01				
-10 dBm		South horse - search	1 Marina and and and and and and and and and a		inner.				
-20 dBm TF	G -20.020	I dBm							
-30 dBm									
ulting the determinant of the	KANA ANA ANA ANA ANA ANA ANA ANA ANA ANA				WUNN	herthered and a second	երությիներութ	-	an shall an shall
-50 dBm	Ť					••	Ť		
-60 dBm				++					<u> </u>
-70 dBm								ļ	
CF 2.441 GH	z			1001 թ	ots		·		500.0 µs/
Marker									
Type Ref		X-valu		Y-value	Funct	ion	Fun	ction Resul	t
M1 D1 M1	1	1	5.0 µs 655 ms	-5.23 dBm 2.03 dB					
		1.							
Spectrum Ref Level 23				NVNT 1-E)H5 24] Pear 41MHz			
Ref Level 27 Att	7.78 dBm 40 dB		Dwell N 7.78 dB • F)H5 24) Read	ly (11		
Ref Level 27	7.78 dBm 40 dB	Offset	Dwell N 7.78 dB • F	RBW 1 MHz	DH5 24) Prod	IV ()		
Ref Level 27 Att SGL TRG: VID 1Pk Clrw	7.78 dBm 40 dB	Offset	Dwell N 7.78 dB • F	RBW 1 MHz) Proc 41MHz	Iv III		-5.68 dBm
Ref Level 27 Att SGL TRG: VID	7.78 dBm 40 dB	Offset	Dwell N 7.78 dB • F	RBW 1 MHz	M:	u[1]	Iv ()		-5.68 dBm 8.00 µs
Ref Level 27 Att SGL TRG: VID 1Pk Clrw	7.78 dBm 40 dB	Offset	Dwell N 7.78 dB • F	RBW 1 MHz	M:				-5.68 dBm
Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	7.78 dBm 40 dB	Offset	Dwell N 7.78 dB • F	RBW 1 MHz	M:	u[1]			-5.68 dBm 8.00 µs -3.20 dB
Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	7.78 dBm 40 dB	Offset	Dwell N 7.78 dB • F	RBW 1 MHz /BW 1 MHz	M:	u[1]			-5.68 dBm 8.00 µs -3.20 dB
Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	7.78 dBm 40 dB	Offset	Dwell N 7.78 dB • F	RBW 1 MHz	M:	u[1]			-5.68 dBm 8.00 µs -3.20 dB
Ref Level 27 Att SGL TRG:VID 1Pk Clrw 20 dBm 10 dBm 0 dBm	7.78 dBm 40 dB	Offset SWT	Dwell N 7.78 dB • F	RBW 1 MHz /BW 1 MHz	M:	u[1]			-5.68 dBm 8.00 µs -3.20 dB
Ref Level 27 Att SGL TRG:VID 1Pk Clrw 20 dBm 10 dBm 0 dBm	7.78 dBm 40 dB	Offset SWT	Dwell N 7.78 dB • F	RBW 1 MHz /BW 1 MHz	M:	u[1]			-5.68 dBm 8.00 µs -3.20 dB
Ref Level 27 Att SGL TRG:VID 1Pk Clrw 20 dBm 10 dBm 0 dBm	7.78 dBm 40 dB	Offset SWT	Dwell N 7.78 dB • F	RBW 1 MHz /BW 1 MHz	M:	u[1]			-5.68 dBm 8.00 µs -3.20 dB
Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	7.78 dBm 40 dB	Offset SWT	Dwell N 7.78 dB • F	RBW 1 MHz /BW 1 MHz	 	L[1] .[1]			-5.68 dBm 8.00 µs -3.20 dB 2.90400 ms
Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	7.78 dBm 40 dB	Offset SWT	Dwell N 7.78 dB • F	RBW 1 MHz /BW 1 MHz	 	L[1] .[1]			-5.68 dBm 8.00 µs -3.20 dB
Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	7.78 dBm 40 dB	Offset SWT	Dwell N 7.78 dB • F	RBW 1 MHz /BW 1 MHz	 	L[1] .[1]			-5.68 dBm 8.00 µs -3.20 dB 2.90400 ms
Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	7.78 dBm 40 dB	Offset SWT	Dwell N 7.78 dB • F	RBW 1 MHz /BW 1 MHz	 	L[1] .[1]			-5.68 dBm 8.00 µs -3.20 dB 2.90400 ms
Ref Level 27 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	7.78 dBm 40 dB	Offset SWT	Dwell N 7.78 dB • F	RBW 1 MHz /BW 1 MHz	M: 	L[1] .[1]			-5.68 dBm 8.00 µs -3.20 dB 2.90400 ms
Ref Level 2: Att SGL TRG: VID IPk CIrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm	7.78 dBm 40 dB	Offset SWT	Dwell N 7.78 dB • F	RBW 1 MHz /BW 1 MHz	M: 	L[1] .[1]			-5.68 dBm 8.00 µs -3.20 dB 2.90400 ms
Ref Level 2: Att SGL TRG: VID • IPk CIrw 20 dBm 10 dBm • 0 dBm • 0 dBm • -10 dBm • -20 dBm • -30 dBm • -50 dBm • -60 dBm • -70 dBm • -70 dBm • -70 dBm	7.78 dBm 40 dB 40 dB	Offset SWT	Dwell N 7.78 dB 8 ms	RBW 1 MHz /BW 1 MHz	M: DJ	L[1] .[1]	aki lagar piktarafa	A HIGOLIWAL OF THE	-5.68 dBm 8.00 µs -3.20 dB 2.90400 ms
Ref Level 2: Att SGL TRG: VID IPk CIrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm	7.78 dBm 40 dB	Offset SWT	Dwell N 7.78 dB • F 8 ms • V	RBW 1 MHz /BW 1 MHz	M: Di	L[1] .[1]	aki lagar piktarafa		-5.68 dBm 8.00 µs -3.20 dB 2.90400 ms
Ref Level 2: Att SGL TRG:VID • IPk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -50 dBm -60 dBm -70 dBm	7.78 dBm 40 dB 11 16 -20.020 2 7 7rc	Offset SWT	Dwell N 7.78 dB • F 8 ms • N	RBW 1 MHz /BW 1 MHz	M: D1	L[1] .[1]	aki lagar piktarafa	A HIGOLIWAL OF THE	-5.68 dBm 8.00 µs -3.20 dB 2.90400 ms

Report No.: STR220722003001E

	m I 27.78 dBm		7.78 dB 👄 🖡						
Att SGL TRG:1		SWT	3 ms 👄 🛚	/BW 1 MHa	2				
●1Pk Clrw									
					M	1[1]			-5.12 dBm
20 dBm					D	1[1]			8.00 µs 1.98 dB
10 dBm—							I	I	378.00 µs
0 dBm			M1 Through						
-10 dBm—			╞╌╢╢						
-20 dBm	TRG -20.020) dBm							
-30 dBm—									1 .
ydaddalar ha	capped allowed and a	<u>Alfritania and an </u>	ditter .	<u> </u> ₩	<mark>l/Whywl.ppplithul</mark> l	Contraction of the second s	Aller And Aller A	AND	And Sound And And And And And And And And And A
-50 dBm—									
-60 dBm—									
-70 dBm—									
CF 2.441	GHz			100	1 pts				300.0 µs/
	M1 1	37				Poor			74
Spectrui Ref Level			Dwell N		2-DH3 24] 141MHz	V		
Ref Level Att SGL TRG:	m I 27.78 dBm 40 dB		7.78 dB 🕳 F		2] 9000 141MHz	V C		
Ref Level Att	m I 27.78 dBm 40 dB	Offset 7	7.78 dB 🕳 F	RBW 1 MH2	2		v (11		
Ref Level Att SGL TRG:	m I 27.78 dBm 40 dB	Offset 7	7.78 dB 🕳 F	RBW 1 MH2	2 2 M	11[1]	₩ (11		4.11 dBm 5.00 μs
Ref Level Att SGL TRG: 1Pk Clrw 20 dBm-	m I 27.78 dBm 40 dB	Offset 7	7.78 dB 🕳 F	RBW 1 MH2	2 2 M			······································	4.11 dBm 5.00 μs -0.65 dB
Ref Level Att SGL TRG: 1Pk Clrw	m I 27.78 dBm 40 dB	Offset 7 SWT	7.78 dB ● F 5 ms ● V	RBW 1 MH: VBW 1 MH:	Z Z M D	11[1]			4.11 dBm 5.00 μs
Ref Level Att SGL TRG: 1Pk Clrw 20 dBm-	m I 27.78 dBm 40 dB	Offset 7	7.78 dB 🕳 F	RBW 1 MH2	Z Z M D	11[1]			4.11 dBm 5.00 μs -0.65 dB
Ref Level Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm-	m I 27.78 dBm 40 dB	Offset 7 SWT	7.78 dB ● F 5 ms ● V	RBW 1 MH: VBW 1 MH:	Z Z M D	11[1]			4.11 dBm 5.00 μs -0.65 dB
Pref Level Att SGL TRG: 1Pk Cirw 20 dBm 10 dBm 0 dBm -10 dBm	m	Offset 7 SWT	7.78 dB ● F 5 ms ● V	RBW 1 MH: VBW 1 MH:	Z Z M D	11[1]			4.11 dBm 5.00 μs -0.65 dB
Ref Level Att SGL TRG: ● 1Pk Clrw 20 dBm − 0 dBm − -10 dBm − -20 dBm	m I 27.78 dBm 40 dB	Offset 7 SWT	7.78 dB ● F 5 ms ● V	RBW 1 MH: VBW 1 MH:	Z Z M D	11[1]			4.11 dBm 5.00 µs -0.65 dB 1.64500 ms
Pref Level Att SGL TRG: 1Pk Cirw 20 dBm 10 dBm 0 dBm -10 dBm	m	Offset 7 SWT	7.78 dB ● F 5 ms ● V	RBW 1 MH: VBW 1 MH:	Z Z M D				4.11 dBm 5.00 μs -0.65 dB
Ref Level Att SGL TRG: ● 1Pk Clrw 20 dBm − 0 dBm − -10 dBm − -20 dBm	m	Offset 7 SWT	7.78 dB ● F 5 ms ● V	RBW 1 MH: VBW 1 MH:	Z Z M D	11[1]		un hu wun	4.11 dBm 5.00 µs -0.65 dB 1.64500 ms
Ref Level Att SGL TRG: 1Pk Clrw 20 dBm- 0 dBm- -10 dBm- -20 dBm	m	Offset 7 SWT	7.78 dB ● F 5 ms ● V	RBW 1 MH: VBW 1 MH:	Z Z M D			un hu wun	4.11 dBm 5.00 µs -0.65 dB 1.64500 ms
Ref Level Att SGL TRG: 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm	m	Offset 7 SWT	7.78 dB ● F 5 ms ● V	RBW 1 MH: VBW 1 MH:	Z Z M D			un hu wun	4.11 dBm 5.00 µs -0.65 dB 1.64500 ms
Ref Level Att SGL TRG: 1Pk Clrw 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm	m 1 27.78 dBm 40 dB VID	Offset 7 SWT	7.78 dB ● F 5 ms ● V	RBW 1 MH2 /BW 1 MH2				un hu wun	4.11 dBm 5.00 µs -0.65 dB 1.64500 ms
Ref Level Att SGL TRG: 9 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -10 dBm -50 dBm -60 dBm -70 dBm CF 2.441	m 1 27.78 dBm 40 dB VID	Offset 7 SWT	7.78 dB ● F 5 ms ● V	RBW 1 MH2 /BW 1 MH2	Z Z M D			un hu wun	4.11 dBm 5.00 µs -0.65 dB 1.64500 ms
Ref Level Att SGL TRG: 91Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.441 Marker Type	TRG -20.020	Offset 7 SWT	2.78 dB • F	28W 1 MH2 78W 1 MH2 1	2 2 mm D mm 1 mm 1 mm 1 mm 1 mm 1 mm 1 m		- Ny Jihalli Aliy Ang Pradit 	un hu wun	4.11 dBm 5.00 µs -0.65 dB 1.64500 ms
Ref Level Att SGL TRG: 9 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm CF 2.441 Marker Type M1	TRG -20.020	Offset 7 SWT	2.78 dB ● F 5 ms ● V	RBW 1 MH2 /BW 1 MH2	2 2 m m m m m m m m m m m m m m m m m m		- Ny Jihalli Aliy Ang Pradit 	WAMANA MAN	4.11 dBm 5.00 µs -0.65 dB 1.64500 ms

Report No.: STR220722003001E

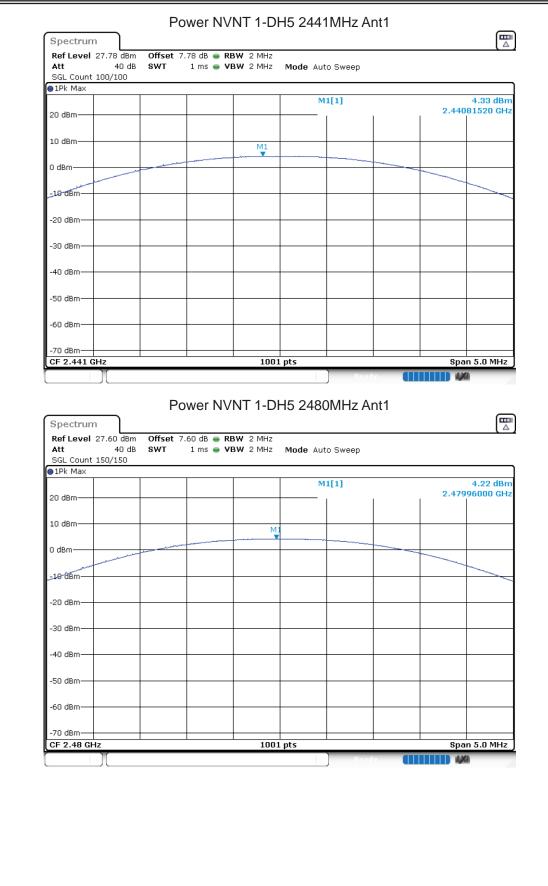
Ref Level 2 Att SGL TRG:VID	40 dB	SWT	_	RBW 1 MHz VBW 1 MHz					
●1Pk Clrw					м	1[1]			-5.41 dBm
20 dBm						1[1]			16.00 μs -0.22 dB
10 dBm								:	2.88800 ms
0 dBm	MI HUMMAN	hrunipyyyyhten	የሌላው የሌላው የሌላው	4447424644221					
-10 dBm]			<u>↑</u>					
-20 dBm TI	RG -20.020) dBm							
-30 dBm									
unatereteretereteret	1			ha,	oo waa waa waa waa waa waa waa waa waa w	nther production of the	hter and the state of the second s	anter strategy and the second s	a hittalia mana ana ana ana ana ana ana ana ana a
-50 dBm									
-60 dBm									
-70 dBm				1001					000.0
CF 2.441 GH Marker				1001	L pts				800.0 µs/
Type Ref	1 Trc	X-value	e 16.0 μs	<u>Y-value</u> -5.41 dB	Funct	tion	Fund	ction Result	t
D1 M1 Spectrum Ref Level 2 Att	27.78 dBm	2.4	Dwell N	-0.22 (NVNT 3- RBW 1 MHz VBW 1 MHz) Pead 41MHz	× (11		
Spectrum Ref Level 2 Att SGL TRG: VID	27.78 dBm 40 dB	2.4 Offset	Dwell N	NVNT 3- RBW 1 MHz) Road	· ai		
Spectrum Ref Level 2 Att SGL TRG: VID	27.78 dBm 40 dB	2.4 Offset	Dwell N	NVNT 3- RBW 1 MHz	DH1 24) Pood 41MHz 1[1]	v (1)		-4.97 dBm 8.00 μs
Spectrum Ref Level 2 Att SGL TRG: VID 1Pk Clrw	27.78 dBm 40 dB	2.4 Offset	Dwell N	NVNT 3- RBW 1 MHz	DH1 24		× (11		-4.97 dBm
Spectrum Ref Level 2 Att SGL TRG: VIE 1Pk Clrw 20 dBm	27.78 dBm 40 dB	2.4 Offset	Dwell N 7.78 dB • F 3 ms • V	NVNT 3-	DH1 24	1[1]	× (1)		-4.97 dBm 8.00 μs -0.06 dB
Spectrum Ref Level 2 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm	27.78 dBm 40 dB	Offset 7 • SWT	Dwell N 7.78 dB • F 3 ms • V	NVNT 3- RBW 1 MHz	DH1 24	1[1]	× ())		-4.97 dBm 8.00 μs -0.06 dB
Spectrum Ref Level 2 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm	27.78 dBm 40 dB	Offset 7 • SWT	Dwell N 7.78 dB • F 3 ms • V	NVNT 3-	DH1 24	1[1]			-4.97 dBm 8.00 μs -0.06 dB
Spectrum Ref Level 2 Att SGL TRG: VID PIPk Clrw 20 dBm 10 dBm 0 dBm -10 dBm	27.78 dBm 40 dB	Offset 7 • SWT	Dwell N 7.78 dB • F 3 ms • V	NVNT 3-	DH1 24	1[1]			-4.97 dBm 8.00 μs -0.06 dB
Spectrum Ref Level 2 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm TI -20 dBm	27.78 dBm 40 dB	Offset 7 • SWT	Dwell N 7.78 dB • F 3 ms • V	NVNT 3-	DH1 24	1[1]			-4.97 dBm 8.00 μs -0.06 dB
Spectrum Ref Level 2 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm TI -20 dBm -30 dBm	27.78 dBm 40 dB	Offset 7 • SWT	Dwell N 7.78 dB • F 3 ms • V	NVNT 3-	DH1 24	1[1]	Monades (All Hight)	Hindow Party Market Market Market Market Market Market Market	-4.97 dBm 8.00 μs -0.06 dB
Spectrum Ref Level 2 Att SGL TRG:VIC IPK CIrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.78 dBm 40 dB	Offset 7 • SWT	Dwell N 7.78 dB • F 3 ms • V	NVNT 3-	DH1 24	1[1]	Mondur, (), Upper	Hindon Harrison Harrison	-4.97 dBm 8.00 μs -0.06 dB
Spectrum Ref Level 2 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	27.78 dBm 40 dB	Offset 7 • SWT	Dwell N 7.78 dB • F 3 ms • V		DH1 24	1[1]			-4.97 dBm 8.00 μs -0.06 dB 387.00 μs
Spectrum Ref Level 2 Att SGL TRG:VIC IPK CIrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	27.78 dBm 40 dB	Offset 7 • SWT	Dwell N 7.78 dB • F 3 ms • V	NVNT 3-	DH1 24	1[1]			-4.97 dBm 8.00 μs -0.06 dB
Spectrum Ref Level 2 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GH	27.78 dBm 40 dB 20 RG -10.020	2.1 Offset 7 • SWT			DH1 24	1[1] 1[1] 	Func	tion Result	-4.97 dBm 8.00 µs -0.06 dB 387.00 µs

Report No.: STR220722003001E

SGL TRG 1Pk Clrv			1							
20 dBm—	_					M	1[1]			4.12 dBm 5.00 μs
10 dBm—						D	1[1]			0.40 dB 1.64000 ms
		N	1 m-pharman	louter water	www.	D1				
0 dBm—										
-10 dBm-	+									
-20 dBm	TR	G -20.02	0 dBm							
190 dBm-										
-40/64	Ulay	rlochlarstrate	[hter a second se	purtundind	http://www.urdenia	n futilitier	Contraction of the second s
-50 dBm-	_									
-60 dBm-										
-70 dBm-										
CF 2.44	1 GH	z			100	1 pts				500.0 µs/
Marker Type	Refl	Trc	X-value	a	Y-value	Fund	tion	Fun	ction Result	- -
		1		5.0 µs	4.12 d	Bm			ector Result	
M1				64 ms		OB I				
D1		1 7.78 dBm 40 dB		Dwel	RBW 1 MHz VBW 1 MHz	-DH5 24] I41M	Ready H Z		
D1 Spectro Ref Lev Att SGL TRG	um el 27	7.78 dBm	Offset 7	Dwel	I NVNT 3	-DH5 24	〕 !41M	Ready 📕	·····) 4	
D1 Spectru Ref Lev Att SGL TRG 1Pk Cirv	um el 27	7.78 dBm	Offset 7	Dwel	I NVNT 3	-DH5 24) 41M 1[1]	Ready Hz		-4.66 dBm
D1 Spectro Ref Lev Att SGL TRG	um el 27	7.78 dBm	Offset 7	Dwel	I NVNT 3	-DH5 24		Ready HZ		
D1 Spectru Ref Lev Att SGL TRG 1Pk Cirv	um el 27	7.78 dBm	Offset 7	Dwel	I NVNT 3	-DH5 24	1[1]	Ready Hz		-4.66 dBm 16.00 µs
D1 Spectru Ref Lev Att SGL TRG 1Pk Clrv 20 dBm-	um el 27	7.78 dBm 40 dB	Offset 7 SWT	Dwel 7.78 dB (8 ms (RBW 1 MHz	-DH5 24	1[1]	Hz		-4.66 dBm 16.00 µs 2.11 dB
D1 Spectru Ref Lev Att SGL TRG 1Pk Clrv 20 dBm- 10 dBm-	um el 27	7.78 dBm 40 dB	Offset 7 SWT	Dwel 7.78 dB (8 ms (I NVNT 3	-DH5 24	1[1]	Hz		-4.66 dBm 16.00 µs 2.11 dB
D1 Spectrr Ref Lev Att SGL TRG 1Pk Clrv 20 dBm- 10 dBm- 0 dBm-	um el 27 :: VID v	7.78 dBm 40 dB	Offset 7 SWT	Dwel 7.78 dB (8 ms (RBW 1 MHz	-DH5 24	1[1]	Hz		-4.66 dBm 16.00 µs 2.11 dB
D1 Spectrr Ref Lev Att SGL TRG 9 1Pk Clrv 20 dBm- 10 dBm- 0 dBm- -10 dBm-	um el 27 :: VID v	7.78 dBm 40 dB	Offset 7 SWT	Dwel 7.78 dB (8 ms (RBW 1 MHz	-DH5 24	1[1]	Hz		-4.66 dBm 16.00 µs 2.11 dB
D1 Spectrr Ref Lev Att SGL TRG SGL TRG 1Pk Clrv 20 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	um el 27 :: VID v	7.78 dBm 40 dB	Offset 7 SWT	Dwel 7.78 dB (8 ms (RBW 1 MHz	-DH5 24	1[1]			-4.66 dBm 16.00 µs 2.11 dB 2.87200 ms
D1 Spectrr Ref Lev Att SGL TRG 9 1Pk Clrv 20 dBm- 10 dBm- 0 dBm- -10 dBm-	um el 27 :: VID v	7.78 dBm 40 dB	Offset 7 SWT	Dwel 7.78 dB (8 ms (RBW 1 MHz	-DH5 24	1[1]	Ready HZ		-4.66 dBm 16.00 µs 2.11 dB 2.87200 ms
D1 Spectrr Ref Lev Att SGL TRG SGL TRG 1Pk Clrv 20 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	um el 27 :: VID v	7.78 dBm 40 dB	Offset 7 SWT	Dwel 7.78 dB (8 ms (RBW 1 MHz	-DH5 24	1[1]			-4.66 dBm 16.00 µs 2.11 dB 2.87200 ms
D1 Spectru Ref Lev Att SGL TRG SGL TRG 1Pk Clrv 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	um el 27 :: VID v	7.78 dBm 40 dB	Offset 7 SWT	Dwel 7.78 dB (8 ms (RBW 1 MHz	-DH5 24	1[1]			-4.66 dBm 16.00 µs 2.11 dB 2.87200 ms
D1 Spectrr Ref Lev Att SGL TRG 1Pk Clrv 20 dBm 10 dBm 0 dBm 20 dBm 20 dBm 50 dBm 60 dBm 70 dBm		7.78 dBm 40 dB	Offset 7 SWT	Dwel 7.78 dB (8 ms (RBW 1 MH2	-DH5 24	1[1]			-4.66 dBm 16.00 µs 2.11 dB 2.87200 ms
D1 Spectrr Ref Lev Att SGL TRG 1Pk Clrv 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -50 dBm- -60 dBm- CF 2.44		7.78 dBm 40 dB	Offset 7 SWT	Dwel 7.78 dB (8 ms (RBW 1 MH2	-DH5 24	1[1]			-4.66 dBm 16.00 µs 2.11 dB 2.87200 ms
D1 Spectru Ref Lev Att SGL TRG 1Pk Clrv 20 dBm- 10 dBm- 10 dBm- -10 dBm- -30 dBm- -30 dBm- -50 dBm- -50 dBm- CF 2.44: Marker Type		2.78 dBm 40 dB	Offset 7	Dwel	RBW 1 MHz VBW 1 MHz VBW 1 MHz	-DH5 24	1[1] 1[1]			-4.66 dBm 16.00 µs 2.11 dB 2.87200 ms
D1 Spectri Ref Lev Att SGL TRG IPk Clrv 20 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm- CF 2.44.		7.78 dBm 40 dB 6 -20.02	Offset 7	Dwel	I NVNT 3	-DH5 24	1[1] 1[1]		L (thippointent)	-4.66 dBm 16.00 µs 2.11 dB 2.87200 ms

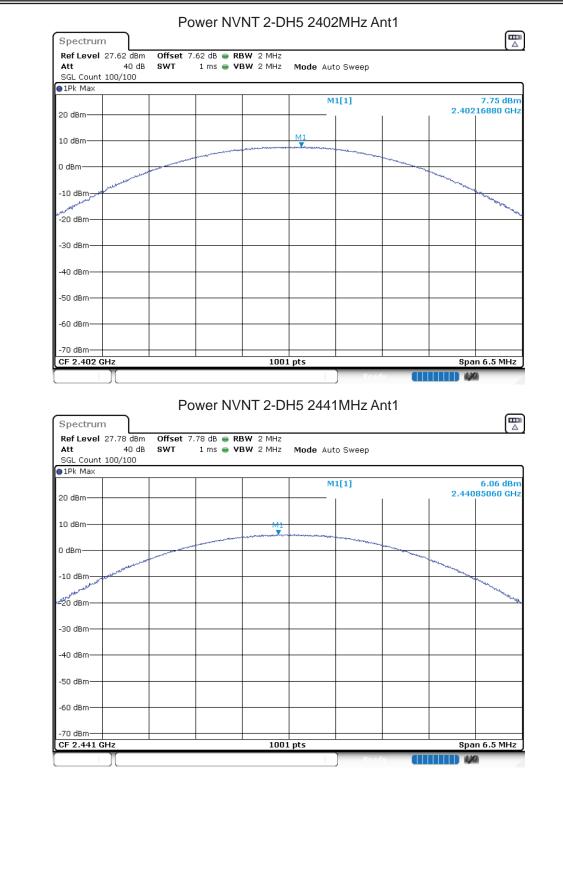
ilac-MRA ACCREDI Certificate #4298.01

8.2 MAXIMUM CONDUCTED OUTPUT POWER

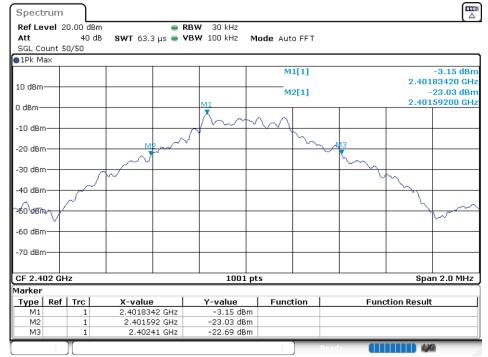

0.2 10.0						
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	6.02	30	Pass
NVNT	1-DH5	2441	Ant 1	4.33	30	Pass
NVNT	1-DH5	2480	Ant 1	4.22	30	Pass
NVNT	2-DH5	2402	Ant 1	7.75	21	Pass
NVNT	2-DH5	2441	Ant 1	6.06	21	Pass
NVNT	2-DH5	2480	Ant 1	5.98	21	Pass
NVNT	3-DH5	2402	Ant 1	8.06	21	Pass
NVNT	3-DH5	2441	Ant 1	6.40	21	Pass
NVNT	3-DH5	2480	Ant 1	6.29	21	Pass

Spectrum Ref Level 30.62 dBm Offset 7.62 dB 🖷 RBW 2 MHz 40 dB SWT 1 ms 🖷 VBW 2 MHz 🛛 Mode Auto Sweep Att SGL Count 300/300 ●1Pk Max 6.02 dBm 2.40180520 GHz M1[1] 20 dBm-10 dBm-¥ 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm CF 2.402 GHz 1001 pts Span 5.0 MHz

Power NVNT 1-DH5 2402MHz Ant1





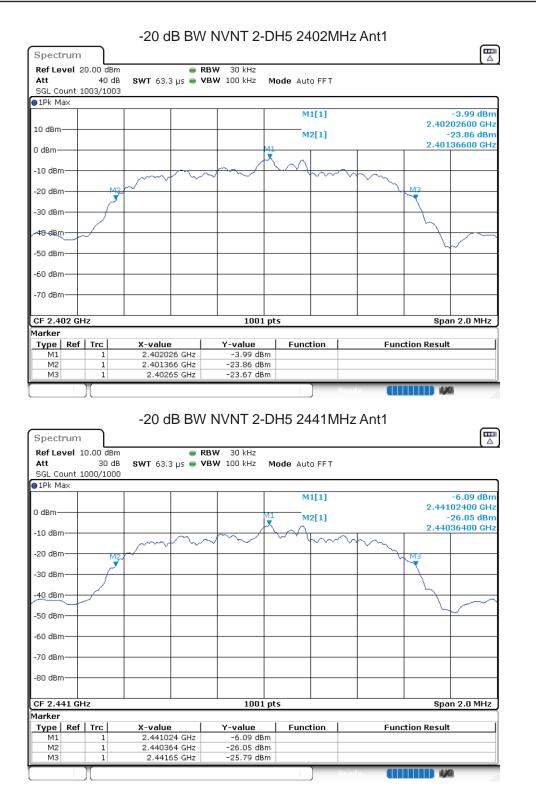

NTEK 北测[®]

ACCREDITED Certificate #4298.01

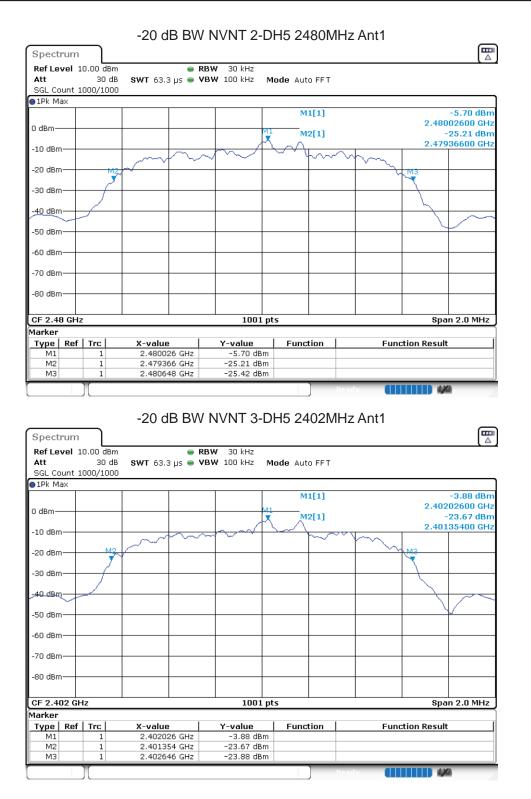
8.3 OCCUPIED CHANNEL BANDWIDTH

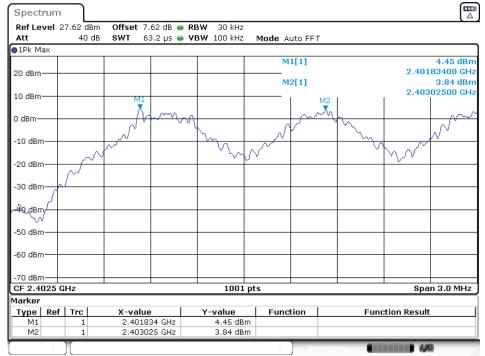
	-		1 1		1
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant 1	0.818	Pass
NVNT	1-DH5	2441	Ant 1	0.96	Pass
NVNT	1-DH5	2480	Ant 1	0.966	Pass
NVNT	2-DH5	2402	Ant 1	1.284	Pass
NVNT	2-DH5	2441	Ant 1	1.286	Pass
NVNT	2-DH5	2480	Ant 1	1.282	Pass
NVNT	3-DH5	2402	Ant 1	1.292	Pass
NVNT	3-DH5	2441	Ant 1	1.292	Pass
NVNT	3-DH5	2480	Ant 1	1.29	Pass

-20 dB BW NVNT 1-DH5 2402MHz Ant1

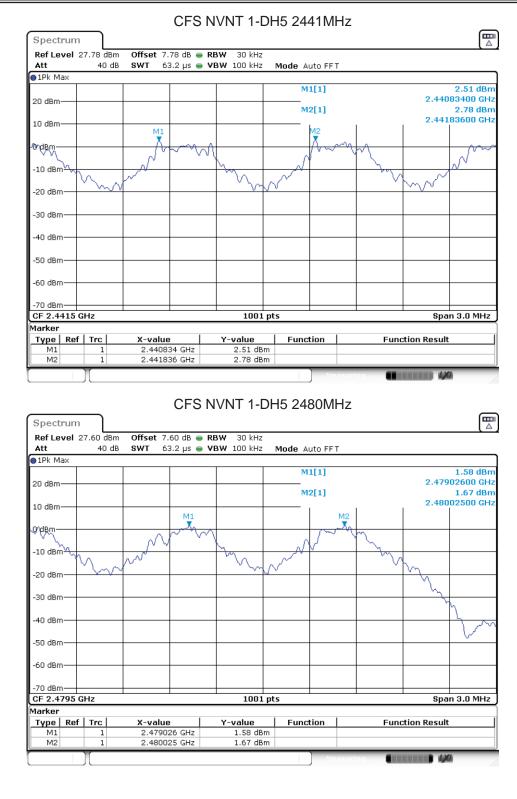


ACCREDITED



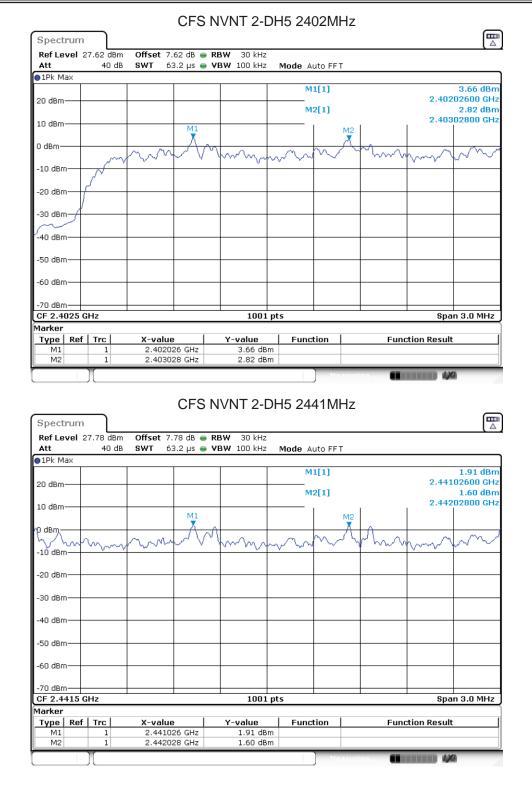


8.4 CARRIER FREQUENCIES SEPARATION


•						
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.834	2403.025	1.191	0.818	Pass
NVNT	1-DH5	2440.834	2441.836	1.002	0.96	Pass
NVNT	1-DH5	2479.026	2480.025	0.999	0.966	Pass
NVNT	2-DH5	2402.026	2403.028	1.002	0.856	Pass
NVNT	2-DH5	2441.026	2442.028	1.002	0.857	Pass
NVNT	2-DH5	2479.008	2480.01	1.002	0.855	Pass
NVNT	3-DH5	2402.023	2403.025	1.002	0.861	Pass
NVNT	3-DH5	2441.164	2442.166	1.002	0.861	Pass
NVNT	3-DH5	2479.023	2480.025	1.002	0.86	Pass

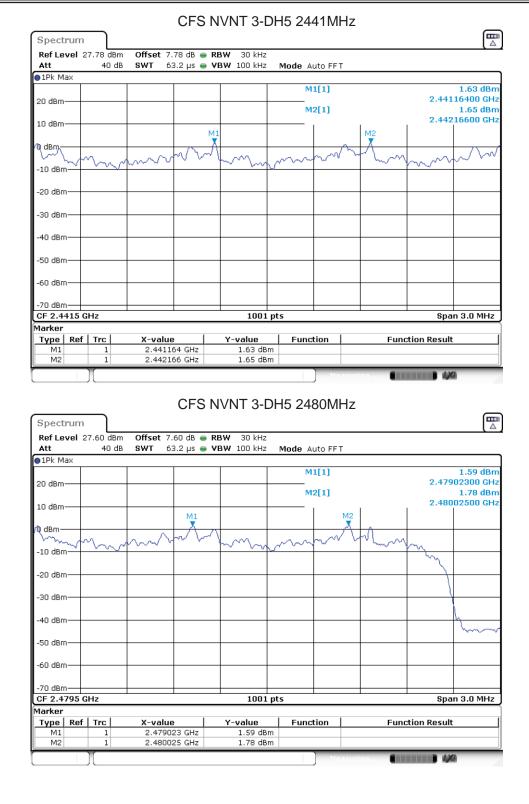
CFS NVNT 1-DH5 2402MHz

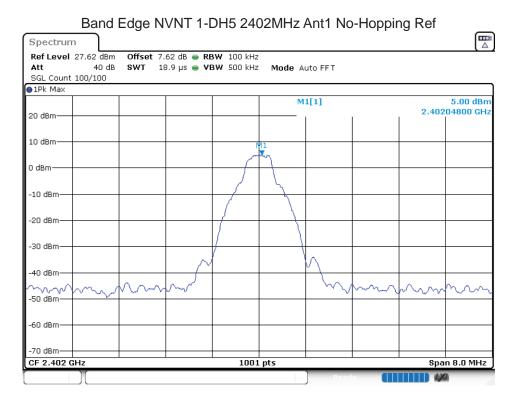




Version.1.3

Hac-MR




ondition	Mode		lopping	CHANNEL g Number	Lim	it Vero	lict				
NVNT	1-DH5			, 79	15						
	l.	-									
				Hoppi	ing N	o. NVN	L1-DF	15 2402	2MHz		
	Spect	rum			•						
	Ref Le	vel 2	7.62 dBm	Offset 7.62 ((-)
	Att	unt 7	40 dB 000/7000	SWT 1 n	ns 🔵 VE	300 kHz	Mode	Auto Swee	р		
	O 1Pk M		000/7000								
								M1[1]			1.23 dBm
	20 dBm							M2[1]		2.40	20040 GHz 3.48 dBm
	10 dBm	_								2.48	02435 GHz M2
	м1 о д в МА	0.000	0.000000	плоловиных	0.05504	лидориял	лальная	<u>n da D.d.a.n.d.</u> n.n	КИКовланая	Балабила	50000
			AN BYN	Robert Real of C	ANAAA	AUATAUT	AUCUL	(URUKIA),	0,00,000		NYANA -
	-10 မှန်ဂ	₩₩	 	<u>I A A A A A A A A A A A A A A A A A A A</u>	(HAAAA)	Losbañak i	<u>Andah</u>	<u>a hiki ta ta ta</u>	<u>┝╄<u></u>╋╜╢╢╢╢</u>	┫╢ Ϋ╫ <u>╎╢</u> ╎╢╟	
	-20 dBm							_			
	-80 dBm										
	40 dBm	-+									hall
	-50 dBm										
	-50 081	'									
	-60 dBm	ا ا									
	-70 dBm	\						_			
	Start 2	.4 GH	łz			1001	pts			Stop 2.	.4835 GHz
	Marker Type	Pof	Tre	X-value	1	Y-value	E	nction	Eup	ction Result	. 1
	M1	Ker	1	2.402004 0		1.23 dB	m		1 dif		
	M2		1	2.4802435 G	iHz	3.48 dB	m				
			Л					Re	ady		

8.6 BAND EDGE

0.0 DANDE							
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-46.12	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-46.13	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-46.29	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-45.9	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-46.12	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-43.06	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-46.69	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-46.18	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-46.97	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-46.33	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-46.8	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-46.37	-20	Pass

SGL Coun	t 100/100		- 1 o ha 🦱 1	/BW 500 kH;	- moue	AULU FF I			
●1Pk Max					м	1[1]			5.65 0
20 dBm					M	2[1]			215000 46.41 c
10 dBm						2[1]			00000
0 dBm									
-10 dBm—									
-20 dBm—	D1 -14.997	dBm							
-30 dBm—									
-40 dBm-			M4						
monorthanter	unstantion	whenthe	the the Martin the	a material and the	www.	ununun	almonterious	and have her	W2
-50 dBm—									
-60 dBm—									
-70 dBm— Start 2.30	6 GHz			1001	nts			Stop	2.406 G
Marker									
Type Re M1	ef Trc	X-value 2,402	9	Y-value 5.65 dBr	Func m	tion	Fun	ction Result	1
		2,402.		-46.41 dB					
M2	1		.4 GHz						
M3 M4 Spectrur Ref Level Att		2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-46.86 dBi -41.13 dBi /NT 1-D BW 100 kHz BW 300 kHz	m H5 240		h 🚺	pping R	ef
M3 M4 Spectrur Ref Level Att	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho	pping R	
M3 M4 Spectrur Ref Level Att SGL Coun	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A		Ant1 Ho		6.27 d
M3 M4 Spectrur Ref Level Att SGL Coun IPk Max 20 dBm-	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho		
M3 M4 Spectrur Ref Level Att SGL Count IPk Max	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho		6.27 d
M3 M4 Spectrur Ref Level Att SGL Coun IPk Max 20 dBm-	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho	2.404	6.27 d
M3 M4 Spectrun Ref Level Att SGL Coun • 1Pk Max 20 dBm	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho	2.404	6.27 d
M3 M4 Spectrui Ref Level Att SGL Coun IPk Max 20 dBm 10 dBm	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho	2.404	6.27 d
M3 M4 Spectrun Ref Level Att SGL Coun • 1Pk Max 20 dBm	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho	2.404	6.27 d
M3 M4 Spectrum Ref Level Att SGL Coun ID dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho	2.404	6.27 d
M3 M4 Spectrui Ref Level Att SGL Coun IPk Max 20 dBm 10 dBm 0 dBm -10 dBm	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho	2.404	6.27 d
M3 M4 Spectrum Ref Level Att SGL Coun IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho	2.404	6.27 d
M3 M4 M4 Spectrun Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT	Ant1 Ho	2.404	6.27 d
M3 M4 M4 Spectrun Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT		2.404	6.27 d
M3 M4 M4 Spectrun Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT		2.404	6.27 0
M3 M4 Spectrur Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 1 0 0 1 27.62 dBm 40 dB	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	m H5 240 Mode A	uto FFT		2.404	6.27 0
M3 M4 M4 M4 Spectrur Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	and Ed	2.3 2.339 ge(Hopp Offset 7.	39 GHZ 99 GHZ Ding) N 62 dB • R	-41.13 dBi	Mode A	uto FFT		2.404	6.27 0

●1Pk Max				1						
20 dBm—				_			1[1]		2.40	5.62 40500
10 dBm—						M	2[1]		2.40	-44.53 00000
0 dBm—										
-10 dBm—	-			_						
-20 dBm—	-D1	-13.730) dBm							
-30 dBm-				_					_	
-40 dBm-				mannahan	M4				мэ	M
ատհաննդրդին -50 dBm—	Maria	pergoli	youther	Anarytan	an and a manufactory	bullaninenye	wowwww	nonnonfunsion	www.www.	relevande de
-60 dBm-										
-70 dBm—									_	
Start 2.3 Marker	06 GI	lz		•	1001	pts			Stop	2.406
Type F	tef 1		X-val		Y-value	Func	tion	Fui	nction Resu	lt
M1 M2		1		2.4 GHz	5.62 dBr -44.53 dBr	1 I				
M3		1			-44.67 dBr					
M4 M4 Spectru Ref Leve Att SGL Cour	im 9 27.1 nt 100		Edge I	7.60 dB 👄	-39.87 dbr -DH5 248 RBW 100 kHz VBW 300 kHz	oMHz /		idv []	ing Ref	10
M4 Spectru Ref Leve Att SGL Cour IPk Max	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr -DH5 248 RBW 100 kHz	OMHZ /		lo-Hopp		
M4 Spectru Ref Leve Att SGL Cour	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr -DH5 248 RBW 100 kHz	OMHZ /	uto FFT	lo-Hopp		
M4 Spectru Ref Leve Att SGL Cour IPk Max	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr	Mode A	uto FFT	lo-Hopp		
M4 Spectru Ref Leve Att SGL Cour PIPk Max 20 dBm—	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr -DH5 248 RBW 100 kHz	Mode A	uto FFT	lo-Hopp		
M4 Spectru Ref Leve Att SGL Cour 1Pk Max 20 dBm- 10 dBm- 0 dBm-	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr	Mode A	uto FFT			
M4 Spectru Ref Leve Att SGL Cour 1Pk Max 20 dBm- 10 dBm-	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr	Mode A	uto FFT	lo-Hopp		
M4 Spectru Ref Leve Att SGL Cour 1Pk Max 20 dBm- 10 dBm- 0 dBm-	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr	Mode A	uto FFT			
M4 Spectru Ref Leve Att SGL Cour 1Pk Max 20 dBm- 10 dBm- -10 dBm-	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr	Mode A	uto FFT			3.26
M4 Spectru Ref Leve Att SGL Cour 10 dBm	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr	Mode A	uto FFT			
M4 Spectru Ref Leve Att SGL Cour O dBm	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr	Mode A	uto FFT			
M4 Spectru Ref Leve SGL Cour 9 1Pk Max 20 dBm	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr	Mode A	uto FFT			
M4 Spectru Ref Leve Att SGL Cour O dBm	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr	Mode A	uto FFT			
M4 Spectru Ref Leve Att SGL Cour •10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm-	im 9 27.1 nt 100		Edge I	NVNT 1 7.60 dB	-39.87 dBr	Mode A	uto FFT			

●1Pk Max	t 100/100								
20 dBm-					М	1[1]		0.47	3.19
					м	2[1]			995000 -45.09 (
10 dBm-							1	2.48	350000
0 dBm									
-10 dBm—	D1 -16.74	5 dBm							
-20 dBm—	D1 -10.74								
-30 dBm—									
-40 dBm 12	walter and the state	M4 M3	in Algeria	when when	in the state of the state of the	lun aluhn	wills mar warm	Last and a March	n. mar
-50 dBm—	as man a d m	Array man hor of	4° 97	ALINE OLD. A.O.I.	ann a la mha i				· · Awall in A
-60 dBm—									
-70 dBm-									
Start 2.47 Marker	6 GHZ			1001	pts			Stop	2.576 G
Type R	ef Trc	X-value		Y-value	Func	tion	Fun	ction Resul	t
	1	2.4799		3.19 dB	m				
M1 M2	1		IS GHZ	3.19 dB -45.09 dB	m				
M1 M2 M3 M4 Spectrue Ref Level Att	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB	m m H5 248		Ant1 Ho	pping R	a ef
M1 M2 M3 M4 Spectrun Ref Level Att SGL Coun	and Ed	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D	m m H5 248		adv 🚺 Ant1 Ho	pping R	a ef
M1 M2 M3 M4 Spectrur Ref Level Att SGL Coun ● 1Pk Max	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D	Mode A		Ant1 Ho		3.92
M1 M2 M3 M4 B Spectrun Ref Level Att SGL Coun	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D	Mode A	uto FFT	Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrur Ref Level Att SGL Coun ● 1Pk Max	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho		ef
M1 M2 M3 M4 Spectrue Ref Level Att SGL Coun • 1Pk Max 20 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D	Mode A	uto FFT	Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrui Ref Level Att SGL Coun • 1Pk Max 20 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	adv III Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrue Ref Level Att SGL Coun • 1Pk Max 20 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrue Ref Level Att SGL Coun • 1Pk Max 20 dBm 10 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrue Ref Level Att SGL Coun • 1Pk Max 20 dBm -10 dBm -10 dBm -20 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrui Ref Level Att SGL Coun ID dBm 10 dBm -10 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrue Ref Level Att SGL Coun • 1Pk Max 20 dBm -10 dBm -10 dBm -20 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrui Ref Level Att SGL Coun • 1Pk Max 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrum Ref Level Att SGL Coun ● 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrui Ref Level Att SGL Coun • 1Pk Max 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho		3.92 (
M1 M2 M3 M4 Spectrui Ref Level Att SGL Coun • 1Pk Max 20 dBm • 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	1 1 1 Band Ed 1 27.60 dBm 40 dB	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho		3.92
M1 M2 M3 M4 Spectrui Ref Level Att SGL Coun • 1Pk Max 20 dBm • 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.483 2. 2.498 ge(Hopp • Offset 7.6 • SWT 18	15 GHZ 15 GHZ 15 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 18 GHZ 19 GHZ 10 GH	-45.09 dB -45.36 dB -43.03 dB VNT 1-D RBW 100 kHz /BW 300 kHz	Mode A	uto FFT	Ant1 Ho	2.47	3.92

●1Pk Max	1000/1000								
					М	1[1]		0.40	3.27 0
20 dBm					м	2[1]			015000 -41.99 (
10 ₁ dBm								2.48	350000
и/авт -40 фВт									
-20 cBm—	D1 -16.077	′ dBm							
-30 dBm—									
-40 dBm	monarina	MR	have and the faither	un provident	ten he southles	a total a total and a second	an whether a performance	Marily Marily	iliant, sumandar
-50 dBm-		Q		Qui qui la la la					Vince V
-60 dBm—									
-70 dBm-									
Start 2.47 Marker	o GHZ			1001	pts			Stop	2.576 0
Type Re M1	1		D15 GHz	Y-value 3.27 dB		tion	Fund	ction Resu	lt
M2	1		B35 GHz	-41.99 dB					
M3 M4 Spectrur Ref Level Att SGL Count	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-41.99 dB -43.66 dB -41.99 dB DH5 24(BW 100 kHz BW 100 kHz)2MHz		b-Hoppin	ng Ref	
M3 M4 Spectrur Ref Level Att	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz	m D2MHz A Mode A		D-Hoppin		
M3 M4 Spectrur Ref Level Att SGL Count	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz	m D2MHz A Mode A	uto FFT	o-Hoppin		
M3 M4 Spectrur Ref Level Att SGL Count ● 1Pk Max	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz	m D2MHz A Mode A	uto FFT	o-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm-	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz BW 300 kHz	m D2MHz A Mode A	uto FFT	p-Hoppin		
M3 M4 Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz BW 300 kHz	m D2MHz A Mode A	uto FFT	p-Hoppin		
M3 M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm- 0 dBm-	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz BW 300 kHz	m D2MHz A Mode A	uto FFT	p-Hoppin		
M3 M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz BW 300 kHz	m D2MHz A Mode A	uto FFT	p-Hoppin		
M3 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz BW 300 kHz	m D2MHz A Mode A	uto FFT	p-Hoppin		
M3 M4 Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz BW 300 kHz	m D2MHz A Mode A	uto FFT	p-Hoppin		5.01 (184020
M3 M4 Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz BW 300 kHz	m D2MHz A Mode A	uto FFT			
M3 M4 Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm - 10 dBm - 10 dBm - 20 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm	Band n 27.62 dBm 40 dB 100/100	2.48 Edge N Offset 7	2.5 GHz 835 GHz IVNT 2- 7.62 dB • R	-43.66 dB -41.99 dB DH5 24(BW 100 kHz BW 300 kHz	Mode A	uto FFT		2.40	

IPk Max	nt 100/100									
20 dBm—					М	1[1]			2.40	5.49 d 195000 0
10 dBm—					м	2[1]				-43.02 di 000000%
0 dBm										L Å
-10 dBm—										
-20 dBm—	D1 -14.991	L dBm								
-30 dBm—										
40 dBm			M4							M2
narranishing	hunharlinh	www.	hard	topplycholdenesse	nghyuhunnuu	www.	when	www.ulywon	met Maulener	Marylap
-50 dBm-										
-60 dBm—										
-70 dBm— Start 2.3	06 GHz	I		1001	pts	I			Stop	2.406 GH
Marker Type R	ef Trc	X-value	•	Y-value	Func	tion		Eun	tion Resul	t
	1	2.401		5.49 dE				T diff.		
M1										
M1 M2 M3 M4		2.	93 GH2 2.4 GHz 39 GHz 13 GHz	-43.02 dE -47.48 dE -41.12 dE	m m		Ready			6
M2 M3 M4 Spectru Ref Leve Att	1 1 1 Band Ed 1 27.62 dBm 40 dB	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 dE -47.48 dE	m m H5 240			t1 Ho	pping R	
M2 M3 M4 Spectru Ref Leve Att SGL Cour	1 1 1 Band Ed 1 27.62 dBm 40 dB tt 8000/8000	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240			t1 Ho	pping R	kef [t
M2 M3 M4 Spectru Ref Leve Att	1 1 1 Band Ed 1 27.62 dBm 40 dB tt 8000/8000	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A			t1 Ho	pping R	[
M2 M3 M4 Spectru Ref Leve Att SGL Cour	1 1 1 Band Ed 1 27.62 dBm 40 dB tt 8000/8000	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		
M2 M3 M4 Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm—	1 1 1 Band Ed 1 27.62 dBm 40 dB tt 8000/8000	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour • 1Pk Max	1 1 1 Band Ed 1 27.62 dBm 40 dB tt 8000/8000	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm—	1 1 1 Band Ed 1 27.62 dBm 40 dB tt 8000/8000	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectrue Att SGL Cour • 1Pk Max 20 dBm— 10 dBm—	1 1 1 Band Ed 1 27.62 dBm 40 dB tt 8000/8000	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour • IPk Max 20 dBm 10 dBm 0 dBm	1 1 1 Band Ed 1 27.62 dBm 40 dB tt 8000/8000	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 1 1 Band Ed 1 27.62 dBm 40 dB tt 8000/8000	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour • IPk Max 20 dBm 10 dBm 0 dBm	1 1 1 Band Ed 1 27.62 dBm 40 dB tt 8000/8000	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm-	1 1 1 Band Ed 1 27.62 dBm 40 dB 1 27.62 dBm	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm 10 dBm 0 dBm -20 dBm	1 1 1 Band Ed 1 27.62 dBm 40 dB 1 27.62 dBm	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm-	1 1 1 Band Ed 1 27.62 dBm 40 dB 1 27.62 dBm	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm-	1 1 1 Band Ed 1 27.62 dBm 40 dB 1 27.62 dBm	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -50 dBm-	1 1 1 Band Ed 1 27.62 dBm 40 dB 1 27.62 dBm	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	m m H5 240 Mode A	uto FFT		t1 Ho		2.72 di
M2 M3 M4 Spectru Ref Leve Att SGL Cour 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	1 1 1 1 3and Ed 1 27.62 dBm 40 dB 10	2 2.34 ge(Hopp Offset 7. swr 10	2.4 GHz 39 GHz 13 GHz Ding) N	-43.02 de -47.48 de -41.12 de IVNT 2-D	Mode A	uto FFT		t1 Ho	2.40	2.72 di

20 dBm— 10 dBm— 0 dBm—				1 1	M1[11			1.7
		1 1						2.40	
0 dBm					M2[[1]		2.40	-44.4 0000
-10 dBm—									
-20 dBm—	D1 -17.28	3 dBm							
-30 dBm—				M4					-
-40 dBm-	warm How have	aununtur	waydohanah		والدينية المدرسة الأم	Murder July	anohodenor	M3 Normy Kulner	
-50 dBm—	0.0								
-60 dBm—									-
-70 dBm— Start 2.3	06 GHz			1001 p ¹				Stop	2.40
Marker							_		
Type R	1	2.4021		Y-value 1.71 dBm	Functio	on	Fun	ction Resul	t
M2				-44.42 dBm					
Att		2.34 2.3491 Edge NV	/NT 2-	-43.55 dBm -40.34 dBm DH5 2480 BW 100 kHz BW 100 kHz	Mode Aut	o FFT	b-Hoppi	ng Ref	
M4 Spectru Ref Leve Att SGL Cour	1 1 Band m 1 27.60 dBn 40 di	2.34 2.3491 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 248(BW 100 kHz		o FFT	b-Hoppi	ng Ref	
M4 Spectru Ref Leve Att SGL Cour IPk Max	1 1 Band m 1 27.60 dBn 40 di	2.34 2.3491 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 248(BW 100 kHz	Mode Aut	o FFT	b-Hoppi		
M4 Ref Leve Att SGL Cour 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 1 Band m 1 27.60 dBn 40 di	2.34 2.3491 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 2480 BW 100 kHz BW 300 kHz	Mode Aut	o FFT	b-Hoppi		
M4 Spectru Ref Leve Att SGL Cour IPk Max 20 dBm- 10 dBm- -10 dBm-	1 1 Band m 1 27.60 dBn 40 di	2.34 2.349 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 2480 BW 100 kHz BW 300 kHz	Mode Aut	o FFT	b-Hoppi		
M4 Ref Leve Att SGL Cour 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 1 Band m Il 27.60 dBn 40 di	2.34 2.349 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 2480 BW 100 kHz BW 300 kHz	Mode Aut	o FFT	b-Hoppi		
M4 Spectru Ref Leve Att SGL Cour IPk Max 20 dBm- 10 dBm- -10 dBm-	1 1 Band m Il 27.60 dBn 40 di	2.34 2.349 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 2480 BW 100 kHz BW 300 kHz	Mode Aut	o FFT	b-Hoppi		
M4 Spectru Ref Leve Att SGL Cour ID dBm	1 1 Band m Il 27.60 dBn 40 di	2.34 2.349 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 2480 BW 100 kHz BW 300 kHz	Mode Aut	o FFT	b-Hoppi		3.4
M4 Spectru Ref Leve Att SGL Cour O dBm	1 1 Band m Il 27.60 dBn 40 di	2.34 2.349 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 2480 BW 100 kHz BW 300 kHz	Mode Aut	o FFT	p-Hoppi		
M4 Spectru Ref Leve Att SGL Cour O dBm	1 1 Band m Il 27.60 dBn 40 di	2.34 2.349 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 2480 BW 100 kHz BW 300 kHz	Mode Aut	o FFT	b-Hoppi		
M4 Spectru Ref Leve Att SGL Cour O dBm	1 1 Band m Il 27.60 dBn 40 di	2.34 2.349 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 2480 BW 100 kHz BW 300 kHz	Mode Aut	o FFT			
M4 Spectru Ref Leve Att SGL Cour IPk Max 20 dBm- 10 dBm10 dBm20 dBm20 dBm30 dBm30 dBm30 dBm30 dBm-	1 1 Band m Il 27.60 dBn 40 di	2.34 2.349 Edge NV	9 GHZ 5 GHZ /NT 2-	-43.55 dBm -40.34 dBm DH5 2480 BW 100 kHz BW 300 kHz	Mode Aut	o FFT			

20 dBm 10 ₁ dBm 0 dBm -10 dBm -20 dBm	D1 -16.524							0.400	
0 d6m	-D1 -16.524				м	2[1]			05000 0 44.69 d
-10 cBm— -20 aBm—	-D1 -16.524					1	I		50000 G
-20 aBm—	-D1 -16.52								
	D1 -16.524								
		4 dBm							
-30 dBm									
-40 dBritt		Ma							
-50 dBm	andresservices	population	a when the when	what when the server	providetimetade	withwall	www.www.www.	role Antheres	Mondana
-60 dBm									
-70 dBm— Start 2.47	76 GHz		1	1001	pts		i	Stop 2	2.576 G⊦
Marker Type Re	ef Trc	X-valu		Y-value	Func	tion	Fund	tion Result	
M1 M2	1	2.480	DO5 GHz	3.66 dB -44.69 dB	m				
M2 M3	1		B35 GHz 2.5 GHz B36 GHz	-44.69 dB -44.76 dB -43.22 dB	m				
Spectrur Ref Level	m I 27.60 dBm	n Offset 7	7.60 dB 👄 R	VNT 2-D			Ant1 Hop	oping R	
Spectrur Ref Level Att	m I 27.60 dBm 40 dB	n Offset 7 3 SWT 1	7.60 dB 👄 R				Ant1 Hop	oping R	
Spectrur Ref Level Att	m I 27.60 dBm	n Offset 7 3 SWT 1	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	oping R	[
Spectrur Ref Level Att SGL Coun	m I 27.60 dBm 40 dB	n Offset 7 3 SWT 1	7.60 dB 👄 R	BW 100 kHz	Mode A		Ant1 Hop		3.86 di
Spectrur Ref Level Att SGL Count 1Pk Max	m I 27.60 dBm 40 dB	n Offset 7 3 SWT 1	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		3.86 dt
Spectrur Ref Level Att SGL Count 1Pk Max	m I 27.60 dBm 40 dB	n Offset 7 3 SWT 1	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		3.86 dt
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm-	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		3.86 di
Spectrun Ref Level Att SGL Coun • 1Pk Max 20 dBm- 10 dBm- BudBm-	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1 0	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		3.86 di
Spectrun Ref Level SGL Counn IPk Max 20 dBm- 10 dBm-	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1 0	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		ef [1 3.86 dt 16280 G
Spectrun Ref Level Att SGL Coun • 1Pk Max 20 dBm- 10 dBm- BudBm-	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1 0	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		3.86 di
Spectrun Ref Level Att SGL Coun 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1 0	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT			3.86 dt
Spectrun Ref Level Att SGL Coun 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1 0	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT			3.86 dt
Spectrun Ref Level Att SGL Coun 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1 0	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		3.86 dt
Spectrun Ref Level Att SGL Coun 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1 0	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT			3.86 di
Spectrun Ref Level Att SGL Coun • 1Pk Max 20 dBm	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1 0	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		3.86 di
Spectrun Ref Level Att SGL Coun • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1 0	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		3.86 di
Spectrun Ref Level Att SGL Coun • 1Pk Max 20 dBm	m 1 27.60 dBm 40 dB t 8000/8000	n Offset 7 3 SWT 1 0	7.60 dB 👄 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		3.86 d

20 dBm									
V					M	1[1]		2.47	3.18 715000
T					M	2[1]			-43.71 350000
. ₽. @₽m									
-10 cBm—									
-20 cBm—	D1 -16.145	5 dBm							
-30 dBm—									
-40 dBm2-	M4	M3		Wymalan	tonget and the get	notherstand	nowwww	wheel the work	in a second
-50 dBm	դո-գեթ-չարլ-դՈղջչե	ANNO MARINA	Monana	Admontation of the second	her all and a second	an an an a la com	- CONTRACTION OF CONTRACTION	www.ell	mou
-60 dBm—									
-70 dBm—									
Start 2.47 Marker	6 GHz			1001	pts			Stop	2.576
Type Re M1	ef Trc	X-valu 2.477	e // / / / / / / / / / / / / / / / / /	Y-value 3.18 dB	Func m	tion	Fund	tion Resul	lt
M2	1	2.48	335 GHz	-43.71 dBi -43.85 dBi	m				
	1		2 5 GHz I						
M3 M4 Spectrur	m 27.62 dBm 40 dB	2.48 Edge N Offset 7	7.62 dB 👄 R	-42.32 dBi DH5 240 BW 100 kHz BW 100 kHz)2MHz /		-Hoppir	ng Ref	X9
M3 M4 Spectrur Ref Level Att SGL Count	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A		o-Hoppir		5.51
M3 M4 Spectrur Ref Level Att SGL Count	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	D-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count • 1Pk Max	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	o-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm-	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	o-Hoppir		5.51
M3 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count O dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count O dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	Band n 27.62 dBm 40 dB	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		
M3 M4 Spectrur Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 Band 27.62 dBm 40 dB 300/300	2.48 Edge N Offset 7	399 GHZ IVNT 3- 7.62 dB • R	-42.32 dB DH5 240	Mode A	uto FFT	p-Hoppir	2.40	

SGL Co		40 dB 100/100	SWT 23	צוים אז 🖷	VBW 300 kH	Z Mode /	MULU FF	I		
						м	1[1]			5.51
20 dBm						м	2[1]			195000 -44.57
10 dBm							I	I	2.40	00000Q
0 dBm–	_									
-10 dBn		D1 -14.490	dBm							
-20 dBn										
-30 dBn	- ר									
-40 dBn	י—ר			a Maria	M4	1			M3	Ma
• //\.አለሥላ -50 dBn	hrum,	lling follows and	mannew	And and and	when we we we we we	Monantuellingut	harn	ydyndraunar hydriferni	www.	Univerla
-60 dBn	n_									
-70 dBn	<u></u>			ļ						
Start 2		i GHz	•		1001	pts		•	Stop	2.406 (
Marker	Pot	f Trc	X-value	•	Y-value	Func	tion	Fur	nction Resul	t
	Kei									
M1 M2	Kei	1 1	2.401	.95 GHz 2.4 GHz	5.51 dB -44.57 dB					
M1 M2 M3 M4	Ba	and Ed	2.401 2. 2.34 ge(Hop	95 GHz 2.4 GHz 39 GHz 183 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB	m m H5 240))2MH	Peady	opping R	ø Cef
M1 M2 M3 M4 Spect Ref Le Att SGL Cc	Ba run vel	and Edg	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB	m m H5 240			opping R	a Cef
M1 M2 M3 M4 Spect Ref Le Att	Ba run vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB	m m H5 240 Mode A	uto FFT		opping R	
M1 M2 M3 M4 Spect Ref Le Att SGL Cc	Ba rum vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB	m m H5 240 Mode A				5.52
M1 M2 M3 M4 Spect Ref Le Att SGL Cc • 1Pk M 20 dBm	Ba rum vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le Att SGL Cc • 1Pk M	Ba rum vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le Att SGL Cc • 1Pk M 20 dBm	Ba rum vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le Att SGL CC ● 1Pk M 20 dBm	Ba rum vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le SGL Cc SGL Cc SGL Cc I Pk M 20 dBm 10 dBm -10 dBm	Ba rum vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le Att SGL Cc • 1Pk M 20 dBm 10 dBm	Ba rum vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le SGL Cc SGL Cc SGL Cc O dBm 10 dBm -10 dBm	Ba rum vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le Att SGL Cc • 1Pk M 20 dBm - 0 dBm- -10 dBm - 20 dBm		1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le SGL Cc ● 1Pk M 20 dBm 10 dBm -10 dBm -20 dBm		1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	.95 GHz 2.4 GHz .39 GHz .83 GHz ping) N	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le Att SGL Cc • 1Pk M 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm		1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	95 GHz 2.4 GHz 39 GHz 83 GHz 62 dB • 1 8.9 μs • 1	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			2ef
M1 M2 M3 M4 Spect Ref Le Att SGL CC • 1Pk M 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 30 dBm - 30 dBm	Ba rum vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	95 GHz 2.4 GHz 39 GHz 83 GHz 62 dB • 1 8.9 μs • 1	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le Att SGL CC • 1Pk M 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm	Ba rum vel	1 1 1 27.62 dBm 40 dB	2.401 2 2. 2.34 ge(Hopp Offset 7	95 GHz 2.4 GHz 39 GHz 83 GHz 62 dB • 1 8.9 μs • 1	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	m m H5 240 Mode A	uto FFT			5.52
M1 M2 M3 M4 Spect Ref Le Att SGL CC • 1Pk M 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 30 dBm - 30 dBm		1 1 1 1 27.62 dBm 40 dB 8000/8000	2.401 2 2. 2.34 ge(Hopp Offset 7	95 GHz 2.4 GHz 39 GHz 83 GHz 62 dB • 1 8.9 μs • 1	-44.57 dB -45.85 dB -41.47 dB IVNT 3-D RBW 100 kHz VBW 300 kHz	Mode A	uto FFT		2.40:	5.52

20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	D1 -14.482	2 dBm				1[1]		2.40	4.20 195000
0 dBm		2 dBm			5.44				
-10 dBm- -20 dBm-		2 dBm		1 1	INC.	2[1]			-43.80 000000
-20 dBm—	-D1 -14.482	2 dBm							ļ
-20 dBm—	D1 -14.482	2 dBm							
	_								
-30 ubiii-									
40 d0m				M4					Ma
	por an	al along weather	which when	may month and and	enrolementary	nnershttonerysbur	palan your	wither Tweeter	havent
-50 dBm-									
-60 dBm—									
-70 dBm- Start 2.3	06 GHz		1	1001 p	ts			Stop	2.406
Marker			_ 1				_		
Type F M1	tef Trc	X-valu 2.401	e	Y-value 4.20 dBm	Fund	tion	Fun	ction Resul	t
M2 M3	1			-43.80 dBm -44.86 dBm					
M4			2.4 GHz						
Att SGL Cour	IM 27.60 dBm 40 dB nt 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz /		₄v () o-Hoppi	ng Ref	6
Ref Leve Att	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz)MHz / Mode At	uto FFT	o-Hoppi	ng Ref	3.39
Ref Leve Att SGL Cour	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz)MHz / Mode At		o-Hoppi		
Ref Leve Att SGL Cour 1Pk Max 20 dBm—	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz)MHz / Mode At	uto FFT	o-Hoppi		
Ref Leve Att SGL Court 1Pk Max	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz)MHz / Mode At	uto FFT	o-Hoppi		
Ref Leve Att SGL Cour 1Pk Max 20 dBm—	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz / Mode At	uto FFT	o-Hoppi		
Ref Leve Att SGL Cour 1Pk Max 20 dBm- 10 dBm-	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz / Mode At	uto FFT	o-Hoppi		
Ref Leve Att SGL Cour 1Pk Max 20 dBm- 10 dBm- 0 dBm-	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz / Mode At	uto FFT	o-Hoppi		3.39
Ref Leve Att SGL Cour 1Pk Max 20 dBm- 10 dBm- 0 dBm-	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz / Mode At	uto FFT	o-Hoppi		
Ref Leve Att SGL Cour 1Pk Max 20 dBm- 10 dBm- -10 dBm-	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz / Mode At	uto FFT	o-Hoppi		
Ref Leve Att SGL Cours 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz / Mode At	uto FFT	o-Hoppi		
Ref Leve Att SGL Couu 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz / Mode At	uto FFT	o-Hoppi		
Ref Leve Att SGL Cours 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz / Mode At	uto FFT	o-Hoppi		
Ref Leve Att SGL Cour 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz / Mode At	uto FFT			
Ref Leve Att SGL Court 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band Im 27.60 dBm 40 dB 100/100	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz)MHz / Mode At	uto FFT			
Ref Leve Att SGL Cour 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Band	Edge N	.39 GHz 487 GHz IVNT 3 7.60 dB • 1	-40.81 dBm -DH5 248(RBW 100 kHz VBW 300 kHz	Mode A	uto FFT		2.480	

●1Pk Max			M1[1]			2.63
20 dBm						95000
10.dBm			M2[1]			46.72 50000
0 dpm						
-10 cBm						
-20 dBm D1 -16	5.612 dBm					
-30 dBm	M4.					
-40 den 12	harring M3	Monthlywherphytherna	man	how which when the	bet we have been been been been been been been be	hunn
-50 dBm						
-60 dBm						
-70 dBm					<u> </u>	
Start 2.476 GHz Marker		1001 pts			stop :	2.576
Type Ref Trc		Y-value	Function	Fun	ction Result	
M1 1 M2 1		2.63 dBm -46.72 dBm				
M2 1 M3 1 M4 1	2.5 GHz	-46.36 dBm -43.42 dBm	Re	ady		7
M3 1 M4 1 Band Spectrum Ref Level 27.60 Att 40	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz	2480MHz	Ant1 Ho	pping R	ef
M3 1 M4 1 Band Spectrum Ref Level 27.60	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz		Ant1 Ho	pping R	ef
M3 1 M4 1 Spectrum Ref Level 27.60 Att 4(SGL Count 8000/8 •1Pk Max	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz		Ant1 Ho		3.99
M3 1 M4 1 Spectrum Ref Level 27.60 Att 4(SGL Count 8000/8	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 Spectrum Ref Level 27.60 Att 4(SGL Count 8000/8 •1Pk Max	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 44 SGL Count 8000/6 10 dBm 10 dBm 0.00	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 44 SGL Count 8000/6 10 dBm 10 dBm 0.00	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 44 SGL Count 8000/6 11 1Pk Max 20 dBm 10 dBm 0.00	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 Band 1 Spectrum 40 SGL Count 8000/6 10 1Pk Max 20 20 dBm 10 10 dBm -10	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 Band 1 Spectrum 1 Ref Level 27.60 Att 40 SGL Count 1Pk Max 20 dBm 10 dBm 10 dBm 10 dBm	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 Band 1 Spectrum 40 SGL Count 8000/6 10 1Pk Max 20 20 dBm 10 10 dBm -10	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		8.99 15980
M3 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 40 SGL Count 8000/6 10 PIPK Max 20 0 dBm 10 10 dBm -10 -20 dBm -20 dBm	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 40 SGL Count 8000/6 10 IPk Max 20 0 dBm 10 10 dBm -10 -20 dBm -20 dBm	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 M4 1 Spectrum Ref Level 27.60 Att 40 SGL Count 8000/6 10 FIPK Max 20 0 dBm 10 10 dBm -10 -20 dBm -30 dBm	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 M4 1 Spectrum Ref Level 27.60 Ref Level 27.60 44 SGL Count 8000/E 40 IN Max 40 O dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 40 SGL Count 8000/6 10 PR Max 20 O dBm 10 10 dBm -10 -10 dBm -20 dBm -30 dBm -40 dBm	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho		3.99
M3 1 M4 1 M4 1 Ref Level 27.60 Att 44 Spectrum 44 SGL 44 10 48m -10 48m -20 48m -30 48m -50 48m -60 48m	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mt	ode Auto FFT	Ant1 Ho	2.480	3.99
M3 1 M4 1 Band 1 Spectrum Ref Level 27.60 Att 40 SGL Count 8000/E 10 PR Max 20 O dBm 10 10 dBm -10 -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	2.5 GHz 2.4965 GHz Edge(Hopping) dBm Offset 7.60 dB 0 dB SWT 18.9 µs	-46.36 dBm -43.42 dBm NVNT 3-DH5 RBW 100 kHz VBW 300 kHz Mu	ode Auto FFT	Ant1 Ho	2.480	3.99 1598(

	rum	Ļ							Ľ	
Ref Le Att	vel 2	7.60 dBr 40 d		 RBW 100 kH VBW 300 kH 		Auto FF	т			
SGL Co		000/100	0							
UPK M	ax				м	1[1]			2.77 dBr	
20 dBm						-(-)			5000 GH	
					M2[1]			-44.79 di		
10 dBm	-							2.4835	0000 GH	
T										
Arten-										
-10 cBm	∩									
	D	1 -16.00	06 dBm							
-20 cBm										
-30 dBm										
			M4 ₄₀							
-40 d B n	1 2	Lange and the	man water water when	multingener	and the second state in the second	a desta	A la state and	well the work	N. C. Martines	
-50 dBm		contraction	- and a - management	Northeand		on restrict of so	مسلحين والمركب ويلجعونه والمركب	20 m.U	(htp://www.hero	
-50 000	'									
-60 dBm	∩									
-70 dBm Start 2		011-3		1001	nto			Eton 2	.576 GHz	
Marker	.470	GHZ		1001	. prs			atup 2	.J70 GH2	
Type	Ref	Trc	X-value	Y-value	Func	tion	Eup	tion Result		
M1		1	2.47695 GHz	2.77 dB				scient Kesult		
M2		1	2.4835 GHz	-44.79 dB	m					
		1	2.5 GHz	-44.03 dB	m					
M3 M4		1	2.4982 GHz	-42.38 dB						

NTEK 北测[®]


Report No.: STR220722003001E

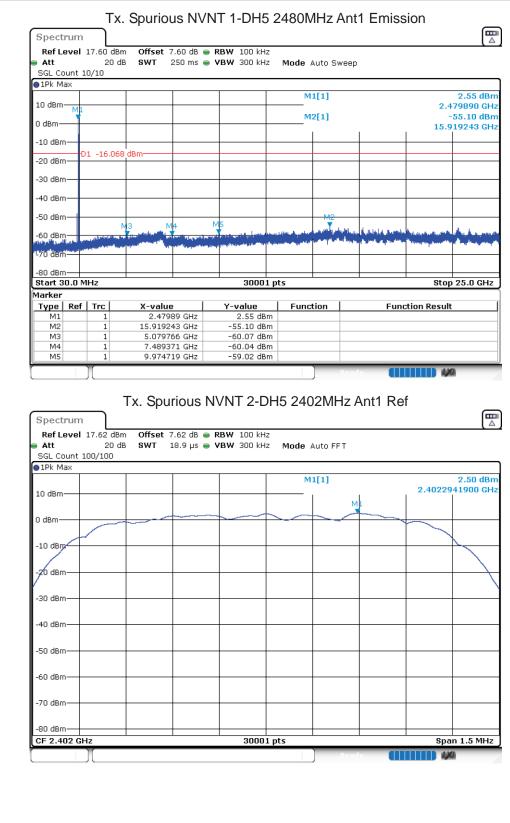
8.7 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-55.71	-20	Pass
NVNT	1-DH5	2441	Ant 1	-57.07	-20	Pass
NVNT	1-DH5	2480	Ant 1	-59.02	-20	Pass
NVNT	2-DH5	2402	Ant 1	-53.4	-20	Pass
NVNT	2-DH5	2441	Ant 1	-58.54	-20	Pass
NVNT	2-DH5	2480	Ant 1	-58.98	-20	Pass
NVNT	3-DH5	2402	Ant 1	-55.95	-20	Pass
NVNT	3-DH5	2441	Ant 1	-57.81	-20	Pass
NVNT	3-DH5	2480	Ant 1	-55.93	-20	Pass

ilac-MR/

ACCREDITED Certificate #4298.01

Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref



Ref Level 17.62 df Att 20 SGL Count 30/30			28W 100 kHz 28W 300 kHz	Mode Au	uto Sweep	1		
●1Pk Max				M1	[1]			5.48
10 dBm Mi				M2			2	.401650 -50.37
0 dBm							2	.517012
-10 dBm	58 dBm							
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm	MB M4	M5						
-60 dBm								
-70 dBm							+	
-80 dBm Start 30.0 MHz			30001 p	ts			St	op 25.0 (
Marker		1			1	_		
TypeRefTrcM11	X-value 2.4016		Y-value 5.48 dBm	Functi	on	Fu	nction Res	ult
	2.51701		-50.37 dBm -60.01 dBm					
M2 1 M3 1								
M2 1 M3 1 M4 1	4.99403 7.2962		-59.15 dBm					
M3 1 M4 1 M5 1 Spectrum Ref Level 17.78 dl Att 20	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious N				Ant1 R	ef	120
M3 1 M4 1 M5 1 Spectrum Ref Level 17.78 di	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious N	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz			Ant1 R	ef	i)a
M3 1 M4 1 M5 1 Spectrum Image: Comparison of the system	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious N	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz		uto FFT	Ant1 R		
M3 1 M4 1 M5 1 Spectrum	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious N	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 Ro		
M3 1 M4 1 M5 1 Spectrum Image: Comparison of the system	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 Ro		
M3 1 M4 1 M5 1 Spectrum Image: Construction of the second seco	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 R		
M3 1 M4 1 M5 1 Spectrum Image: Comparison of the second	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 R		
M3 1 M4 1 M5 1 Spectrum Image: Comparison of the second	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 R		
M3 1 M4 1 M5 1 Spectrum Image: Comparison of the second	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 R		
M3 1 M4 1 M5 1 Spectrum 1 Ref Level 17.78 di Att 20 SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm 30 dBm	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 R		
M3 1 M4 1 M5 1 Spectrum Ref Level 17.78 dl Att 20 SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 R		3.98
M3 1 M4 1 M5 1 Spectrum 1 Ref Level 17.78 di Att 20 SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm 30 dBm	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 R		
M3 1 M4 1 M5 1 Spectrum Ref Level 17.78 dl Att 20 SGL Count 100/100 1Pk Max 10 dBm 0 -10 dBm - -20 dBm - -30 dBm -	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 R		
M3 1 M4 1 M5 1 Spectrum Ref Level 17.78 dl Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT	Ant1 R		
M3 1 M4 1 M5 1 Spectrum Ref Level 17.78 dl Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT			
M3 1 M4 1 M5 1 Spectrum Ref Level 17.78 dl Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	4.99403 7.2962 9.63928 Tx. Spur	27 GHz 38 GHz rious NV .78 dв е R 8.9 µs е V	-59.15 dBm -59.50 dBm /NT 1-DH BW 100 kHz 'BW 300 kHz	Mode Au	uto FFT		2.440	

SGL Count 3	17.78 dBm 20 dB			RBW 100 kH: /BW 300 kH:		Auto Sweep	1		
●1Pk Max	0700								
10 dBm					M	1[1]		2.4	3.38 c 440770
0 dBm					M	2[1]			-53.10 d 184640
-10 dBm								a.	184040
	1 -16.021	dBm							
-30 dBm									
-40 dBm		40							
-50 dBm——	M	M	4 M	ē .		, dation and this can			. بار که
-60 dBm				ا- 10 مالار هم دور ولي ^{ال} اريسية. ومحمد وموادر مريد مريد مريد مريد م					
-70 dBm									-
Start 30.0 M	Hz			3000:	1 pts			Stor	p 25.0 G
Marker				0000	r pts			0.0	20.00
Type Ref M1	Trc 1	X-value 2,440	9 / / / / / / / / / / / / / / / / / / /	Y-value 3.38 dB	Func m	tion	Fund	ction Resul	t
M2 M3	1	5.1846	54 GHz	-53.10 dB	m				
M4	1	5.02649	34 GHz	-59.17 dB -59.83 dB	m				
M5	1	9.93476	67 GHz	-59.05 dB	m				
Spectrum Ref Level : • Att	17.60 dBm 20 dB			RBW 100 kH: /BW 300 kH:		Auto FFT		f	
Ref Level	20 dB					Auto FFT			
Ref Level 3 Att SGL Count 10 1Pk Max	20 dB				z Mode /	Auto FFT			
Ref Level : Att SGL Count 10	20 dB			/BW 300 kH:	z Mode /				
Ref Level 3 Att SGL Count 10 1Pk Max	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level 3 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level 3 Att SGL Count 10 PIPk Max 10 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level 3 Att SGL Count 10 1Pk Max 10 dBm 0 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level : Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level 3 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level : Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				3.93 (
Ref Level : Att SGL Count 11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level Att SGL Count 11 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level Att SGL Count 11 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level Att SGL Count 11 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20 dB		18.9 μs 🕳 ۱	/BW 300 kH:	z Mode /				
Ref Level Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm			18.9 μs 🕳 ۱	/BW 300 kH:	Z Mode /			2.4798	

Report	No.: STR220722003001	E
--------	----------------------	---

SGL Count 10 1Pk Max	5, 10								
10 dBm					M1	[1]		2	3.29 d 401650 0
0 dBm				_	M2	[1]			-50.91 d 900.621 M
-10 dBm									
-20 dBm D:	1 -17.502	dBm							
-30 dBm							_		
-40 dBm				_					
-50 <mark>7</mark> dBm				_					
-60 dBm	N	13 M4	M The second second second	5 Second and the second states of the second states of the second states of the second states of the second states	المحمية سأسلق	ومدام خالي	nte Rustanature en	a second second	
-70 dsm	and the second		مەكى _{ير (} يويلەك م	and a literative end distribution of	and the second secon				- The second sec
-80 dBm									
Start 30.0 M Marker	Hz			30001	pts			Sto	op 25.0 Gl
Type Ref		X-value		Y-value	Functi	ion	Fun	ction Resu	lt
M1 M2	1	2.4016	1 MHz	3.29 dBr -50.91 dBr	n				
M3 M4	1	4.97489	92 GHz 17 GHz	-60.57 dBr -58.23 dBr					
	1	1.0055		00.20 001					
M5 Spectrum Ref Level 3 Att SGL Count 10	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr	H5 244		Ant1 Re	in the second	<i>)6</i> 1
M5 Spectrum Ref Level 1 Att	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	H5 244	uto FFT	Ant1 Re	f	
M5 Spectrum Ref Level 3 Att SGL Count 10	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A		Ant1 Re		3.29 d
M5 Spectrum Ref Level 1 SGL Count 11 1Pk Max 10 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	H5 244	uto FFT	Ant1 Re		3.29 d
M5 Spectrum Ref Level 1 Att SGL Count 1(1Pk Max	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d
M5 Spectrum Ref Level 1 SGL Count 11 1Pk Max 10 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d 209960 C
M5 Spectrum Ref Level 1 Att SGL Count 1(1Pk Max 10 dBm 0 dBm -10 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d
M5 Spectrum Ref Level 1 Att SGL Count 1(1Pk Max 10 dBm 0 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d
M5 Spectrum Ref Level 1 Att SGL Count 1(1Pk Max 10 dBm 0 dBm -10 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d
M5 Spectrum Ref Level 12 Att SGL Count 11 1Pk Max 10 dBm -10 dBm -20 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d
M5 Spectrum Ref Level 3 StL Count 10 91Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d
M5 Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d
M5 Spectrum Ref Level 3 StL Count 10 91Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d
M5 Spectrum Ref Level 3 StL Count 10 91Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d
MS Spectrum Ref Level 3 Att SGL Count 10 The Max O dBm O dBm O dBm O dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	1 [9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re		3.29 d
M5 Spectrum Ref Level 2 Att SGL Count 11 9 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm	1 17.78 dBr 20 d 30/100	9.45700 Tx. Spur	rious 1	-60.42 dBr	Mode A	uto FFT	Ant1 Re	2.4411	3.29 d 209960 (
M5 Spectrum Ref Level Att SGL Count 11 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	1 17.78 dBr 20 d 30/100	9.45700 Tx. Spur	rious 1	-60.42 dBr NVNT 2-D RBW 100 kHz	Mode A	uto FFT	Ant1 Re	2.4411	3.29 d

Ref Level 17.78 c Att 20 SGL Count 10/10		IB 🖷 RBW 100 kHz ns 🖶 VBW 300 kHz	Mode Auto Swee	р		
●1Pk Max			M1[1]			0.16
10 dBm						40770
0 dBm			M2[1]			55.26 74650
-10 dBm						
-20 dBm D1 -16.7	713 dBm					
-30 dBm						
-40 dBm						
-50 dBm	MB M4					
-60 dBm	M4	MB	Alexander of the states	ne ne ne ne provinsi Ne second	a Thursdan Ingeneration	
-70 dBm		en provense en provinsi en al anciente en al				
						05.0
Start 30.0 MHz Marker		30001 pt	5		stop	25.0
TypeRefTrcM11	X-value 2.44077 GH	Y-value Iz 0.16 dBm	Function	Fun	ction Result	
M2 1	16.27465 GH	lz -55.26 dBm				
	4.999862 GH					
M3 1 M4 1	7.163097 GH	lz –60.32 dBm				
M4 1 M5 1 Spectrum 1 Ref Level 17.60 c Att 20	lBm Offset 7.60 d IdB SWT 18.9 μ		5 2480MHz Mode Auto FFT	Ant1 Re	ef	24
M4 1 M5 1 Spectrum 1 Ref Level 17.60 c	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re	ef	2
M4 1 M5 1 Spectrum 1 Ref Level 17.60 c Att 20 SGL Count 100/100	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH		Ant1 Re	2.47998	
M4 1 M5 1 Ref Level 17.60 c Att 20 SGL Count 100/100 1Pk Max 10	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c Att 20 SGL Count 100/100	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c Att 20 SGL Count 100/100 1Pk Max 10	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		3.80
M4 1 M5 1 Ref Level 17.60 c Att 20 SGL Count 10 dBm 0 0 dBm 0	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c Att 20 SGL Count 10 dBm 0 0 dBm -10 dBm -20 dBm -20 dBm	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c Att 20 SGL Count 10 dBm 0 -10 dBm -10 dBm	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c Att 20 SGL Count 10 dBm 0 0 dBm -10 dBm -20 dBm -20 dBm	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c 4tt SGL Count 100/100 1PK Max 10 dBm 0 0 dBm -10 dBm -20 dBm -30 dBm	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c Att 20 SGL Count 10 dBm 0 0 dBm -10 dBm -20 dBm -30 dBm	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c 4tt SGL Count 100/100 1PK Max 10 dBm 0 0 dBm -10 dBm -20 dBm -30 dBm	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c 1 SGL Count 100/100 1 IPK Max 1 10 dBm 0 -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c Att 20 SGL Count 10 dBm 0 0 dBm - -10 dBm - -20 dBm - -30 dBm - -60 dBm - -70 dBm -	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re		
M4 1 M5 1 Ref Level 17.60 c Att SGL Count 100/100 1Pk Max 10 dBm 0 -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	9.955575 GH Tx. Spuriou IBm Offset 7.60 d I dB SwT 18.9 µ	IS NVNT 2-DH	Mode Auto FFT	Ant1 Re	2.47998	

Spectrum									
Ref Level				RBW 100 kH					
Att SGL Count 1	20 dE LO/10	B SWT	250 ms 👄	VBW 300 kH	z Mode /	Auto Swe	ер		
●1Pk Max									
10 dBm					м	1[1]			-0.39
M1					M	2[1]			479890 -55.19
0 dBm									714122
-10 dBm——									
-20 dBm	01 -16.199	dBm					_		
-30 dBm									
-40 dBm——									
-50 dBm——				M5		Ma			
-60 dBm	N.	13 M4	and the standard statement of the	in the state of th	المعامر ومنافع واورون	ال التي ترسيسي محمد التركي	فاريقوه والقاسخ أرقعه	his manufacture	J. Company
-70 dBm	autodal de la companya de	A CONTRACTOR OF	filles weber	and a state of a state of a state of the state	ala da matembra a bata	A of the Action of the Action of the	a da dada da	- Albert Street Street	-
-80 dBm Start 30.0 M	1117			3000	1 nts			Sto.	p 25.0
Marker				3000	. pts			310	P 20.0
Type Ref		X-value		Y-value	Func	tion	Fur	nction Resu	lt
M1 M2	1		89 GHz	-0.39 dB -55.19 dB					
M2 M3	1	16.7141 5.0439		-60.30 dB					
M4	1	7.29210		-60.08 dB					
M5		10.1187		-59.04 dB))2MHz	edv 🔲 2 Ant1 Re	ef	X
M5 Spectrum		Tx. Spu	rious N	NVNT 3-D	0H5 240) Pr)2MHz	adr 🔲 2 Ant1 Re	ef	XA
M5		Tx. Spu	rious N)H5 240) 01)2MHz Auto FFT	atr 🚺 2 Ant1 Re	ef	Kî)
M5 Spectrum Ref Level Att SGL Count 1	17.62 dBn 20 df	Tx. Spu	rious N	NVNT 3-D RBW 100 kH)H5 240		atr 🚺 2 Ant1 Re	ef	KG.
Spectrum Ref Level	17.62 dBn 20 df	Tx. Spu	rious N	NVNT 3-D RBW 100 kH)H5 24() ^z Mode /	Auto FFT	atr 🚺 2 Ant1 Re	əf	4.49
M5 Spectrum Ref Level Att SGL Count 1 • 1Pk Max	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /		adv 2 Ant1 Re	ef 2.4018	
M5 Spectrum Ref Level Att SGL Count 1	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-D RBW 100 kH)H5 24() ^z Mode /	Auto FFT	adv 2 Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 • 1Pk Max	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	adv III Re		
M5 Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	adv 2 Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	adv 2 Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	adv 2 Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		4.48 390050
M5 Spectrum Ref Level Att SGL Count 1 10 dBm 0 dBm -10 dBm -20 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 10 dBm 0 dBm -10 dBm -20 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		
M5 Spectrum Ref Level SGL Count 1 ID dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		
M5 Spectrum Ref Level SGL Count 1 ID dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 O dBm 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 9 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		
M5 Spectrum Ref Level Att SGL Count 1 O dBm 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	17.62 dBn 20 df	Tx. Spu	rious N 7.62 dB • 18.9 µs •	NVNT 3-C RBW 100 kH VBW 300 kH)H5 24() ^z Mode /	Auto FFT	Ant1 Re		

Ref Leve Att SGL Coun	el 17.62 dBm 20 dB t 30/30			RBW 100 kH: VBW 300 kH:		Auto Sweep	1		
●1Pk Max						1[1]			4.56
10 dBm 😽	1					1[1]			01650
0 dBm					M	2[1]			-51.47 /45439
-10 dBm—									
-20 dBm—	D1 -15.518	UBIII							
-30 dBm—									
-40 dBm—									
-50 dBm		M4	M	8					
-60 dBm—	M3								Markin
-70 dBm—									
-80 dBm—									
Start 30.0 Marker) MHz			30001	l pts			Stop	0 25.0 (
Type Re	ef Trc	X-value		Y-value	Func	tion	Fund	ction Result	t
M1 M2	1	2.4016	65 GHz 39 GHz	4.56 dB -51.47 dB					
MЗ	1	4.7551	56 GHz	-59.84 dB	m				
M4	1	7.01244		-58.82 dB					
M5 Spectrur			rious N'	-59.15 dB	H5 244) 1MHz /	h 🗍 Ant1 Re	f	6
M5 Spectrur Ref Leve Att	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F		H5 244	1MHz	Ant1 Re	f	a
M5 Spectrur Ref Leve	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	H5 244		Ant1 Re	f	0
M5 Spectrur Ref Leve Att SGL Coun PlPk Max	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3		Ant1 Re		
M5 Spectrur Ref Leve Att SGL Count	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re	f 2.44099	
M5 Spectrur Ref Leve Att SGL Coun PlPk Max	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		3.83
M5 Spectrur Ref Leve Att SGL Coun 1Pk Max 10 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		
M5 Spectrur Ref Leve Att SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		
M5 Spectrur Ref Leve Att SGL Coun 1Pk Max 10 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		
M5 Spectrur Ref Leve Att SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		
M5 Spectrui Ref Leve Att SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		
M5 Spectrur Ref Leve Att SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		
M5 Spectrui Ref Leve Att SGL Coun 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		
M5 Spectrum Ref Leve Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		
M5 Spectrui Ref Leve Att SGL Coun IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		
M5 Spectrum Ref Leve Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		
M5 Spectrum Ref Leve Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	m el 17.78 dBm 20 dB	Tx. Spui	rious N' 7.78 db • F	VNT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Auto FFT	Ant1 Re		

SGL Count 30/30 1Pk Max						
10 dBm			M1[1]		2.4	1.36 4077
0 dBm			M2[1]		-	53.99
-10 dBm					1.8	9942
D1 -16.16	i8 dBm					
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm	M3 .M4	M5		1.40		
-60 dBm		the second se			All the second s	Å:A
-70 dBm	+					
Start 30.0 MHz Marker		3000:	L pts		Stop	25.0
Type Ref Trc	X-value	Y-value	Function	F	unction Result	
M1 1 M2 1	2.44077 GH 1.899421 GH	lz -53.99 dB	m			
M3 1	4.873348 GH	lz -59.49 dB	m			
M4 1 M5 1 Spectrum Ref Level 17.60 dE Att 20	7.372845 GF 9.948084 GF Tx. Spuriou	lz -59.42 dB	m m 0H5 2480Mł		Ref	N
M4 1 M5 1 Spectrum Ref Level 17.60 dB	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m DH5 2480MI z z Mode Auto F		Ref	1
M4 1 M5 1 Ref Level 17.60 dE Att 20 SGL Count 100/100 IPk Max 100/100	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4		2.48016	
M4 1 M5 1 Spectrum Image: Construction of the second	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m DH5 2480MI z Mode Auto F			
M4 1 M5 1 Ref Level 17.60 dE Att 20 SGL Count 100/100 IPk Max 100/100	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			3.93 1445
M4 1 M5 1 Ref Level 17.60 dB Att 20 d SGL Count 100/100 1Pk Max 10 dBm	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm 0 dBm	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -30 dBm	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -30 dBm	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 SGL Count 100/100 • 1Pk Max 10 dBm • 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 SGL Count 100/100 • 1Pk Max 10 dBm • 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 dBm 0 dBm 0 -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -50 dBm	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 dBm SGL Count 100/100 IPk Max 10 dBm 0 dBm - -10 dBm - -30 dBm - -50 dBm - -60 dBm -	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4			
M4 1 M5 1 Ref Level 17.60 dB Att 20 dBm SGL Count 100/100 IPk Max 10 dBm 0 dBm - -10 dBm - -30 dBm - -50 dBm - -60 dBm -	7.372845 GF 9.948084 GF Tx. Spuriou	12 -59.42 dB 12 -59.79 dB IS NVNT 3-D 18 • RBW 100 kH	m m 2 2 Mode Auto F M1[1]		2.48016	

ACCRE

Spect		17.60 di	3m Offset 7.6	0 dB 🚅	PBW 1	00 kH2						
Att		20		-	VBW 3		Mode	Auto Sv	veep			
SGL Co		0/30										
							М	1[1]				2.78 dB
10 dBm·	М1				+							79890 GF
0 dBm—	1				_		M	2[1]				-52.01 dB 041037 GF
								I			1.5	
-10 dBm	· •		+ +									
-20 dBm	D	1 -16.0	56 dBm									
20 40.0	·											
-30 dBm												
-40 dBm			_		_							
N	12											
-50 dBm	-		МЗ ми		MS							
-60 dBm					Taken ala	المعاملة المعادية	فيتكبر والطب			Notes Prove Automatics	Signation Provides	harborates
				and a part of the second	and the first of	and the second second					China a standarda	
-70 dBm					-							
-80 dBm												
Start 3		Hz			;	30001 pt	s				Stop	25.0 GH
/larker												
Туре	Ref	Trc	X-value		Y-va	lue	Func	tion		Func	tion Result	t
M1		1	2.47989			78 dBm						
M2		1	1.941037			01 dBm						
M3		1	5.100575			50 dBm						
M4 M5		1	7.427779			62 dBm 08 dBm						

END OF REPORT