

of 150 Page 1

FCC SAR TEST REPORT

For **SWAGTEK** 10.1 inch 4G Tablet

Model No.: T10L, Stream 10, NT10 FCC ID: 055104320

Prepared For	pri	SWAGTEK	
Address		10205 NW 19th St. STE101, Miami, Florida, United States, 33172	
Annotek Ant		Andor Anbotek Anbotek Anbotek Anbotek Anbotek An	
Duon and Dry	noolo	Shanzhan Anhatak Comulianaa Lahanatamy Limitad	

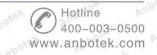
Shenzhen Anbotek Compliance Laboratory Limited Prepared By 1/F., Building1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan Address District, Shenzhen, Guangdong, China Tel:(86)755-26066440 Fax:(86)755-26014772

Report Number	Pur	SZAWW191017009-01
Date of Test	6.	Dec.14, 2020 ~ Dec.18,2020
Date of Report	104 :	Dec.21,2020

Shenzhen Anbotek Compliance Laboratory Limited

Page 2 of 150

Contents


for	Ctata	above of Compliant's subolar Ana Ana Ana Ana Ana Ana	6
1.	State	ment of Compliance ral Information	C
2.		ral Information	······ /
	2.1	Client Information	(a)
	2.2		
	2.3	Description of Equipment Under Test(EUT)	
	2.4	Device Category and SAR Limits	
	2.5	Applied Standard	10
	2.6	Environment of Test Site	10
	2.7	Test Configuration	10
3.	Spec	ific Absorption Rate (SAR)	11
	3.1	Introduction	1′
	3.2	SAR Definition	
4.	SAR	Measurement System	12
	4.1	E-Field Probe	13
	4.2	Data Acquisition Electronics (DAE) Robot	1
	4.3	Robot	1
	4.4	Measurement Server	
	4.5	Phantom	14
	4.6	Device Holder	
	4.7	Data Storage and Evaluation	1
5.	Test	Equipment List	19
6.	Tissu	e Simulating Liquids	20
7.	Syste	em Verification Procedures	23
8.	EUT	Testing Position	
	8.1.	Define two imaginary lines on the handset	2
	8.2.	Position for Cheek/Touch	20
	8.3.	Position for Ear / 15°Tilt	2
	8.4.	Body Worn Position	
9.	Meas	Surement Procedures	28
	9.1	Spatial Peak SAR Evaluation	
	9.2	Power Reference Measurement	2
	9.3	Area & Zoom Scan Procedures	2
	9.4	Zoom Scan Procedures	
	9.5	Volume Scan Procedures	
	9.6	Power Drift Monitoring	
10	Cond	Area & Zoom Scan Procedures Zoom Scan Procedures Volume Scan Procedures Power Drift Monitoring lucted Power Test Results Summary	3
11	SAP	Test Results Summary	
12	SAP.	Measurement Variability Itaneous Transmission Analysis	56
12	Circle	Itenaous Tronomission Analysis	

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Anbotek	安博检测		Anborn Anborok An
Product Safety	Anbotek Testing		
Report No.: 18	220WC00157201	FCC ID:055104320	Page 3 of 150
14. Measurem	ent Uncertainty		
Appendix A.	EUT Photos and	Test Setup Photos	61
Appendix B.	Plots of SAR Sy	stem Check	
Appendix C.	Plots of SAR Te	st Data	
Appendix D.	DASY System	Calibration Certificate	77
Appendix E.	Extended Calib	oration SAR Dipole	

Shenzhen Anbotek Compliance Laboratory Limited

Page 4 of 150

TEST REPORT

Applicant	: SWAGTEK	
Manufacturer	: SWAGTEK	
Product Name	: 10.1 inch 4G Tablet	
Model No.	: T10L, Stream 10, N7	10
Trade Mark	: LOGIC, iSWAG, UN	JONU
Rating(s)	: DC 3.8V from batter	y Anbou

Test Standard(s) : IEEE 1528-2013; IEC 62209-2:2010;ANSI/IEEE C95.1:2005; FCC 47 CFR Part 2 (2.1093:2013);

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEEE 1528-2013, IEC 62209-2:2010, FCC 47 CFR Part 2 (2.1093:2013), ANSI/IEEE C95.1:2005requirements.

This report applies to above test edsample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test

Prepared By

Reviewer

Dec.14, 2020 ~ Dec.18,2020

Boloby Wang

(Engineer/Bobby Wang)

Colvin Liss

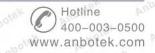
(Supervisor / Calvin Liu)

(Manager/TomChen)

Approved & Authorized Signer

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com



Page 5 of 150

Version

Version No.	Date	Description
01	Dec.21,2020	Original
And hotek Anbolek	Anbolas Anobolek	Anbotek Anbotek Anbotek Anbotek
Anbotek Anbot	anborek Anbotek	Anboten Ann Anboten Anboten Anbo
ok Anbotok An	ootek Anbotek Anbo	or Antio hotek Antiotak Antiotak At
potek Appolen ok	housek Anbotek Ar	open hundres hundres hundres hundres
Antipotek Antipotek	Anbotek Anboten	Anbo colek Anbolek Anbole Ano

Shenzhen Anbotek Compliance Laboratory Limited

Page 6 of 150

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing areas follows.

<Highest SAR Summary>

	Highest Reported 1g-SAR(W/Kg)		SAR Test Limit	
Frequency Band	Body	Hotspot	(W/Kg)	
GSM 850	0.753	0.731	1.6	
PCS 1900	0.652	0.612	1.6	
WCDMA Band 2	0.609	0.583	1.6	
WCDMA Band 5	0.634	0.562	1.6	
LTE Band 4	0.659	0.608	1.6	
LTE Band 5	0.912	0.787	1.6	
LTE Band 7	0.682	0.654	1.6	
LTE Band 12	0.754	0.714	1.6	
WIFI 2.4G	0.538	0.525	1.6	
Simultaneous SAR	Anthe tek obd	.450	1.6	
Test Result	oten Augo A	Pass	tell obelet	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

Shenzhen Anbotek Compliance Laboratory Limited

Page 7 of 150

2. General Information

2.1 Client Information

Applicant:	SWAGTEK	Vupor
Address of Applicant:	10205 NW 19th St. STE101, Miami, Florida, United States, 33172	Pur
Manufacture:	SWAGTEK	14
Address of Manufacture:	10205 NW 19th St. STE101, Miami, Florida, United States, 33172	10H

2.2 Testing Laboratory Information

Test Site:	Shenzhen Anbotek Compliance Laboratory Limited
Address:	1/F.,Building1,SECIndustrialPark,No.0409QianhaiRoad,NanshanDistrict,Shenzhe
	n,Guangdong,China

2.3 Description of Equipment Under Test(EUT)

Product Name:	10.1 inch 4G Tablet
Model/Type reference:	T10L
Power supply:	DC 3.8V from battery
Hardware version:	SF960C-G-MB-V1.0
Software version:	LOGIC_T10L_TIGO_18092020
GSM	
Operation Band:	GSM850, PCS1900
Supported Type:	GSM/GPRS/EGPRS
Power Class:	GSM850:Power Class 4 PCS1900:Power Class 1
Modulation Type:	GMSK for GPRS, 8-PSK for EGPRS
GSM Release Version	R6
GPRS Multislot Class	12
Antenna type:	12 Anborek Anbore Anex Anborek Anborek Anborek Anborek Anborek

Shenzhen Anbotek Compliance Laboratory Limited

Antenna gain:	FPC antenna
WCDMA	and a state and a state a state a state
	-k sole Ann rek soon An
Operation Band:	FDD Band II, FDD Band V
Power Class:	Power Class 3
Modilation Type:	QPSK for HSUPA/HSDPA
WCDMA Release Version:	Rel-R8
HSDPA Category:	Category 14
HSUPA Category:	Category 6
Antenna type:	FPC antenna
Antenna Gain:	-0.5 dBi for WCDMA Band V; 1.2dBi for WCDMA Band II
LTE	
Operation Band:	E-UTRA Band 4, band5, band7, band12
Support Bandwidth:	Band 4: 1.4MHz, 3MHz,5MHz,10MHz,15MHz,20MHz Band 5: 1.4MHz,3MHz,5MHz,10MHz Band 7: 5MHz,10MHz,15MHz,20MHz Band 12: 1.4MHz,3MHz,5MHz,10MHz
TX/RXFrequency Range:	Band 4: 1710MHz-1755MHz/2110MHz-2155MHz Band 5: 824MHz-849MHz/869MHz-894MHz Band 7: 2500MHz-2570MHz/2620MHz-2690MHz Band 12: 699MHz-716MHz/729MHz-746MHz
Modulation Type:	QPSK, 16QAM
Release Version:	Release 10
Category:	Cat 4
Antenna Type:	FPC antenna
Antenna Gain:	0.8dBi for LTE Band 4 0.8dBi for LTE Band 5 0.5 dBi for LTE Band 7 -3.5 dBi for LTE Band 12
WIFI	
Supported type:	802.11b/802.11g/802.11n(H20)

Shenzhen Anbotek Compliance Laboratory Limited

	/ abbuck resuling
Report No.: 1	8220WC00157201

FCC ID:055104320

Page 9 of 150

10001110102201100	
Modulation:	802.11b: DSSS 802.11g/802.11n(H20): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11
Channel separation:	5MHz
Antenna type:	FPC antenna
Antenna gain:	1.50dBi
Bluetooth :	
Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	FPC antenna
Antenna gain:	1.50dBi
Bluetooth LE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40-mar house house house house house
Channel separation:	2 MHz
Antenna type:	FPC antenna
Antenna gain:	1.50dBi
Not Not	

2.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. according to IEEE Std C95.1, 1999:((IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz). It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

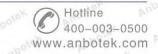
FCC ID:055104320

Page 10 of 150

2.5 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- IEEE 1528-2013
- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- IEC 62209-2:2010
- IEC 62209-2:2010
- KDB 248227 D01
- KDB 447498 D01
- KDB 616217 D04
- KDB 648474 D04
- KDB 865664 D01
- KDB 941225 D01
- KDB 941225 D06
- KDB 941225 D07


2.6 Environment of Test Site

Items	Required	Actual
Temperature (° C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.7 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek 安博检测 **Product Safety Anbotek Testing**

Report No.: 18220WC00157201

FCC ID:055104320

Page 11 of 150

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 **SAR Definition**

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

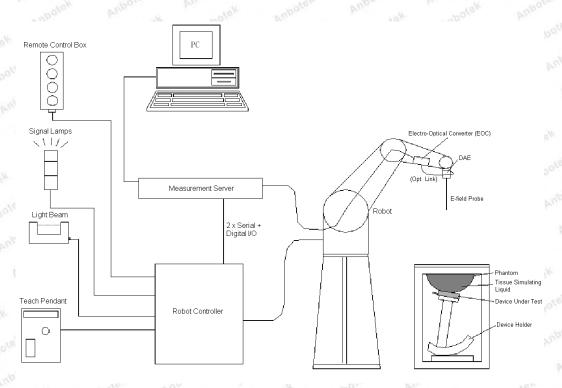
$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.


Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320 Page 12 of 150

4. SAR Measurement System

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- > Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

FCC ID:055104320

Page 13 of 150

4.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

E-Field Probe Specification <EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		Ant
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	1000 2.V	÷.,
Directivity	 ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis) 	Ar North	Ant
Dynamic Range	10 μW/g to 100 W/kg; Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	nto of	10
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	Photo of EX3DV4	Anb

> E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Shenzhen Anbotek Compliance Laboratory Limited

Photo of DAE

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

Page 14 of 150

Report No.: 18220WC00157201 FCC ID:055104320

Page 15 of 150

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5 Phantom

<SAM Twin Phantom>

0- 1		100
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm;	
	Height: adjustable feet	
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
	Anbole Annotek Anboles P	2
	Allbolen Allbo	*
	obolek Anbor An Louis	
	at wotek anbote. Ano	

Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	$2 \pm 0.2 \text{ mm} (\text{sagging: <1\%})$
Filling Volume	Approx. 30 liters
Dimensions	Major ellipse axis: 600 mm
P	Minor axis:400 mm
	tek public Alle public
	potek Anbou Anu otek anboiek
	shotek Anbole, Antralek Anbo
	All notek Anbolen Anbo tek notek Anbor All notek
	Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Report No.: 18220WC00157201

FCC ID:055104320

frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 16 of 150

Anbotek Product Safety Product Safety

Report No.: 18220WC00157201

FCC ID:055104320

Page 17 of 150

4.7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression point	dcpi
Device parameters:	- Frequency	f Anbore
	- Crest factor	cf and the
Media parameters:	- Conductivity	o det populet
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety Report No.: 18220WC00157201

FCC ID:055104320

Page 18 of 150

$$\mathbf{V}_{i} = \mathbf{U}_{i} + \mathbf{U}_{i}^{2} \cdot \frac{\mathbf{C}}{\mathbf{d}\mathbf{c}\mathbf{p}_{i}}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$\mathbf{E}_{i} = \sqrt{\frac{\mathbf{V}_{i}}{\mathbf{Norm}_{i}\cdot\mathbf{ConvF}}}$$

H-field Probes:
$$\mathbf{H}_{i} = \sqrt{\mathbf{V}_{i}} \cdot \frac{\mathbf{a}_{i0} + \mathbf{a}_{i1}f + \mathbf{a}_{i2}f^{2}}{\epsilon}$$

with V_i = compensated signal of channel i,(i = x, y, z) Norm_i= sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF= sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

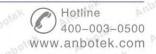
The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg


 $E_{\text{tot}}\text{=}$ total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Shenzhen Anbotek Compliance Laboratory Limited

Page 19 of 150

5. Test Equipment List

Manager	Nama of Fasting and	Tom (Madal	Santal Maruhan	Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	750MHz System Validation Kit	D750V3	1163	Sep.03,2019	Sep.02,2022	
SPEAG	835MHz System Validation Kit	D835V2	4d154	Jun.16,2018	Jun.15,2021	
SPEAG	1750MHz System Validation Kit	D1750V2	1021	Jul.03,2019	Jul.02,2022	
SPEAG	1900MHz System Validation Kit	D1900V2	5d175	Jun.15,2019	Jun.14,2022	
SPEAG	2450MHz System Validation Kit	D2450V2	910	Jun.15,2018	Jun.14,2021	
SPEAG	2600MHz System Validation Kit	D2600V2	1058	Jun.19,2019	Jun.18,2022	
SPEAG	Data Acquisition Electronics	DAE4	387	Sep.06.2020	Sep.05.2021	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May.06,2020	May.05,2021	
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Nov.03,2020	Nov.02, 2021	
SPEAG	DAK	DAK-3.5	1226	NCR	NCR	
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR	
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR	
Agilent	Power Meter	N1914A	MY50001102	Nov.03, 2020	Nov.02, 2021	
Agilent	Power Sensor	N8481H	MY51240001	Nov.03, 2020	Nov.02, 2021	
R&S	Spectrum Analyzer	N9020A	MY51170037	Nov.03, 2020	Nov.02, 2021	
Agilent	Signal Generation	N5182A	MY48180656	Nov.03, 2020	Nov.02, 2021	
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Nov.03, 2020	Nov.02, 2021	

Note:

1.

- The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
 - The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
 - The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
 - In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Shenzhen Anbotek Compliance Laboratory Limited

Page 20 of 150

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Liquid depth in the Head&body Phantom (750MHz)Liquid depth in the Head&body Phantom (835MHz)

Liquid depth in the Head&body Phantom (1750MHz)Liquid depth in the Head&body Phantom (1900MHz)

Liquid depth in the Head&body Phantom (2450MHz)Liquid depth in the Head&body Phantom (2600MHz) Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Anbotek Product Safety Report No.: 18220WC00157201

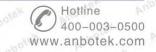
FCC ID:055104320

Page 21 of 150

The following tabl	e gives th	e recipes i	or ubbue binnar	iuting inquite	10	i ale	1924	- Yei
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(ɛr)
				For Hea	ıd			•
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1750	55.2	0 000	New 0 Mobil	0.3	0	44.5	1.37	40.1
1800,1900,2000	55.2	a 0	hotek 0 M	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0 polek	45.0	1.80	39.2
				For Bod	ly			·
900	50.8	48.2	0 obotem	0.9	0.1	0	0.97	55.2
1750	70.2	0	ust 0 pape	0.4	0	29.4	1.49	53.4
1800,1900,2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7

The following table gives the recipes for tissue simulating liquid.

Shenzhen Anbotek Compliance Laboratory Limited



Page 22 of 150

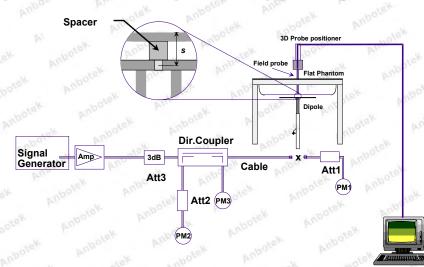
- de	Measured	Target	197	p.+		ed Tissue	100		4
Tissue Type	Frequency (MHz)	σ	٤r	σ	Dev. (±5%)	٤r	Dev. (±5%)	Liquid Temp.	Test Data
750B	750	0.96	55.5	0.94	-2.08%	55.32	-0.32%	22.4	12/15/2020
835B	900	0.97	55.2	0.99	2.06%	54.68	-0.94%	22.6	12/14/2020
1750B	1750	1.49	53.4	1.52	2.01%	54.11	1.33%	22.4	12/14/2020
1900B	1900	1.52	53.3	1.48	-2.63%	53.29	-0.02%	22.6	12/15/2020
2450B	2450	1.95	52.7	1.97	1.03%	50.54	-4.10%	22.7	12/16/2020
2600B	2600	2.16	52.5	2.10	-2.78%	51.34	-2.21%	22.5	12/16/2020

The following table shows the measuring results for simulating liquid. Dielectric Performance of Tissue Simulating Liquid

Shenzhen Anbotek Compliance Laboratory Limited

Page 23 of 150

7. System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

Shenzhen Anbotek Compliance Laboratory Limited

Page 24 of 150

Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

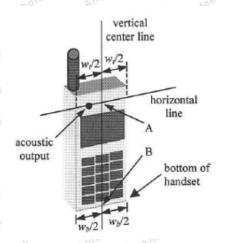
Frequency (MHz)	Liquid Type	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)	Date
750B	Body	250	8.78	2.19	8.76	-0.23%	12/15/2020
835B	Body	250	9.57	2.41	9.64	0.73%	12/14/2020
1750B	Body	250	36.7	9.16	36.64	-0.16%	12/14/2020
1900B	Body	250	40.1	10.05	40.20	0.25%	12/15/2020
2450B	Body	250	51.8	12.96	51.84	0.08%	12/16/2020
2600B	Body	250	56.8	14.22	56.88	0.14%	12/16/2020

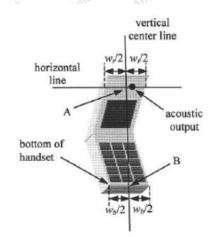
Note:

1. The graph results see system check.

2. Target Values used derive from the calibration certificate.

Shenzhen Anbotek Compliance Laboratory Limited




Page 25 of 150

8. EUT Testing Position

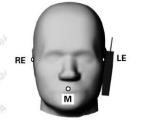
8.1. Define two imaginary lines on the handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Handset Vertical and Horizontal Reference Lines

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek 安博检测 **Product Safety Anbotek Testing**

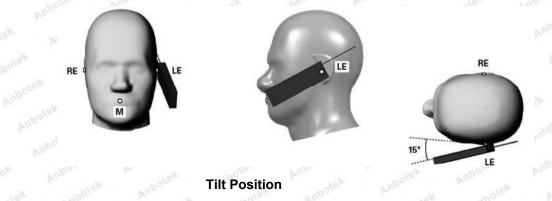

Report No.: 18220WC00157201

FCC ID:055104320

Page 26 of 150

8.2. Position for Cheek/Touch

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- To move the device towards the phantom with the ear piece aligned with the line LE-RE until the (b) phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.



Cheek Position

Position for Ear / 15° 8.3. Tilt

- To position the device in the "cheek" position described above. (a)
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 8.3).

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

FCC ID:055104320

Page 27 of 150

8.4. Body Worn Position

moinerd jeig

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per KDB 648474 D04, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

motherd teld

Body Worn Position

Shenzhen Anbotek Compliance Laboratory Limited

Page 28 of 150

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

surface

FCC ID:055104320

Page 29 of 150

f) Calculation of the averaged SAR within masses of 1g and 10g

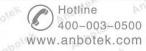
9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area & Zoom Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.


	LDD ELY	and the second sec	Links Star
		\leq 3 GHz	> 3 GHz
2	Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
54	Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
2		≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
1	Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

9.4 Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

Shenzhen Anbotek Compliance Laboratory Limited

Page 30 of 150

No. No.			20 ⁰ PS	18" NTO
Maximum zoom scan	spatial reso	lution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface		$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	X V 7		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm
		• •		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Shenzhen Anbotek Compliance Laboratory Limited

Page 31 of 150

10.Conducted Power

Puporer		Conduc	ted power	measuren	nent results	s (GSM850/1	900)		
Mode	Txslot	Burst Av	verage Pow	er (dBm)	Tune-up Limit	Calculation	Frame-Averaged Power (dBm)		
		128 190 251 (dBm) (dB)	(dB)	128	190	251			
GS	SM	32.09	32.33	32.22	33	-9.03	23.06	23.30	23.19
0000	1Txslot	32.66	32.11	32.55	33	-9.03	23.63	23.08	23.52
GPRS	2Txslot	29.69	29.82	29.76	30	-6.02	23.67	23.80	23.74
850 (GMSK)	3Txslot	27.56	27.27	27.41	28	-4.26	23.30	23.01	23.15
(GIVISK)	4Txslot	25.54	25.83	25.98	26	-3.01	22.53	22.82	22.97
50000	1 Txslot	26.83	25.83	26.04	27 pm	-9.03	17.80	16.80	17.01
EGPRS 850 (8PSK)	2Txslot	24.74	24.87	24.88	25	-6.02	18.72	18.85	18.86
	3Txslot	22.20	22.72	22.85	23	-4.26	17.94	18.46	18.59
(OFSK)	4Txslot	20.78	20.75	20.74	21	-3.01	17.77	17.74	17.73
Mode	Txslot	Burst Av	Average Power (dBm)		Tune-up Limit	Calculation	Frame-Averaged Power (dBm)		
		512	661	810	(dBm)	(dB)	128	190	251
GS	SM	30.24	30.32	29.80	31	-9.03	21.21	21.29	20.77
	1Txslot	30.31	30.90	30.74	31	-9.03	21.28	21.87	21.71
GPRS	2Txslot	27.05	27.49	27.45	28	-6.02	21.03	21.47	21.43
1900	3Txslot	24.74	24.73	24.76	25	-4.26	20.48	20.47	20.50
(GMSK)	4Txslot	23.54	23.75	23.25	24	-3.01	20.53	20.74	20.24
50000	1 Txslot	25.28	25.55	25.63	26	-9.03	16.25	16.52	16.60
EGPRS	2Txslot	23.46	23.81	23.83	24	-6.02	17.44	17.79	17.81
1900 (8PSK)	3Txslot	21.24	21.90	21.46	22	-4.26	16.98	17.64	17.20
(OF SK)	4Txslot	19.83	20.00	20.52	21	-3.01	16.82	16.99	17.51

<GSM Conducted power>

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

- 1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB
- 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB
- 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB
- 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB
- According to the conducted power as above, the body& hotspot SAR was test at the highest frame-average power GPRS 2 Tx slots for GSM850and GPRS 1 Tx slots for PCS1900.

Shenzhen Anbotek Compliance Laboratory Limited

Page 32 of 150

<WCDMA Conducted power>

Conducted power measurement results (WCDMA Band II/V)

	Dand	FDD	Bm)	Tune-up	
ltem	Band		Limit		
	ARFCN	9262	9400	9538	(dBm)
AMR	12.2kbps AMR	22.92	22.99	22.84	24
RMC	12.2kbps RMC	23.78	23.61	23.49	24
	Sub - Test 1	21.91	22.03	22.44	23
	Sub - Test 2	21.18	21.38	20.80	22
HSDPA	Sub - Test 3	21.54	21.73	21.57	22
	Sub - Test 4	20.17	20.82	19.76	21
	Sub - Test 1	21.82	21.70	22.52	23
	Sub - Test 2	21.51	20.70	21.51	22
HSUPA	Sub - Test 3	20.76	20.79	21.32	22
	Sub - Test 4	19.81	20.40	20.45	21
	Sub - Test 5	20.09	20.12	20.72	21

	Band	FDD	Tune-up			
ltem	Danu			Limit		
	ARFCN	4132	4183	4233	(dBm)	
AMR	12.2kbps AMR	22.80	22.80	22.79	24	
RMC	12.2kbps RMC	23.81	23.56	23.28	24	
	Sub - Test 1	22.60	22.68	22.83	23	
	Sub - Test 2	20.87	21.78	20.71	22	
HSDPA	Sub - Test 3	21.17	21.74	20.82	22	
	Sub - Test 4	20.47	20.76	19.82	21	
	Sub - Test 1	21.93	22.85	22.00	23	
	Sub - Test 2	21.75	20.75	20.92	22	
HSUPA	Sub - Test 3	20.82	21.48	21.48	22	
	Sub - Test 4	20.28	20.55	20.13	21	
	Sub - Test 5	20.78	19.70	19.82	21	

Per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

Shenzhen Anbotek Compliance Laboratory Limited

nbotek Product Safety Product Safety

Report No.: 18220WC00157201

<LTE Conducted Power>

FCC ID:055104320

Page 33 of 150

TX Channel	RB Size/Offset	Frequency (MHz)	Per	ge Power IBm]	Tune-up Limit (dBm)		
Bandwidth			QPSK	16QAM	QPSK	16QAM	
Anbolek y	tupote provider	1710.7	23.40	22.47	23.5	23.0	
Anbotek	1 RB low	1732.5	22.63	21.77	23.5	23.0	
	sabotek Anbor	1754.3	22.76	21.83	23.5	23.0	
Anboro	k bolek Anbr	1710.7	22.51	21.45	23.5	23.0	
reg Pupor	1 RB mid	1732.5	22.89	21.94	23.5	23.0	
shotak pro		1754.3	23.07	22.06	23.5	23.0	
wolek p	mbolos Anos tak	1710.7	23.18	22.18	23.5	23.0	
Anbotek	1 RB high	1732.5	22.74	21.63	23.5	23.0	
Amburnet	abotok Anboto	1754.3	23.26	22.30	23.5	23.0	
Puppo,	k motek anbo	1710.7	23.06	22.12	23.5	23.0	
1.4 MHz	50% RB low	1732.5	22.28	21.25	23.5	23.0	
sotek proc		1754.3	22.43	21.42	23.5	23.0	
otel-	aboran Anbor	1710.7	22.21	21.34	23.5	23.0	
Anbor lek A	50% RB mid	1732.5	22.60	21.46	23.5	23.0	
Anbow	Att: notek Anboten	1754.3	22.81	21.87	23.5	23.0	
Anbotek	Ano abotek Anbo	1710.7	22.91	21.89	23.5	23.0	
ex pupolo	50% RB Hiah	1732.5	22.44	21.46	23.5	23.0	
stell snipe	tel Anboleio Ar	1754.3	22.96	21.82	23.5	23.0	
rak h	botek Anbou	1710.7	22.80	21.90	23.5	23.0	
Propose by	100% RB	1732.5	22.02	20.97	23.5	23.0	
Anboto		1754.3	22.14	21.24	23.5	23.0	
Anboren	And tek abol	1711.5	23.01	21.95	23.5	23.0	
18 ABOLET	1 RB low	1732.5	23.28	22.34	23.5	23.0	
tok Her		1753.5	22.70	21.73	23.5	23.0	
as pri	botek Anbote	1711.5	22.99	22.04	23.5	23.0	
Auporto - 4	1 RB mid	1732.5	23.32	22.22	23.5	23.0	
Anboten	Ano-	1753.5	23.41	22.37	23.5	23.0	
3 MHz	And you you	1711.5	22.67	21.54	23.5	23.0	
3 MHZ	1 RB high	1732.5	23.14	22.24	23.5	23.0	
way mat	ek Anbolen An	1753.5	22.82	21.74	23.5	23.0	
on bun	otek anhoten	1711.5	22.71	21.74	23.5	23.0	
inpoter po	50% RB low	1732.5	22.94	21.84	23.5	23.0	
anbotek		1753.5	22.35	21.37	23.5	23.0	
abolek		1711.5	22.70	21.72	23.5	23.0	
p otel	50% RB mid	1732.5	23.00	22.00	23.5	23.0	

Conducted Power Measurement Results (LTE FDD Band 4,

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

oduct Safety	Anbotek Testing					
Report No.: 18	3220WC00157201	100	055104320	apporter	Page 34	of 150
anboton.	Anbo with polek	1753.5	23.13	22.15	23.5	23.0
h inbotet	Anbour Anton	1711.5	22.41	21.26	23.5	23.0
	50% RB High	1732.5	22.88	21.93	23.5	23.0
otek Anbe	stok sabotek pro	1753.5	22.55	21.46	23.5	23.0
indoten A	tek nbotek b	1711.5	22.42	21.34	23.5	23.0
Anpolok	100% RB	1732.5	22.62	21.54	23.5	23.0
notek	pubolo Ann rok	1753.5	22.02	21.02	23.5	23.0
K anhotek	Anboten Anbo	1712.5	22.87	21.81	23.5	23.0
	1 RB low	1732.5	23.34	22.26	23.5	23.0
otek pribo	with worker propo	1752.5	22.76	21.65	23.5	23.0
obotak pr	por principlek	1712.5	22.72	21.59	23.5	23.0
notek	1 RB mid	1732.5	23.39	22.35	23.5	23.0
Ann Lotek	Anbotek Anbo	1752.5	23.34	22.42	23.5	23.0
Amprilia	abotek Anbou	1712.5	23.05	21.98	23.5	23.0
e pupper	1 RB high	1732.5	22.90	22.03	23.5	23.0
stek Aupol	a Anti otek Anto	1752.5	23.07	22.16	23.5	23.0
solet an	poter And tex	1712.5	22.59	21.46	23.5	23.0
5 MHz	50% RB low	1732.5	23.03	22.15	23.5	23.0
Anboursek	h potek pubole	1752.5	22.45	21.40	23.5	23.0
Aupolic	An otek anboter	1712.5	22.41	21.41	23.5	23.0
AUPOLO	50% RB mid	1732.5	23.14	22.00	23.5	23.0
rek bupol	an Auprilian tek stor	1752.5	23.03	22.14	23.5	23.0
he Hale	potek Adda k	1712.5	22.74	21.66	23.5	23.0
iby rok h	50% RB High	1732.5	22.55	21.61	23.5	23.0
P-upotek	An otek anboten	1752.5	22.72	21.82	23.5	23.0
Anboton	And tek abotek	1712.5	22.30	21.39	23.5	23.0
anbotek	100% RB	1732.5	22.75	21.87	23.5	23.0
telt about	K Anton Ant	1752.5	22.19	21.05	23.5	23.0
	ofer Pupoles Plip	1715.0	22.75	21.66	23.5	23.0
potok Ant	1 RB low	1732.5	22.68	21.76	23.5	23.0
Anboten	know wok wootek	1750.0	23.41	22.41	23.5	23.0
Anbotok	Antion A notek	1715.0	23.50	22.50	23.5	23.0
A. botek	1 RB mid	1732.5	22.67	21.77	23.5	23.0
A 1016	e anboten Anbo	1750.0	23.40	22.45	23.5	23.0
10 MHz	stek subotek Anbre	1715.0	22.52	21.60	23.5	23.0
potek Ant	1 RB high	1732.5	23.05	21.97	23.5	23.0
abotek p	noot Anno tek	1750.0	23.11	22.08	23.5	23.0
potek	Anboten Anbo	1715.0	22.50	21.62	23.5	23.0
Ann	50% RB low	1732.5	22.39	21.54	23.5	23.0
Aupo	50% (KE low	1750.0	23.13	22.11	23.5	23.0

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Anbotek Product Safety	安博检测 Anbotek Testing				Anbatek An	
Report No.: 18	3220WC00157201	FCC ID:	O55104320	abotek	Page 35	of 150
L obolek		1715.0	23.23	22.17	23.5	23.0
tok inbolet	50% RB mid	1732.5	22.42	21.46	23.5	23.0
	tek suboles Anb	1750.0	23.10	22.00	23.5	23.0
nbotek Anbo	tok abotek Al	1715.0	22.24	21.16	23.5	23.0
Ambotek A	50% RB High	1732.5	22.72	21.73	23.5	23.0
apolek.	Aupolo Ann Mak	1750.0	22.86	21.77	23.5	23.0
por notek	Anboten Anti-	1715.0	22.17	21.27	23.5	23.0
Annatok	100% RB	1732.5	22.06	21.01	23.5	23.0
tek bupote.		1750.0	22.86	21.95	23.5	23.0
poten Anbo	where worker ar	1717.5	23.14	22.07	23.5	23.0
abotek Ar	1 RB low	1732.5	22.75	21.76	23.5	23.0
pli wolek		1747.5	22.75	21.82	23.5	23.0
Anu	sobotek Apport	1717.5	22.93	22.03	23.5	23.0
Ampur	1 RB mid	1732.5	22.52	21.52	23.5	23.0
tex bupor		1747.5	22.94	21.86	23.5	23.0
optek Anbo	p.t. Lek	1717.5	23.12	22.03	23.5	23.0
water pr	1 RB high	1732.5	23.30	22.42	23.5	23.0
Anonetek		1747.5	23.33	22.35	23.5	23.0
Anbor	botek pubote	1717.5	22.82	21.97	23.5	23.0
15 MHz	50% RB low	1732.5	22.42	21.33	23.5	23.0
ak Anpoter		1747.5	22.46	21.36	23.5	23.0
otek kupol	an Aupril Park	1717.5	22.68	21.54	23.5	23.0
Jet Mar	50% RB mid	1732.5	22.24	21.22	23.5	23.0
Aupo Pr		1747.5	22.61	21.68	23.5	23.0
Proposo	potek anboto	1717.5	22.84	21.83	23.5	23.0
Anboten	50% RB High	1732.5	22.96	21.95	23.5	23.0
Anbotek		1747.5	23.08	22.11	23.5	23.0
- OP	Augor Aon	1717.5	22.48	21.51	23.5	23.0
lore blon	100% RB	1732.5	22.13	21.10	23.5	23.0
unboto An		1747.5	22.20	21.21	23.5	23.0
Ambolan	And Alak Alak	1720.0	23.50	22.39	23.5	23.0
Anbotak	1 RB low	1732.5	23.04	21.98	23.5	23.0
* spotek		1745.0	23.11	22.02	23.5	23.0
Por NOLE	e Puporen Pup	1720.0	22.53	21.39	23.5	23.0
otek Aupolo	1 RB mid	1732.5	23.04	22.00	23.5	23.0
20 MHz		1745.0	22.55	21.54	23.5	23.0
subotek p	obor hur wotek	1720.0	23.33	22.35	23.5	23.0
abote ^W	1 RB high	1732.5	22.69	21.58	23.5	23.0
A wotek	Anbolan Anbo	1745.0	22.65	21.69	23.5	23.0
Anbolo ist	50% RB low	1720.0	23.24	22.15	23.5	23.0

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Anbotek Product Safety Report No.: 18220WC00157201

AnDUCER resuling					
8220WC00157201	FCC ID	:055104320	aboto.	Page 36	of 150
Ambour 4 Am	1732.5	22.70	21.59	23.5	23.0
Anpoten Anos	1745.0	22.77	21.90	23.5	23.0
tek unbolen Ant	1720.0	22.18	21.03	23.5	23.0
50% RB mid	1732.5	22.78	21.76	23.5	23.0
hipo, ok potek	1745.0	22.24	21.33	23.5	23.0
Aupor Ann Mak	1720.0	23.06	22.14	23.5	23.0
50% RB High	1732.5	22.37	21.26	23.5	23.0
subotek Aupo	1745.0	22.36	21.43	23.5	23.0
ok stolak Ant	1720.0	22.91	21.98	23.5	23.0
100% RB	1732.5	22.36	21.35	23.5	23.0
born Ann otek	1745.0	22.42	21.50	23.5	23.0
(G) AU		1.0	631	2.8.0	-10-

Conducted Power Measurement Results (LTE FDD Band 5)

TX Channel	RB Size/Offset	Frequency	[dBm]		Tune-up Limit (dBm)	
Bandwidth	er Ano	(MHz)	QPSK	16QAM	QPSK	16QAM
botek prot	Joron Puper	824.7	22.75	21.75	23.5	23.0
wotek-	1 RB low	836.5	22.78	21.79	23.5	23.0
Anustek	obotek Anbote	848.3	23.30	22.35	23.5	23.0
May odrea	Botek Anbota	824.7	22.60	21.47	23.5	23.0
Anbotek	1 RB mid	836.5	23.06	21.99	23.5	23.0
ek hupole	And Jek of	848.3	22.96	22.07	23.5	23.0
olek and	oten Anou wit	824.7	22.64	21.77	23.5	23.0
40%	1 RB high	836.5	23.07	21.95	23.5	23.0
Anbotek	-botek Anboter	848.3	23.17	22.31	23.5	23.0
Anbou	notek anbotek	824.7	22.49	21.39	23.5	23.0
1.4 MHz	50% RB low	836.5	22.53	21.58	23.5	23.0
A pobote	Andro wat no	848.3	22.95	21.93	23.5	23.0
otok Ant	ofen bupper bu	824.7	22.25	21.27	23.5	23.0
all pr	50% RB mid	836.5	22.74	21.60	23.5	23.0
nbolo	otek subotek	848.3	22.64	21.70	23.5	23.0
Anboten	And stek sobotek	824.7	22.30	21.43	23.5	23.0
anbotek	50% RB High	836.5	22.80	21.81	23.5	23.0
6. Anbote	Anbour An	848.3	22.89	21.97	23.5	23.0
stell parts	rok Aupora Ann	824.7	22.22	21.08	23.5	23.0
or pare	100% RB	836.5	22.19	21.18	23.5	23.0
nbote p	atek unbotek	848.3	22.70	21.82	23.5	23.0
Puppore.	Auger apolok	825.5	23.24	22.17	23.5	23.0
3 MHz	1 RB low	836.5	22.68	21.74	23.5	23.0
in noter	Anbotek Anbot	847.5	23.15	22.26	23.5	23.0

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

	Anbotek Testing					
eport No.: 18	220WC00157201		055104320	Appore	Page 37	of 150
anbolen	Anbo tek abotek	825.5	23.10	22.07	23.5	23.0
Anbotek	1 RB mid	836.5	23.13	22.01	23.5	23.0
	lek Anbolen Anu	847.5	22.73	21.69	23.5	23.0
tek Anbo	Lotok anbotek An	825.5	22.69	21.66	23.5	23.0
pater P	1 RB high	836.5	22.84	21.81	23.5	23.0
anpole ^k	Andor Portak	847.5	23.41	22.51	23.5	23.0
b abotek	Anbola Ann Ann	825.5	22.93	21.83	23.5	23.0
portek	50% RB low	836.5	22.37	21.52	23.5	23.0
Anu	ok abolek Anbo	847.5	22.81	21.86	23.5	23.0
ek kupo	int whotek ho	825.5	22.79	21.76	23.5	23.0
potek pp	50% RB mid	836.5	22.85	21.95	23.5	23.0
motok	Anboron Anu tok	847.5	22.40	21.55	23.5	23.0
P.O	Anbotek Anbo	825.5	22.37	21.50	23.5	23.0
Andrew	50% RB High	836.5	22.56	21.66	23.5	23.0
buppo.	k hotek anbol	847.5	23.10	22.15	23.5	23.0
ok pupor	patricek pat	825.5	22.68	21.54	23.5	23.0
oter pro	100% RB	836.5	22.07	21.16	23.5	23.0
-Yete	obolak Anbou	847.5	22.54	21.61	23.5	23.0
p. nou	botek Aupor	826.5	23.22	22.08	23.5	23.0
AUDOL	1 RB low	836.5	23.13	22.25	23.5	23.0
AUPOre	p.no.	846.5	22.73	21.59	23.5	23.0
x pupoto	And lok at	826.5	23.01	22.02	23.5	23.0
Jet Mar	1 RB mid	836.5	22.97	22.07	23.5	23.0
and pro	botek Anbote	846.5	22.67	21.53	23.5	23.0
rupotek	solek anbotos	826.5	23.24	22.15	23.5	23.0
Anbota	1 RB high	836.5	22.89	21.76	23.5	23.0
anbotek	Anbo ok sole	846.5	23.23	22.27	23.5	23.0
Anbote	Pupper Par	826.5	22.94	21.97	23.5	23.0
5 MHz	50% RB low	836.5	22.86	21.90	23.5	23.0
de Nu	notek popolek p	846.5	22.42	21.33	23.5	23.0
nbotek	all abolek	826.5	22.76	21.84	23.5	23.0
Anbotek	50% RB mid	836.5	22.72	21.72	23.5	23.0
botek	Anbolo kon	846.5	22.33	21.33	23.5	23.0
P3 noter	Anboian Anbo	826.5	22.92	21.81	23.5	23.0
Anbote	50% RB High	836.5	22.60	21.54	23.5	23.0
ter parte	tok stotek h	846.5	22.89	21.86	23.5	23.0
nbotek p	noor har otek	826.5	22.64	21.69	23.5	23.0
botek	100% RB	836.5	22.59	21.66	23.5	23.0
P.O.	Anbolas Anbor	846.5	22.17	21.26	23.5	23.0
10 MHz	1 RB low	829.0	22.61	21.51	23.5	23.0

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Anbotek	安博检测				poter prior	
Product Safety	Anbotek Testing					
Report No.: 18	220WC00157201	FCC ID:	O55104320	and oto	Page 38	of 150
- abotek		836.5	23.19	22.22	23.5	23.0
stak anbotek	Anbote, Ano	844.0	22.62	21.62	23.5	23.0
	ek unbolen pubu	829.0	22.51	21.40	23.5	23.0
abotek Anbe	1 RB mid	836.5	22.78	21.70	23.5	23.0
mootek An		844.0	23.41	22.29	23.5	23.0
-Bolok	Auporo Aun dek	829.0	23.17	22.11	23.5	23.0
A.n. wotek	1 RB high	836.5	23.11	21.97	23.5	23.0
And	obotek Anboto	844.0	23.24	22.27	23.5	23.0
ek kupore	K holek Anboi	829.0	22.33	21.29	23.5	23.0
potek Aupon	50% RB low	836.5	22.86	21.82	23.5	23.0
hotek pot		844.0	22.35	21.28	23.5	23.0
Antolok	anboton Ann wak	829.0	22.23	21.29	23.5	23.0
And stek	50% RB mid	836.5	22.43	21.58	23.5	23.0
Anbor	potek knooter	844.0	23.14	22.21	23.5	23.0
ex pupper	how otek appor	829.0	22.89	21.89	23.5	23.0
ootek Anbole	50% RB High	836.5	22.86	21.79	23.5	23.0
atel bro		844.0	22.89	21.85	23.5	23.0
Augur Hay	obotek Anbor	829.0	22.02	21.03	23.5	23.0
Anbar	100% RB	836.5	22.57	21.60	23.5	23.0
Anbolo	Ant stek subolek	844.0	22.09	21.09	23.5	23.0

Conducted Power Measurement Results (LTE FDD Band 7)

TX Channel	RB Size/Offset	Frequency	Average Power [dBm] Tune-up Limit (dBm			mit (dBm)
Bandwidth	(MHz)	QPSK	16QAM	QPSK	16QAM	
Aupon	pit wotek anboter	2502.5	22.90	21.97	23.5	23.0
Anboten	1 RB low	2535	22.87	21.89	23.5	23.0
stak anbot	A ANDO LON A	2567.5	22.89	21.87	23.5	23.0
stell sol	otek Andor An	2502.5	23.27	22.14	23.5	23.0
nbus lek	1 RB mid	2535	23.15	22.00	23.5	23.0
Anbore	kotek anbotek	2567.5	22.64	21.52	23.5	23.0
Anboto	Ann stek subotek	2502.5	22.89	21.78	23.5	23.0
5 MHz	1 RB high	2535	22.61	21.63	23.5	23.0
Lek sobole	e Anbour An	2567.5	23.47	22.40	23.5	23.0
with the	ptok Anbore Ans	2502.5	22.60	21.59	23.5	23.0
por pin	50% RB low	2535	22.53	21.40	23.5	23.0
Anbols	ou otek kobotek	2567.5	22.57	21.63	23.5	23.0
Anboten	Ann lok abolek	2502.5	22.96	22.05	23.5	23.0
n potek	50% RB mid	2535	22.84	21.89	23.5	23.0
at note	Anbote, Ano	2567.5	22.31	21.38	23.5	23.0

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

t Safety	Anbotek Testing	And take	00 ¹⁰¹ P		abotek a b	nbou
ort No.: 182	220WC00157201	FCC ID:05	0.0	21 50	Page 39 (
Pupore	50% RB High	2502.5	22.57	21.59	23.5	23.0
Anbote	50% RB High	2535	22.34	21.49 22.08	23.5	23.0
Anbete	in hupo h	2567.5	23.20	10	23.5	23.0
ak sta	400% PD	2502.5	22.32	21.43	23.5	23.0
10th	100% RB	2535 2567.5	22.27	21.34 21.27	23.5 23.5	23.0 23.0
ore Por	AD" ADDOLON ADDOLON	P.C.	22.28	6.00	100	nole
poter	1 DD law apport	2505	22.99	22.11	23.5	23.0
anbotek	1 RB low	2535	22.87	22.00	23.5	23.0
000	k parapire Ann	2565	22.65	21.72	23.5	23.0
best.	otek onboten An	2505	22.97	21.89	23.5	23.0
Pac	1 RB mid	2535	22.74	21.81	23.5	23.0
	inter interest	2565	23.18	22.19	23.5	23.0
lek.	Ashbor Ash hotek	2505	22.82	21.78	23.5	23.0
botok	1 RB high	2535	23.34	22.29	23.5	23.0
~ 01 0 1	anhoten Anb	2565	22.61	21.51	23.5	23.0
PUD	tak popolek An	2505	22.72	21.64	23.5	23.0
MHz	50% RB low	2535	22.57	21.49	23.5	23.0
	about An work	2565	22.31	21.36	23.5	23.0
*	Anboten Anto tok	2505	22.69	21.81	23.5	23.0
And stell	50% RB mid	2535	22.41	21.36	23.5	23.0
N. N.	nootek phoo	2565	22.87	21.86	23.5	23.0
00,		2505	22.47	21.58	23.5	23.0
ANDO	50% RB High	2535	23.06	22.15	23.5	23.0
	boten Aupo	2565	22.28	21.40	23.5	23.0
-		2505	22.42	21.38	23.5	23.0
Nor	100% RB	2535	22.32	21.32	23.5	23.0
	All stell sobole	2565	22.06	21.00	23.5	23.0
borer	at anotak and	2507.5	23.47	22.44	23.5	23.0
Anto	1 RB low	2535	22.75	21.87	23.5	23.0
-	botek pebolic P	2562.5	23.12	22.15	23.5	23.0
1		2507.5	23.14	22.14	23.5	23.0
	1 RB mid	2535	22.91	21.96	23.5	23.0
oter	Amp jok spole	2562.5	22.74	21.87	23.5	23.0
Znbote		2507.5	22.80	21.77	23.5	23.0
toot	1 RB high	2535	23.26	22.26	23.5	23.0
Prin	otek Anboten P	2562.5	23.00	21.85	23.5	23.0
		2507.5	23.16	22.24	23.5	23.0
Cox.	50% RB low	2535	22.47	21.49	23.5	23.0
ootek	Anbor Annotel	2562.5	22.82	21.71	23.5	23.0
181	50% RB mid	2507.5	22.81	21.93	23.5	23.0

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

uct Safety	安博检测 Anbotek Testing					
port No.: 182	20WC00157201	1	255104320	and dea	Page 40	0
Anboroz		2535	22.60	21.66	23.5	23.0
abotek	Anbour An-	2562.5	22.49	21.41	23.5	23.0
K An hotel		2507.5	22.50	21.55	23.5	23.0
Anbere	50% RB High	2535	22.94	21.85	23.5	23.0
loton Aup.	water Hotel	2562.5	22.69	21.83	23.5	23.0
apolo ^k A		2507.5	22.83	21.73	23.5	23.0
botek	100% RB	2535	22.20	21.24	23.5	23.0
Amendek	Napotek Aupo	2562.5	22.47	21.38	23.5	23.0
p.nu lok		2510	22.72	21.78	23.5	23.0
e Puporo	1 RB low	2535	22.51	21.51	23.5	23.0
otak pobo	an antek	2560	23.25	22.38	23.5	23.0
molek p	ipolo, yun	2510	23.03	22.08	23.5	23.0
number	1 RB mid	2535	22.85	21.72	23.5	23.0
Andrew	batek Anbolo	2560	23.37	22.46	23.5	23.0
Pupper	per anbotek Anbot	2510	23.48	22.56	23.5	23.0
Anboler	1 RB high	2535	23.26	22.36	23.5	23.0
tel poor		2560	22.87	21.88	23.5	23.0
Not-	botak Anbo	2510	22.42	21.45	23.5	23.0
20 MHz	50% RB low	2535	22.21	21.11	23.5	23.0
Anoona	All otek anbotok	2560	22.90	22.04	23.5	23.0
Anipotek	And tok sabot	2510	22.68	21.69	23.5	23.0
Aupotak	50% RB mid	2535	22.60	21.58	23.5	23.0
let abot		2560	23.08	21.94	23.5	23.0
and Mar	potek pribote	2510	23.16	22.06	23.5	23.0
por pr	50% RB High	2535	22.96	21.95	23.5	23.0
Anboton		2560	22.61	21.48	23.5	23.0
anbotek	Anu ok hole	2510	22.09	21.03	23.5	23.0
ABOLEK.	100% RB	2535	21.87	20.80	23.5	23.0
Pro		2560	22.59	21.56	23.5	23.0

Conducted Power Measurement Results (LTE FDD Band 12)

TX Channel	X Channel Bandwidth	Frequency	" 0 D	Average Power [dBm] Tune-u		
Bandwidth		(MHz)	QPSK	16QAM	QPSK	16QAM
stak sobole	Anbo when he	699.7	22.84	21.93	23.5	23.0
	1 RB low	707.5	23.02	21.98	23.5	23.0
	notek Anboten A	715.3	22.67	21.76	23.5	23.0
1.4 MHz	in solek knboteh	699.7	23.25	22.40	23.5	23.0
	1 RB mid	707.5	23.10	22.12	23.5	23.0
	Anho, An Antek	715.3	23.00	21.97	23.5	23.0
tek sabotel	1 RB high	699.7	22.50	21.56	23.5	23.0

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

ct Safety	安博检测		p			
	Anbotek Testing 8220WC00157201		055104320	Anno otek	Page 41	of 150
ort NU. 1		707.5	23.22	22.19	23.5	23.0
	w subotek Anbolt	715.3	22.99	22.14	23.5	23.0
Pupper	tok abolek Ant	699.7	22.57	21.64	23.5	23.0
	50% RB low	707.5	22.73	21.69	23.5	23.0
	thoto, Aun otek	715.3	22.36	21.25	23.5	23.0
	Aupotos Aupo	699.7	22.99	21.91	23.5	23.0
	50% RB mid	707.5	22.75	21.64	23.5	23.0
	A abotek Anbote	715.3	22.65	21.54	23.5	23.0
	ok hotek ant	699.7	22.15	21.12	23.5	23.0
	50% RB High	707.5	22.90	21.94	23.5	23.0
	poter Anon yek	715.3	22.72	21.61	23.5	23.0
	Anbolot Anuo	699.7	22.32	21.43	23.5	23.0
	100% RB	707.5	22.48	21.61	23.5	23.0
	hotek Anbote	715.3	22.05	21.08	23.5	23.0
Puppore	y hav otek anbr	700.5	22.61	21.49	23.5	23.0
anbo	1 RB low	707.5	22.61	21.51	23.5	23.0
	potek Anton A	714.5	22.57	21.58	23.5	23.0
tel-	abotek Anbore	700.5	22.64	21.50	23.5	23.0
	1 RB mid	707.5	22.69	21.80	23.5	23.0
Anboto, Pup	Ros-otek subotek	714.5	22.75	21.88	23.5	23.0
	propositek sobo	700.5	22.62	21.55	23.5	23.0
	1 RB high	707.5	22.98	21.92	23.5	23.0
	hotek Anbor A	714.5	23.17	22.18	23.5	23.0
otek	-botek Anbotek	700.5	22.35	21.44	23.5	23.0
5 MHz	50% RB low	707.5	22.32	21.43	23.5	23.0
unbolok .	how dek abotek	714.5	22.25	21.38	23.5	23.0
	Anthe sale show	700.5	22.31	21.38	23.5	23.0
	50% RB mid	707.5	22.37	21.33	23.5	23.0
	olek Anboten Ar	714.5	22.50	21.59	23.5	23.0
	hotek anboter	700.5	22.27	21.12	23.5	23.0
	50% RB High	707.5	22.70	21.75	23.5	23.0
	Anby rek abotek	714.5	22.84	21.96	23.5	23.0
	photo at not	700.5	22.08	21.01	23.5	23.0
Anbot	100% RB	707.5	21.97	20.85	23.5	23.0
	otek anbotek An	714.5	21.96	21.02	23.5	23.0
bro	otek sabotek	701.5	22.61	21.70	23.5	23.0
	1 RB low	707.5	22.62	21.56	23.5	23.0
5 MHz	Anbor An wotok	713.5	22.95	22.06	23.5	23.0
	Anbola Anu	701.5	22.70	21.60	23.5	23.0
	1 RB mid	707.5	23.09	22.15	23.5	23.0

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

oduct Safety	安博检测 Anbotek Testing	Anbou An				
Report No.: 182	220WC00157201		055104320	nbotek	Page 42 d	of 150
-bolok	Anbour Antion	713.5	22.58	21.72	23.5	23.0
ek inbotek	Anboten Ano	701.5	22.50	21.57	23.5	23.0
	1 RB high	707.5	23.22	22.08	23.5	23.0
potek Anbro		713.5	23.16	22.12	23.5	23.0
mootek All	on por hotely	701.5	22.36	21.41	23.5	23.0
-polek I	50% RB low	707.5	22.33	21.32	23.5	23.0
P.n. wotek		713.5	22.70	21.62	23.5	23.0
Plup-	abotek Anbou	701.5	22.36	21.50	23.5	23.0
K Aupolo	50% RB mid	707.5	22.84	21.81	23.5	23.0
otek Aupor		713.5	22.28	21.28	23.5	23.0
hotak Apo	oren brinn tek	701.5	22.20	21.28	23.5	23.0
AD LOR	50% RB High	707.5	22.88	21.85	23.5	23.0
P.no	nbotek Anbote	713.5	22.87	21.76	23.5	23.0
Andor	hotek Anbore	701.5	22.03	21.15	23.5	23.0
K popote	100% RB	707.5	22.02	21.09	23.5	23.0
otek anbole		713.5	22.38	21.32	23.5	23.0
ately proof	ster Andra P	704.0	22.56	21.62	23.5	23.0
Max.	1 RB low	707.5	22.81	21.69	23.5	23.0
Anbox A		711.0	22.86	21.93	23.5	23.0
Anbols	Kor atek anbote	704.0	23.49	22.51	23.5	23.0
Anpoter.	1 RB mid	707.5	23.39	22.34	23.5	23.0
tek sobotak		711.0	23.15	22.14	23.5	23.0
Jett p	tek polocie p	704.0	22.63	21.51	23.5	23.0
above pre	1 RB high	707.5	23.39	22.51	23.5	23.0
Proposo		711.0	22.56	21.45	23.5	23.0
Anboton	per rek obotek	704.0	22.26	21.11	23.5	23.0
10 MHz	50% RB low	707.5	22.50	21.38	23.5	23.0
Veros Yay		711.0	22.52	21.57	23.5	23.0
ar par	tek anboion pi	704.0	23.23	22.20	23.5	23.0
poter Ant	50% RB mid	707.5	23.14	22.16	23.5	23.0
Anboten		711.0	22.85	21.89	23.5	23.0
Anbotek	And water moter	704.0	22.33	21.19	23.5	23.0
abotek	50% RB High	707.5	23.11	22.02	23.5	23.0
AL 10166	Anboten Anbo	711.0	22.25	21.18	23.5	23.0
K ADD at	et popolet pr	69 20	21.95	21.08	23.5	23.0
boten Anto	100% RB	707.5	22.16	21.04	23.5	23.0
botek po		711.0	22.20	21.34	23.5	23.0

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Report No.: 18220WC00157201

FCC ID:055104320

Page 43 of 150

<WIFI 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	AVG Power(dBm)	Test Rate Data
	anboton An	2412	12.84	1 Mbps
802.11b	6	2437	14.58	1 Mbps
	K 11, otek	2462	13.89	1 Mbps
	× 1 work	2412	11.71	6 Mbps
802.11g	6	2437	13.96	6 Mbps
	introlen 11 Amb	2462	11.47	6 Mbps
802.11n(20MHz)	popoten pol	2412	11.26	MCS0
	6	2437	13.19	MCS0
	A 11 otek	2462	12.93	MCS0

<Bluetooth Conducted Power>

Conducted Power Measurement Results (Bluetooth)

Mode	Channel	Frequency(MHz)		Peak Output
			(dBm)	(mW)
plos stek sobot	00	2402	4.578	2.869
GFSK	39	2441	6.024	4.003
	78	2480	4.180	2.618
tek trupore b	00	2402	3.847	2.425
π/4DQPSK	39	2441	4.925	3.108
	78	2480	3.293	2.135
ADU Jak abote	00	2402	3.778	2.387
8DPSK	39	2441	5.063	3.208
	78	2480	3.366	2.171
lek anboter I	00	2402	-8.452	0.143
BLE GFSK	19	2440	-4.932	0.321
	39	2480	-6.437	0.227

Note:

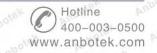
Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] . [$\sqrt{f(GHz)}$] \leq 3 for 1-g SAR and] \leq 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Shenzhen Anbotek Compliance Laboratory Limited 🧼

Anbotek 安博检测 **Product Safety** Anbotek Testing


Report No.: 18220WC00157201

FCC ID:055104320 Page 44 of 150 Minimum Output Max. Output **Test Frequency** Output Power with calculated exclusion Separation Power (MHz) Distance Power tune up value thresholds (mW) (mm)(dBm) (dBm) 7 2441.00 5 6.024 5.012 1.6 3

Note:

Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 1.6which is ≤ 3, SAR testing is not required.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

FCC ID:055104320

Page 45 of 150

Transmit Antennas

Distance of The Antenna to the EUT surface and edge							
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side	
WWAN	<25mm	<25mm	<25mm	>25mm	<25mm	>25mm	
BT&WLAN	<25mm	<25mm	<25mm	>25mm	>25mm	>25mm	

	Positions for SAR tests; Hotspot mode								
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side			
WWAN	Yes	Yes	Yes	No	Yes	No			
BT&WLAN	Yes	Yes	Yes	No	No	No			

General Note: Referring to KDB 941225 D06 v02, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 46 of 150

11.SAR Test Results Summary

General Note:

5.

- Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor
- Per KDB 447498 D01v05r01, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary
- 3. Per KDB 941225 D05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
 - 4. Per KDB 941225 D05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
 - Per KDB 941225 D05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
 - Per KDB 941225 D05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05, 16QAM SAR testing is not required.
 - Per KDB 941225 D05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05, smaller bandwidth SAR testing is not required.
 - Per KDB865664 D01, for each frequency band, **repeated SAR measurement is required** only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required.

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320 SAR Values GSM 850

Page 47 of 150

Test	Channel/ Frequency(Test Duty	Maximum Allowed	Conducted	Drift ± 0.21dB	L	Limit SAR1g 1.6 W/kg			
Position	Frequency(MHz)	Mode	Cycle	Power (dBm)	Power (dBm)	Drift (dB)	Measure d SAR _{1g} (W/kg)	Scaling Factor	Report ed SAR _{1g} (W/kg)	Graph Results
stek Anb	as par	Test	position	of Body-w	orn accessor	y(Distance	0mm)	Pro Pro	Halokek	Anbot
Rear Side	190/836.6	2Txslots	1:4.15	30.00	29.82	-0.10	0.722	1.04	0.753	Figure 1
Front Side	190/836.6	2Txslots	1:4.15	30.00	29.82	-0.05	0.604	1.04	0.630	N/A
			H	otspot Mod	e (Distance 1	0mm)				
Rear Side	190/836.6	2Txslots	1:4.15	30.00	29.82	0.02	0.701	1.04	0.731	N/A
Front Side	190/836.6	2Txslots	1:4.15	30.00	29.82	-0.04	0.586	1.04	0.611	N/A
Left Edge	190/836.6	2Txslots	1:4.15	30.00	29.82	0.02	0.354	1.04	0.369	N/A
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	190/836.6	2Txslots	1:4.15	30.00	29.82	0.03	0.611	1.04	0.637	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bu Plubi	+ex po	Worst	Case Po	sition of Bo	ody with EGP	RS(Distan	ce 0mm)	er.	Hatotek	Anbote
Front Side	190/836.6	2Txslots	1:4.15	25.00	24.87	-0.07	0.533	1.03	0.549	N/A

Note: 1.The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

FCC ID:055104320 SAR Values PCS 1900

Page 48 of 150

Test	Channel/	Test	Duty	Maximum Allowed	Conducted	Drift <u>+</u> 0.21dB	L	imit SAR	_{1g} 1.6 W/k	g
Position	Frequency(M Hz)	Mode	Cycle	Power (dBm)	Power (dBm)	Drift (dB)	Measure d SAR _{1g} (W/kg)	Scaling Factor	Report ed SAR _{1g} (W/kg)	Graph Results
Anbolte	e pupo	Test	position	of Body-w	orn accessor	y(Distance	e0mm)	Bupo	the	botel
Rear Side	661/1880	1Txslots	1:4.15	31.00	30.90	0.06	0.637	1.02	0.652	Figure 2
Front Side	661/1880	1Txslots	1:4.15	31.00	30.90	-0.10	0.574	1.02	0.587	N/A
		Te	st posit	ion of Hots	pot Mode (Dis	stance 10r	nm)			
Rear Side	661/1880	1Txslots	1:4.15	31.00	30.90	0.05	0.598	1.02	0.612	N/A
Front Side	661/1880	1Txslots	1:4.15	31.00	30.90	-0.03	0.485	1.02	0.496	N/A
Left Edge	661/1880	1Txslots	1:4.15	31.00	30.90	0.05	0.278	1.02	0.284	N/A
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	661/1880	2Txslots	1:4.15	31.00	30.90	-0.07	0.564	1.02	0.577	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Anbar	An botek	Worst	Case Po	sition of Bo	ody with EGP	RS(Distan	ce 0mm)	partie	K a	nboten
Front Side	661/1880	2Txslots	1:4.15	24.00	23.81	-0.01	0.368	1.04	0.384	N/A
lote: 1.The v 2. Per power configu 3.Whe power. 4. Per I SAR w	l alue with green co FCC KDB Publics channel for each uration(s). n multiple slots au	blor is the m ation 44749 test configu re used, SA tion 648474 additional	Aximum 8 D01, if uration is R should 1 D04, S/ SAR eva	SAR Value the reporter ≤ 0.8 W/kg I be tested t AR was eval	of each test b d (scaled) SAF then testing a o account for t luated without ng a headset o	and. R measured t the other the maximu a headset cable were	d at the midd channels is im source-b connected to required.	lle channe optional fo ased time- o the devic	el or highes r such tes eaveraged e. Since th	st outpu t output ne repor

bigher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

安博检测 Anbotek **Product Safety Anbotek Testing**

Report No.: 18220WC00157201

FCC ID:055104320 SAR Values [WCDMA Band V]

Page 49 of 150

	Channel/	-		Maximu m	Conducte	Drift ± 0.21dB	Limit SAR _{1g} 1.6 W/kg				
Test Position (MHz)	Test Mode	Duty Cycle	Allowed Power (dBm)	a Power (dBm)	Drift (dB)	Measure d SAR _{1g} (W/kg)	Scaling Factor	Reporte d SAR _{1g} (W/kg)	Graph Results		
×	otek pup	Tes	st positio	on ofBody-	worn access	ory(Distan	ce0mm)	elt N	nbote.	pano	
Rear Side	4183/836.6	RMC 12.2K	1:1	24.00	23.56	-0.07	0.573	1.11	0.634	Figure 3	
Front Side	4183/836.6	RMC 12.2K	1:1	24.00	23.56	0.10	0.426	1.11	0.471	N/A	
	Те	est position	n of Body	/-worn acc	essory &Hot	spot Mode	(Distance 1	l0mm)			
Rear Side	4183/836.6	RMC 12.2K	1:1	24.00	23.56	-0.09	0.527	1.11,00	0.583	N/A	
Front Side	4183/836.6	RMC 12.2K	1:1	24.00	23.56	0.04	0.405	6 1.11 N	0.448	N/A	
Left Edge	4183/836.6	RMC 12.2K	1:1	24.00	23.56	0.03	0.238	1.11	0.263	N/A	
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Top Edge	4183/836.6	RMC 12.2K	1:1	24.00	23.56	0.05	0.476	1.11	0.527	N/A	

Note: 1. The value with green color is the maximum SAR Value of each test band.

N/A

N/A

12.2K

N/A

N/A

Bottom

Edge

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

N/A

N/A

N/A

N/A

N/A

N/A

3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

FCC ID:055104320 SAR Values [WCDMA Band II]

Test	Channel/	Test	Duty	Maximum Allowed	Conducted	Drift ± 0.21dB		Limit SAF		R _{1g} 1.6 W/kg		
Position	Frequency (MHz)	Mode	Cycle		Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results		
anbolt	su bupe	Те	st posi	tion of Body	y-worn acces	sory(Dista	ince0mm)	Ant	jor p	Hotok		
Rear Side	9400/1880	RMC 12.2K	1:1	24.00	23.61	-0.12	0.557	1.09	0.609	Figure4		
Front Side	9400/1880	RMC 12.2K	1:1	24.00	23.61	0.07	0.403	1.09	0.441	N/A		
	٦	Fest positio	on of Bo	ody-worn ac	cessory &Ho	otspot Mod	e (Distance	10mm)				
Rear Side	9400/1880	RMC 12.2K	1:1	24.00	23.61	0.03	0.514	1.09	0.562	N/A		
Front Side	9400/1880	RMC 12.2K	1:1	24.00	23.61	0.05	0.374	1.09	0.409	N/A		
Left Edge	9400/1880	RMC 12.2K	1:1	24.00	23.61	0.04	0.205	1.09	0.224	N/A		
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Top Edge	9400/1880	RMC 12.2K	1:1	24.00	23.61	-0.03	0.422	1.09	0.462	N/A		
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		

Note: 1. The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

FCC ID:055104320 SAR Values [LTE Band 4]

Note: 1.The value with green color is the maximum SAR Value of each test band.

N/A

1:1

N/A

N/A

23.50

N/A

N/A

20M/50%RB

N/A

Right Edge

Top Edge

Bottom Edge

N/A

1720.0

N/A

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
 When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
 Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

N/A

23.24

N/A

N/A

0.06

N/A

N/A

0.428

N/A

N/A

1.06

N/A

N/A

0.454

N/A

N/A

N/A

N/A

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Page 51 of 150

nbotek Product Safety Product Safety

Report No.: 18220WC00157201

FCC ID:055104320 SAR Values [LTE Band 5]

Test	Channel/	Test	Duty	Maximum Allowed	Conducted	Drift ± 0.21dB		Limit SAR	_{1g} 1.6 W/kg		
Position	Frequency (MHz)	Mode	Cycle		Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results	
otex pri	poter prot	Tes	st positi	on ofBody-v	vorn accessoi	ry(Distance	e0mm)	Aupor	N. P.	otok	
Rear Side	844.0	10M/1RB	1:1	23.50	23.41	-0.01	0.893	1.02	0.912	Figure 6	
Front Side	844.0	10M/1RB	1:1	23.50	23.41	0.05	0.755	1.02	0.771	N/A	
Rear Side	829.0	10M/1RB	1:1	23.50	23.17	0.10	0.835	1.08	0.901	N/A	
Rear Side	836.5	10M/1RB	1:1	23.50	23.14	0.07	0.824	1.09	0.895	N/A	
Rear Side	844.0	10M/50%RB	1:1	23.50	23.14	-0.09	0.822	1.09	0.893	N/A	
Front Side	844.0	10M/50%RB	1:1	23.50	23.14	-0.03	0.713	1.09	0.775	N/A	
Rear Side	829.0	10M/50%RB	1:1	23.50	22.89	-0.05	0.711	1.15	0.818	N/A	
Rear Side	836.5	10M/50%RB	1:1	23.50	22.86	0.04	0.706	1.16	0.818	N/A	
Rear Side	836.5	100%RB	1:1-11	23.50	22.57	0.10	0.687	1.24	0.851	N/A	
		Fest position	of Body	-worn acce	ssory& Hots	pot Mode	(Distance 10	mm)			
Rear Side	844.0	10M/1RB	1:1	23.50	23.41	0.07	0.747	1.02	0.763	N/A	
Front Side	844.0	10M/1RB	1:1	23.50	23.41	0.04	0.625	1.02	0.638	N/A	
Left Edge	844.0	10M/1RB	1:1	23.50	23.41	0.06	0.368	1.02	0.376	N/A	
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Top Edge	844.0	10M/1RB	1:100	23.50	23.41	0.03	0.654	1.02	0.668	N/A	
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Rear Side	844.0	10M/50%RB	1:1	23.50	23.14	-0.07	0.724	1.09	0.787	N/A	
Front Side	844.0	10M/50%RB	1:1	23.50	23.14	-0.01	0.611	1.09	0.664	N/A	
Left Edge	844.0	10M/50%RB	1:1	23.50	23.14	-0.04	0.351	1.09	0.381	N/A	
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Top Edge	844.0	10M/50%RB	1:1	23.50	23.14	-0.05	0.628	1.09	0.682	N/A	
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Note: 1.The value with green color is the maximum SAR Value of each test band.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
 When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
 Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

nbotek Product Safety Product Safety

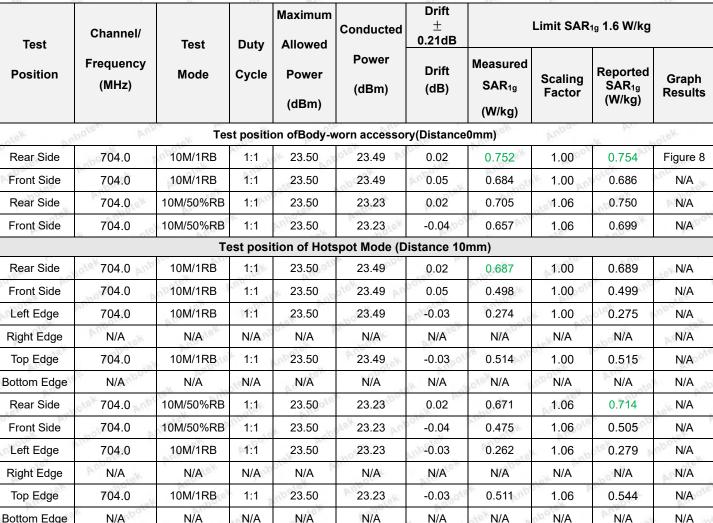
Report No.: 18220WC00157201

FCC ID:055104320 SAR Values [LTE Band 7]

Test	Channel/	Test	Duty	Maximum Allowed	Conducted	Drift <u>±</u> 0.21dB	10	Limit SAR	_{1g} 1.6 W/kg	
Position	Frequency (MHz)	Mode	Cycle	Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
ater an	poter pri	Tes	t positio	on of Body-	worn accesso	ry(Distance	e0mm)	Aupor	AL PAT	otok
Rear Side	2510	20M/1RB	1:1	23.50	23.48	-0.02	0.657	1.00	0.660	Figure 7
Front Side	2510	20M/1RB	1:1	23.50	23.48	0.11	0.544	1.00	0.547	N/A
Rear Side	2510	20M/50%R B	1:1	23.50	23.16	-0.05	0.631	1.08	0.682	N/A
Front Side	2510	20M/50%R B	1:1	23.50	23.16	-0.03	0.517	1.08	0.559	N/A
		Te	est posi	tion of Hots	spot Mode (D	istance 10)mm)			
Rear Side	2510	20M/1RB	1:1	23.50	23.48	0.05	0.635	1.00	0.638	N/A
Front Side	2510	20M/1RB	1:10	23.50	23.48	0.11	0.489	1.00	0.491	N/A
Left Edge	2510	20M/1RB	1:1	23.50	23.48	-0.04	0.211	1.00	0.212	N/A
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	2510	20M/1RB	1:1	23.50	23.48	-0.03	0.505	1.00	0.507	N/A
Bottom Edge	N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Rear Side	2510	20M/50%RB	1:1	23.50	23.16	-0.07	0.605	1.08	0.654	N/A
Front Side	2510	20M/50%RB	1:1	23.50	23.16	-0.02	0.472	1.08	0.510	N/A
Left Edge	2510	20M/50%RB	1:1	23.50	23.16	-0.05	0.205	1.08	0.222	N/A
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	2510	20M/50%RB	1:1	23.50	23.16	-0.09	0.493	1.08	0.533	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with green color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s). 3.When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power. 4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported


SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required. 5.When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

FCC ID:055104320 SAR Values [LTE Band 12]

Note: 1. The value with green color is the maximum SAR Value of each test band.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
 When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
 Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5.When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 54 of 150

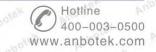
Report No.: 18220WC00157201

FCC ID:055104320 SAR Values [WIFI2.4G]

Test	Channel/		Duty	Maximum Allowed	Conducted	Drift <u>+</u> 0.21dB		_imit SAR	_{lg} 1.6 W/kg		
Position	Frequency (MHz)	Service	Cycle		Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results	
Anbote	Pupo	Tes	st positi	on of Body	-worn access	sory(Distar	nce0mm)	Anbe	A Var	botek	
Rear Side	6/2437	DSSS	1:1	15.00	14.58	-0.06	0.488	1.10	0.538	Figure 9	
Front Side	6/2437	DSSS	1:1	15.00	14.58	-0.075	0.475	1.10	0.523	N/A	
		Т	est pos	ition of Ho	tspot Mode (Distance	10mm)				
Rear Side	6/2437	DSSS	1:1	15.00	14.58	-0.03	0.477	1.10	0.525	N/A	
Front Side	6/2437	DSSS	1:1	15.00	14.58	0.02	0.452	1.10	0.498	N/A	
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Top Edge	6/2437	DSSS	1:1	15.00	14.58	-0.07	0.413	1.10	0.455	N/A	
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Note:

 The value with green color is the maximum SAR Value of each test band.
 Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).


3.Per KDB 248227-SAR is measured using the highest measured maximum output power channel for the initial test configuration.

4. Per KDB 248227- Channels with measured maximum output power within 1/4 dB of each other are considered to have the same maximum output, When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement. And when there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement. 5. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is < 1.2 W/kg the ODFM SAR test is not required.

Remark: The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was

0.502 W/Kg(0.538*(14/15)= 0.502) So ODFM SAR test is not required

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 56 of 150

12. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency (MHz_	Mode	Test Position	Spacing (mm)	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
844.0	LTE band 5 10M/1RB Body-worn	Rear Side	0	0.893	0.911	1.02	N/A
829.0	LTE band 5 10M/1RB Body-worn	Rear Side	0	0.835	0.860	1.03	N/A
836.5	LTE band 5 10M/1RB Body-worn	Rear Side	0	0.824	0.849	1.03	N/A
844.0	LTE band 5 10M/50% RB Body-worn	Rear Side	0	0.822	0.830	1.01	N/A

SAR Measurement Variability

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 57 of 150

13. Simultaneous Transmission Analysis

Application Simultaneous Transmission information:

Mode	Air-Interface	Simultaneous?	Hotspot?
m ^b 1 tok	WWAN+BT2.4G	YES	No
2	WWAN+WLAN2.4G	YES	YES

NOTE:

4)

) The EUT support WWAN(GSM/WCDMA/LTE), WLAN(WIFI 2.4GHz/BT) technology.

2) WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.

3) The Reported SAR summation is calculated based on the same configuration and test position.

Per KDB 447498 D01, simultaneous transmission SAR is compliant if,


- a) Scalar SAR summation < 1.6W/kg.
- b) SPLSR = $(SAR1 + SAR2)^{1.5} / (min. separation distance, mm)$, and the peak separation distance is determined from the square root of $((x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2)$, where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan
- c) If SPLSR ≤ 0.04 , simultaneously transmission SAR measurement is not necessary
- d) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg

) For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r02 based on the formula below.

- a) (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] .[$\sqrt{f(GHz)}/x$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- b) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
- c) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

		Estimated sta	and alone SAR		
Communication system	Frequency (MHz)	Configuration	Maximum Power (including tune-up tolerance) (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)
Bluetooth*	2441	Body Worn	poten 7 bu	5	0.209

Shenzhen Anbotek Compliance Laboratory Limited

安博检测 nbotek **Product Safety Anbotek Testing**

Report No.: 18220WC00157201

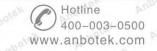
FCC ID:055104320

Page 58 of 150

Simultaneous and Hotspot SAR test exclusion considerations:

	Simultaneous Tran	smission	WWAN	+WLAN	ВТ	10.00	otell	6 nbc	7-	bar	1 See	160	er poor
		GSM	GSM	WCDMA	WCDMA	LTE	LTE	LTE	LTE	WIFI	BT	MAX.	Peak location
		850	1900	Band V	Band II	Band 4	Band 5	Band 7	Band 12	2.4G		ΣSAR_{1g}	separation ratio
	Rear Side	0.753	0.652	0.634	0.609	0.659	0.912	0.682	0.754	0.538	0.209	1.450	N/A
8	Front Side	0.630	0.587	0.471	0.441	0.575	0.775	0.559	0.699	0.523	0.209	1.298	N/A

MAX. Σ SAR_{1g} = 1.450 W/kg<1.6W/kg, so the Simultaneous transmission SAR with volume scan are not required for WIFI 2.4G/BT and GSM/WCDMA/LTE


WWAN+WLAN Hotspot mode:

Hotspot SAR for WIFI 2.4G and GSM/WCDMA/ LTE

D.V	1.0.1		0.00.0	100			C	00.00			Area O and
	GSM	GSM	WCDMA	WCDMA	LTE	LTE	LTE	LTE	WIFI	MAX.	Peak location
	850	1900	Band V	Band II	Band 4	Band 5	Band 7	Band 12	2.4G	ΣSAR_{1g}	separation ratio
Rear Side	0.731	0.612	0.583	0.562	0.608	0.787	0.654	0.714	0.525	1.312	N/A
Front Side	0.611	0.496	0.448	0.409	0.432	0.664	0.510	0.505	0.498	1.162	N/A
Left Edge	0.369	0.284	0.263	0.224	0.316	0.381	0.222	0.279	N/A	0.381	N/A
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	0.637	0.577	0.527	0.462	0.470	0.682	0.533	0.544	0.455	1.137	N/A
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

MAX. $\Sigma SAR_{1g} = 1.312$ W/kg<1.6W/kg, so the Simultaneous transmission SAR with volume scan are not required for WIFI 2.4G and GSM/WCDMA/LTE

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety Report No.: 18220WC00157201

FCC ID:055104320

Page 59 of 150

14. Measurement Uncertainty

NO	Source	Uncert. ai (%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	cert. ui (1g)	Stand.Un cert. ui (10g)	Veff
1	Repeat	0.4	N	1 10 ¹⁴	antipol	l [¥] a	0.4	0.4	9
nstru	iment	1		T		1			
2	Probe calibration	7 400	N	2	1	Poloto	3.5	3.5	8
3.0	Axial isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8000 N
4	Hemispherical isotropy	9.4	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	8
5	Boundary effect	1.0	R	$\sqrt{3}$	1	Antipote	0.6	0.6	00
6	Linearity	4.7	R	$\sqrt{3}$	about the	Ante An	2.7	2.7	8
7	Detection limits	1.0	R	$\sqrt{3}$	p.100t	atek	0.6	0.6	œ
8	Readout electronics	0.3	^{off} N P	1 1	1 1 1	hele	0.3	0.3	8
9	Response time	0.8	R	$\sqrt{3}$	ke ^{lk} 1	p.kool	0.5	0.5	8
10	Integration time	2.6	R	$\sqrt{3}$	nbotok 1 bote	1	1.5	1.5	8
11	Ambient noise	3.0	R	√3	1 Aut	otek 1	1.7	1.7	œ
12	Ambient reflections	3.0	po ^{to*} R	$\sqrt{3}$	1	nbott 1	1.7	1.7	œ
13	Probe positioner mech. restrictions	0.4	R	$\sqrt{3}$	pote ^k	1 ^{Ant}	abor.	0.2	8
14	Probe positioning with respect to phantom shell	2.9	R	$\sqrt{3}$	Anb	ninolik ninolik	- SS-14	ten bu	8
15	Max.SAR evaluation	1.0	R	$\sqrt{3}$	pod ⁶	And I _A nb	Yo.	0.6	8

Shenzhen Anbotek Compliance Laboratory Limited

Image: Anbotek 文博施测 Product Safety Anbotek Testing

Report No.: 18220WC00157201

FCC ID:055104320

Page 60 of 150

50.	IT NO.: 16220000015720	and a dek	Nabotel		Puppore	e de la composition de la comp	hotek.	anbotek	
lest s	ample related								
16	Device positioning	3.8	N	Ambor	1 1	Antorek	3.8	3.8	99
17	Device holder	5.1	N	1 ^{p.n}	noto litek	1 p.	5.1	5.1	5
18	Drift of output power	5.0	R	$\sqrt{3}$	p f ^{bo}	le ^k l	2.9	2.9	x
han	tom and set-up								
19	Phantom uncertainty	4.0	R	$\sqrt{3}$	o ^{tel} l	Inbo	2.3	2.3	x
20	Liquid conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	80
21	Liquid conductivity (meas)	2.5	N	potek 1	0.64	0.43	1.6	1.2	8
22	Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.5	×
23	Liquid Permittivity (meas)	2.5	N _{Anbol}	1	0.6	0.49	1.5	1.2	œ
Com	ibined standard	set An	RSS	U _c	$=\sqrt{\sum_{i=1}^{n}C}$	${}_{i}^{2}U_{i}^{2}$	11.4%	11.3%	236
Expanded uncertainty(P=95%)		$U = k U_c$, k=2					22.8%	22.6%	Aupol

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 61 of 150

Appendix A. EUT Photos and Test Setup Photos

Body Front

Body Back

Top side

Bottom side

Left side

Right side

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 62 of 150

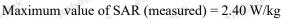
Appendix B. Plots of SAR System Check

System Performance Check at 750 MHz Body Date: 12/15/2020

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1163 Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f =750MHz; σ = 0.94 mho/m; ϵ r = 55.32; ρ = 1000 kg/m3 Phantom section: Flat Section DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(10.09, 10.09, 10.09); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

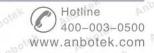
Area Scan (61x131x1): Measurement grid: dx=15.00 mm, dy=15.00 mm


Maximum value of SAR (interpolated) = 2.31 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 49.1 V/m; Power Drift = -0.141 dB

Peak SAR (extrapolated) = 3.20 W/kg


SAR(1 g) = 2.19W/kg; SAR(10 g) = 1.43 W/kg

System Performance Check 750MHz Body 250mW

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety Report No.: 18220WC00157201

FCC ID:055104320

Page 63 of 150

System Performance Check at 835 MHz Body Date: 12/14/2020

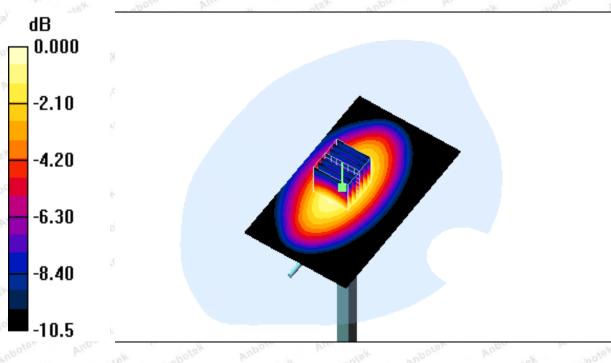
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d154 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835MHz; $\sigma = 0.99$ mho/m; $\epsilon r = 54.68$; $\rho = 1000$ kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(9.88, 9.88, 9.88); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x61x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 2.72 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.523 V/m; Power Drift = -0.01dB

Peak SAR (extrapolated) = 4.068 W/kg

SAR(1 g) = 2.41W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.81 W/kg

System Performance Check 835MHz Body 250mW

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

FCC ID:055104320

Page 64 of 150

System Performance Check at 1750 MHz Body Date: 12/14/2020

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1021

Communication System: CW; Frequency: 1750MHz; Duty Cycle: 1:1

Medium parameters used: f =1750MHz; σ = 1.52mho/m; ϵ r = 54.11; ρ = 1000 kg/m3

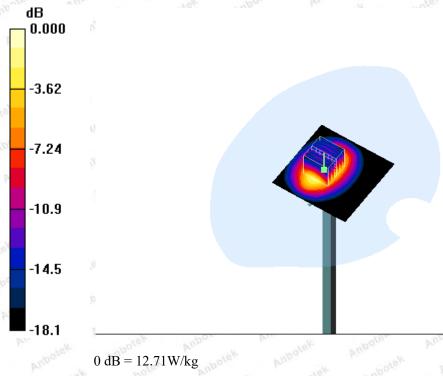
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(8.24, 8.24, 8.24); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x61x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 12.60 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.17 V/m; Power Drift = 0.03dB

Peak SAR (extrapolated) = 15.81 W/kg

SAR(1 g) =9.16W/kg; SAR(10 g) = 4.74 W/kg

Maximum value of SAR (measured) = 12.71 W/kg

System Performance Check 1750MHz Body 250mW

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC00157201

FCC ID:055104320

Page 65 of 150

System Performance Check at 1900 MHz Body Date: 12/15/2020

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d175

Communication System: CW; Frequency: 1900MHz; Duty Cycle: 1:1

Medium parameters used: f =1900MHz; σ = 1.48 mho/m; ϵ r = 53.29; ρ = 1000 kg/m3

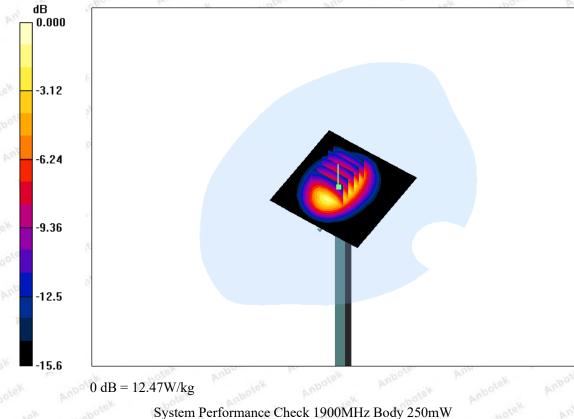
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(7.97, 7.97, 7.97); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x61x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 12.8 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 85.9 V/m; Power Drift = 0.109 dB

Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 10.05W/kg; SAR(10 g) = 5.39W/kg

Maximum value of SAR (measured) = 12.47W/kg

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 66 of 150

Report No.: 18220WC00157201 System Performance Check at 2450MHz Body Date: 12/16/2020

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 910

Communication System: CW; Frequency: 2450MHz; Duty Cycle: 1:1

Medium parameters used: f =2450MHz; σ = 1.97 mho/m; ϵ r = 50.54; ρ = 1000 kg/m3

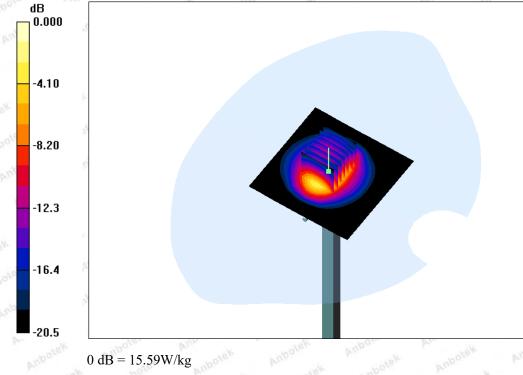
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(7.53, 7.53, 7.53); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x61x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 16.2W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 89.5 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 12.96W/kg; SAR(10 g) = 6.47W/kg

Maximum value of SAR (measured) = 15.59W/kg

System Performance Check 2450MHz Body 250mW

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 67 of 150

Report No.: 18220WC00157201 System Performance Check at 2600MHz Body Date: 12/16/2020

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1058

Communication System: CW; Frequency: 2600MHz; Duty Cycle: 1:1

Medium parameters used: f =2600MHz; σ =2.10 mho/m; ϵ r = 51.34; ρ = 1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(7.38, 7.38, 7.38); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x61x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 25.1W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 89.4 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 34.1 W/kg

SAR(1 g) = 14.22W/kg; SAR(10 g) = 6.39W/kg

Maximum value of SAR (measured) = 22.98W/kg

System Performance Check 2600MHz Body 250mW

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 68 of 150

Appendix C. Plots of SAR Test Data

SAR plots for **the highest measured SAR** in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

GSM850_Rear side_0mm

Date: 14/12/2020

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:1

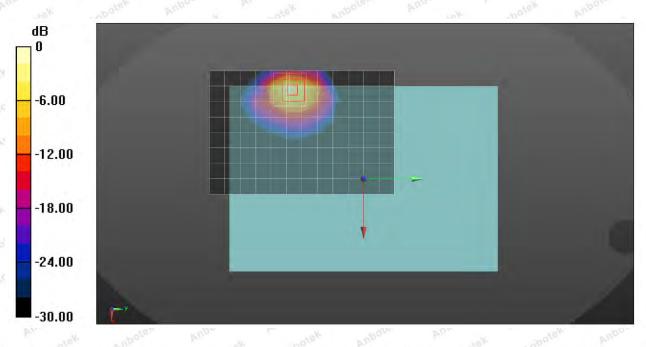
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.965 \text{ mho/m}$; $\epsilon r = 55.94$; $\rho = 1000 \text{ kg/m3}$; Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(9.88, 9.88, 9.88); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.925 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value =24.66 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) =1.66 W/kg

SAR(1 g) = 0.722 W/kg; SAR(10 g) = 0.301 W/kg

Maximum value of SAR (measured) = 1.14 W/kg

Figure 1: GSM850_Front side_0mm

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety Report No.: 18220WC00157201

FCC ID:055104320

Page 69 of 150

PCS 1900_Rear side_0mm

Date: 12/15/2020

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.558$ mho/m; $\epsilon r = 52.99$; $\rho = 1000$ kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(7.97, 7.97, 7.97); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.801W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.81 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.637W/kg; SAR(10 g) = 0.316W/kg

Maximum value of SAR (measured) = 0.927W/kg

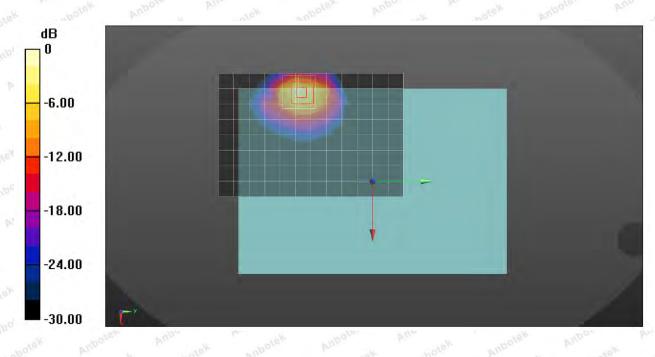


Figure 2: PCS1900_Rear side_0mm

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 70 of 150

Report No.: 18220WC00157201 WCDMA Band V_RCM _Rear side_0mm

Date: 12/14/2020

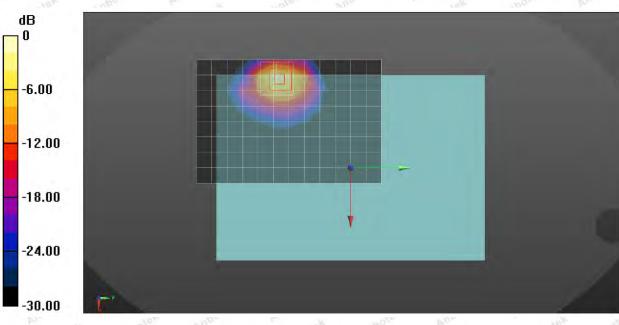
Communication System: W850; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; $\sigma = 1.01$ mho/m; $\epsilon r = 55.5$; $\rho = 1000$ kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(9.88, 9.88, 9.88); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.659W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.52 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.573W/kg; SAR(10 g) = 0.297W/kg

Maximum value of SAR (measured) = 0.780W/kg

Figure 3: WCDMA Band V_RCM _ Rear side_0mm

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety Report No.: 18220WC00157201

FCC ID:055104320

Page 71 of 150

WCDMA Band II_RCM _Rear side_0mm

Date: 12/15/2020

Communication System: W1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon r = 52.9$; $\rho = 1000$ kg/m3

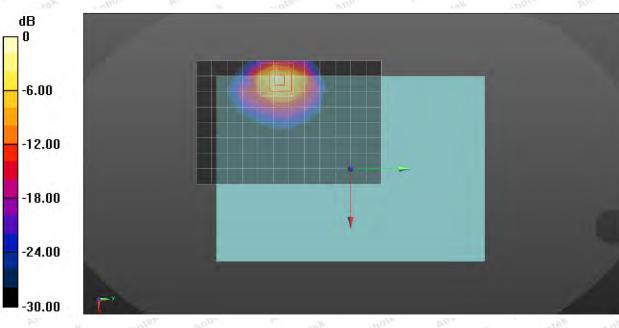
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(7.97, 7.97, 7.97); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

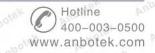
Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.657W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.97 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.30W/kg


SAR(1 g) = 0.557W/kg; SAR(10 g) = 0.276W/kg

Maximum value of SAR (measured) = 0.809W/kg

Figure 4: WCDMA Band II_RCM _ Rear side_0mm

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 72 of 150

Report No.: 18220WC00157201 LTE Band 4_QPSK _Rear side_0mm

Date: 12/14/2020

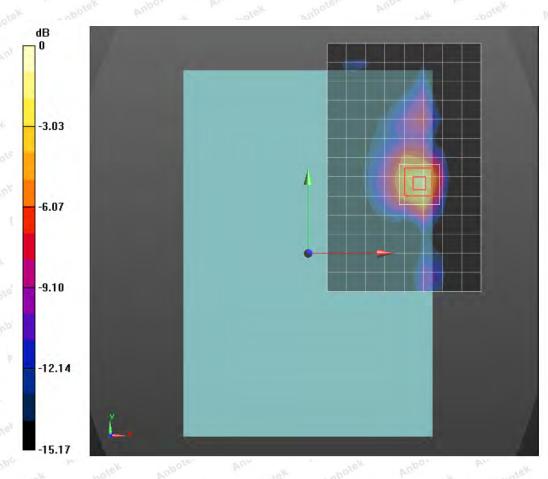
Communication System: LTE B4; Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 52.2$; $\rho = 1000$ kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(8.24, 8.24, 8.24); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.781 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.86 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) =1.24W/kg

SAR(1 g) = 0.625 W/kg; SAR(10 g) = 0.370 W/kg

Maximum value of SAR (measured) = 0.953 W/kg

Figure 5: LTE Band 4_QPSK _ Rear side_0mm

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 73 of 150

LTE Band 5_QPSK _Rear side_0mm

Date: 12/14/2020

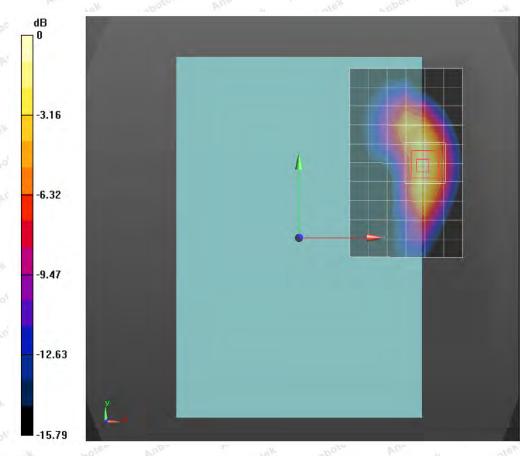
Communication System: LTE B5; Frequency: 844.0MHz;Duty Cycle: 1:1 Medium parameters used: f = 844.0 MHz; $\sigma = 0.979$ S/m; $\epsilon r = 55.306$; $\rho = 1000$ kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(9.88, 9.88, 9.88); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.20W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 33.92 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.893W/kg; SAR(10 g) = 0.485W/kg

Maximum value of SAR (measured) =1.20W/kg

Figure 6: LTE Band 5 _QPSK _ Rear side_0mm

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 74 of 150

LTE Band 7_QPSK _Rear side_0mm

Date: 12/16/2020

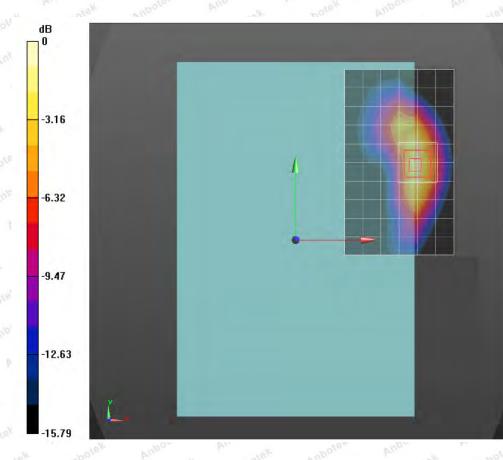
Communication System: LTE B7; Frequency: 2560MHz;Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; $\sigma = 1.88$ mho/m; $\epsilon r = 50.5$; $\rho = 1000$ kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(7.38, 7.38, 7.38); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.809W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.16 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.657W/kg; SAR(10 g) = 0.360W/kg

Maximum value of SAR (measured) = 0.814W/kg

Figure 7: LTE Band 7 _QPSK _ Rear side_0mm

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 75 of 150

LTE Band 12_QPSK _Rear side_0mm

Date: 12/15/2020

Communication System: LTE B12; Frequency: 711.0MHz;Duty Cycle: 1:1

Medium parameters used: f = 711.0 MHz; $\sigma = 0.952 mho/m$; $\epsilon r = 55.5$; $\rho = 1000 kg/m3$

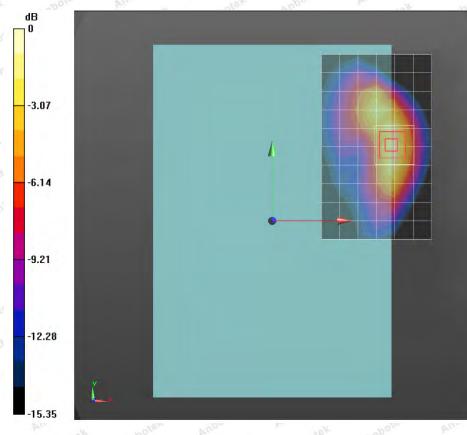
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(10.09, 10.09, 10.09); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.701W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.47 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.752W/kg; SAR(10 g) = 0.411W/kg

Maximum value of SAR (measured) = 1.08W/kg

Figure 8: LTE Band 12 _QPSK _ Rear side_0mm

Shenzhen Anbotek Compliance Laboratory Limited

WLAN2.4G Rear side 0mm

FCC ID:055104320

Page 76 of 150

Date: 12/16/2020

Communication System: 802.11; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon r = 52.4$; $\rho = 1000$ kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 –7396; ConvF(7.53, 7.53, 7.53); Calibrated: 5/6/2020;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 09.06.2020
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (7x10x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.65W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.44 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.81 W/kg

SAR(1 g) = 0.488 W/kg; SAR(10 g) = 0.145 W/kg

Maximum value of SAR (measured) = 1.01 W/kg

Figure 9: WLAN 2.4G_ Rear side_0mm

Shenzhen Anbotek Compliance Laboratory Limited

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z20-68716

Page 1 of 11

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

 Add: No.51 Xueyuan Road, Haidian District. Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A.B.C.D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization 0	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- Methods Applied and Interpretation of Parameters:
- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(I)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: 220-68716

Page 2 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 78 of 150

Add: No.51 Xueyuan Road, Tel: +86-10-62304633-2218 E-mail: ettl@chinatil.com

d, Haidian District, Beijing, 100191, China 18 Fax: +86-10-62304633-2209 <u>Http://www.chinatil.cn</u>

Probe EX3DV4

SN: 7396

Calibrated: May 06, 2020

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z20-68716

Page 3 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 79 of 150

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinatl.com <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	0.54	0.53	0.50	±10.0%
DCP(mV) ^B	97.8	104.5	102.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	c	D dB	VR mV	Unc ^e (k=2)
0	CW	x	0.0	0.0	1.0	0.00	199.9	±2.4%
	0.0000	Y	0.0	0.0	1.0		203.3	
		z	0.0	0.0	1.0		195.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

⁶ The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).
⁸ Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z20-68716

Page 4 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 80 of 150

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

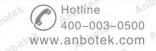
 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.82	9.82	9.82	0.30	0.85	±12.1%
835	41.5	0.90	9.71	9.71	9.71	0.15	1.36	±12.1%
900	41.5	0.97	9.87	9.87	9.87	0.16	1.37	±12.1%
1750	40.1	1.37	8.61	8.61	8.61	0.25	1.04	±12.1%
1900	40.0	1.40	8.13	8.13	8.13	0.24	1.01	±12.1%
2100	39.8	1.49	8.14	8.14	8.14	0.24	1.04	±12.1%
2300	39.5	1.67	7.85	7.85	7.85	0.40	0.75	±12.1%
2450	39.2	1.80	7.57	7.57	7.57	0.50	0.75	±12.1%
2600	39.0	1.96	7.38	7.38	7.38	0.64	0.68	±12.1%
5250	35.9	4.71	5.33	5.33	5.33	0.45	1.30	±13.3%
5600	35.5	5.07	4.89	4.89	4.89	0.45	1.35	±13.3%
5750	35.4	5.22	4.92	4.92	4.92	0.45	1.45	±13.3%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^r At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z20-68716

Page 5 of 11


Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 81 of 150

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

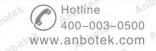
 E-mail: ettl/a/chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.09	10.09	10.09	0.30	0.90	±12.1%
835	55.2	0.97	9.88	9.88	9.88	0.19	1.32	±12.1%
900	55.0	1.05	9.82	9.82	9.82	0.23	1.15	±12.1%
1750	53.4	1.49	8.24	8.24	8.24	0.24	1.06	±12.1%
1900	53.3	1.52	7.97	7.97	7.97	0.19	1.24	±12.1%
2100	53.2	1.62	8.18	8.18	8.18	0.19	1.39	±12.1%
2300	52.9	1.81	7.88	7.88	7.88	0.55	0.80	±12.1%
2450	52.7	1.95	7.53	7.53	7.53	0.46	0.89	±12.1%
2600	52.5	2.16	7.38	7.38	7.38	0.52	0.80	±12.1%
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.80	±13.3%
5600	48.5	5.77	4.19	4.19	4.19	0.48	1.90	±13.3%
5750	48.3	5.94	4.52	4.52	4.52	0.48	1.95	±13.3%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

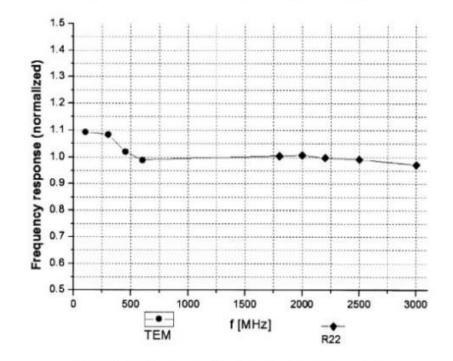
Certificate No: Z20-68716

Page 6 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 82 of 150



 Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: ettl@chinatl.com
 <u>Http://www.chinatl.cn</u>

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

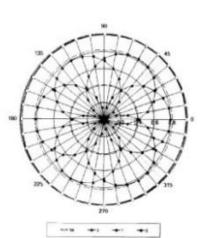
Certificate No: Z20-68716

Page 7 of 11

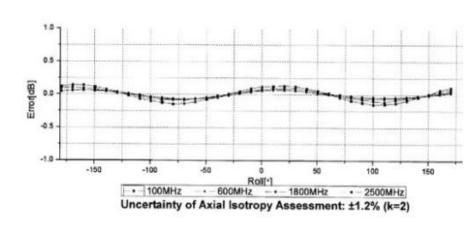
Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 83 of 150


 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209


 E-mail: ettl@chinattl.com
 <u>Http://www.chinattl.cn</u>

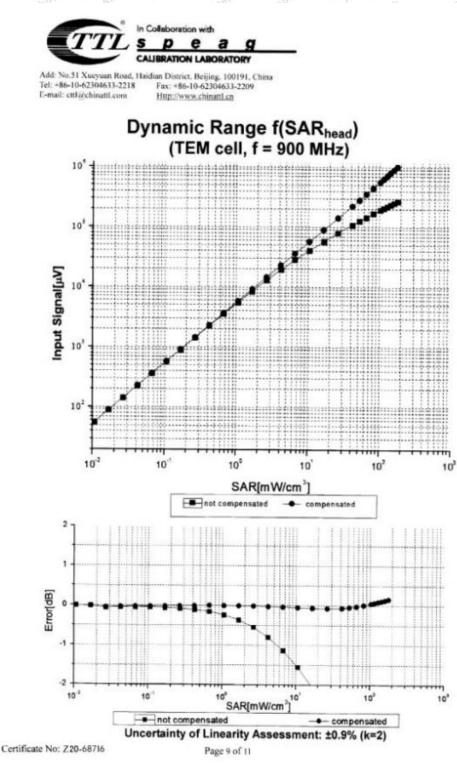
Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Certificate No: Z20-68716

Page 8 of 11


Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 84 of 150

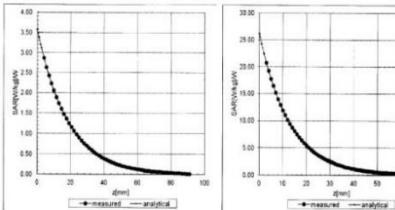
FCC ID:055104320

Shenzhen Anbotek Compliance Laboratory Limited

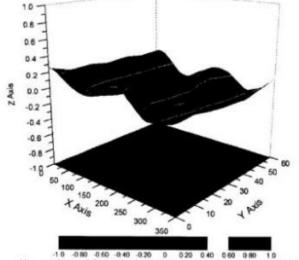
Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 85 of 150

Add: No.51 Xu ng, 100191, China d. Haidian District, Beij Tel: +86-10-62304633-2218 E-mail: cttl@chirattl.com Fax: +86-10-62304633-2209 Http://www.chinattl.en


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF) 4.00


f=1750 MHz, WGLS R22(H_convF)

63 40

Page 86 of 150

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Certificate No: Z20-68716

Page 10 of 11

Shenzhen Anbotek Compliance Laboratory Limited

 Fail:
 +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail:
 ettl@chinattl.com
 Http://www.chinattl.co

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	156.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z20-68716

Page 11 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 87 of 150

Page 88 of 150

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Hac-MR

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA. Multilateral Agreement for the recognition of calibration certificates

Anbotek (Auden) Client

Certilicate No: DAE4-387_Sep10

Accreditation No.: SCS 0108

S

C


S

3bject	DAE4 - SD 000 D	04 BM - SN: 387	
Calibration procedura(s)	QA CAL-06.v29 Calibration proces	dure for the data acquisition elec	ctronics (DAE)
Calibration date:	September 06, 20	20	
The measurements and the unco	artainties with confidence pro	nal standards, which realize the physical ur xbability are given on the following pages ar facility: environment temperature (22 \pm 3)*	id are part of the certificate.
	TE critical for calibration)		
valibration Equipment used (iwa			
	ID #	Cal Date (Cert//cate No.)	Scheduled Calibration
rimary Standards		Cal Date (Certificate No.) 15-Aug-20 (No:21092)	Scheduled Calibration Aug-21
Primary Standards Ceithley Multimeter Type 2001	10.4		
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278	15-Aug-20 (No:21092)	Aug-21
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	15-Aug-20 (No:21092) Chieck Date (in house) 05-Jan-20 (in house check)	Aug-21 Scheduled Check In house check: Jan-21
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	15-Aug-20 (No:21092) Check Dete (in house) 05-Jan-20 (in house check) 05-Jan-20 (in house check)	Aug-21 Scheduled Check In house check: Jan-21 In house check: Jan-21
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	15-Aug-20 (No:21092) Check Date (in house) 05-Jan-20 (in house check) 05-Jan-20 (in house check) Function	Aug-21 Scheduled Check In house check: Jan-21 In house check: Jan-21

Certificate No: DAE4-387_Sep10

Page 1 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Page 89 of 150

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage c Servizio evizzero di teratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accorditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector. during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-387_Sep10

Fage 2 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Page 90 of 150

DC Voltage Measurement

High Range:	1LSB =	6.1µV.	full range =	-100+300 mV
Low Range:	1LSB =	61nV .		-1+3mV

Calibration Factors	x	Y	Z
High Range	404.489 ± 0.02% (k=2)	404.852 ± 0.02% (k=2)	404.862 ± 0.02% (k=2)
Low Range	3.97827 ± 1.50% (k=2)	3.95875 ± 1.50% (k=2)	3.97982 ± 1.50% (k=2)


Connector Angle

Connector Angle to be used in DASY system	53.0 ° ± 1 °
---	--------------

Certificate No: DAE4-387_Sep10

Page 3 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Page 91 of 150

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200032.85	-3.31	-0.00
Channel X + Input	20007.64	1.88	0.01
Channel X - Input	-20003.48	1.18	-0.01
Channel Y + Input	200034.23	-1.43	-0.00
Channel Y + Input	20006.60	0.91	0.00
Channel Y - Input	-20004.04	0.72	-0.00
Channel Z + Input	200035.38	-0.83	-0.00
Channel Z + Input	20003.69	-2.11	-0.01
Channel Z - Input	-20006.38	-1.59	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.63	0.08	0.00
Channel X + Input	202.29	0.70	0.35
Channel X - Input	-197.90	0.60	-0.30
Channel Y + Input	2001.33	-0.07	-0.00
Channel Y + Input	200.86	-0.60	-0.30
Channel Y - Input	-199.87	-1.23	0.62
Channel Z + Input	2001.61	0.27	0.01
Channel Z + Input	200.60	-0.70	-0.35
Channel Z - Input	-199.51	-0.85	0.43

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	13.50	11.56
	- 200	-8.64	-11.18
Channel Y	200	-0.81	-1.28
	- 200	1.05	0.09
Channel Z	200	7.17	6.91
	- 200	-9.46	-9.01

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		-1.70	0.33
Channel Y	200	10.70	-	-0.38
Channel Z	200	7.11	7.89	

Certificate No: DAE4-387_Sep10

Page 4 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Page 92 of 150

AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15969	17466
Channel Y	15661	16162
Channel Z	15990	16190

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MQ

IDUC IUMU2		
And the second se	_	

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.73	-2.58	3.29	0.62
Channel Y	0.41	-0.49	1,23	0.40
Channel Z	-0.80	-1.88	0.30	0.42

6. Input Offset Current

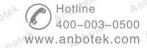
Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6


9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-387_Sep10

Page 5 of 5

Shenzhen Anbotek Compliance Laboratory Limited

安博检 botek **Product Safety Anbotek Testing** Report No.: 18220WC00157201

FCC ID:055104320

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl @chinattl.com
 http://www.chinattl.en
 E-mail: cttl a chinattl.com Client

CTTL(South Branch)

Certificate No: Z19-60291

CALIBRATION CERTIFICATE

Object	D750V3 - SN: 1163
Calibration Procedure(s)	FF-Z11-003-01 Calibration Procedures for dipole validation kits
Calibration date:	September 3, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2 106276 11-Ap		11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power sensor NRP6A	101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Jan-20
DAE4	SN 1555	22-Aug-19(CTTL-SPEAG.No.Z19-60295)	Aug-20
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	- AR
Reviewed by:	Lin Hao	SAR Test Engineer	一成九
Approved by:	Qi Dianyuan	SAR Project Leader	200
This collibration contificate at	all act he serves	Issued: Septe duced except in full without written approval c	ember 6, 2019

Certificate No: Z19-60291 Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 93 of 150

FCC ID:055104320

Add: No.51 Xueyuan Road, Haidian District. Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: =86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60291

Page 2 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Page 94 of 150

FCC ID:055104320

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: ~86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.en

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

-	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.53 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.70 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.9 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.78 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.87 W/kg ±18.7 % (k=2)

Certificate No: Z19-60291

Page 3 of 8

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl @chinattl.com
 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω- 4.53jΩ
Return Loss	- 26.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5Ω- 3.38jΩ		
Return Loss	- 28.5dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	0.900 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z19-60291

Page 4 of 8

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

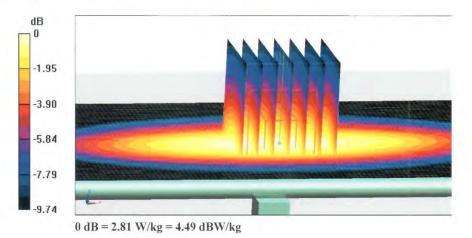
 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 09.03.2019

Page 97 of 150


DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.904$ S/m; $\varepsilon_r = 41.62$; $\rho = 1000$ kg/m3 Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(10.03, 10.03, 10.03) @ 750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

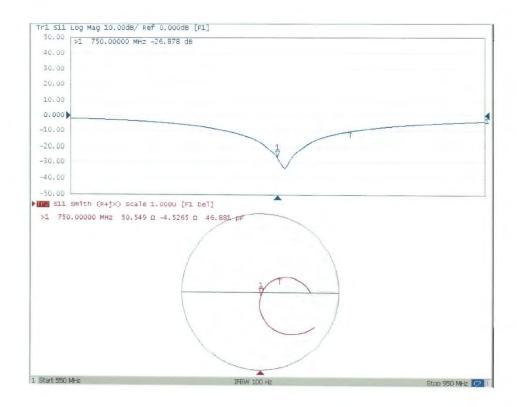
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.16 V/m; Power Drift = -0.02 dBPeak SAR (extrapolated) = 3.11 W/kgSAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.44 W/kgMaximum value of SAR (measured) = 2.81 W/kg

Certificate No: Z19-60291

Page 5 of 8

Shenzhen Anbotek Compliance Laboratory Limited



FCC ID:055104320

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60291

Page 6 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 98 of 150

Anbotek 文博施测 Product Safety Anbotek Testing Report No.: 18220WC00157201

FCC ID:055104320

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

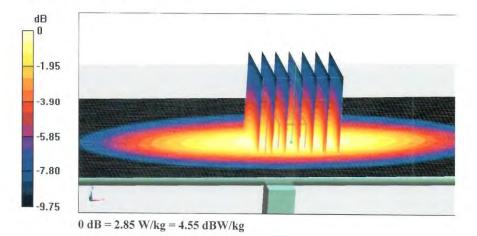
 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Se

Date: 09.03.2019

Page 99 of 150


DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.942$ S/m; $\varepsilon_r = 55.87$; $\rho = 1000$ kg/m3 Phantom section: Center Section

DASY5 Configuration:

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

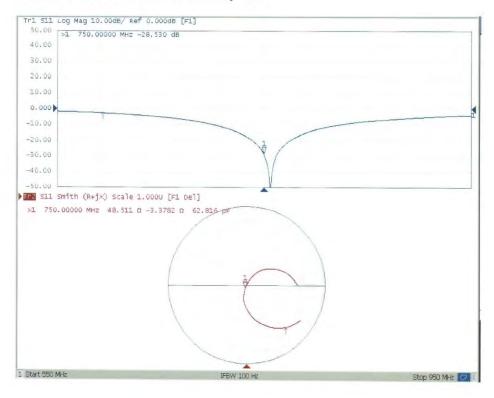
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.88 V/m; Power Drift = 0.03 dBPeak SAR (extrapolated) = 3.20 W/kgSAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.45 W/kgMaximum value of SAR (measured) = 2.85 W/kg

Certificate No: Z19-60291

Page 7 of 8

Shenzhen Anbotek Compliance Laboratory Limited



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.en

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60291

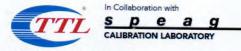
Page 8 of 8

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID:055104320

Page 101 of 150

Certificate No: Z18-97089


Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held
- devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:


- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-97089

Page 2 of 8

Shenzhen Anbotek Compliance Laboratory Limited

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.24 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.50 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.02 mW /g ± 20.4 % (k=2)


Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permitti	vity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2		0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.4 ± 6	5 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C			
R result with Body TSL				
SAR averaged over 1 cm^3 (1 g) of Body TSL	Cond	ition		
SAR measured	250 mW ii	nput power		2.43 mW / g
SAR for nominal Body TSL parameters	normalize	ed to 1W	9.57	mW /g ± 20.8 % (k=2
SAR averaged over 10 cm^3 (10 g) of Body T	SL Cond	ition		
SAR measured	250 mW ii	nput power		1.61 mW / g
SAR for nominal Body TSL parameters	normalize	ed to 1W	6.36	mW /g ± 20.4 % (k=2

Certificate No: Z18-97089 Page 3 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Page 104 of 150

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2 Ω- 3.11jΩ		
Return Loss	- 29.8dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6Ω- 2.33jΩ		
Return Loss	- 27.4dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.508 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		

Certificate No: Z18-97089

Page 4 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek 安博检测 **Product Safety Anbotek Testing** Report No.: 18220WC00157201

FCC ID:055104320

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

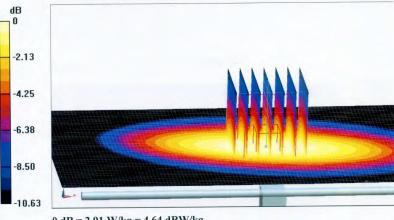
 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn
 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Date: 06.16.2018

Page 105 of 150

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154

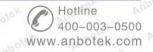

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.891 S/m; ϵ_r = 40.97; ρ = 1000 kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(10.01, 10.01, 10.01); Calibrated: 2/19/2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2018-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 58.14V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.41 W/kg SAR(1 g) = 2.3 W/kg; SAR(10 g) = 1.5 W/kg Maximum value of SAR (measured) = 2.91 W/kg

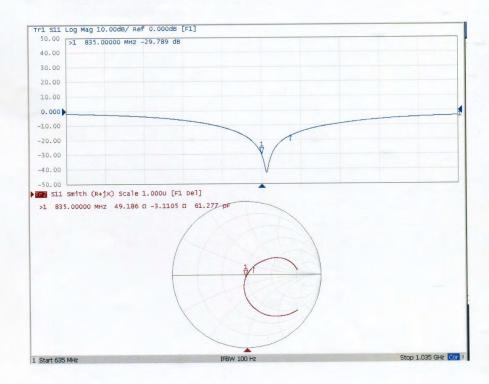


0 dB = 2.91 W/kg = 4.64 dBW/kg

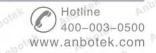
Certificate No: Z18-97089

Page 5 of 8

Shenzhen Anbotek Compliance Laboratory Limited



Page 106 of 150


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z18-97089 Page 6 of 8

Shenzhen Anbotek Compliance Laboratory Limited

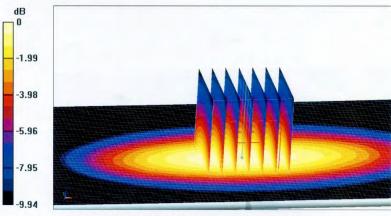
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China

Date: 06.16.2018

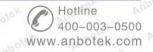

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.991$ S/m; $\varepsilon_r = 55.41$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(9.83,9.83, 9.83); Calibrated: 2/19/2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2018-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.01 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.04 W/kg

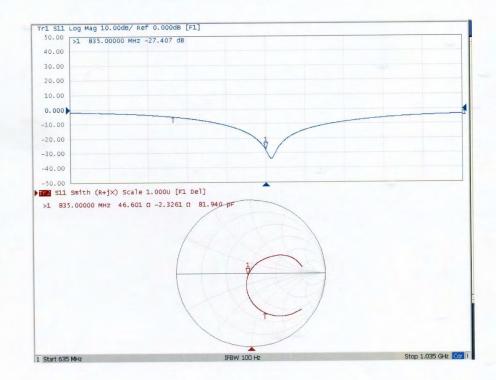


0 dB = 3.04 W/kg = 4.83 dBW/kg

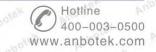
Certificate No: Z18-97089

Page 7 of 8

Shenzhen Anbotek Compliance Laboratory Limited



Page 108 of 150


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z18-97089 Page 8 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Page 109 of 150

	CALIBRAT		NAS核准
Add: No.51 Xueyu Tel: ±86-10-623046		trict, Beijing, 100191, China	CALIBRATION CNAS L0570
E-mail: cttl@chinat		Certificate No: Z1	9-97103
Client			3-37103
CALIBRATION CI	RIFICAL	E	
Object	D1750	/2 - SN: 1021	
Calibration Procedure(s)			
Calibration Procedure(s)		-2-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	July 3, 3	2019	
humidity<70%. Calibration Equipment used Primary Standards	(M&TE critical fo	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical fo ID # 101919	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777)	Scheduled Calibration Jun-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical fo ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777) 27-Jun-19 (CTTL, No.J19X04777)	Scheduled Calibration Jun-20 Jun-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical fo ID # 101919	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777)	Scheduled Calibration Jun-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	(M&TE critical fe ID # 101919 101547 SN 7307	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777) 27-Jun-19 (CTTL, No.J19X04777) 19-Feb-19(SPEAG,No.EX3-7307_Feb19)	Scheduled Calibration Jun-20 Jun-20 Feb-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777) 27-Jun-19 (CTTL, No.J19X04777) 19-Feb-19(CTTL, No.EX3-7307_Feb19) 02-Feb-19(CTTL-SPEAG,No.Z19-97011)	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID #	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777) 27-Jun-19 (CTTL, No.J19X04777) 19-Feb-19(CTTL, No.EX3-7307_Feb19) 02-Feb-19(CTTL-SPEAG,No.Z19-97011) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777) 27-Jun-19 (CTTL, No.J19X04777) 19-Feb-19(SPEAG,No.EX3-7307_Feb19) 02-Feb-19(CTTL-SPEAG,No.Z19-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-19 (CTTL, No.J19X00893)	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 Scheduled Calibration Jan-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777) 27-Jun-19 (CTTL, No.J19X04777) 19-Feb-19(SPEAG,No.EX3-7307_Feb19) 02-Feb-19(CTTL-SPEAG,No.Z19-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-19 (CTTL, No.J19X00893) 26-Jan-19 (CTTL, No.J19X00894) Function	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 Scheduled Calibration Jan-20 Jan-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777) 27-Jun-19 (CTTL, No.J19X04777) 19-Feb-19(SPEAG,No.EX3-7307_Feb19) 02-Feb-19(CTTL-SPEAG,No.Z19-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-19 (CTTL, No.J19X00893) 26-Jan-19 (CTTL, No.J19X00894)	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 Scheduled Calibration Jan-20 Jan-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777) 27-Jun-19 (CTTL, No.J19X04777) 19-Feb-19(SPEAG,No.EX3-7307_Feb19) 02-Feb-19(CTTL-SPEAG,No.Z19-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-19 (CTTL, No.J19X00893) 26-Jan-19 (CTTL, No.J19X00894) Function	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 Scheduled Calibration Jan-20 Jan-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 27-Jun-19 (CTTL, No.J19X04777) 27-Jun-19 (CTTL, No.J19X04777) 19-Feb-19(SPEAG, No.EX3-7307_Feb19) 02-Feb-19(CTTL-SPEAG, No.Z19-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-19 (CTTL, No.J19X00893) 26-Jan-19 (CTTL, No.J19X00894) Function SAR Test Engineer	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 Scheduled Calibration Jan-20 Jan-20

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z19-97103

Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Page 110 of 150

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tels 486-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Gloceary

Glossary.	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

- Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
- point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-97103

Page 2 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Page 111 of 150

Tel:#86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel:,+86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permitt	ivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1		1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ±	6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C			
R result with Head TSL				
SAR averaged over 1 cm ³ (1 g) of Head TSL	Con	dition		
SAR measured	250 mW	input power		9.17 mW/g
SAR for nominal Head TSL parameters	normali	zed to 1W	36.9	mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head T	SL Con	dition		
SAR measured	250 mW	input power		4.94 mW/g
SAR for nominal Head TSL parameters	normali	zed to 1W	19.8	mW /g ± 20.4 % (k=2)

Body TSL parameters

	Temperature	Permit	ivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4		1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ±	6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C			
R result with Body TSL				
SAR averaged over 1 cm^3 (1 g) of Body TSL	Co	ndition		
SAR measured	250 m\	V input power		9.25 mW / g
SAR for nominal Body TSL parameters	norma	lized to 1W	36.7	mW /g ± 20.8 % (k=2
SAR averaged over 10 cm^3 (10 g) of Body T	SL Co	ondition		
SAR measured	250 m\	V input power		4.94 mW / g
SAR for nominal Body TSL parameters	norma	lized to 1W	19.7	mW /g ± 20.4 % (k=2)

Certificate No: Z19-97103

Page 3 of 8

Shenzhen Anbotek Compliance Laboratory Limited

