

FCC - TEST REPORT

Report Number	:	60.790.20.085.01R02	Date of Issue	: February 3, 2021	
Model	:	SBC-D08			
Product Type	:	TCD-W2			
Applicant	:	Dayton Industrial Co., Lto	1.		
Address	:	Block A, 11/F, 2-12 Kwai Fat Road, Kwai Chung, New Territories, Hong Kong			
Production Facility	:	Kendy Electronics (Dongguan) Co., Ltd			
Address	:	Xin Si Huang Tang Village, Heng Li Town, Dongguang City, Guangdong, China			
Test Result	:	■Positive	□Negative		
Total pages including Appendices	:	22			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1 Table of Contents	2
2 Description of Equipment Under Test	3
3 Summary of Test Standards	4
4 Details about the Test Laboratory	5
4.1 Test Equipment Site List	6
4.2 Measurement System Uncertainty	7
5 Summary of Test Results	8
6 General Remarks	9
7 Test Setups	. 10
7.1 Radiated test setups Below 1GHz	10
7.2 Radiated test setups Above 1GHz	10
7.3 AC Power Line Conducted Emission test setups	11
7.4 Conducted RF test setups	11
8 Emission Test Results	.12
8.1 Radiated Emission	12
8.2 Conducted Emission at AC Power line	14
8.3 20dB & 99% Bandwidth	16
8.4 Antenna Requirement	17
9 Test setup procedure	.18
10 Appendix A - General Product Information	.22

2 Description of Equipment Under Test

Description of the Equipment Under Test

Product:	TCD-W2
Product.	100-002

Model no.: SBC-D08

- FCC ID: O4GTCDW2
- Rating:12.0V DC (form E-bike battery)3.7V DC (form rechargeable battery which is for backup purpose)5.0V DC (Charge the rechargeable battery through USB port)

Frequency: 2457MHz

Antenna gain: 0 dBi

Number of operated channel: 1

Modulation: GFSK

Auxiliary Equipment and Software Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Computer	Lenovo	X220	0A72168
AC/DC adapter	Apple	A1537	/

Auxiliary Software Used during Test:

DESCRIPTION	SOFTWARE NAME	VERSION	REMARK
RF Test Mode Software	nRFgo	1.16	Provided by applicant

3 Summary of Test Standards

Test Standards

FCC Part 15 Subpart C 10-1-20 Edition

Federal Communications Commission, PART 15 — Radio Frequency Devices, Subpart C — Intentional Radiators

All the tests were performed using the procedures from ANSI C63.4(2014) and ANSI C63.10 (2013).

4 Details about the Test Laboratory

Site 1

Company name:

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13 Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Shenzhen 518052, P.R.China FCC Registration Number: 514049 ISED test site number: 10320A

Emission Tests		
Test Item	Test Site	
FCC Part 15 Subpart C		
FCC Title 47 Part 15.205, 15.209 & 15.249 & Radiated Emission	Site 1	
FCC Title 47 Part 15.207 Conduct Emission	Site 1	
FCC Title 47 Part 15.215 20dB & 99% Bandwidth	Site 1	
FCC Title 47 Part 15.203 Antenna Requirement	Site 1	

4.1 Test Equipment Site List

Radiated emission Test - Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2021-6-29
Signal Analyzer	Rohde & Schwarz	FSV40	101031	2021-6-22
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100398	2021-7-7
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2021-8-4
Horn Antenna	Rohde & Schwarz	HF907	102294	2021-7-5
Wideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	12827	2021-6-21
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2021-6-21
Pre-amplifier	Rohde & Schwarz	SCU 40A	100432	2021-7-30
Attenuator	Agilent	8491A	MY39264334	2021-6-21
3m Semi-anechoic chamber	TDK	9X6X6		2022-10-28
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

Conducted Emission Test – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2021-6-29
LISN	Rohde & Schwarz	ENV4200	100249	2021-6-12
LISN	Rohde & Schwarz	ENV432	101318	2021-6-12
LISN	Rohde & Schwarz	ENV216	100326	2021-6-12
LISN	Rohde & Schwarz	ENV216	102472	2021-6-12
ISN	Rohde & Schwarz	ENY81	100177	2021-6-12
ISN	Rohde & Schwarz	ENY81-CA6	101664	2021-6-12
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	9420-584	2021-6-23
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2021-6-28
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2021-6-21
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A
Shielding Room	TDK	CSR #1		2020-11-07

20dB & 99% Bandwidth – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2021-6-21
RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157	101226/100851	2021-6-21

4.2 Measurement System Uncertainty

Measurement System Uncertainty Emissions

System Measurement Uncertainty			
Items	Extended Uncertainty		
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.76dB		
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 5.12dB; Vertical: 5.10dB;		
Uncertainty for Radiated Emission in 3m chamber 1000MHz-25000MHz	Horizontal: 5.01dB; Vertical: 5.00dB;		
Uncertainty for Conducted Emission at AC Power Line 150kHz-30MHz	3.21dB		
Uncertainty for conducted power test	1.16dB		
Uncertainty for frequency test	0.6×10 ⁻⁷		

.

5 Summary of Test Results

Emission Tests				
FCC Part 15 Subpart C				
Test Condition	Pages	Те	st Resi	ult
		Pass	Fail	N/A
FCC Title 47 Part 15.205,15.209 & 15.249 Radiated Emission	12-13			
FCC Title 47 Part 15.207 Conduct Emission	14-15			
FCC Title 47 Part 15.215 20dB & 99% Bandwidth	16	\square		
FCC Title 47 Part 15.203 Antenna Requirement	17			

6 General Remarks

Remarks

This submittal(s) (test report) is intended for **FCC ID: O4GTCDW2**, complies with Section 15.203, 15.205, 15.207, 15.209, 15.249 of the FCC Part 15, Subpart C rules.

The TX and RX range is 2457MHz.

The 3.7V battery is a backup in case the E-bike 12V batter run out, normally sample is powered by the 12V battery, therefore all RF test results on this report are based on 12V power supplier. However, we have checked the result on 3.7V, no obvious difference.

SUMMARY:

- All tests according to the regulations cited on page 8 were

- Performed
- □ Not Performed

- The Equipment Under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:

December 16, 2020

Testing Start Date:

December 18, 2020

Testing End Date:

January 8, 2021

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

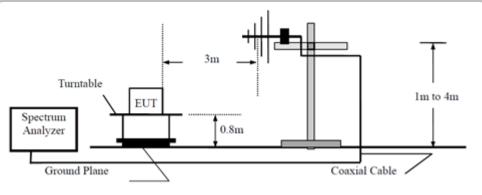
Reviewed by:

Prepared by:

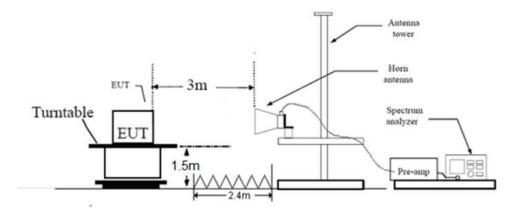
Tested by:

Eric LI EMC Project Manager

rinse

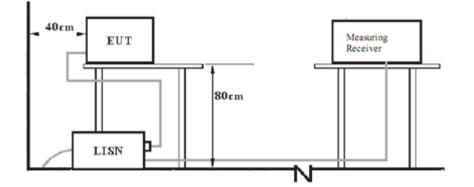

Hosea CHAN EMC Project Engineer

Louise Liu EMC Test Engineer

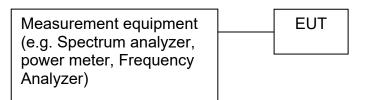


7 Test Setups

7.1 Radiated test setups Below 1GHz



7.2 Radiated test setups Above 1GHz



7.3 AC Power Line Conducted Emission test setups

7.4 Conducted RF test setups

8 Emission Test Results

8.1 Radiated Emission

EUT: Op Condition: Test Specification:	SBC-D08 Operated, TX Mode (2457MHz) FCC15.249 & 15.209, Antenna: Horizontal	Test Result
Comment: Remark:	12V DC Measurement range up to 25GHz	

Frequency	Result	Limit	Over Limit	Detector	Corr.	RSE. or Fund.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	(dB)	
49.581875	20.91	40.00	19.09	Quasi Peak	17.92	Spurious emission
98.021250	20.37	43.50	23.13	Quasi Peak	16.01	Spurious emission
166.527500	22.26	43.50	21.24	Quasi Peak	13.44	Spurious emission
185.321250	22.59	43.50	20.91	Quasi Peak	15.00	Spurious emission
368.348125	27.72	46.00	18.28	Quasi Peak	20.56	Spurious emission
589.447500	31.02	46.00	14.98	Quasi Peak	25.33	Spurious emission
2457.000000	83.50	114.00	-30.50	Peak	-3.78	Fundamental
2457.000000	78.89	94.00	-15.11	Average	-3.78	Fundamental
4594.500000	48.68	74.00	25.32	Peak	1.22	Spurious emission
8029.500000	42.46	74.00	31.54	Peak	6.44	Spurious emission
10485.000000	45.19	74.00	28.81	Peak	8.58	Spurious emission
12905.500000	45.18	74.00	28.82	Peak	9.11	Spurious emission

Remark:

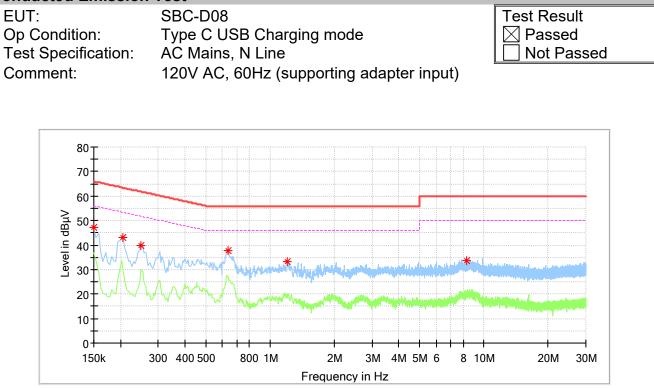
- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Radiated Emission

EUT:SBC-D08Op Condition:Operated, TX Mode (2457MHz)Test Specification:FCC15.249 & 15.209, Antenna: VerticalComment:12V DCRemark:Measurement range up to 25GHz		: Vertical	Test Result			
Frequency	Result	Limit	Over Limit	Detector	Corr.	RSE. or Fund.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	(dB)	
36.790000	28.85	40.00	11.15	Quasi Peak	15.41	Spurious emission
49.460625	26.74	40.00	13.26	Quasi Peak	17.92	Spurious emission
54.553125	28.61	40.00	11.39	Quasi Peak	17.62	Spurious emission
62.434375	26.58	40.00	13.42	Quasi Peak	16.22	Spurious emission
78.378750	21.91	40.00	18.09	Quasi Peak	11.45	Spurious emission
164.648125	25.46	43.50	18.04	Quasi Peak	13.37	Spurious emission
2457.000000	89.23	114.00	-24.77	Peak	-3.78	Fundamental
2457.000000	85.21	94.00	-8.79	Average	-3.78	Fundamental
2924.000000	44.84	74.00	29.16	Peak	-2.68	Spurious emission
7435.000000	42.40	74.00	31.60	Peak	5.49	Spurious emission
9112.500000	43.78	74.00	30.22	Peak	6.82	Spurious emission
11817.000000	44.77	74.00	29.23	Peak	8.54	Spurious emission

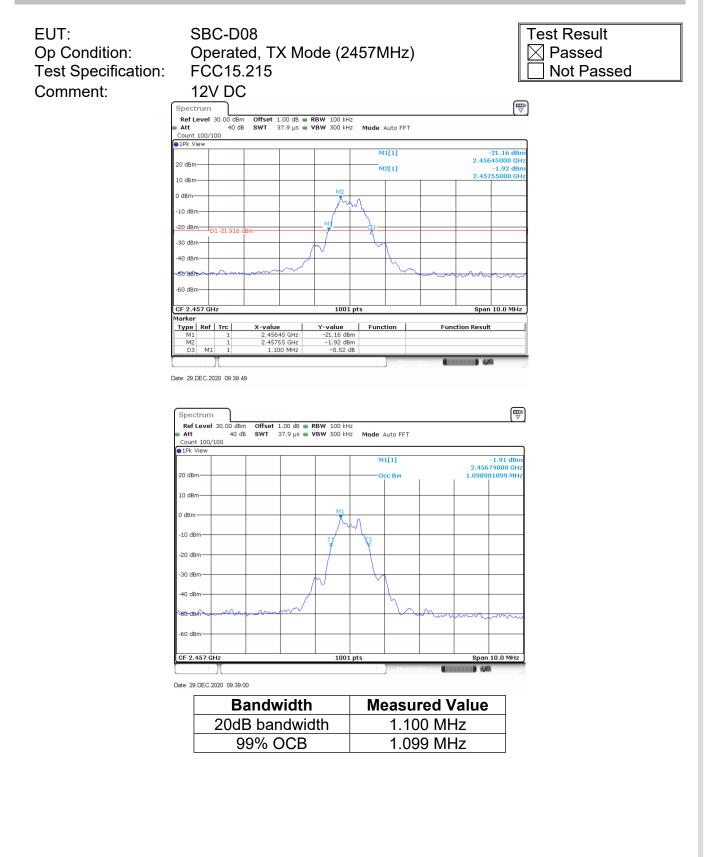
Remark:

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)


8.2 Conducted Emission at AC Power line

EUT: SBC-D08 Test Result Op Condition: Type C USB Charging mode \boxtimes Passed Test Specification: AC Mains, L Line Not Passed 120V AC, 60Hz (supporting adapter input) Comment: 80 T 70-60 Level in dBµV 50 40 30 20 10 0. 150k 300 400 500 800 1M 2M 3M 4M 5M 6 8 10M 20M 30M Frequency in Hz

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Over Limit (dB)
0.150000	47.65		66.00	-18.35
0.198000	43.99		63.69	-19.71
0.250000	41.07		61.76	-20.69
0.534000	35.11		56.00	-20.89
1.874000	31.77		56.00	-24.23
8.334000	34.11		60.00	-25.89


Conducted Emission Test

Frequency	MaxPeak	Average	Limit	Over Limit
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)
0.150000	47.22		66.00	-18.78
0.206000	43.13		63.37	-20.23
0.250000	39.93		61.76	-21.83
0.634000	37.74		56.00	-18.26
1.210000	33.32		56.00	-22.68
8.338000	33.72		60.00	-26.28

8.3 20dB & 99% Bandwidth

Page 16 of 22

8.4 Antenna Requirement

EUT: Op Condition: Test Specification: Comment: SBC-D08 Operated, TX Mode FCC15.203 (b) 12V DC

Test Result			
🛛 Passed			
Not Passed			

Limit

For intentional device, according to FCC Title 47 Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connector Construction

The antenna used in this product is an integrated antenna on PCB, which in accordance to section 15.203, is considered sufficient to comply with the antenna requirement.

9 Test setup procedure

9.1 Field strength of emissions and Restricted bands

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3-meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥3RBW, Sweep = auto, Detector function = peak and average, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 120KHz, VBW≥3RBW, Sweep = auto, Detector function = QP, Trace = max hold.

Field strength of emissions and Restricted bands

Limits

According to §15.249 (a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

According to §15.249 (c), Field strength limits are specified at a distance of 3 meters. According to §15.249 (d, Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation. According to §15.205 Unwanted emissions falling into restricted bands in §15.205 (a) shall comply with the limits specified in §15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

9.2 Conducted Emission at AC Power line

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
 MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

*Decreasing linearly with logarithm of the frequency.

9.3 20dB & 99% Bandwidth

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to spectrum analyser. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.

Limits:

According to 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

10 Appendix A - General Product Information

Radiofrequency radiation exposure evaluation

This exposure evaluation is intended for FCC ID: O4GTCDW2

According to KDB 447498 D01v06 section 4.3.1, For frequencies between 100 MHz to 6GHz and test separation distances \leq 50 mm, the Numeric threshold is determined as:

Step a)

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR

>> The fundamental frequency of the EUT is 2457MHz, the test separation distance is ≤ 50mm. (Manufacturer specified the separation distance is: 20mm) (5mm is the worst case according to the KDB)

Step b)

- >> Numeric threshold (2457MHz), mW / 5mm * $\sqrt{2.457GHz} \le 3.0$ Numeric threshold (2457MHz) $\le 9.569mW$
- >> The power (calculated power + tune up tolerance) of EUT at 2457MHz is: 0.26mW Which is smaller than the Numeric threshold. Therefore, the device is exempt from stand-alone SAR test requirements.

Power calculation (According to C63.10 chapter 9.5)

	Value	Unit
Field Strength Measured (E)	89.23	dBµV/m
Measurement Distance (D)	3	m
Equivalent Isotropically Radiated Power (E.I.R.P in dBm)	-5.93	dBm
Equivalent Isotropically Radiated Power (E.I.R.P in mW)	0.26	mW

Remark: EIRP = $E + 20\log(D) - 104.7$

(EIRP is in dBm, E is in $dB\mu V/m$, D is in metres)

Reviewed by:

Eric LI EMC Project Manager

Prepared by:

Hosea CHAN EMC Project Engineer