

Tel.: +82-2-860-1464 Fax.: +82-2-860-1468

TEST REPORT

1. Applicant

Name : YoungShin Electronics Co.,Ltd.

Address : C-7F, Bupyung Woolim Lion's Vally 425,

Cheongcheon-dong, Bupyeong-gu, Inchen, 2. Products

Name : Car alarm

: O44JMR600SS / Car alarm Model/Type

Manufacturer : YoungShin Electronics Co.,Ltd.

FCC ID : 044JMR600SS

3. Test Standard/Method FCC Part 15, Subpart B and C / ANSI C63.4-2003

: Positive 4. Test Results

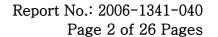
5. Use of Report

: Dec 14, 2006 6. Date of Application

7. Date of Issue : Mar 13, 2007

Tested by Approved by

5. J. Km 2/2


Seok-Jin Kim Bum-Jong KIM

Telecommunication Team Telecommunication Team

Senior Engineer Manager

The test results contained apply only to the test sample(s) supplied by the applicant, and this test report shall not be reproduced in full or in part without approval of the KTL in advance.

Korea Testing Laboratory

Fax.: +82-2-860-1468

TABLE OF CONTENTS

I. GENERAL INFORMATION	4
 Applicant(client) Equipment(EUT) Testing Laboratory 	
II . GENERAL REQUIREMENTS OF EUT	5
 Labelling Requirements Information to user Special Accessories 	
Ⅲ. RADIATED EMISSION MEASUREMENT (Section 15.209/15.247)	6
 Test Procedure Photograph for the test configuration Sample Calculation Measurement Data 	
 IV. 20dB BANDWIDTH & HOPPING CHANNEL SEPARATION (Section 15.247(a)(1) 1. Test Procedure 2. Measurement data 3. Measurement Plot 	11
∨ . NUMBER OF HOPPING FREQUENCY (Section 15.247(a)(1))	14
 Test Procedure Measurement data Measurement Plot 	

Page 3 of 26 Pages

Tel.: +82-2-860-1463

Fax.: +82-2-860-1468

VI. DWELL TIME (Section 15.247(a)(1))	15
 Test standard Measurement Data Measurement Plot 	
VII. MAXIMUM PEAK OUTPUT POWER (Section 15.247(b))	17
 Test standard Measurement Data Measurement Plot 	
Ⅷ. 100 kHz BANDWIDTH OF BAND EDGES (Section 15.247(d))	19
Test standard Measurement Plot	
IX. CONDUCTED SPURIOUS EMISSION AT ANTENNA TERMINALS (Section 2.1051)	22
 Test Standard Test Procedure Measurement Plot 	
X . TEST EQUIPMENTS USED FOR MEASUREMENTS	27

Tel.: +82-2-860-1463
Fax.: +82-2-860-1468

I. GENERAL INFORMATIONS

1.1 Applicant (Client)

Name	YoungShin Electronics Co., Ltd.
Address	C-7F, Bupyung Woolim Lion's Vally 425, Cheongcheon-dong, Bupyeong-gu, Inchen, Korea(403-030
Contact Person	Eui-Seok, Chung
Telephone No.	+ 82-32-623-5550 (EXT. 434)
Facsimile No.	+ 82-32-623-6668
E-mail address	euiseok@magicar.com

1.2 Equipment (EUT)

Type of equipment	Car alarm
Model Name	O44JMR600SS
Power Source	DC 1.5V
Dimension	63 mm(W) x 40 mm(H) x 13 mm(D)
Ant. Gain	-3.083 dBi
Using Oscillator	32.78 kHz
Power Consumption	-
Standard	FCC Part 15, Subpart B and C
Measuring Procedure	ANSI C63.4-2003
Manufacturer Name	YoungShin Electronics Co., Ltd.
Manufacturer Address	C-7F, Bupyung Woolim Lion's Vally 425, Cheongcheon-dong, Bupyeong-gu, Inchen, Korea(403-030

1.3 Testing Laboratory

Testing Place	Korea Testing Labortory (KTL) 222-13 Guro-dong, Guro-Gu, Seoul 152-848 Korea
Test Engineer	Bum-Jong KIM
Telephone number	+82 2 860 1464
Facsimile number	+82 2 860 1468
E-mail address	temple@ktl.re.kr
Other Comments	-

Page 5 of 26 Pages

II. GENERAL REQUIREMENTS OF THE EUT

1. Labelling Requirement (Section 15.19)

1.1 Location of Label: User' guide manual

1.2 How Applied : Printed

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

2. Information to User (Section 15.21)
The following or similar statements were provided in the manual for user instruction. Please refer page 1 of the attached manual for details.
CAUTION : Any changes or modifications in construction of this device which are not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
3. Special Accessories (Section 15.27)
3.1 Were the special Accessories provided? [] yes, [■] no
3.2 If yes, details for the special accessories are as follows :
3.3 If yes, were the appropriate instructions provided on the first page of the text concerned with the device? [] yes, [] no
3.4 Are these accessories provided of the type which can be readily obtained from multiple retail outlets? [] yes, [] no
And therefore does the manual specify what additional components or accessories are required to used in order to comply with the Rules? [] yes, [] no

Tel.: +82-2-860-1463
Fax.: +82-2-860-1468

http://www.ktl.re.kr FP-204-03-01

Page 6 of 26 Pages

III. RADIATED EMISSION MEASUREMENT (Section 15.109)

1. Test Procedure

1.1 Preliminary Testing for Reference

Preliminary testing was performed in a KTL absorber-lined room to determine the emission characteristics of the EUT. The EUT was placed on the wooden table which has dimensions of 0.8 meters in height, 1 meter in length and 1.5 meters in width. Receiving antenna (Biconi-Log antenna: 30 to 1000 MHz or Horn Antenna: 1 to 18 GHz) was placed at the distance of 3 meter from the EUT.

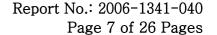
An attempt was made to maximize the emission level with the various configurations of the EUT while rotating the table and varying antenna height.

Emissions level from the EUT with various configurations were examined on a Spectrum Analyzer connected with an RF amplifier and graphed by a plotter.

1.2 Final Radiated Emission Test at an Absorber-Lined Room

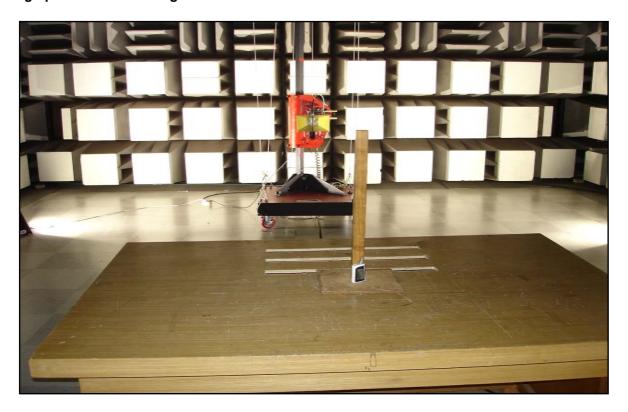
The final measurement of radiated field strength was carried out in a KTL Absorber-Lined Room that was listed up at FCC according to the "Radiated Emissions Testing" procedure specified by ANSI C63.4.

Based on the test results in preliminary test, measurement was made in same test set up and configuration which produced maximum emission level. Receiving antenna was installed at 3-meter distance from the EUT, and was connected to an EMI receiver.


Turntable was rotated through 360 degrees and receiving antenna height was varied from 1 to 4 meters above the ground plane to read maximum emission level.

If necessary, the radiated emission measurements could be performed at a closer distance than specified distance to ensure higher accuracy and their results were extrapolated to the specified distance using an inverse linear distance extrapolation factor (20 dB/decade) as per Section 15.31(f).

The maximum emission level from the EUT occurred in such configuration as shown in the following photograph.


http://www.ktl.re.kr FP-204-03-01 Tel.: +82-2-860-1463

Fax.: +82-2-860-1468

2. Photograph for the test configuration

3. Sample Calculation

The emission level measured in decibels above one microvolt (dB μ V) was converted into microvolt per meter $(\mu V/m)$ as shown in following sample calculation.

For example:

Measured Value at 106.12 MHz	33.6 dB μV
+ Antenna Factor / Cable Loss	10.7 dB/m
PreamplifierDistance Correction Factor *	30.0 dB 0.0 dB
= Radiated Emission	14.3 dB $\mu V/m$

^{*} Extrapolated from the measured distance to the specified distance by an inverse linear distance extrapolation.

Tel.: +82-2-860-1463 Fax.: +82-2-860-1468

FP-204-03-01

Page 8 of 26 Pages

4. Measurement Data

4.1 Intentional Spurious Emission

- Resolution Bandwidth: <u>x</u> CISPR Quasi-Peak (6dB Bandwidth : 120kHz for below 1GHz)

Peak (3dB Bandwidth: 1MHz for above 1GHz)

- Measurement channel: Ch1, Ch 25, Ch 50

- Measurement Distance: 3 Meter

Frequency (MHz)	* D.M.	* A.P.	Measured Value (dBμV)	* A.F. + C.L (dB/m)	* A.G. (dB)	* D.C.F. (dB)	Emission Level (dB⊿V/m)	Limit (dB <i>µ</i> V/m)	** Margin (dB)
106.12	Q	V	33.6	10.7	-30	0	14.3	43.5	-29.2
107.76	Q	V	32.9	10.8	-30	0	13.7	43.5	-29.8
454.08	Q	V	47.7	19.2	-30	0	36.9	46.0	-9.1
467.04	Q	V	49.1	19.4	-30	0	38.5	46.0	-7.5
504.96	Q	V	53.6	20.1	-30	0	43.7	46.0	-2.3
506.04	Q	V	53.9	20.1	-30	0	44.0	46.0	-2.0
831.36	Q	V	47.1	26.0	-30	0	43.1	46.0	-2.9
832.44	Q	V	46.8	26.0	-30	0	42.8	46.0	-3.2
888.96	Q	V	39.0	26.8	-30	0	35.8	46.0	-10.2
890.04	Q	V	35.5	26.9	-30	0	32.4	46.0	-13.6
	-								
				_	_				

Note

The observed EMI receiver(ESVS30) noise floor level was 2.0 dB μ V. And all other emissions not reported on data were more than 25 dB below the permitted level.

* D.M. : Detect Mode (P : Peak, Q : Quasi-Peak, A : Average)

A.P.: Antenna Polarization (H: Horizontal, V: Vertical)

A.F.: Antenna Factor C.L.: Cable Loss A.G.: Amplifier Gain

D.C.F.: Distance Correction Factor

< : Less than

** Margin (dB) = Emission Level (dB) - Limit (dB)

Page 9 of 26 Pages

4.2 Intentional Spurious Emission (above 1GHz)

- Resolution Bandwidth: x CISPR Quasi-Peak (6dB Bandwidth: 120kHz for below 1GHz)

Peak (3dB Bandwidth: 1MHz for above 1GHz)

- Measurement channel: Ch1, Ch 25, Ch 50

- Measurement Distance: 3 Meter

	quency 1Hz)	* D.M.	* A.P.	Measured Value (dBμV)	* A.F. + C.L (dB/m)	* A.G. (dB)	* D.C.F. (dB)	Emission Level (dB ⊬//m)	Limit (dB <i>ル</i> V/m)	** Margin (dB)
	1816.7	P	V	15.0	30.1	0	0	45.1	74	-28.9
CH 1	1816.7	Α	V	11.1	30.1	0	0	41.2	54	-12.8
СПІ	2707.8	P	V	17.2	33.3	0	0	50.5	74	-23.5
	2707.8	Α	V	13.1	33.3	0	0	46.4	54	-7.6
	1819.0	P	V	14.6	30.1	0	0	44.7	74	-29.3
CH 25	1819.0	A	V	11.0	30.1	0	0	41.1	54	-12.9
C11 23	2728.0	P	V	16.5	33.3	0	0	49.8	74	-24.2
	2728.0	A	V	11.7	33.3	0	0	45.0	54	-9.0
	1829.2	P	V	14.8	30.1	0	0	44.9	74	-29.1
CH 50	1829.2	A	V	11.3	30.1	0	0	41.4	54	-12.6
	2743.8	P	V	16.9	33.3	0	0	50.2	74	-23.8
	2743.8	A	V	12.0	33.3	0	0	45.3	54	-8.7

Note

The observed Spectrum Analyer(E4448A) noise floor level was 2.0 dB μ V. And all other emissions not reported on data were more than 25 dB below the permitted level.

* D.M. : Detect Mode (P : Peak, Q : Quasi-Peak, A : Average)

A.P.: Antenna Polarization (H: Horizontal, V: Vertical)

A.F.: Antenna Factor C.L.: Cable Loss A.G.: Amplifier Gain

D.C.F.: Distance Correction Factor

< : Less than

** Margin (dB) = Emission Level (dB) - Limit (dB)

Page 10 of 26 Pages

4.3 Radiated Emission (Receiving mode)

- Resolution Bandwidth: x CISPR Quasi-Peak (6dB Bandwidth: 120kHz for below 1GHz)

Peak (3dB Bandwidth: 1MHz for above 1GHz)

- Measurement channel: Ch1, Ch 25, Ch 50

- Measurement Distance: 3 Meter

Frequency (MHz)	* D.M.	* A.P.	Measured Value (dBμV)	* A.F. + C.L (dB/m)	* A.G. (dB)	D.C.F.	Emission Level (dB ⊭//m)	Limit (dB $\mu\!N$ /m)	** Margin (dB)
106.8	Q	V	8.4	10.7	0	0	19.1	43.5	-24.4
	1			-			-		
	·								

Note

The observed EMI receiver(ESVS30) noise floor level was 2.0 dB μ V. And all other emissions not reported on data were more than 25 dB below the permitted level.

* D.M. : Detect Mode (P : Peak, Q : Quasi-Peak, A : Average)

A.P.: Antenna Polarization (H: Horizontal, V: Vertical)

A.F.: Antenna Factor C.L.: Cable Loss A.G.: Amplifier Gain

D.C.F.: Distance Correction Factor

< : Less than

** Margin (dB) = Emission Level (dB) - Limit (dB)

Page 11 of 26 Pages

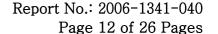
Tel.: +82-2-860-1463

IV. 20dB BANDWIDTH & HOPPING CHANNEL SEPARATION (Section 15.247(a)(1))

1. Test Standards

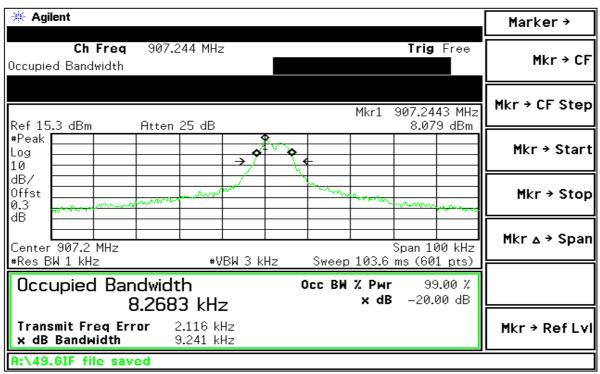
Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies.

2. Measurement Data

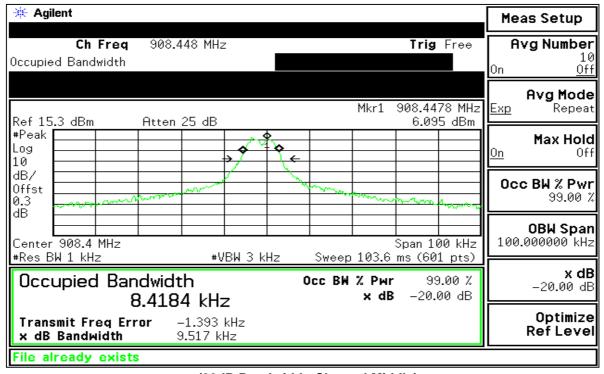

2.1 20dB Bandwidth

Channel	Frequency (MHz)	Measured Value (kHz)	Limit (kHz)	Result
Low	907.2	9.24	500	Pass
Middle	908.4	9.51	500	Pass
High	909.7	9.29	500	Pass

2.2 Channel Separation

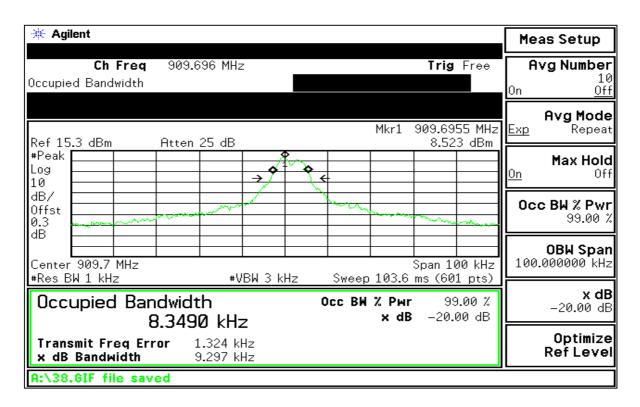

Measured \ (kHz)	Limit (kHz)	Result
51.1	> 25.0	Pass

http://www.ktl.re.kr FP-204-03-01

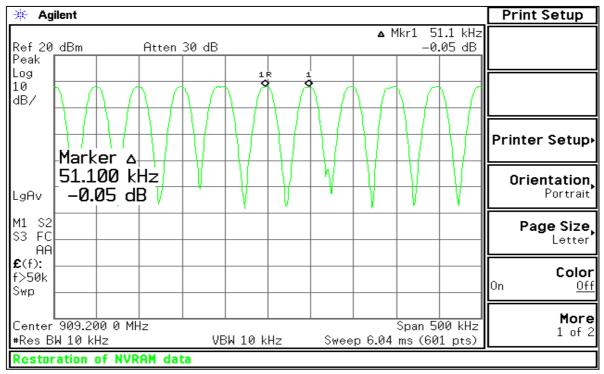


3. Measurement Plot

(20dB Bandwidth, Channel Low)


(20dB Bandwidth, Channel Middle)

Tel.: +82-2-860-1463
Fax.: +82-2-860-1468

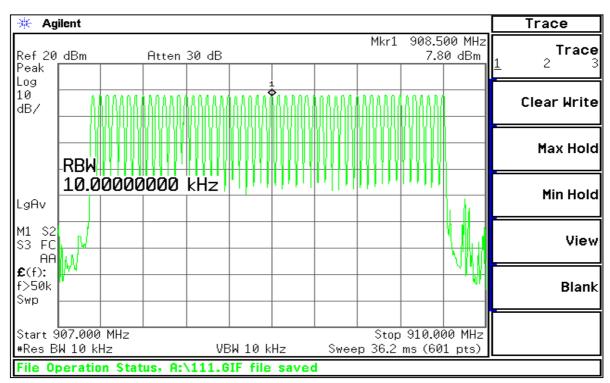

http://www.ktl.re.kr FP-204-03-01

Fax.: +82-2-860-1468

(20dB Bandwidth, Channel High)

(Channel Separation)

V. NUMBER OF HOPPING FREQUENCY (Section 15.247(a)(1))


1. Test Standards

For frequency hopping systems operating in the 902~928 MHz band, if the 20dB Bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

2. Measurement Data

Measured Value (No. of channel)	Limit (No. of channel)	Result
50 50		Pass

3. Measurement Plot

(Number of Hopping Frequency)

http://www.ktl.re.kr FP-204-03-01

Page 15 of 26 Pages

Tel.: +82-2-860-1463

Ⅵ. DWELL TIME (Section 15.247(a)(1))

1. Test Standards

For Frequency hopping systems operating in the 902~928 MHz band, if the 20dB Bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

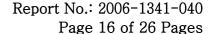
2. Measurement Data

Measured Value (ms)	Limit (ms)	Result
394.81	400	Pass

For a frequency hopping system utilizing 50 channels (N), with a channel occupancy time(Tocc)of 350 ms and a repetition time (Trep) of 17.73 s.

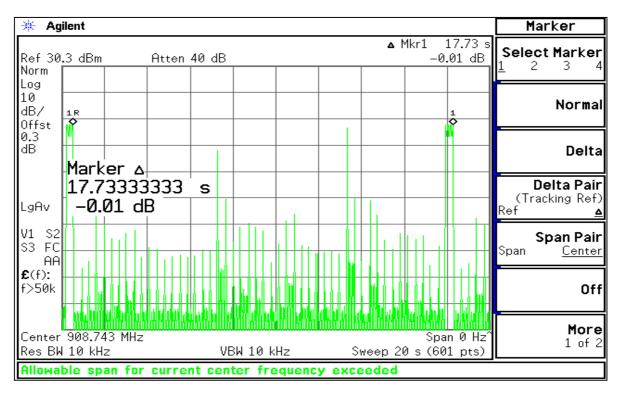
specified averaging period (400 x N ms)

- $= (0.4 \times N) / Trep$
- $= (0.4 \times 50) / 17.73 s$
- = 1.128

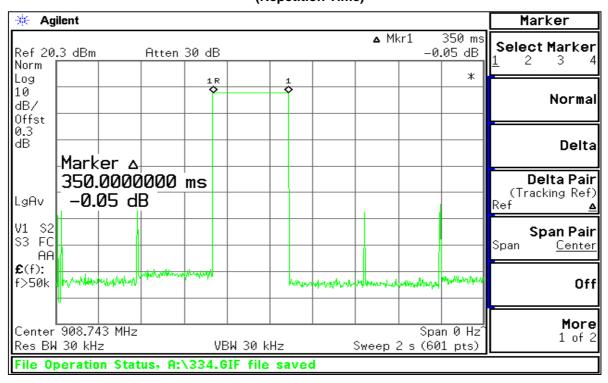

Total activation time = Tocc x 1.128 ms

- $= 350 \times 1.128 \text{ ms}$
- $= 394.81 \, \text{ms}$

Limit = 400 ms Result: Pass


FP-204-03-01

Fax.: +82-2-860-1468



3. Measurement Plot

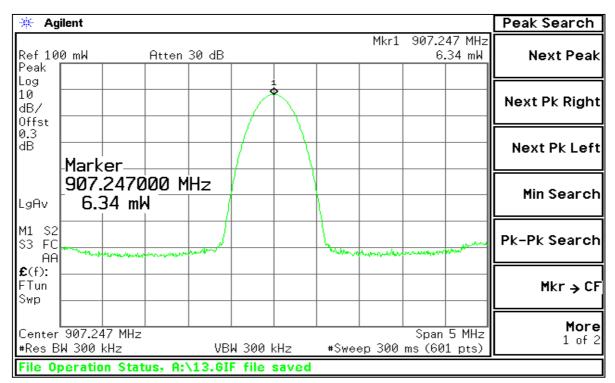
(Repetition Time)

(Channel Occupancy Time)

Tel.: +82-2-860-1463 Fax.: +82-2-860-1468

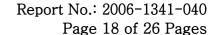
http://www.ktl.re.k FP-204-03-01

Ⅷ. MAXIMUM PEAK OUTPUT POWER (Section 15.247(b))

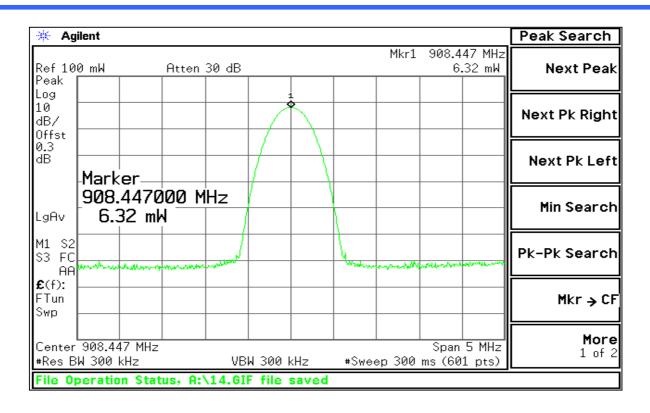

1. Test Standards

For Frequency hopping systems operating in the 902~928 MHz band: 1 watt for systems employing at least 50 hopping channels; and 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

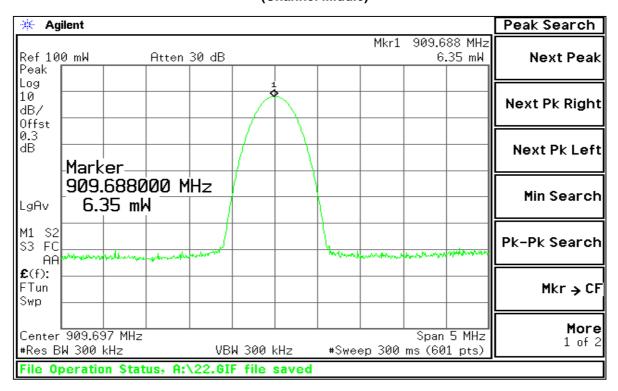
2. Measurement Data


Channel	Frequency (MHz)	Measured Value (Watt)	Limit (Watt)	Result
Low	907.2	0.00634	1	Pass
Middle	908.4	0.00632	1	Pass
High	909.7	0.00635	1	Pass

3. Measurement Plot


(Channel Low)

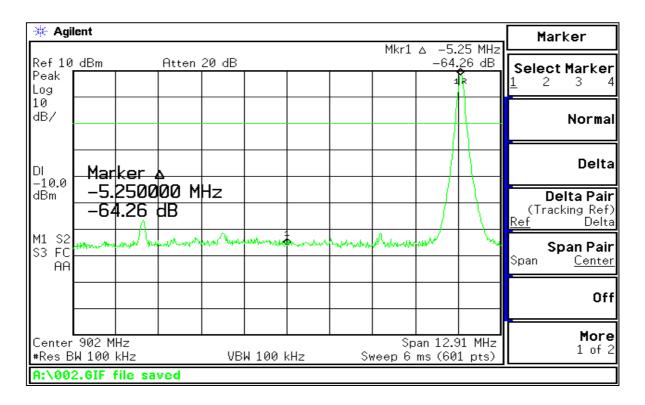
http://www.ktl.re.kr FP-204-03-01



Fax.: +82-2-860-1468

(Channel Middle)

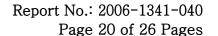
(Channel High)



VIII. 100 kHz BANDWIDTH OF BAND EDGES (Section 15.247(d))

1. Test Standards

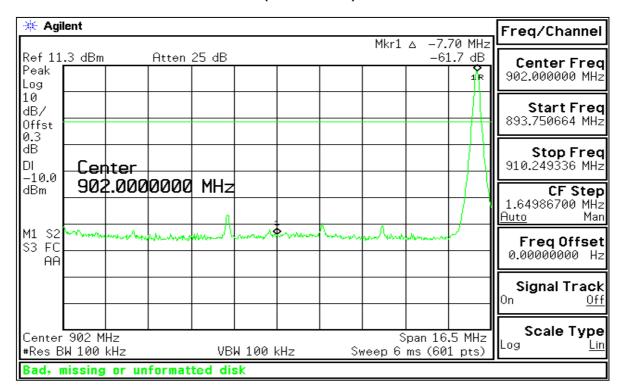
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum of digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in section 15.209(a) is not required.


2. Measurement Plot

(Channel Low)

Fax.: +82-2-860-1468

Tel.: +82-2-860-1463



Fax.: +82-2-860-1468

🔆 Agilent Marker Mkr1 ∆ 18.16 MHz -60.3 dB Ref 10 dBm Atten 20 dB Select Marker Peak Log 10 dB/ Normal Delta ומ Marker -10.0 18.160000 MHz Delta Pair dBm -60.3 dB (Tracking Ref) Delta MANAM M1 S2 mha Span Pair S3 FC Span Center AA Off More Center 928 MHz Span 38.23 MHz 1 of 2 #Res BW 100 kHz VBW 100 kHz Sweep 6 ms (601 pts) A:\003.GIF file saved

(Channel Low)

(Channel High)

Tel.: +82-2-860-1463 Fax.: +82-2-860-1468

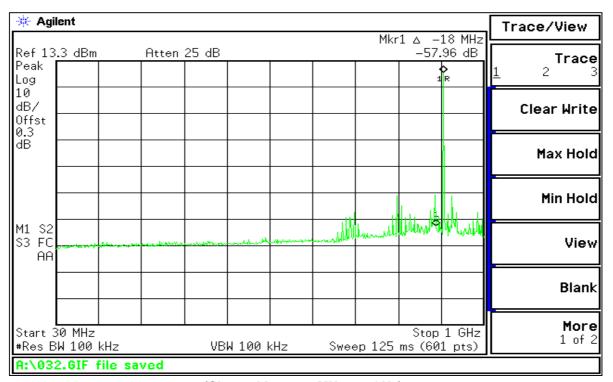
A:\005.GIF file saved

* Agilent Marker Mkr1 ∆ 18.29 MHz Ref 11.3 dBm -60.93 dB Atten 25 dB Select Marker Peak 1R Log 10 dB/ Normal Offst 0.3 dΒ Delta DΙ Marker ∆ -10.0 18.290000 MHz dBm Delta Pair -60.93 dB (Tracking Ref) f Delta M1 S2 S3 FC Span Pair Span <u>Center</u> AA Off More Center 928 MHz #Res BW 100 kHz Span 38.11 MHz 1 of 2 VBW 100 kHz Sweep 6 ms (601 pts)

(Channel High)

FP-204-03-01

IX. CONDUCTED SPURIOUS EMISSION AT ANTENNA TERMINALS (Section 2.1051)

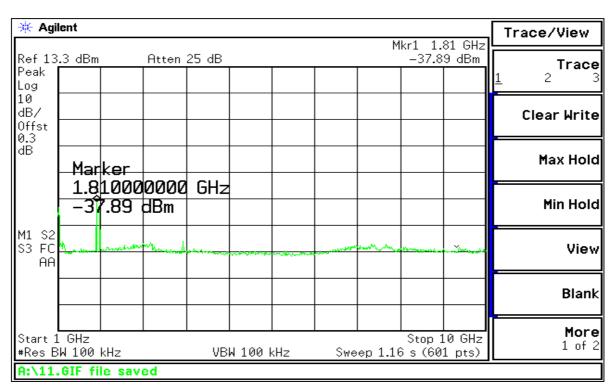

1. Test Standard

The EUT must comply with requirements for spurious emissions at antenna terminals. Per §15.247(c) all spurious emissions in any 100 kHz bandwidth outside the frequency band in which the spread spectrum device is operating shall be attenuated 20 dB below the highest power level in a 100 kHz bandwidth within the band containing the highest level of the desired power.

2. Test procedure

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 30 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer resolution bandwidth was set to 100 kHz and the video bandwidth was set to 100 kHz. The amplitude of the EUT carrier frequency was measured to determine the emissions limit(20 dB below the carrier frequency amplitude). The emissions outside of the allocated frequency band were then scanned from 30 MHz up to the tenth harmonic of the carrier. Spurious emissions were measured at high power setting.

3. Measurement Plot

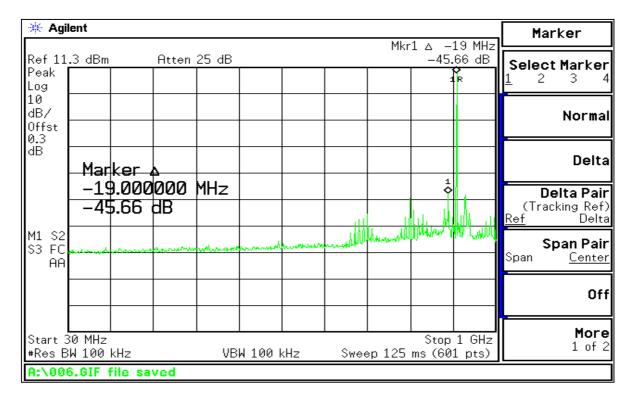


(Channel Low, 30 MHz ~ 1 GHz)


FP-204-03-01

Fax.: +82-2-860-1468

(Channel Low, 1 GHz ~ 10 GHz)


(Channel Middle, 30 MHz ~ 1 GHz)

Fax.: +82-2-860-1468

🔆 Agilent **Peak Search** Mkr1 1.83 GHz Ref 13.3 dBm Atten 25 dB -38.31 dBm Meas Tools Peak Log 10 dB/ **Next Peak** Offst 0.3 dΒ Next Pk Right Marker 1.830000000 GHz -38.31 dBm Next Pk Left M1 S2 S3 FC Min Search AΑ Pk-Pk Search More Start 1 GHz Stop 10 GHz 1 of 2 #Res BW 100 kHz Sweep 1.16 s (601 pts) VBW 100 kHz A:\012.GIF file saved

(Channel Middle, 1 GHz ~ 10 GHz)

(Channel High, 30 MHz ~ 1 GHz)

Tel.: +82-2-860-1463 Fax.: +82-2-860-1468

🔆 Agilent Peak Search Mkr1 1.83 GHz -38.88 dBm Ref 13.3 dBm Atten 25 dB Meas Tools Peak Log 10 dB/ **Next Peak** Offst 0.3 dΒ **Next Pk Right** Marker 1.830000000 GHz -38.88 dBm **Next Pk Left** M1 S2 S3 FC Min Search AΑ Pk-Pk Search More Start 1 GHz Stop 10 GHz 1 of 2 #Res BW 100 kHz VBW 100 kHz Sweep 1.16 s (601 pts) A:\022.GIF file saved

(Channel High, 1 GHz ~ 10 GHz)

Page 26 of 26 Pages

Tel.: +82-2-860-1463
Fax.: +82-2-860-1468

XI. TEST EQUIPMENTS USED FOR MEASUREMENTS

No.	Equipment	Manufacturer	Model	S/N	Effective Cal.Duration
1	EMI Receiver (20 MHz ~ 1 GHz)	R&S	ESVS30	830516002	03/15/2006 ~ 03/15/2007
2	EMI Receiver (9 kHz ~ 3 GHz)	R&S	ESCI	100076	03/28/2006 ~ 03/28/2007
3	Spectrum Analyzer (100 Hz ~ 26.5 GHz)	Agilent	E4407B	US41443316	12/01/2006 ~ 12/01/2007
4	Spectrum Analyzer (3 Hz ~ 50 GHz)	Agilent	E4448A	MY43360322	02/26/2007 ~ 02/26/2008
5	Test Receicer (9 kHz ~ 30 MHz)	R&S	ESH3	860905001	06/18/2006 ~ 06/18/2007
6	Pre-Amplifier (100 kHz ~ 3 GHz)	H.P.	8347A	2834A00543	05/19/2006 ~ 05/19/2007
7	Pre-Amplifier (1 GHz ~ 26.5 GHz)	H.P.	8449B	3008A00302	06/14/2006 ~ 06/14/2007
8	LISN(50 Ω , 50 μH) (10 kHz ~ 100 MHz)	R&S	ESH3-Z5	826789009	07/05/2006 ~ 07/05/2007
9	Biconi-Log Ant. (30 MHz ~ 1000 MHz)	Schwarzbeck	VULB9168	9168-168	08/16/2006 ~ 08/16/2007
10	Horn Ant. (1 GHz ~ 18 GHz)	EMCO	3115		05/09/2006 ~ 05/09/2007
11	Active Loop Ant. (9 kHz ~ 30 MHz)	EMCO	6502	2532	06/08/2006 ~ 06/08/2007
12	Shielded Room (5.0 m x 4.5 m)	SIN-MYUNG			
13	Signal Generator (250 kHz ~ 20 GHz)	Agilent	E8257D	MY44320379	01/02/2007 ~ 01/02/2008
14	DC Power Supply	Agilent	E4356A	MY41000296	09/28/2006 ~ 09/28/2007
15	Power Splitter	H.P.	11667A	21063	10/09/2006 ~ 10/09/2007
16	Power Meter	Agilent	E4417A	GB4129075	09/17/2006 ~ 09/17/2007
17	Attenuator	Weinschel	56-20	N8257	01/13/2007 ~ 01/13/2008
18	Oscillator	Kenwood	AG-203D	10040568	10/23/2006 ~ 10/23/2007