APPLICATION FOR CERTIFICATION On Behalf of Philips (China) Investment Co., Ltd. LED Lamp

 Model No.
 :
 9290002579A

 Brand
 :
 Philips

 FCC ID
 :
 O3M9290002579AX

Prepared for

Philips (China) Investment Co., Ltd. No. 9, Lane 888, Tian Lin Road, 200233, Shanghai, China

Prepared by

Audix Technology (Wujiang) Co., Ltd. EMC Dept. No. 1289 Jiangxing East Road, the Part of Wujiang Economic Development Zone Jiangsu China 215200

> Tel : +86-512-63403993 Fax :+86-512-63403339

Report Number	:	ACWE-F1505002
Date of Test	:	Apr.28~Jul.04, 2015
Date of Report	:	Aug.03, 2015

TABLE OF CONTENTS

De	scription	Page
TE	ST REPORT CERTIFICATION	4
1.	SUMMARY OF MEASUREMENTS AND RESULTS	5
2.	GENERAL INFORMATION	6
	2.1. Description of Device (EUT)	6
	2.2. Description of Test Facility	7
_	2.3. Measurement Uncertainty	7
3.	CONDUCTED EMISSION MEASUREMET	8
	3.1. Test Equipment	8
	3.3 Power line Conducted Emission Limit	ہ 8
	3.4. Test Procedure	9
	3.5. Conducted Emission Measurement Results	9
4.	RADIATED EMISSION MEASUREMENT	16
	4.1. Test Equipment	16
	4.2. Block Diagram of Test Setup	16
	4.3. Radiated Emission Limits	18 19
	4.4. Test Flocedule	10 19
	4.6. Measurement Results	
	4.7. Restricted Bands Measurement Results (For Below 1GHz)	21
	4.8. Restricted Bands Measurement Results (For Above 1GHz)	29
-	4.9. Spurious Emission Measurement Results in Band Edge Emission (FCC Part 15, 15.205)	
5.	6 DB BANDWIDTH MEASUREMENT	
	5.1. Test Equipment	45
	5.2. Block Diagram of Test Setup	43 45
	5.4. Test Procedure	
	5.5. Test Results	45
6.	OUTPUT POWER MEASUREMENT	48
	6.1. Test Equipment	48
	6.2. Block Diagram of Test Setup.	
	6.3. Specification Limits (§15.24/(b)(3))	48
	6 5 Test Results	49 49
7.	BAND EDGES MEASUREMENT	
	7 1 Test Equipment	50
	7.2. Block Diagram of Test Setup	
	7.3. Specification Limits (§15.247(d))	50
	7.4. Test Procedure	
0	/.5. Test Results	
δ.	PUWER SPECIFICAL DENSITY MEASUREMENT	
	8.1. Lest Equipment	
	8.3. Specification Limits (\$15.247(e))	
	8.4. Test Results	

9.	EMISSION LIMITATIONS MEASUREMENT	55
	9.1. Test Equipment	
	9.2. Block Diagram of Test Setup	
	9.3. Specification Limits (§15.247(d))	
	9.4. Test Procedure	
	9.5. Test Results	
10.	DUTY CYCLE	66
	10.1. Test Equipment	
	10.2. Test Results	
11.	DEVIATION TO TEST SPECIFICATIONS	67

TEST REPORT CERTIFICATION

Applicant	:	Philips (China) Investment Co., Ltd.
Manufacturer	🛞 : Philips (China) Investment Co	
EUT Description		LED Lamp
FCC ID		O3M9290002579AX
(A) Model No.	:	9290002579A
(B) Brand		Philips
(C) Power Supply		AC 110-130V
(D) Test Voltage		AC 120V, 60Hz

Applicable Standards:

FCC RULES AND REGULATIONS PART 15 SUBPART C, Oct. 2014 ANSI C63.10-2013 KDB 558074 D01 DTS Meas Guidance v03r02

The device described above was tested by Audix Technology (Wujiang) Co., Ltd. EMC Dept. to determine the maximum emission levels emanating from the device. The maximum emission levels were compared to the FCC Part 15 subpart C section 15.207, 15.205, 15.209&15.247 limits.

The measurement results are contained in this test report and Audix Technology (Wujiang) Co., Ltd. EMC Dept. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT to be technically compliant with the FCC limits.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Audix Technology (Wujiang) Co., Ltd. EMC Dept.

Date of Test: Apr.28~Jul.04, 2015

Prepared by

Reviewer

Date of Report: Aug.03, 2015

mma

(Emma Hu/Assistant Administrator)

(Danny Sun/ Section Manager)

Approved & Authorized Signer

(Ken Lu/Assistant General Manager)

Audix Technology (Wujiang)Co., Ltd. EMC Dept. Report No.: ACWE-F1505002

1. SUMMARY OF MEASUREMENTS AND RESULTS

The EUT has been tested according to the applicable standards and test results are referred as below.

Description of Test Item	Standard	Results	Remark
CONDUCTED EMISSION	FCC 47 CFR Part 15 Subpart C/ Section 15.207 And ANSI C63.10-2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	Minimum passing margin is 9.43 dB at 2.66MHz
RADIATED EMISSION	FCC 47 CFR Part 15 Subpart C/ Section 15.209& Section 15.205 And ANSI C63.10-2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	Minimum passing margin is 5.12 dB at 49.40MHz
6 dB BANDWIDTH	FCC 47 CFR Part 15 Subpart C/ Section 15.247(a)(2) And ANSI C63.10-2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	Minimum passing margin is 1.050MHz at CH 20
OUTPUT POWER	FCC 47 CFR Part 15 Subpart C/ Section 15.247(b)(3) And ANSI C63.10-2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	Minimum passing margin is 26.52dB at CH 11
BAND EDGES	FCC 47 CFR Part 15 Subpart C/ Section 15.247(d) And ANSI C63.10-2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	Minimum passing margin is 6.10 dB at 2483.5MHz
POWER SPECTRAL DENSITY	FCC 47 CFR Part 15 Subpart C/ Section 15.247(e) And ANSI C63.10-2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	Minimum passing margin is 20.974dB at CH 26
EMISSION LIMITATIONS	FCC 47 CFR Part 15 Subpart C/ Section 15.247(d) And ANSI C63.10-2013 And KDB 558074 D01 DTS Meas Guidance v03r02	PASS	

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

Description	:	LED Lamp
Model No.	:	92900025789A
FCC ID	:	O3M9290002579AX
Brand	:	Philips
Applicant	:	Philips (China) Investment Co., Ltd. No. 9, Lane 888, Tian Lin Road, 200233, Shanghai, China
Manufacturer	:	Philips (China) Investment Co., Ltd. No. 9, Lane 888, Tian Lin Road, 200233, Shanghai, China
Radio Technology	:	IEEE 802.15.4 (ZigBee®)
Antenna Gain	:	1dBi
Fundamental Range	:	2405 MHz -2480MHz
Tested Frequency	:	2405MHz (CH11) 2450MHz (CH20) 2480MHz (CH26)
Highest Working Frequency	:	2.4GHz
Power Rating	:	8W, 150mA
Modulation type	:	O-QPSK
Date of Receipt of Sample	:	Apr.17, 2015
Date of Test	:	Apr.28~Jul.04, 2015

2.2. Description of Test Facility

Name of Firm	:	Audix Technology (Wujiang) Co., Ltd. EMC Dept.			
Site Location	:	No. 1289 Jiangxing East Road, the Eastern Part of Wujiang Economic Development Zone Jiangsu China 215200			
Test Facilities	:	No.1 Conducted Shielding Enclosure			
		No.1 3m Semi-anechoic Chamber Date of Validity: May. 23, 2015 FCC Registration No.: 897661 IC Registration No.:5183D-2			
		RF Fully Chamber			
NVLAP Lab Code	:	200786-0 Valid until on Sep.30, 2015 (NVLAP is a signatory member of ILAC MRA) Remark: This report shall not be imply endorsement, certification or approval by NVLAP, NIST, or any agency of the U.S. Federal Government.			

2.3. Measurement Uncertainty

Test Item	Range Frequency	Uncertainty
Conducted Disturbance Measurement	$0.15 MHz \sim 30 MHz$	± 3.30dB
Radiated Disturbance Measurement (At 3m Chamber)	Below 1GHz	± 4.50dB
Radiated Disturbance Measurement (At 3m Chamber)	Above 1GHz	± 5.15dB

Remark: Uncertainty = $ku_c(y)$

Test Item	Uncertainty
6 dB Bandwidth	$\pm 0.16\mathrm{MHz}$
Maximum Peak Output Power	± 0.12dB
Band Edges	± 0.38dB
Power Spectral Density	± 0.38dB
Emission Limitations	± 0.38dB

Remark: Uncertainty = $ku_c(y)$

3. CONDUCTED EMISSION MEASUREMET

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Test Receiver	R & S	ESCI	100352	2015-01-05	2016-01-04
2.	A.M.N	R&S	ESH2-Z5	100153	2015-05-15	2016-05-14
3.	Pulse Limiter	R&S	ESH3-Z2	100605	2015-07-03	2016-07-02
4.	RF Cable	Harbour Industries	RG400	002	2015-01-05	2016-01-04

3.1. Test Equipment

3.2. Block Diagram of Test Setup

- : POWER LINE - : SIGNAL LINE

3.3. Power line Conducted Emission Limit

(FCC Part 15, Section 15.207, Class B)

Frequency	Maximum RF Line Voltage		
	Quasi-Peak Level	Average Level	
150kHz ~ 500kHz	$66 \sim 56 \ dB\mu V$	$56 \sim 46 \; dB \mu V$	
$500 \text{kHz} \sim 5 \text{MHz}$	56 dBµV	46 dBµV	
5MHz ~ 30MHz	60 dBµV	50 dBµV	

Remark1: If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary.

2: The lower limit applies at the band edges.

3.4. Test Procedure

The measuring process is according to ANSI C63.10-2013 and laboratory internal procedure TKC-301-004. (For FCC Part15 Subpart C)

In the conducted emission measurement, the EUT and all peripheral devices were set up on a non-metallic table which was 0.8 meters height above the ground plane, and 0.4 meters far away from the vertical plane. The EUT (installed in PC system) was powered by AC mains through Artificial Mains Network (A.M.N), other peripheral devices were powered by AC mains through the second Line Impedance Stabilization Network (L.I.S.N). For the measurement, the A.M.N measuring port was terminated by a 50 Ω measuring equipment and the second L.I.S.N measuring port was terminated by a 50 Ω resistive load. All measurements were done on the phase and neutral line of the EUT's power cord. All cables or wires placement were verified to find out the maximum emission.

The bandwidth of measuring receiver was set at 9 kHz.

The required frequency band (0.15 MHz ~ 30 MHz) was pre-scanned with peak detector, the final measurement was measured with quasi-peak detector and average detector. (If the average limit is met when using a quasi-peak detector, the average detector is necessary).

The emission level is calculated automatically by the test system which uses the following equation:

Emission level ($dB\mu V$) = Meter-Reading ($dB\mu V$) + A.M.N factor (dB) + Cable loss (dB). (Cable loss include pulse limiter loss)

3.5. Conducted Emission Measurement Results

For FCC Part15 Subpart C PASSED.

(All the emissions not reported below are too low against the prescribed limits.)

EUT was performed during this section testing and all the test results are attached in next pages.

Test Date : Jun.24, 2015	Temperature : 18.3℃	Humidity: 49%

Modo	Test Condition	Reference Test Data No.			
Widde	Test Condition	Neutral	Line		
1	CH 11	# 5	# 6		
2	СН 20	※# 8	# 7		
3	CH 26	# 9	# 10		

NOTE 1- 'X' means the worst test mode.

NOTE 2- The worst emission is detected at 2.66 MHz with emission level of 46.57 dB (μ V) and with QP detector (Limit is 56.00 dB (μ V)), when the Neutral of the EUT is connected to AMN

	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} 0.31\\ 0.53\\ 0.53\\ 2.16\\ 2.46\\ 2.46\\ 2.95\\ 2.95\\ 3.15\\ 3.15\\ \end{array}$	$\begin{array}{c} 0.14\\ 0.14\\ 0.15\\ 0.15\\ 0.22\\ 0.22\\ 0.23\\ 0.23\\ 0.25\\$	9.88 9.88 9.88 9.93 9.93 9.93 9.93 9.93	36.00 22.20 29.20 12.90 30.70 18.80 31.30 19.80 32.50 20.90 21.31 33.21	46.02 32.22 39.23 40.85 28.95 41.46 29.96 42.69 31.09 31.50 43.40	$\begin{array}{c} 60.11\\ 50.11\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 46.00\\ 46.00\\ 46.00\\ 56.00\\ \end{array}$	14.0917.8916.7723.0715.1517.5514.5416.0413.3114.9114.5012.60	QP Average QP Average QP Average QP Average QP Average Average QP
	1	 _						

Remarks:

	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} 0.16\\ 0.31\\ 0.31\\ 0.39\\ 0.39\\ 0.59\\ 0.59\\ 2.35\\ 2.35\\ 2.95\\ 2.95\\ 2.95\\ \end{array}$	$\begin{array}{c} 0.13\\ 0.13\\ 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.16\\ 0.16\\ 0.21\\ 0.21\\ 0.23\\ 0.23\\ 0.23\\ \end{array}$	9.87 9.88 9.88 9.88 9.88 9.88 9.88 9.88	$\begin{array}{r} 40.71\\ 23.91\\ 36.90\\ 23.70\\ 18.80\\ 33.60\\ 14.60\\ 30.80\\ 20.60\\ 31.80\\ 25.60\\ 35.50\\ \end{array}$	$\begin{array}{c} 50.71\\ 33.91\\ 46.92\\ 33.72\\ 28.82\\ 43.62\\ 24.64\\ 40.84\\ 30.74\\ 41.94\\ 35.77\\ 45.67 \end{array}$	$\begin{array}{c} 65.62\\ 55.62\\ 60.11\\ 50.11\\ 48.04\\ 58.04\\ 46.00\\ 56.00\\ 56.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ \end{array}$	14.91 21.71 13.19 16.39 19.22 14.42 21.36 15.16 15.26 15.26 14.06 10.23 10.33	QP Average QP Average QP Average QP Average QP Average QP Average QP
	· · ·							

Remarks:

	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} 0.30\\ 0.30\\ 0.59\\ 0.59\\ 1.33\\ 1.33\\ 2.26\\ 2.66\\ 2.66\\ 2.95\\ 2.95\\ 2.95\\ \end{array}$	$\begin{array}{c} 0.14\\ 0.14\\ 0.16\\ 0.16\\ 0.19\\ 0.22\\ 0.22\\ 0.22\\ 0.24\\ 0.24\\ 0.25\\ 0.25\\ 0.25\\ \end{array}$	9.88 9.88 9.88 9.91 9.93 9.93 9.93 9.94 9.94 9.94 9.94	35.90 22.20 28.90 11.20 29.80 16.50 21.50 33.70 23.59 36.39 35.20 22.90	45.92 32.22 38.94 21.24 39.90 26.60 31.65 43.85 33.77 46.57 45.39 33.09	$\begin{array}{c} 60.16\\ 50.16\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 56.00\\ 56.00\\ 56.00\\ 56.00\\ 56.00\\ 56.00\\ 56.00\\ 56.00\\ 56.00\\ \end{array}$	14.24 17.94 17.06 24.76 16.10 19.40 14.35 12.15 12.23 9.43 10.61 12.91	QP Average QP Average QP Average QP Average QP Average QP Average
	· · ·							

Remarks:

	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1 3 4 5 6 7 8 9 10 11 12	0.33 0.33 1.69 2.10 2.37 2.37 2.57 2.57 2.96 2.96	$\begin{array}{c} 0.14\\ 0.14\\ 0.19\\ 0.19\\ 0.20\\ 0.20\\ 0.21\\ 0.21\\ 0.22\\ 0.22\\ 0.22\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ \end{array}$	9.88 9.92 9.92 9.93 9.93 9.93 9.93 9.94 9.94 9.94 9.94	$\begin{array}{c} 16.10\\ 30.80\\ 30.50\\ 18.60\\ 20.40\\ 31.50\\ 20.90\\ 31.50\\ 20.90\\ 31.50\\ 21.79\\ 22.39\\ 21.70\\ 32.40 \end{array}$	$\begin{array}{c} 26.12\\ 40.82\\ 40.61\\ 28.71\\ 40.93\\ 30.53\\ 41.64\\ 31.04\\ 43.95\\ 32.55\\ 31.87\\ 42.57 \end{array}$	$\begin{array}{c} 49.38\\ 59.38\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 56.00\\ \end{array}$	23.26 18.56 15.39 17.29 15.47 14.36 14.96 12.05 13.45 14.13 13.43	Average QP Average QP Average QP Average QP Average Average QP

Remarks:

	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} 0.31\\ 0.36\\ 0.36\\ 0.67\\ 0.67\\ 1.57\\ 1.57\\ 2.19\\ 2.19\\ 2.85\\ 2.85\end{array}$	$\begin{array}{c} 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.16\\ 0.20\\ 0.22\\ 0.22\\ 0.22\\ 0.25\\ 0.25\\ 0.25\\ \end{array}$	9.88 9.88 9.88 9.89 9.89 9.92 9.93 9.93 9.93 9.93 9.94 9.94	33.80 18.60 33.20 16.80 29.50 13.60 29.79 16.79 33.50 21.49 33.59	43.82 28.62 43.22 26.82 39.55 23.65 39.91 26.91 43.65 30.45 31.68 43.78	59.86 49.86 58.80 46.00 46.00 56.00 46.00 46.00 46.00 46.00 56.00 46.00 5	$\begin{array}{c} 16.04\\ 21.24\\ 15.58\\ 21.98\\ 16.45\\ 22.35\\ 16.09\\ 19.09\\ 12.35\\ 14.32\\ 14.32\\ 12.22 \end{array}$	QP Average QP Average QP Average QP Average Average Average QP
	 1							

Remarks:

	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV)	Limits (dBuV)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12	0.15 0.31 0.31 0.67 2.38 2.53 2.53 2.90 2.90	$\begin{array}{c} 0.13\\ 0.13\\ 0.14\\ 0.14\\ 0.16\\ 0.16\\ 0.21\\ 0.22\\$	9.87 9.88 9.88 9.88 9.89 9.93 9.93 9.93 9.93	36.71 19.71 36.90 23.70 30.60 15.60 33.80 21.90 23.40 33.80 22.70 31.90	46.71 29.71 46.92 33.72 40.65 25.65 43.94 32.04 33.55 43.95 32.86 42.06	65.78 55.78 60.11 56.00 46.00 46.00 46.00 46.00 46.00 56.00 56.00 56.00	$\begin{array}{c} 19.07\\ 26.07\\ 13.19\\ 16.39\\ 15.35\\ 20.35\\ 12.06\\ 13.96\\ 12.45\\ 12.05\\ 12.05\\ 13.14\\ 13.94 \end{array}$	QP Average QP Average QP Average QP Average QP Average QP Average QP
	 D1							

Remarks:

4. RADIATED EMISSION MEASUREMENT

4.1. Test Equipment

The following test equipment was used during the radiated emission measurement: At 3m Semi-Anechoic Chamber

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Preamplifier	Agilent	8447D	2944A10921	2015-07-03	2016-07-02
2.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22
3.	Test Receiver	R&S	ESCI	100361	2015-01-05	2016-01-04
4.	Bi-log Antenna	Schaffner	CBL6112D	22251	2015-05-20	2016-05-19
5.	Horn Antenna	EMCO	3115	62961	2014-09-03	2015-09-02
6.	Test Receiver	R&S	ESCI	100361	2015-01-05	2016-01-04
7.	RF Cable #1	Yuhang CSYH	cable-3m	001(0.5m)	2015-01-05	2016-01-04
8.	RF Cable #2	Yuhang CSYH	cable-3m	002(0.5m)	2015-01-05	2016-01-04
9.	RF Cable #3	Yuhang CSYH	cable-3m	003(3.0m)	2015-01-05	2016-01-04

- 4.2. Block Diagram of Test Setup
- 4.2.1. Block Diagram of Test Setup between EUT and simulators

4.2.3. No. 1 3m Semi-Anechoic Chamber Setup Diagram (Test distance: 3m) for above 1GHz

ANTENNA TOWER

4.3. Radiated Emission Limits

`		$\frac{1}{2}$ (FCC F at (15 C, sectio	11 13.207)				
	FREQUENCY	DISTANCE	FIELD STRENGTHS LIMITS				
	(MHz)	(Meters)	$(\mu V/m)$	(dBµV/m)			
ĺ	$30 \sim 88$	3	100	40			
	88~216	3	150	43.5			
	216~960	3	200	46			
	Above 960	3	500	54			

Radiated Emission Limits (FCC Part15 C, section 15.209)

Remark : (1) Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$

(2)The tighter limit applies at the edge between two frequency bands.

4.4. Test Procedure

The measuring process is according to ANSI C63.10-2013 and laboratory internal procedure TKC-301-001. (For FCC Part15 Subpart C)

In the radiated disturbance measurement, the EUT and all simulators were set up on a non-metallic turn table which was 1.5 meters above the ground plane. Measurement distance between EUT and receiving antennas was set at 3 meters at $30MHz\sim1000MHz$ and 3 meters at above 1GHz. The specified distance is the distance between the antennas and the closest periphery of EUT. During the radiated measurement, the EUT was rotated 360° and receiving antennas were moved from $1 \sim 4$ meters for finding maximum emission. Two receiving antennas were used for both horizontal and vertical polarization detection for $30MHz\sim1GHz$, One receiving antennas was used for both horizontal and vertical polarization detection for above 1GHz (the absorbing material was added when testing of above 1GHz was done). All cables or wires placement were verified to find out the maximum emission.

The bandwidth of measuring receiver (or spectrum analyzer) was set to:

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz RBW (1 MHz), VBW (1MHz) for Peak detector above 1GHz RBW (1 MHz), VBW (10Hz) for AV detector above 1GHz

The frequency range from 30MHz to 10th harmonic(25GHz) are checked, and no any emissions were found from 18GHz to 25GHz.

The emission level is calculated automatically by the test system which uses the following equation :

- For 30-1000MHz measurement: Emission Level (dBµV/m) = Meter-Reading (dBµV)+Antenna Factor (dB/m)+Cable Loss (dB)
- 2. For Above 1GHz measurement: Emission Level $(dB\mu V/m) =$ Meter-Reading $(dB\mu V)$ +Antenna Factor (dB/m)+Cable Loss(dB)-Pre-amplifier factor (dB)

4.5. Assessment In All Three Orthogonal Planes

After assessment in all three orthogonal planes, when choosing Channel11 test in the radiation, found that XY plan is the worst mode in Horizontal and XY plan is the worst mode in Vertical, so in the test of radiation, all with XY plan(in Horizontal) & XY plan(in Vertical) model test, refer to the following specific data.

Polarization	Frequency (MHz)	Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
Horizontal	2404.67	97.48	28.31	4.38	34.94	95.23	74.00	-21.23	Peak
Vertical	2404.55	101.03	28.31	4.38	34.94	98.78	74.00	-24.78	Peak

Test Mode:XY Plan

Test Mode:XZ Plan

Polarization	Frequency (MHz)	Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
Horizontal	2404.55	96.12	28.31	4.38	34.94	93.87	74.00	-19.87	Peak
Vertical	2404.58	94.69	28.31	4.38	34.94	92.44	74.00	-18.44	Peak

Test Mode:YZ Plan

Polarization	Frequency (MHz)	Reading dB (µV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Emission Level dB (µV/m)	Limits dB (µV/m)	Margin (dB)	Remark
Horizontal	2405.51	96.57	28.31	4.38	34.94	94.32	74.00	-20.32	Peak
Vertical	2405.60	96.95	28.31	4.38	34.94	94.70	74.00	-20.70	Peak

4.6. Measurement Results

PASSED

(All the emissions not reported below are too low against the prescribed limits.)

4.6.1. For Restricted Bands:

The EUT was tested in restricted bands and all the test results are listed in section 4.7 & 4.8. (The restricted bands defined in part 15.205(a))

For Frequency range: below 1GHz

No	Test Mode e	Reference Test Data No.		
INO.	Test Wode a	Horizontal	Vertical	
1.		2405MHz (Channel 11)	# 1	# 2
2.	Transmitting	2450MHz (Channel 20)	# 3	# 4
3.		2480MHz (Channel 26)	# 5	# 6
4.	Receiving		# 7	# 8

N.	Test Mada a	Reference Test Data No.		
INO.	Test Mode a	Horizontal	Vertical	
1.		2405MHz (Channel 11)	# 9	# 10
2.	Transmitting	2450MHz (Channel 20)	# 11	# 12
3.		2480MHz (Channel 26)	# 13	# 14
4.	Receiving		# 15	# 16

For Frequency range: above 1GHz

4.6.2. For Band Edge Emission

The EUT was tested in restricted bands and all the test results are listed in section 4.9. The restricted bands defined in part 15.205(a))

No.	Test Mede e	Reference Test Data No.		
	Test Wode a	Horizontal	Vertical	
1.	Transmitting	2405MHz (Channel 11)	# 17, # 19	# 18, # 20
2.	Transmitting	2480MHz (Channel 26)	# 21, # 23	# 22, # 24

4.7. Restricted Bands Measurement Results (For Below 1GHz)

Freq. (MHz)	Factor (dB/m)	Loss (dB)	Reading (dBuV)	Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 48.43 2 121.18 3 136.70 4 230.79 5 265.71 6 478.14	9.88 13.06 12.13 11.38 13.63 17.70	0.29 0.78 0.88 1.27 1.34 2.01	38.02 42.27 37.37 37.37 36.29 27.38	20.79 28.95 23.31 23.29 24.60 19.71	40.00 43.50 43.50 46.00 46.00 46.00	19.21 14.55 20.19 22.71 21.40 26.29	QP QP QP QP QP QP QP
Demonitor 1		Lorrol - Av	E-a		I T		

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.
2. The emission levels that are 20dB below the official limit are not reported.

Audix Technology (Wujiang)Co., Ltd. EMC Dept. Report No.: ACWE-F1505002

	Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2 3	32.91 37.01 45 47	17.66 15.33 11 29	0.24 0.25 0.28	40.98 43.21 47 70	31.45 31.37 31.86	40.00 40.00 40.00	8.55 8.63 8.14	QP QP OP
4 5	47.90 120.90	10.14	0.28	50.91 49.90	33.93 36.56	40.00	6.07 6.94	QP OP
6	137.67	12.03	0.89	48.36	34.21	43.50	9.29	QP QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

Memo

:

Audix Technology(Wujiang)Co.,Ltd. No.1289, Jiang Xing East Road, The Eastern Part of Wu Jiang Economic Development Zone, JiangSu, China Tel:(0512)63403993 Fax: (0512) 63403993

	Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2 3 4 5	44.55 118.27 136.70 219.15 257.95 471 35	11.79 13.00 12.13 10.66 13.80 17.63	0.28 0.76 0.88 1.25 1.32	34.08 40.56 36.10 38.05 33.29 26.28	18.74 27.14 22.04 23.21 21.74	40.00 43.50 43.50 46.00 46.00	21.26 16.36 21.46 22.79 24.26 27.47	QP QP QP QP QP QP QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

	Freq. (MHz)	Ant. Factor (dB/m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2	30.00 35.82	19.70 15.98	0.23 0.25	39.73 40.38	32.23 29.19	40.00 40.00	7.77 10.81	QP QP
3	45.52	11.26	0.28	49.16	33.29	40.00	6.71	QP
4	49.40	9.40	0.29	52.59	34.88 27 42	40.00	5.12	QP OP
6	136.70	12.13	0.88	46.85	32.79	43.50	10.71	QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

Memo

:

Audix Technology(Wujiang)Co.,Ltd. No.1289, Jiang Xing East Road, The Eastern Part of Wu Jiang Economic Development Zone, JiangSu, China Tel:(0512)63403993 Fax: (0512) 63403993

	Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2 3 4 5 6	30.00 48.43 121.18 136.70 215.27 253.10	19.70 9.88 13.06 12.13 10.36 13.31	0.23 0.29 0.78 0.88 1.24 1.31	25.23 35.84 40.19 35.19 37.00 32.77	17.73 18.61 26.87 21.13 21.84 20.71	40.00 40.00 43.50 43.50 43.50 43.50 46.00	22.27 21.39 16.63 22.37 21.66 25.29	QP QP QP QP QP QP QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

(MHZ) (ab/m) (ab) (abuv) (abuv/m) (abuv/m)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.94 8.92 6.28 6.11 6.15 12.73	QP QP QP QP QP QP QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

Memo

:

Audix Technology(Wujiang)Co.,Ltd. No.1289,Jiang Xing East Road,The Eastern Part of Wu Jiang Economic Development Zone,JiangSu,China Tel:(0512)63403993 Fax:(0512)63403993

	Freq. (MHz)	Ant. Factor (dB⁄m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2 3 4 5	30.00 44.55 122.15 136.70 215.27	19.70 11.79 13.10 12.13 10.36	0.23 0.28 0.78 0.88 1.24	26.98 33.98 39.31 34.15 34.80	19.48 18.64 26.03 20.09 19.64	40.00 40.00 43.50 43.50 43.50 43.50	20.52 21.36 17.47 23.41 23.86	QP QP QP QP QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

	Freq. (MHz)	Ant. Factor (dB∕m)	Cable Loss (dB)	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2 3 4 5	31.94 35.82 45.52 49.40 120.21	18.44 15.98 11.26 9.40 13.01	0.24 0.25 0.28 0.29 0.77	39.51 40.52 48.95 51.71 50.65	30.76 29.33 33.08 34.00 37.26	40.00 40.00 40.00 40.00 43.50 43.50	9.24 10.67 6.92 6.00 6.24	QP QP QP QP QP QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

4.8. Restricted Bands Measurement Results (For Above 1GHz)

_	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emission Level (dBuV/m (d	Limits BuV⁄m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12	2408.00 4960.00 5730.00 5731.14 6852.00 6853.25 7798.00 7799.01 9866.00 9867.25 14068.00	28.32 33.13 33.99 33.99 34.97 34.97 36.82 36.82 38.09 38.10 41.98	4.38 6.42 7.35 7.38 7.90 8.64 8.64 9.97 9.97 12.08	97.29 38.69 23.20 37.00 23.11 34.65 22.01 34.02 23.70 31.47 23.59 29.16	34.94 34.36 34.10 34.09 33.66 33.65 34.52 34.52 34.52 34.68 34.68 31.53	95.05 43.88 28.39 44.24 30.39 43.86 31.23 44.96 34.64 44.85 36.98 51.69	74.0074.0054.0054.0074.0054.0074.0054.0074.0054.0074.0054.0074.00	-21.05 30.12 25.61 29.76 23.61 30.14 22.77 29.04 19.36 29.15 17.02 22.31	Peak Peak Average Peak Average Peak Average Peak Average Peak Peak
13	Remarks:	41.98 1. Emiss 2. The e	ion Lev	21.25 el= Ant.H levels 1	J1.57 Factor + that are	43./5 Cable Loss 20dB below	54.00 3 + Readi 7 the off	ng - Prea icial	Average amp.Factor

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissio Level (dBuV/m	n Limits (dBuV∕m)	Margin (dB)	Remark
1	2408.00 4806 00	28.32 32.86	4.38 6.36	97.70 37.86	34.94 34 37	95.46 42 71	74.00 74 00	-21.46	Peak Peak
3	4807.25	32.86	6.36	23.21	34.37	28.06	54.00	25.94	Average
4	6104.00	34.16	7.73	36.57	33.96	44.50	74.00	29.50	Peak
5	6105.60	34.17	7.73	23.50	33.96	31.44	54.00	22.56	Average
6	7446.00	36.54	8.33	33.83	34.12	44.58	74.00	29.42	Peak
7	7447.14	36.55	8.33	22.50	34.12	33.26	54.00	20.74	Average
8	9007.80	37.80	9.02	26.50	34.97	38.35	54.00	15.65	Average
9	9008.00	37.80	9.02	32.07	34.97	43.92	74.00	30.08	Peak
10	10900.00	38.36	10.61	30.26	33.73	45.50	74.00	28.50	Peak
11	10901.28	38.36	10.61	24.87	33.73	40.11	54.00	13.89	Average
12	13848.00	41.57	11.98	30.19	31.56	52.18	74.00	21.82	Peak
13	13849.25	41.57	11.98	22.90	31.56	44.89	54.00	9.11	Average
	Remarks:	1. Emiss 2. The e	ion Lev mission	vel= Ant.H Llevels t	Factor +	Cable Lo 20dB bel	uss + Readi ow the off	ng - Prea icial	amp.Factor

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emission Level (dBuV/m (ı Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13	2452.00 4960.00 4961.25 5950.00 5951.25 6852.00 6853.25 8194.00 8195.25 10196.00 10197.25 14266.00	28.40 33.13 34.08 34.08 34.97 34.97 37.14 37.14 38.20 38.20 38.20 42.22 42.22	4.42 6.42 7.64 7.64 7.90 7.90 8.86 8.86 10.22 10.22 12.12	97.03 42.09 30.20 36.60 26.51 35.54 26.50 34.77 23.90 31.89 24.90 29.52 23.41	34.95 34.36 34.02 34.02 33.66 33.65 34.79 34.79 34.43 34.43 31.91	94.90 47.28 35.39 44.30 34.21 44.75 35.72 45.98 35.11 45.88 38.89 51.95 45.84	74.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00 54.00 54.00 54.00 54.00	-20.90 26.72 18.61 29.70 19.79 29.25 18.28 28.02 18.89 28.12 15.11 22.05 8.16	Peak Peak Average Peak Average Peak Average Peak Average Peak Average
	Remarks:	1. Emiss 2. The e	ion Lev mission	el= Ant.H	Factor +	Cable Los 20dB belo	s + Readi the off	ng - Prea icial	amp.Factor

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emission Level (dBuV/m (ı Limits (dBuV∕m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10 11 12 13	2452.00 4542.00 4543.25 6082.00 6083.25 7754.00 7755.14 8832.00 8833.21 10856.00 10857.14 13892.01	28.40 32.38 34.15 36.80 36.80 37.70 37.70 38.34 41.67 41.67	4.42 6.26 6.26 7.73 8.60 8.60 8.98 10.60 10.60 12.01 12.01	96.97 39.00 22.51 35.15 24.10 34.82 23.90 33.49 26.55 29.74 24.10 30.27 22.50	34.95 34.38 34.38 33.97 33.97 34.46 34.46 34.46 34.93 33.76 31.52	94.84 43.26 26.77 43.06 32.01 45.24 34.84 45.24 38.30 44.92 39.28 52.43 44.66	74.00 74.00 54.00 74.00 54.00 54.00 54.00 54.00 74.00 54.00 54.00 54.00 54.00 54.00	-20.84 30.74 27.23 30.94 21.99 28.24 19.16 28.76 15.70 29.08 14.72 21.57 9.34	Peak Peak Average Peak Average Peak Average Peak Average Peak Average Peak Average
	Remarks:	1. Emiss 2. The e	ion Lev mission	el= Ant.H	Factor +	Cable Los 20dB belo	s + Readi the off	ng - Prea icial	amp.Factor

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emission Level (dBuV/m	n Limits (dBuV∕m)	Margin (dB)	Remark
				·			·		
1	2474.00	28.45	4.44	93.69	34.96	91.62	74.00	-17.62	Peak
2	4960.00	33.13	6.42	40.37	34.36	45.56	74.00	28.44	Peak
3	4961.25	33.13	6.42	23.50	34.36	28.69	54.00	25.31	Average
4	6874.00	35.00	7.90	34.58	33.65	43.83	74.00	30.17	Peak
5	6875.29	35.01	7.90	24.10	33.65	33.36	54.00	20.64	Average
6	7930.00	36.87	8.75	34.66	34.66	45.62	74.00	28.38	Peak
7	7931.14	36.87	8.75	23.20	34.66	34.16	54.00	19.84	Average
8	9646.00	37.92	9.72	33.23	34.76	46.11	74.00	27.89	Peak
9	9647.25	37.92	9.72	23.50	34.76	36.38	54.00	17.62	Average
10	10878.00	38.35	10.60	30.50	33.76	45.69	74.00	28.31	Peak
11	10879.25	38.35	10.60	23.90	33.76	39.09	54.00	14.91	Average
12	14310.00	42.27	12.13	29.61	32.01	52.00	74.00	22.00	Peak
13	14311.14	42.28	12.13	21.70	32.01	44.10	54.00	9.90	Average
	Remarks:	1. Emiss 2. The e	ion Lev mission	el= Ant.H	factor +	Cable Los 20dB belo	ss + Readi w the off	ng - Prea icial	amp.Factor

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emission Level (dBuV/m (d	Limits dBuV⁄m)	Margin (dB)	Remark
1 2 3 4 5 6 7 8 9 10	2474.00 4608.00 4609.21 5884.00 5885.14 6852.00 6853.25 8370.00 8371.25	28.45 32.50 34.06 34.06 34.97 34.97 34.97 37.35 37.35 38.20	4.44 6.28 6.29 7.58 7.58 7.90 7.90 8.89 8.89 10.24	94.72 38.44 23.61 36.58 25.60 35.86 26.20 33.51 24.50 31.93	34.96 34.38 34.38 34.04 34.04 33.66 33.65 34.83 34.83 34.83	92.65 42.84 28.02 44.18 33.20 45.07 35.42 44.92 35.91 45.96	74.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00 54.00 74.00 54.00 74.00 54.00	-18.65 31.16 25.98 29.82 20.80 28.93 18.58 29.08 18.09 28.04	Peak Peak Average Peak Average Peak Average Peak Average Peak
11 12 13	10241.14 14332.00 14333.21	38.20 42.30 42.30	10.24 12.14 12.14	23.50 29.51 22.50	34.41 32.05 32.05	37.53 51.90 44.89	54.00 74.00 54.00	16.47 22.10 9.11	Average Peak Average
	Remarks:	2. The e	mission	levels t	that are	20dB belo	s + Reaul w the off	ng - rred icial	amp.ractor

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	>n Limits (dBuV∕m)	Margin (dB)	Remark
1 2	3354.00 3355.25	31.04 31.04	5.31 5.31	38.67 24.10	 34.86 34.86	40.16	74.00 54.00	33.84 28.41	Peak Average
3	4960.00	33.13	6.42	38.89	34.36	44.08	74.00	29.92	Peak
4	4961.25	33.13	6.42	23.60	34.36	28.79	54.00	25.21	Average
6	5643.25	33.96	7.25	26.50	34.13	33.58	54.00	29.09	Average
7	7842.00	36.84	8.66	35.41	34.55	46.36	74.00	27.64	Peak
8	7843.25	36.84	8.66	23.60	34.55	34.55	54.00	19.45	Average Baala
9 10	10769.25	38.31	10.54	23.20	33.86	45.00 38.19	74.00 54.00	20.14	Average
11	14244.00	42.20	12.12	29.35	31.86	51.81	74.00	22.19	Peak
12	14245.25	42.20	12.12	23.49	31.86	45.95	54.00	8.05	Average
	Remarks:	1. Emiss 2. The e	ion Lev mission	el= Ant.H levels t	factor + that are	Cable Lo 20dB bel	oss + Readi: .ow the off	ng - Prea icial	amp.Factor.

		Ant.	Cable		Preamp	Emissic	on		
	Freq.	Factor	Loss	Reading	Factor	Level	Limits	Margin	Remark
	(MHz)	(dB)	(dB)	(dBuV)	(dB)	(dBuV∕m	(dBuV∕m)	(dB)	
1	2430.00	28.36	4.40	42.70	34.95	40.51	74.00	33.49	Peak
2	2431.25	28.36	4.40	25.50	34.95	23.31	54.00	30.69	Average
3	4168.00	32.43	6.12	38.16	34.39	42.32	74.00	31.68	Peak
4	4169.25	32.43	6.12	25.49	34.39	29.65	54.00	24.35	Average
5	6192.00	34.22	7.76	35.87	33.92	43.93	74.00	30.07	Peak
6	6193.25	34.22	7.76	25.50	33.92	33.56	54.00	20.44	Average
7	7138.00	35.62	8.06	35.30	33.77	45.21	74.00	28.79	Peak -
8	7139.25	35.63	8.06	25.50	33.77	35.42	54.00	18.58	Average
9	9668.00	37.94	9.75	31.62	34.75	44.56	74.00	29.44	Peak -
10	9669.21	37.94	9.75	25.49	34.75	38.43	54.00	15.57	Average
11	14310.00	42.27	12.13	29.04	32.01	51.43	74.00	22.57	Peak
12	14311.25	42.28	12.13	21.50	32.01	43.90	54.00	10.10	Average
	Remarks:	1. Emiss	ion Lev	el= Ant.H	Factor +	Cable Lo	ss + Readi:	ng - Prea	amp.Factor.
		2. The e	mission	levels 1	that are	20dB bel	ow the off.	icial	

The emission levels that limit are not reported.

4.9. Spurious Emission Measurement Results in Band Edge Emission (FCC Part 15, 15.205)

Remarks: 1. Emission Level= Ant.Factor + Cable Loss + Reading - Preamp.Factor. 2. The emission levels that are 20dB below the official limit are not reported.

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	n Limits (dBuV∕m)	Margin (dB)	Remark
1 2	2390.00 2404.60	28.15 28.19	4.38 4.38	43.02 99.96	34.94 34.94	40.61 97.59	74.00 74.00 74.00	33.39 -23.59	Peak Peak Peak

		Ant.	Cable	l.	Preamp	- Emissio	on		
	Freq.	Factor	Loss	Reading	Factor	Level	Limits	Margin	Remark
	(MHz)	(dB)	(dB)	(dBuV)	(dB)	(dBuV∕m	(dBuV∕m)	(dB)	
-									
1	2390.00	28.15	4.38	31.16	34.94	28.75	54.00	25.25	Average
2	2405.00	28.19	4.38	95.41	34.94	93.04	54.00	-39.04	Average

Remarks: 1. Emission Level= Ant.Factor + Cable Loss + Reading - Preamp.Factor.
 2. The emission levels that are 20dB below the official
 limit are not reported.

_	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissio Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2390.00	28.15	4.38	31.32	34.94	28.91	54.00	25.09	Average
2	2405.00	28.19	4.38	96.46	34.94	94.09	54.00	-40.09	Average

		Ant.	Cable	1	Preamp	Emissic	n		
	Freq.	Factor	Loss	Reading	Factor	Level	Limits	Margin	Remark
	(MHz)	(dB)	(dB)	(dBuV)	(dB)	(dBuV∕m	(dBuV∕m)	(dB)	
-									
1	2479.50	28.36	4.44	99.54	34.96	97.38	74.00	-23.38	Peak
2	2483.50	28.36	4.44	57.91	34.96	55.75	74.00	18.25	Peak

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissic Level (dBuV/m	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2479.56	28.36	4.44	100.09	34.96	97.93	74.00	-23.93	Peak
2	2483.50	28.36	4.44	58.44	34.96	56.28	74.00	17.72	Peak

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	Emissia Level (dBuV∕m	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2479.80	28.46	4.44	94.89	34.96	92.83	54.00	-38.83	Average
2	2483.50	28.47	4.44	49.84	34.96	47.79	54.00	6.21	Average

Remarks: 1. Emission Level= Ant.Factor + Cable Loss + Reading - Preamp.Factor. 2. The emission levels that are 20dB below the official limit are not reported.

	Freq. (MHz)	Ant. Factor (dB)	Cable Loss (dB)	Reading (dBuV)	Preamp Factor (dB)	o Emissio ⊂ Level (dBuV∕m	on Limits (dBuV∕m)	Margin (dB)	Remark
1	2479.80	28.46	4.44	95.26	34.96	93.20	54.00	-39.20	Average
2	2483.50	28.47	4.44	49.95	34.96	47.90	54.00	6.10	Average

5. 6 dB BANDWIDTH MEASUREMENT

5.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2014-06-23	2015-06-22

5.2. Block Diagram of Test Setup

5.3. Specification Limits (§15.247(a)(2))

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

5.4. Test Procedure

The transmitter output was connected to the test receiver / spectrum analyzer. The bandwidth of the fundamental frequency was measure by spectrum analyzer. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB. The measurement guideline was according to KDB558074 v03r02.

5.5. Test Results

Channel	Center Frequency(MHz)	6 dB Bandwidth(MHz)
11	2405	1.550
20	2450	1.456
26	2480	1.657

PASSED. All the test results are attached in next pages.

CH 20

6. OUTPUT POWER MEASUREMENT

6.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

6.2. Block Diagram of Test Setup

6.3. Specification Limits (§15.247(b)(3))

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

6.4. Test Procedure

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq 3 x RBW.
- d) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (*i.e.*, power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (*i.e.*, with no off intervals) or at duty cycle \ge 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

6.5. Test Results

PASSED.

Channel	Frequency	Power(dBm)	Limit(dBm)
11	2405	3.48	30
20	2450	3.30	30
26	2480	3.45	30

7. BAND EDGES MEASUREMENT

7.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

7.2. Block Diagram of Test Setup

The same as section 5.2.

7.3. Specification Limits (§15.247(d))

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

7.4. Test Procedure

The transmitter output was connected to the test receiver / spectrum analyzer. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz with suitable frequency span including 100kHz bandwidth from band edge.

7.5. Test Results

PASSED. The testing data was attached in the next pages.

CH26

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2015-06-23	2016-06-22

8.2. Block Diagram of Test Setup

The same as section 5.2.

8.3. Specification Limits (§15.247(e))

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.4. Test Results

PASSED. All the test results are attached in next page.

Channel	Frequency(GHz)	Value(dBm/3kHz)
11	2.405	-13.885
20	2.450	-14.357
26	2.480	-12.974

CH 11

CH 20

CH 26

9. EMISSION LIMITATIONS MEASUREMENT

9.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2014-06-23	2015-06-22

9.2. Block Diagram of Test Setup

The same as section 5.2.

9.3. Specification Limits (§15.247(d))

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

9.4. Test Procedure

The transmitter output was connected to the spectrum analyzer. Set RBW = 100kHz, VBW ≥ 300 kHz, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The measurement guideline was according to KDB558074 v03r02.

9.5. Test Results

Channel	Frequency(MHz)	Amplitude(dBm)
	852.56	-70.447
	2404	0.701
	3844	-63.587
11	5125	-65.787
11	8375	-65.349
	14160	-65.754
	19055	-63.585
	23500	-61.400
	809.88	-70.333
	2448	0.628
	3820	-65.722
20	5095	-65.534
	10315	-65.252
	18935	-64.306
	22850	-63.214
	960.23	-69.741
	2480	0.646
	4800	-65.282
26	5060	-66.311
	14300	-65.942
	19895	-64.592
	23800	-62.350

PASSED. All the test results are attached in next pages.

-	RF 50 0	DC	SEN	TEINT	ALIGN AUTO/NORF		11:12:46	AM Apr 28, 201
rker 1	1 852.56000	0000 MHz PN IFG	IO: Fast 😱 ain:Low	Trig: Free Run Atten: 20 dB	Avg Tyj Avg Hol	pe:Log-Pwr d>100/100	TR. T	NCE 2345 VPE MUNICIPALITY DET PINNIN
dB/div	Ref Offset 0. Ref 10.60	6 dB dBm					Mkr1 852 -70.4	.56 MH 47 dBr
o								
								-19 30 4
4								
4								
4								
4							• ¹	
to all a pe	ana dan salah s	agun 1947 tinas - Maratar Anna 194	-1	وسيلغد بسمنا ويسترم	nedelale attended the the	J. Caller and Post of Mary South State	000,76,76 Ta-24 Tar-24	
				200 642		Swe	Stop 1 ep 92.7 ms	.0000 GI (1001 pt
art 30. es BW	0 MHz / 100 kHz		#VBW	300 KH2		JWE		
art 30. es BW	0 MHz / 100 kHz TRC SCL	×	#VBW :	FUNCTION	FUNCTION WIDTH	1	UNCTION VALUE	
art 30. es BW MODE 1	0 MHz / 100 kHz 1RC SCL 1 f	× 852.56 MHz	#VBW : -70.447 dB	FUNCTION	FUNCTION WIDTH	I	UNCTION VALUE	
art 30. es BW	0 MHz 100 kHz 1 f	X 852.56 MHz	#VBW : -70.447 dB	FUNCTION	FUNCTION WIDTH	, swe	UNCTION VALUE	
N N	0 MHz 100 kHz 110 scl 1 r	Х 852.56 MHz	#VBW : -70.447 dB	FUNCTION	FUNCTION WIDTH	1	UNCTION VALUE	
Art 30. es BW	0 MHz / 100 kHz 11 r	X 852.56 MHz	#VB₩ י	FUNCTION M	PUNCTION WIDTH		UNCTION VALUE	
art 30. es BW	0 MHz / 100 kHz 100 kHz	X 852.56 MHz	#VB₩ -70.447 dB	PUNCTION M	PUNCTION WIDTH	- F	UNCTION VALUE	
art 30. es BW	0 MHz / 100 kHz 1 f	× 852.56 MHz	#VBW	PUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	

and the second se	15	50 Q DC		SENSE	EINT	ALIGN AUTO/NORS	not Log Dur	11:14:	18 AM Apr 29, 2
rker 2	8.37	500000000	IU GHZ PNC IFGa	D: Fast 😱 Ti din:Low A	rig: Free Run tten: 20 dB	Avg Hol	d>100/100		TYPE MULTURE
dB/div	Ref Ref	Offset 0.6 dB 10.60 dBm						Mkr2 8 -65.	.375 GI 349 dB
o									
01							2		
	flange ster	and the second	and a second with	And the second second	and the second diversion of the	and and a stand of the second	have the state of the state of the	and the state of t	
rt 5.00 es BW	0 GH	z KHz		#VBW 3	00 kHz		Sw	Stop eep 478 m	10.000 G s (1001 p
MODE N	RC SCL	×		Y	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
MUDE T			6.125 GHZ 8.375 GHz	-65.349 dBm	1				
N	ŕ		0.010 0.112						
N 1	Í								
NULLE T									
N									

and the second s	RF 501	Q DC	SENSE	INT	ALIGN AUTO/NORF		11:16:	24 AM Apr 28
ker 1	14.160000	000000 GHz	PNO: Fast 😱 Ti FGain:Low A	rig: Free Run tten: 20 dB	Avg Type Avg Holds	Log-Pwr 100/100		TYPE DET P 11
B/div	Ref Offset 0 Ref 10.60	.6 dB dBm					Mkr1 14 -65	160 C
_								
							.1	
	under motor	and a service and the	and a second and a second a second			- James and and a start of the		mina
t 10.0 s BW	00 GHz 100 kHz		#VBW 3	00 kHz		Sw	Stop eep 478 m	15.000 s (1001
MODE TH	IC SCL	X 14.160 GHz	Y -65,754,dBm	FUNCTION	FUNCTION WIDTH	1	UNCTION VALUE	

the second se	10 066000		SENSE	INT		Log.Pur	11:18:	03 AM Apr 28, 21
arker 1	19.055000	P	NO: Fast 🖵 Ti Gain:Low A	rig: Free Run tten: 20 dB	Avg Holds	100/100	-91	DET P NINI
dB/div	Ref Offset 0 Ref 10.60	.6 dB dBm					Mkr1 19 -63	.055 GH .585 dB
40								
.4								
4								
4							♦ ¹	and the second
	- thing with Artigra	مەللەر ئەردىلىر ^{يى} لەر مەل	alaantul	a	diplice - st. And Proceedings of the			
17 15 1	000 GHZ		#VRW 3	00 kHz		Swe	ep 478 m	20.000 G s (1001 p
es BW	100 kHz		#VDVV J					
ES BW	100 kHz	X	Y COLOR	FUNCTION	FUNCTION WIDTH	n	UNCTION VALUE	
es BW	100 kHz NC SCL 1 f	X 19.055 GHz	-63,585 dBm	FUNCTION	FUNCTION WIDTH	R	UNCTION VALUE	
es BW	AC SCL	X 19.055 GHz	-63,585 dBm	FUNCTION	PUNCTION WIDTH	R	UNCTION VALUE	
es BW	1 100 kHz RC SCL 1 1	X 19.055 GHz	-63,585 dBm	FUNCTION	FUNCTION WIDTH	P	UNCTION VALUE	
MODE T	100 kHz RC SCL 1 f	X 19.055 GHz	-63,585 dBm	FUNCTION	PUNCTION WIDTH	FI	UNCTION VALUE	
N MODE T	1 100 kHz nc, scL 1 r	X 19.055 GHz	¥ -63,585 dBm	FUNCTION	PUNCTION WIDTH	R	UNCTION VALUE	

The second value of the se	RF 50 Q	DC	SENSE:	INT	ALIGN AUTO/NORF		11:19:	46 AM Apr 28.
ker 1	23.500000	000000 GHz PN IFG	0:Fast 😱 Tri ain:Low Att	g: Free Run ten: 20 dB	Avg Typ Avg Hold	e: Log-Pwr i>100/100		TYPE MUL
B/div	Ref Offset 0. Ref 10.60	6 dB dBm					Mkr1 23 -61	3.500 G
						¢1		
	and a dealer and the state of the second	- ماليدرا دوجنو ديرورو او - جررو	arapada ang kang kang kang kang kang kang kang					and a second
t 20.0	000 GHz		#\/B\// 30	0 kHz		eu	Stop	25.000
HODE T	RC SCL	×	Y 1944 30	FUNCTION	FUNCTION WIDTH	SI	FUNCTION VALUE	3 (1001
N 1	ſ	23.500 GHz	-61.400 dBm					

A REAL PROPERTY AND A REAL	RF 50 Q DC		SENSE	INT	ALIGN AUTO/NORF		1194	48:11 AM Apr 28, 20
rker 1	1 809.880000000 MH	PNO: I IFGain	Fast 🖵 Ti Low A	rig: Free Run tten: 20 dB	Avg Typ Avg Hold	e: Log-Pwr :: 63/100		TRACE 2345 TYPE MUSEUM DET PINNIN
dB/div	Ref Offset 0.6 dB Ref 10.60 dBm						Mkr1 8 -7	09.88 MH 0.333 dBi
0								
								19.37 (
							• ¹	
				An or share we have a second			second descends on \$1.5 plan	and a state of the
ment	and the second secon	an marked and a star	ماريد ويا ند در در در در در در در در در در	aller and an official statement of	and the second second second second	an shing a second		
art 30.0 es BW	0 MHz / 100 kHz	deres and the states of	#VBW 3	00 kHz	akanan dingkaran dalam	Sw	Sto eep 92.7 i	p 1.0000 Gl ms (1001 pl
art 30.0 es BW	0 MHz / 100 kHz //IC SCL X	deserves (servetes)	#VBW 3	00 kHz	FUNCTION WIDTH	Sw	Sto eep 92.7 r	p 1.0000 G ms (1001 p
art 30.0 es BW	0 MHz / 100 kHz // 100 kHz // r	88 MHz	#VBW 3	00 kHz FUNCTION	FUNCTION WIDTH	Sw	Sto eep 92.7 r	p 1.0000 GI ms (1001 pi
art 30.0 es BW	0 MHz / 100 kHz 1 f 809.0	88 MHz	#VBW 3	00 kHz FUNCTION	FUNCTION WIDTH	Sw	Sto eep 92.7 i FUNCTION VALU	p 1.0000 G ms (1001 p
art 30.0 es BW	0 MHz / 100 kHz // 100 kHz // 100 kHz // 100 kHz // 100 kHz // 100 kHz	88 MHz	#VBW 3	00 kHz FUNCTION	FUNCTION WIDTH	Sw	Stoj eep 92.7 r	p 1.0000 G ms (1001 p
Art 30. es BW	0 MHz / 100 kHz mc scl × 1 f 809.0	88 MHz	#VBW 3 ¥ .70.333 dBm	00 kHz FUNCTION	FUNCTION WIDTH	Sw	Stoj eep 92.7 r	p 1.0000 Gi ms (1001 p
art 30.0 es BW	0 MHz / 100 kHz mc scl X 1 r 809.0	88 MHz	#VBW 3 70.333 dBm	00 kHz FUNCTION	FUNCTION WIDTH	Sw	Sto eep 92.7 r	p 1.0000 G ms (1001 p
MODE 1	0 MHz 1 100 kHz 1 1 r × 809.0	88 MHz	#VBW 3	00 kHz FUNCTION	FUNCTION WIDTH	Sw	Sto eep 92.7 r	p 1.0000 G ms (1001 p

arker 1	5.09500	50 Q DC	GHz	: Fast	Trig: Free Ru	ALIGN M	Avg Type: Avg Hold:	Log-Pwr 13/100	11:48:	33 AM Adv 28, 20 TRACE
_	Ref Offs	et 0.6 dB	IFGa	in:Low	Atten: 20 dB				Mkr1 5	5.095 GH
dB/div	Ref 10.	60 dBm							-65	.534 dBr
4										
4										
4										
1										
a malance	a fragment where	newson all strange	un martin abier	-	Andrews	manana	-	and and a service of the service of		an she was seen
4										
art 5.00 es BW	0 GHz 100 kHz			#VBW	300 kHz			Sw	Stop eep 478 m	10.000 G s (1001 p
MODE TH	RC SCL	×	005 CH3	Y 66.624.40	FUNCTIO	N FUNCTIO	NWIDTH	51	FUNCTION VALUE	
			.050 GH2	-00,034 UB						

Vor 1	10- 501	2 DC	SENSE:0	NT	ALIGN AUTO/NORF		11:46:5	7 AM Apr 28, 2
Ker 1	10.315000	1000000 GHz	NO: Fast 😱 Tris Sain:Low Att	g: Free Run sen: 20 dB	Avg Type Avg Hold:	: Log-Pwr 16/100	TI	TYPE MUL
B/div	Ref Offset 0. Ref 10.60	6 dB dBm					Mkr1 10 -65.	.315 G 252 dE
								-19.3
	↓ 1							
h	and a star of the star of the star	here was a second	adawa dan yaka waka	and a second	and an an age of a second state of a second state of a second second second second second second second second	and the second second	-training-	Nort-Anna
				0 647			Stop	15.000 0
t 10.0 s BW	100 GHZ		#VBW 30	U KI12		SW	eep 4/8 ms	1001
N 10.0	100 GHZ 100 kHz NC SCL	× 10.315 GHz	#VBW 30	FUNCTION	FUNCTION WIDTH	SW	UNCTION VALUE	. (1001
nt 10.0 IS BW MODE TI	100 GHZ 100 kHZ RC SCL	X 10.315 GHz	#VBW 30 Y -65.252 dBm	PUNCTION	FUNCTION WIDTH	SW	UNCTION VALUE	
nt 10.0 PS BW	100 GHZ 100 kHz NG SCL	X 10.315 GHz	#VBW 30	FUNCTION	FUNCTION WIDTH	Sw	UNCTION VALUE	
rt 10.0 IS BW	100 GHZ 100 kHz nc scl 1 f	× 10.315 GHz	#VBW 30	FUNCTION	PUNCTION WIDTH	SW	PUNCTION VALUE	
nt 10.0 PS BW	000 GHZ 100 kHz Ng scl.	X 10.315 GHz	#VBW 30	FUNCTION	PUNCTION WIDTH	SW		

	RF 50 \$	00	SENSE:0	IT I	ALIGN AUTO/NORF	L	11:49:19 AM	Apr 28, 20
arker 1	18.935000	000000 GHz PN IFG	IO: Fast 😱 Triş alın:Low Att	: Free Run en: 20 dB	Avg Typ Avg Hold	e: Log-Pwr : 13/100	TRACE TYPE DET	12345 Mullion PNNNN
dB/div	Ref Offset 0. Ref 10.60	6 dB dBm				I	Mkr1 18.93 -64.30	6 dBr
300								
40								-10.27.4
2.4								
9.4								
9.4						1		
8.4 8.4 mayara a	malum	manalistation		summer work	مىرىدىنى بىرىدىر م	in a second second	man	
9,4								
tart 15. Res BW	000 GHz 100 kHz		#VBW 30	0 kHz		Swee	Stop 20.0 p 478 ms (1	000 GH 001 pt
KR MODE T	RC SCL	×	Ý	FUNCTION	FUNCTION WIDTH	FUN	CTION VALUE	
D D D D D D D D D D		18.935 GH2	-64.306 dBm					
2								
2								
2 3 4 6 7								
2 3 4 6 6 7 8								
2 3 4 6 6 7 7 8 9 9 0 1 2								

arker 1	22.85000	0 DC 0000000 GHz P	NO: Fast 😱 Tris	g: Free Run	ALIGN AUT	O/NORF lvg Type: Log-Pw vg Hold: 13/100	11:4 T	P:42 AM Apr 20, 20 TRACE 2014 TYPE 2014
dB/div	Ref Offset	0.6 dB 0 dBm	Gain:Low Att	en: 20 dB			Mkr1 2 -6	2.850 GH 3.214 dB
20								
10								
4								
4								
4					↓ ¹			
in and	nn seisen an	ayan ni tayan matan	andrahan but as promoved	deserved and the second	4*************************************		**************************************	and a second
art 20.0 es BW	000 GHz 100 kHz		#VBW 30	0 kHz			Stop Sweep 478 n	o 25.000 G ns (1001 p
MODE T	RC SCL	× 22,850 GHz	Y -63.214 dBm	FUNCTION	FUNCTION	WIDTH	FUNCTION VALUE	

and the second second	RF 50 Q DC	SEN	SE:INT	ALIGN AUTO/NORF		03:09:06 PM Apr 28, 201
arker 196	50.230000000 MHz	PNO: Fast 😱	Trig: Free Run Atten: 20 dB	Avg Type: Avg Hold>	Log-Pwr 100/100	TRACE 2 2 4 5 TYPE M DET P NNINN
R dB/div R	tef Offset 0.6 dB tef 10.60 dBm					Mkr1 960.23 MHz -69.741 dBm
g 00						
10						-19.25 (\$
4						
4						
4						
4						•1
1	**************************************		and an all of the second second	1490-00-00-00-00-00-00-00-00-00-00-00-00-0		alarite o general and a second and of a second
			300 kHz		Swee	Stop 1.0000 GH p 92.7 ms (1001 pts
art 30.0 M les BW 10	0 kHz	#VBW	000 Miliz			
art 30.0 M Res BW 10 N MODE TRC 5	nz 0 kHz Icl X	#VBW	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE
art 30.0 M Res BW 10 N 1	HZ 0 kHz KL X f 950.23	#VBW Y MHz _59.741 dB	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE
art 30.0 M Res BW 10 R MODE TRC 5	HZ 0 kHz ICL X f 950.23	#VBW MHz _59.741 dB	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE
art 30.0 M Res BW 10 A MODE TRC 5	HZ 0 kHz ICL X 7 960.23	#VBW	FUNCTION	FUNCTION WIDTH	Fu	NETION VALUE
art 30.0 M Res BW 10 A MODE THE S	HZ 0 kHz KL X f 960.23	#VBW MHz69.741 dB	FUNCTION	FUNCTION WIDTH	FU	NETION VALUE
art 30.0 M Res BW 10 R MODE THC 5 N 1	HZ 0 kHz KL X f 950.23	#VBW	PUNCTION	FUNCTION WIDTH	FU	NETION VALUE
art 30.0 M Res BW 10 R MODE TRC 5 N 1	HZ 0 kHz KL X f 960.23	#VBW	PUNCTION	FUNCTION WIDTH	FU	NETION VALUE

the second se	10° 50 W	DC.	SE	NSEINT	A.A.	IGN AUTO/NO RE	Les Der	03:09×	16 PM Apr 28,
rker 1	5.06000000	JOOOO GHZ PN IFG	10: Fast 😱 iain:Low	Trig: Free R Atten: 20 di	tun B	Avg Hold	: Log-Pwr : 38/100		TYPE MOUNT
iB/div	Ref Offset 0.6 Ref 10.60 c	i dB IBm						Mkr1 5 -66.	.060 G 311 di
\vdash									
1- 		140- a		L. order				Andread a state	
rt 5.00 s BW	0 GHz 100 kHz		#VBW	300 kHz			Sw	Stop eep 478 m	10.000 (s (1001
IN SEW	00 GHz 100 kHz RC SCL	X	#VBW	300 kHz	tion fut	NCTION WIDTH	Sw	Stop eep 478 m runction value	10.000 (s (1001
rt 5.00 IS BW MODE 11	00 GHz 100 kHz RC SCL 1 1	× 5.060 GHz	#VBW	300 kHz Func	tion Fu	NCTION WIDTH	Św	Stop eep 478 m FUNCTION VALUE	10.000 (s (1001
rt 5.00 IS BW	00 GHz 100 kHz RC SCL	X 5.060 GHz	#VBW -66.311 df	300 kHz Func	non Pu	NCTION WIDTH	Sw	Stop eep 478 ms	10.000 (s (1001
nt 5.00 es BW	00 GHz 100 kHz RC SCL	× 5.050 GHz	#VBW -66.311 df	300 kHz Func Bm	non Pu	NCTION WIDTH	Sw	Stop eep 478 m FUNCTION VALUE	10.000 (s (1001
rt 5.00 es BW MODE TP	00 GHz 100 kHz RC SCL 1 f	× 5.050 GHz	#VBW 7 -56.311 dt	300 kHz Funct	TION PUT	NCTION WIDTH	Sw	Stop eep 478 m function value	10.000 (\$ (1001

ELCOR.		50 Q DC	-	SENSE:	INT	ALIGN AUTO/NORF		03:10:	11 PM Apr 28, 2
rker 1	14.3000	00000000) GHZ PNO IFGa	0:Fast 😱 Tri ain:Low At	ig: Free Run ten: 20 dB	Avg Type Avg Hold	: Log-Pwr : 17/100		TYPE MULLIN DET P N N N
B/div	Ref Offse Ref 10.	et 0.6 dB 60 dBm						Mkr1 14 -65	.300 GI 942 dB
·									
								● ¹	
	-trughe ser	ter manufactures	-modelessimer.	e firmangealerne angere dae	*******	admarkers sols Mathematic	adara Multida alas	alan-to-states	the states of the second s
rt 10.0 es BW	000 GHz 100 kHz			#VBW 30	0 kHz		Sw	Stop eep 478 m	15.000 (s (1001)
Int 10.0 PS BW	000 GHz 100 kHz NC SCL	× 14	300 GHz	#VBW 30	O KHZ FUNCTION	FUNCTION WIDTH	Sw	Stop eep 478 m FUNCTION VALUE	15.000 Q s (1001 p
rt 10.0 s BW	000 GHz 100 kHz NC SCL 1 r	× 14.	300 GHz	#VBW 30	00 kHz Function	FUNCTION WIDTH	Sw	Stop eep 478 m FUNCTION VALUE	15.000 (s (1001)
nt 10.0 es BW MODE T	000 GHz 100 kHz nc scl 1 f	× 14,	300 GHz	#VBW 30	PUNCTION	FUNCTION WIDTH	Sw	Stop eep 478 m	15.000 Q s (1001 p
Int 10.0 es BW	000 GHz 100 kHz nc scl 1 f	× 14	300 GHz	#VBW 30 ¥ -65.942 dBm	O KHZ Function	PUNCTION WIDTH	Sw	Stop eep 478 m FUNCTION VALUE	15.000 G s (1001 p
Int 10.0 es BW	000 GHz 100 kHz RC SCL 1 T	× 14)	300 GHz	#VBW 30 ¥ .65.942 dBm	PUNCTION	FUNCTION WIDTH	Sw	Stop eep 478 m	15.000 G s (1001 p

Audix Technology (Wujiang)Co., Ltd. EMC Dept. Report No.: ACWE-F1505002

arker 1	19.895000	0000000 GHz	IO: Fast C Tris	: Free Run	Aug Type Avg Type Avg Hold	: Log-Pwr : 22/100	03:10	HIPM Apr 28, 20 TRACE 2 2 4 4 TYPE NUMBER
dB/div	Ref Offset 0 Ref 10.60	.6 dB dBm	iain:Low Απ	en: 20 aB			Mkr1 19 -64	.895 GH
n								
ID								10.75
4								
4								
4								
			مەرىپى _{غىرى} مارىيىدىنىدىن	And the conditioned				rounder
4								
art 15.0 es BW	00 GHz 100 kHz		#VBW 30	0 kHz		Sw	Stop eep 478 m	20.000 G s (1001 p
MODE: TH	C SCL	X 10.995 CH7	Y 64.502.4Pm	FUNCTION	FUNCTION WIDTH	51	FUNCTION VALUE	
		19,690 GHz	-04.092 dBill					

	10 5	50 Q DC	SENSE	EBNT	ALIGN AUTO/NORF		03:12:	24 PM Apr 28,
ker 1	23.80000	00000000 GHz	PNO: Fast 😱 T IFGain:Low A	rig: Free Run Atten: 20 dB	Avg Type Avg Hold:	: Log-Pwr >100/100		TYPE NOT
B/div	Ref Offset Ref 10.6	t0.6 dB i0 dBm					Mkr1 23 -62	.800 G 350 di
<u> </u>								
				وريا والمحمد والمتحد	er Manuala Incola manufato	1	ور علوم وروا آیا نے محصر میں	an Andrew Ma
and the second s	den an							
t 20.0 s BW	000 GHz 100 kHz		#VBW 3	00 kHz		Swe	Stop eep 478 m	25.000 s (1001
t 20.0 s BW	000 GHz 100 kHz RC SCL	X 23.800 GH	#VBW 3	00 kHz	FUNCTION WIDTH	Swe	Stop ep 478 m	25.000 (s (1001
t 20.0 s BW	000 GHz 100 kHz RC SCL 1 f	X 23.800 GH	#VBW 3 Y z -62,350 dBn	100 kHz FUNCTION	FUNCTION W/DTH	Swe	Stop ep 478 m UNCTION VALUE	25.000 (s (1001
t 20.0 s BW	000 GHz 7 100 KHz 110 r	× 23,800 GH	#VBW 3 7 z52.350 dBn	PUNCTION	FUNCTION WIDTH	Swe	Stop eep 478 m unction value	25.000 (s (1001
t 20.0 s BW MODE T	000 GHz 100 kHz 1 r	X 23.800 GH	#VBW 3	PUNCTION	FUNCTION WIDTH	Swe	Stop ep 478 m unction value	25.000 (s (1001
t 20.0 s BW	000 GHz 7 100 kHz IIC SCL 1 f	X 23.800 GH	#VBW 3 z62.350 dBn	PUNCTION PUNCTION	PUNCTION WIDTH	Swe	Stop eep 478 m unction value	25.000 (s (1001

10.DUTY CYCLE

10.1. Test Equipment

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	PXA Signal Analyzer	Agilent	N9030A	MY53120367	2014-06-23	2015-06-22

10.2. Test Results

The measurement of duty cycle is 100%.

CH 20

S 11-11			
PNO: Wide	Trig: Free Run Atten: 20 dB	Avg Type: Log	Pwr TRACE
a gameou			
#VBV	V 1.0 MHz		Span 0 Sweep 50.00 ms (1001 p
		#VBW 1.0 MHz	#VBW 1.0 MHz

11.DEVIATION TO TEST SPECIFICATIONS

[NONE]