

FCC Test Report

Equipment	:	Philips HUE bridge 2.0
Brand Name	:	PHILIPS
Model No.	:	3241312018
FCC ID	:	O3M324131201801
Standard	:	47 CFR FCC Part 15.247
Operating Band	:	2400 MHz – 2483.5 MHz
FCC Classification	:	DTS
Applicant Manufacturer	:	Philips (China) Investment Co.,Ltd. No.9, 888 Tianlin Road, Min Hang District, Shanghai 200233,China

The product sample received on Jun. 23, 2015 and completely tested on Jul. 09, 2015. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

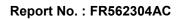
The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Vic Hsiao / Supervisor

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	The Worst Case Power Setting Parameter	9
2.3	The Worst Case Measurement Configuration	
2.4	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	13
3.1	AC Power-line Conducted Emissions	13
3.2	6dB Bandwidth	
3.3	RF Output Power	
3.4	Power Spectral Density	21
3.5	Transmitter Radiated Bandedge Emissions	
3.6	Transmitter Radiated Unwanted Emissions	
4	TEST EQUIPMENT AND CALIBRATION DATA	55


APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.1590020MHz 19.53 (Margin 35.99dB) - AV 37.28 (Margin 28.24dB) - QP	FCC 15.207	Complied		
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 20M: 9.73 / 40M:33.12	≥500kHz	Complied		
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]:25.80	Power [dBm]:30	Complied		
3.4	15.247(e)	Power Spectral Density	PSD [dBm/100kHz]: -5.09	PSD [dBm/3kHz]:8	Complied		
3.5	15.247(d)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2399.824MHz: 25.74dB Restricted Bands [dBuV/m at 3m]: 2389.968MHz 70.08 (Margin 3.92dB) - PK 53.85 (Margin 0.15dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied		
3.6	15.247(d)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 4824MHz 53.75 (Margin 0.25dB) - AV 66.24 (Margin 7.76dB) - PK	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR562304AC	Rev. 02	Initial issue of report	Jul. 24, 2015

1 General Description

1.1 Information

1.1.1 RF General Information

	RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊺x})	RF Output Power (dBm)		
2400-2483.5	b	2412-2462	1-11 [11]	1	22.18		
2400-2483.5	g	2412-2462	1-11 [11]	1	25.80		
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	1	25.29		
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	1	20.54		

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Information

	Antenna Category				
\square	Integral antenna (antenna permanently attached)				
	Temporary RF connector provided				
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.				

	Antenna General Information			
No.	No. Ant. Cat. Ant. Type Gain (dBi)			
1	Integral	PIFA	2.40	

1.1.3 Type of EUT

	Identify EUT				
EUT	EUT Serial Number N/A				
Pres	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle				
	Operated normally mode for worst duty cycle				
\boxtimes	Operated test mode for worst duty cycle				
	Test Signal Duty Cycle (x)Power Duty Factor[dB] - (10 log 1/x)				
\square	100.00% - IEEE 802.11b	0.00			
\boxtimes	100.00%- IEEE 802.11g	0.00			
\square	100.00%- IEEE 802.11n (HT20)	0.00			
\square	100.00%- IEEE 802.11n (HT40)	0.00			

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC	
Type of DC Source	From Host System	External AC adapter	Li-ion Battery

1.2 Accessories and Support Equipment

Accessories			
	Brand Name	APD (Asia Power Device Inc.)	
AC Adapter	Model Name	WB-10E05R	
	Power Rating	I/P:100-240V ~ 50-60Hz, 0.4A MAX, O/P: 5V=== 2A	
RJ45 Cable Signal Line 1 meter, non-shielded cable			

Reminder: Regarding to more detail and other information, please refer to user manual.

Support Equipment - RF Conducted						
No.	No. Equipment Brand Name Model Name FCC ID					
1	Notebook	DELL	E5540	DoC		

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074 D01 v03r03

1.4 Testing Location Information

	Testing Location						
\boxtimes	HWA YA ADD : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.						
	TEL : 886-3-327-0973 FAX : 886-3-327-0973						
	Test Condition Test Site No.			Test Site No.	Test Engineer	Test Environment	
	AC Conduction			CO04-HY	Zeus	22°C / 59%	
	RF Conducted			TH06-HY	Rory	22.3°C / 61%	
ŀ	Radiated Emission			03CH03-HY	Terry	23.4°C / 56.1%	

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Γ	Measurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions		±2.3 dB
Emission bandwidth, 6dB bandwidth		±0.6 %
RF output power, conducted		±0.1 dB
Power density, conducted		±0.6 dB
Unwanted emissions, conducted	9 – 150 kHz	±0.4 dB
	0.15 – 30 MHz	±0.4 dB
	30 – 1000 MHz	±0.6 dB
	1 – 18 GHz	±0.5 dB
	18 – 40 GHz	±0.5 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.5 dB
	0.15 – 30 MHz	±2.3 dB
	30 – 1000 MHz	±2.6 dB
	1 – 18 GHz	±3.6 dB
	18 – 40 GHz	±3.8 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±5 %
DC and low frequency voltages		±0.9%
Time		±1.4 %
Duty Cycle		±0.6 %

2 Test Configuration of EUT

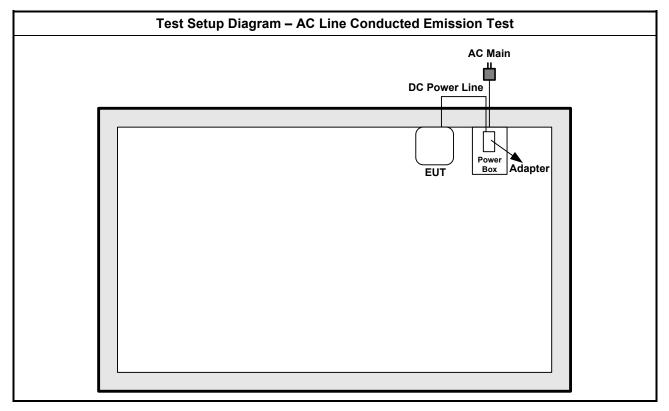
2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing						
Modulation Mode	Transmit Chains (N_{TX})	Data Rate / MCS	Worst Data Rate / MCS			
11b,1-11Mbps	1	1-11 Mbps	1 Mbps			
11g,6-54Mbps	1	6-54 Mbps	6 Mbps			
HT20,M0-7	1	MCS 0-7	MCS 0			
HT40,M0-7	1	MCS 0-7	MCS 0			
Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40. Worst modulation mode of Guard Interval (GI) is 800ns. Note 2: Modulation modes consist below configuration: 11b: IEEE 802.11b, 11g: IEEE 802.11g, HT-20/HT40: IEEE 802.11n Note 3: RF output power specifies that Maximum Peak Conducted Output Power.						

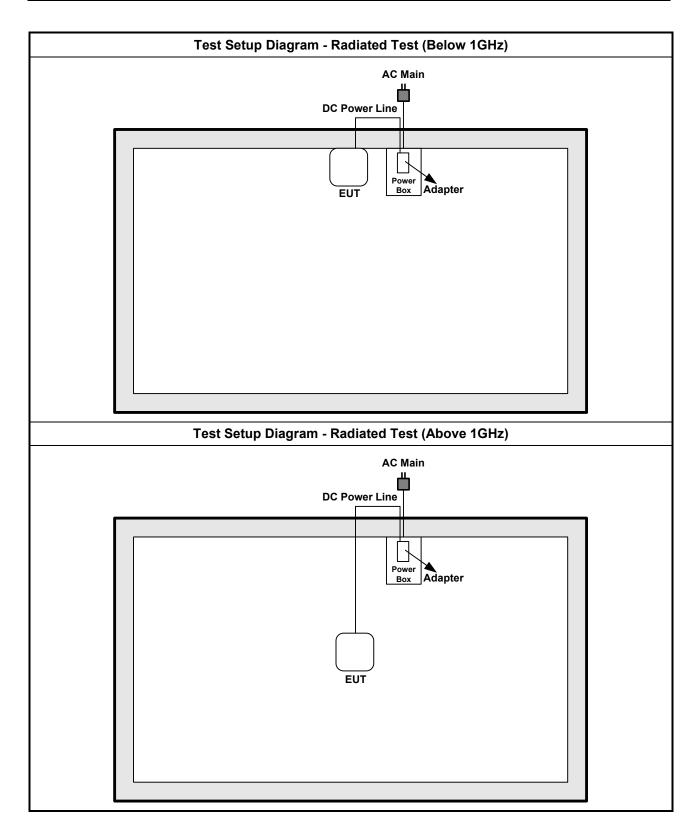
2.2 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (2400-2483.5MHz band)								
Test Software Version		Atheros Radio Test 2_2.3						
		Test Frequency (MHz)						
Modulation Mode	Ντχ	NCB: 20MHz				NCB: 40MHz		
		2412	2437	2462	2422	2437	2452	
11b	1	18	17.5	16	-	-	-	
11g	1	15.5	20.5	14.5	-	-	-	
HT-20	1	14.5	20	14	-	-	-	
HT-40	1	-	-	-	12	14.5	11	

2.3 The Worst Case Measurement Configuration


Th	The Worst Case Mode for Following Conformance Tests				
Tests Item	AC power-line conducted emissions				
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz				
Operating Mode	Operating Mode Description				
1	AC Power & Radio link (WLAN)				

The Worst Case Mode for Following Conformance Tests				
Tests Item	RF Output Power, Power Spectral Density, 6 dB Bandwidth			
Test Condition	Conducted measurement at transmit chains			
Modulation Mode	11b, 11g, HT20, HT40			


Th	The Worst Case Mode for Following Conformance Tests					
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions					
Test Condition	regardless of spatial multi	antenna assembly (multiple antenna are used in EUT iplexing MIMO configuration), the radiated test should antenna gain of each antenna type.				
	EUT will be placed in	fixed position.				
User Position	EUT will be placed in shall be performed the	ng multiple positions. EUT				
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.					
Operating Mode	🛛 1. AC Power & Radi	1. AC Power & Radio link (WLAN)				
Modulation Mode	11b, 11g, HT20, HT40					
	X Plane	Y Plane	Z Plane			
Orthogonal Planes of EUT						
Worst Planes of EUT	V					

2.4 Test Setup Diagram

Transmitter Test Result 3

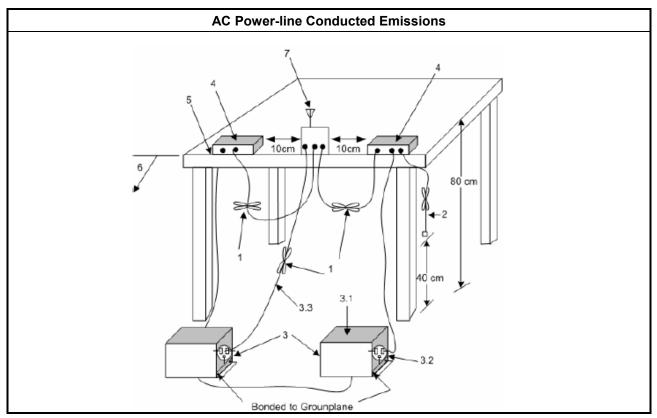
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

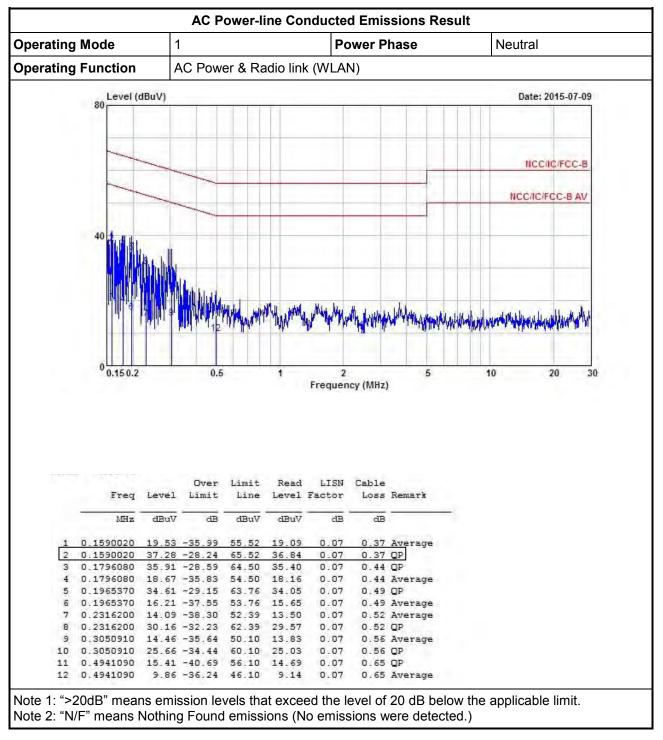
AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30	60	50			
Note 1: * Decreases with the logarithm c	of the frequency				

ecreases with the logarithm of the frequency

3.1.2 Measuring Instruments

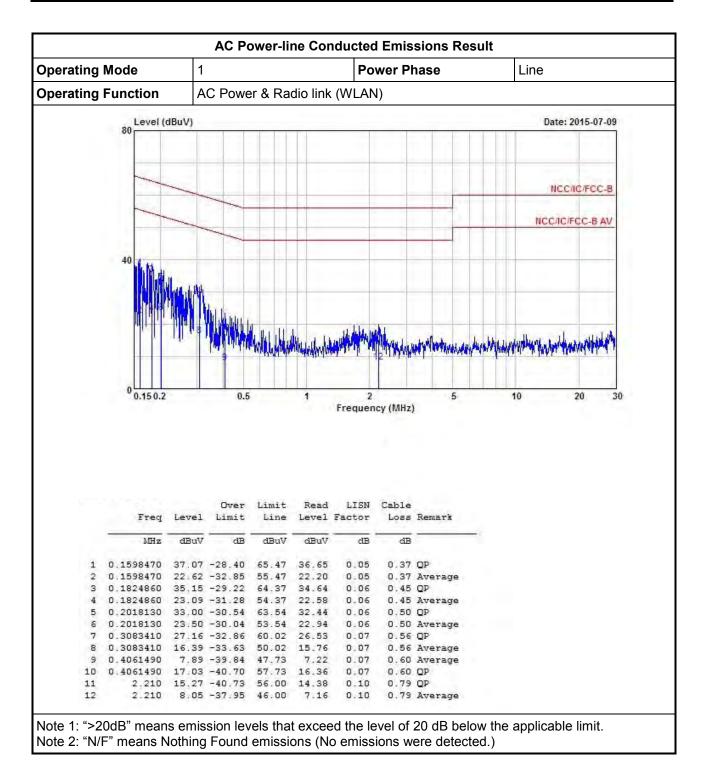

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures


Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



3.1.5 Test Result of AC Power-line Conducted Emissions

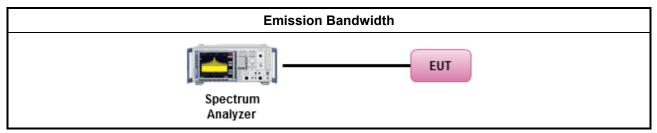
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

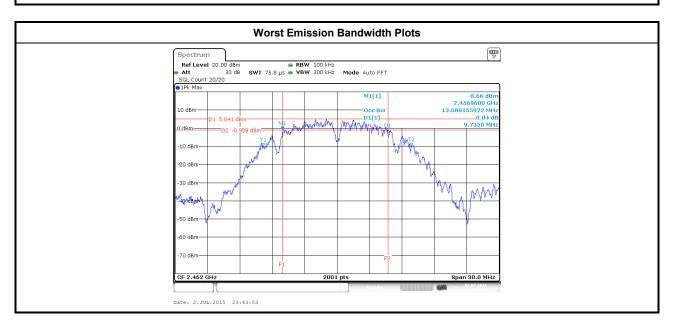
 \boxtimes 6 dB bandwidth ≥ 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method								
\boxtimes	For	or the emission bandwidth shall be measured using one of the options below:							
	\square	Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.							
		Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.							
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.							
\boxtimes	For	conducted measurement.							
	The EUT supports single transmit chain and measurements performed on this transmit chain.								
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.							
		The EUT supports multiple transmit chains using options given below:							
	Option 1: Multiple transmit chains measurements need to be performed on one of the a transmit chains (antenna outputs). All measurement had be performed on transmit chains								
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.							


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

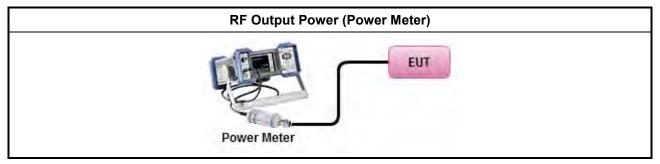
			Emission Bandwidth Result	
Condit	ion		Emission Ba	ndwidth (MHz)
Modulation Mode	Ντχ	Freq. (MHz)	99% Bandwidth	6dB Bandwidth
11b	1	2412	13.56	10.03
11b	1	2437	13.71	10.06
11b	1	2462	13.68	9.73
11g	1	2412	16.22	16.29
11g	1	2437	16.80	16.09
11g	1	2462	16.26	16.27
HT20	1	2412	17.30	16.26
HT20	1	2437	17.64	16.29
HT20	1	2462	17.39	16.32
HT40	1	2422	35.74	33.12
HT40	1	2437	35.74	33.88
HT40	1	2452	35.74	33.80
Limi	t		N/A	≥500 kHz
Resu	lt		Com	plied

3.3 RF Output Power

3.3.1 RF Output Power Limit

		RF Output Power Limit
Мах	imu	m Peak Conducted Output Power or Maximum Conducted Output Power Limit
\square	240	0-2483.5 MHz Band:
	\boxtimes	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$
	\square	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Smart antenna system (SAS):
		Single beam: If $G_{TX} > 6 dBi$, then $P_{Out} = 30 - (G_{TX} - 6)/3 dBm$
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm
e.i.r	.p. P	ower Limit:
\square	240	0-2483.5 MHz Band
	\square	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)
		Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$
		Smart antenna system (SAS)
		□ Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		□ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method	
\boxtimes	Maximum Peak Conducted Output Power	
	□ Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW ≥ EBW method).	
	Refer as FCC KDB 558074, clause 9.1.2 Option 2 (peak power meter for VBW ≥ DTS BW)	
\boxtimes	Maximum Conducted Output Power	
	[duty cycle ≥ 98% or external video / power trigger]	
	Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).	
	Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)	
	duty cycle < 98% and average over on/off periods with duty factor	
	Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).	
	Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)	
	RF power meter and average over on/off periods with duty factor or gated trigger	
	Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).
\square	For conducted measurement.	
	The EUT supports single transmit chain and measurements performed on this transmit chain.	
	The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst c	ase.
	The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and approach, measured all transmit ports individually. Sum the power (in linear power units e.g., of all ports for each individual sample and save them.	
	If multiple transmit chains, EIRP calculation could be following as methods: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG	

3.3.4 Test Setup

		М	aximum Peak Co	onducted Output F	Power Result		
Condi	tion			RF	Output Power (d	3m)	
Modulation Mode	Ντχ	Freq. (MHz)	RF Output Power	Power Limit	Antenna Gain (dBi)	EIRP Power	EIRP Limit
11b	1	2412	22.18	30.00	2.40	24.58	36.00
11b	1	2437	21.52	30.00	2.40	23.92	36.00
11b	1	2462	19.42	30.00	2.40	21.82	36.00
11g	1	2412	21.73	30.00	2.40	24.13	36.00
11g	1	2437	25.80	30.00	2.40	28.20	36.00
11g	1	2462	20.60	30.00	2.40	23.00	36.00
HT20	1	2412	20.02	30.00	2.40	22.42	36.00
HT20	1	2437	25.29	30.00	2.40	27.69	36.00
HT20	1	2462	19.66	30.00	2.40	22.06	36.00
HT40	1	2422	17.82	30.00	2.40	20.22	36.00
HT40	1	2437	20.54	30.00	2.40	22.94	36.00
HT40	1	2452	17.61	30.00	2.40	20.01	36.00
Resu	ılt				Complied		•

3.3.5 Test Result of Maximum Peak Conducted Output Power

3.3.6 Test Result of Maximum Conducted Output Power

			Maximum C	onducted Output	Power		
Condit	tion			RF	Output Power (d	3m)	
Modulation Mode	Ντχ	Freq. (MHz)	RF Output Power	Power Limit	Antenna Gain (dBi)	EIRP Power	EIRP Limit
11b	1	2412	19.23	30.00	2.40	21.63	36.00
11b	1	2437	18.60	30.00	2.40	21.00	36.00
11b	1	2462	16.51	30.00	2.40	18.91	36.00
11g	1	2412	16.83	30.00	2.40	19.23	36.00
11g	1	2437	20.81	30.00	2.40	23.21	36.00
11g	1	2462	15.54	30.00	2.40	17.94	36.00
HT20	1	2412	15.07	30.00	2.40	17.47	36.00
HT20	1	2437	20.32	30.00	2.40	22.72	36.00
HT20	1	2462	14.57	30.00	2.40	16.97	36.00
HT40	1	2422	12.75	30.00	2.40	15.15	36.00
HT40	1	2437	15.45	30.00	2.40	17.85	36.00
HT40	1	2452	12.50	30.00	2.40	14.90	36.00
Resu	ılt				Complied		

Power Spectral Density 3.4

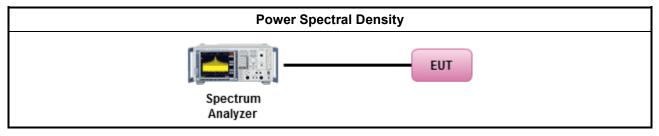
3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

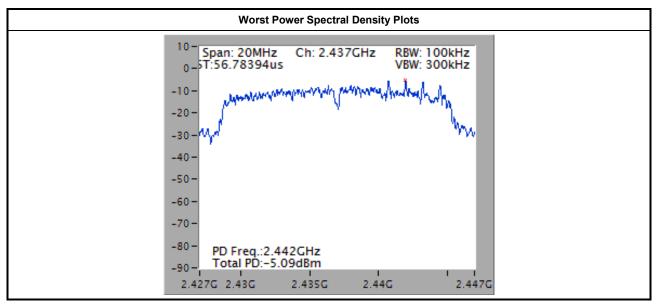
3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.4.3 **Test Procedures**

Г

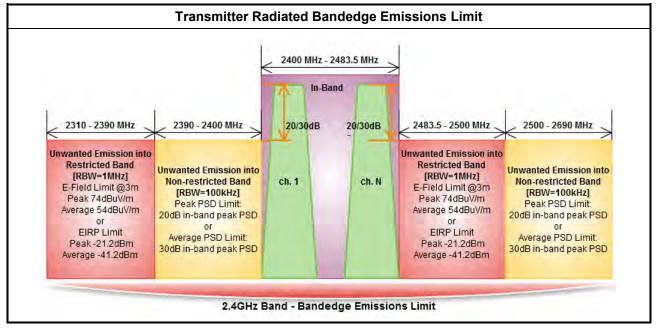
		Test Method
\boxtimes	outp the o cond of th	k power spectral density procedures that the same method as used to determine the conducted out power. If maximum peak conducted output power was measured to demonstrate compliance to putput power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum ducted output power was measured to demonstrate compliance to the output power limit, then one he average PSD procedures shall be used, as applicable based on the following criteria (the peak procedure is also an acceptable option).
	\square	Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz;detector=peak)
	[dut	y cycle ≥ 98% or external video / power trigger]
	\square	Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)
\square	For	conducted measurement.
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
		The EUT supports multiple transmit chains using options given below:
		□ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.



3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

			Power Spectral Density Result	
Condi	tion		Power Spec	tral Density
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain (dBm/100kHz)	PSD Limit (dBm/3kHz)
11b	1	2412	-5.97	8.00
11b	1	2437	-8.10	8.00
11b	1	2462	-10.16	8.00
11g	1	2412	-11.85	8.00
11g	1	2437	-5.09	8.00
11g	1	2462	-13.69	8.00
HT20	1	2412	-13.61	8.00
HT20	1	2437	-7.73	8.00
HT20	1	2462	-13.74	8.00
HT40	1	2422	-18.36	8.00
HT40	1	2437	-16.41	8.00
HT40	1	2452	-18.63	8.00
Resi	ılt		Com	plied

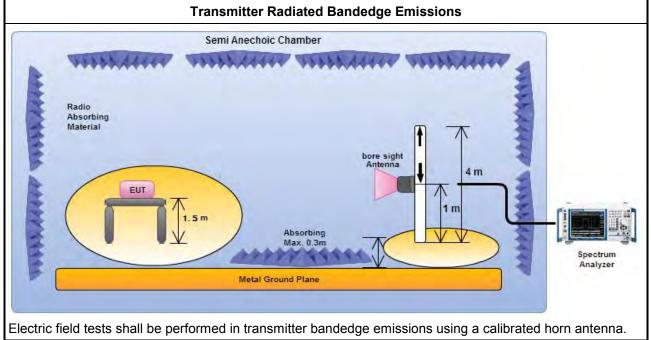


Note: 15.2dBm has been offset for 3kHz data.

3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

		Test Method
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency nnel and highest frequency channel within the allowed operating band.
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		□ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:
		Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.
\boxtimes		radiated measurement, refer as FCC KDB 558074, clause 12.2.7 and ANSI C63.10, clause 6.6. distance is 3m.

3.5.4 Test Setup

Note: FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 02, 2014.

Test Result of Transmitter Radiated Bandedge Emissions 3.5.5

	24	100-2483.5N	/Hz Transmitter	Radiated Band	ledge Emission	s (Non-restricte	d Band)	
Modulation	Ντχ	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.
11b	1	2412	107.40	2397.136	74.43	32.97	20	Н
11b	1	2462	102.75	2507.600	59.83	42.92	20	Н
11g	1	2412	103.27	2399.824	77.53	25.74	20	Н
11g	1	2462	100.28	2543.800	60.92	39.36	20	Н
HT20	1	2412	103.43	2399.376	74.06	29.37	20	Н
HT20	1	2462	100.05	2503.000	60.90	39.15	20	Н
HT40	1	2422	97.82	2399.232	70.06	27.76	20	Н
HT40	1	2452	96.21	2540.720	60.19	36.02	20	Н
lote 1: Measure	ment wo	rst emissior	is of receive ante	nna polarization				

Modulation Mode	N _{TX}	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
11b	1	2412	3	2385.488	58.91	74	2385.712	49.66	54	Н
11b	1	2462	3	2483.500	57.44	74	2483.500	47.62	54	Н
11g	1	2412	3	2389.968	70.08	74	2389.968	53.85	54	Н
11g	1	2462	3	2483.600	70.10	74	2483.500	53.81	54	Н
HT20	1	2412	3	2389.520	67.96	74	2389.968	53.40	54	Н
HT20	1	2462	3	2483.500	68.47	74	2483.500	53.54	54	Н
HT40	1	2422	3	2388.672	67.01	74	2389.992	53.28	54	Н
HT40	1	2452	3	2484.320	67.21	74	2483.720	53.35	54	Н

3.6 Transmitter Radiated Unwanted Emissions

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

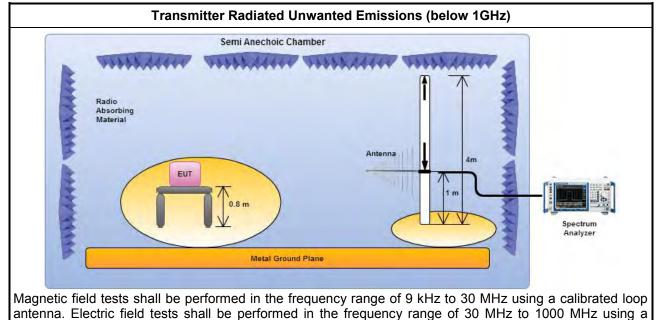
Un-restricted Ba	nd Emissions Limit
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30
Note 1: If the peak output power procedure is used to	o measure the fundamental emission power to

demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

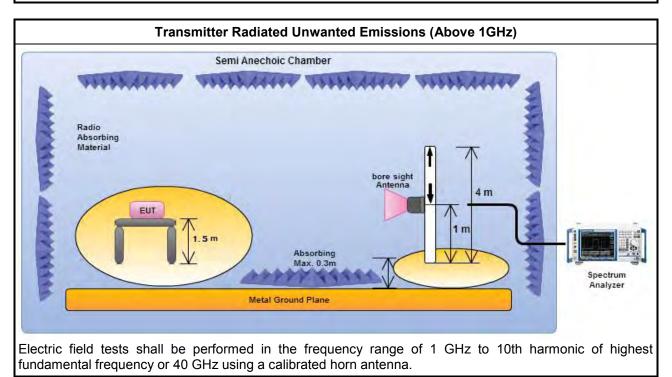
Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures

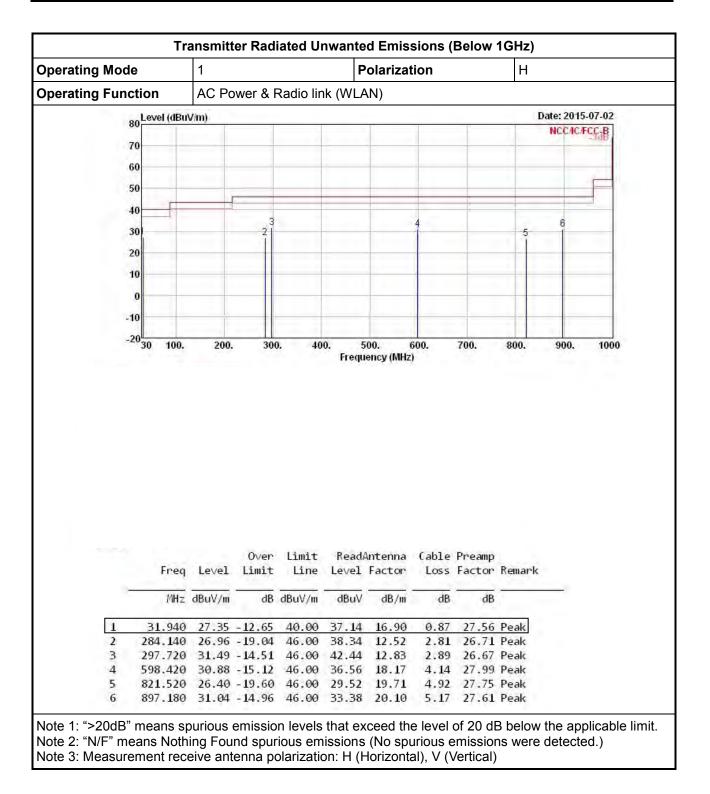

		Test Method
\boxtimes	perfo equi extra dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density surements).
\boxtimes	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		☐ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
		Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
	\boxtimes	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.
\boxtimes	The	any unwanted emissions level shall not exceed the fundamental emission level.
\square		mplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value no need to be reported.

3.6.4 Test Setup

calibrated bi-log antenna.

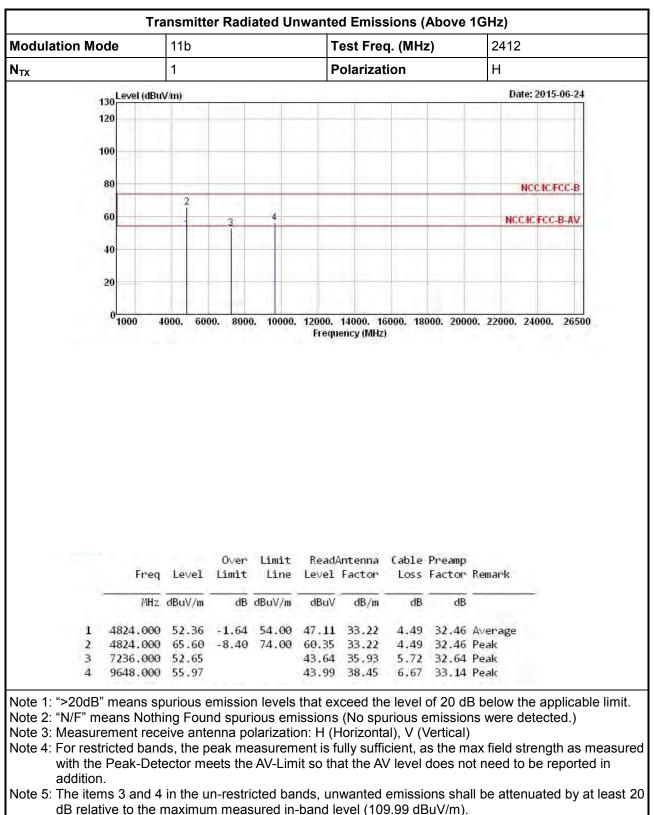
Note: FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 02, 2014.

3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

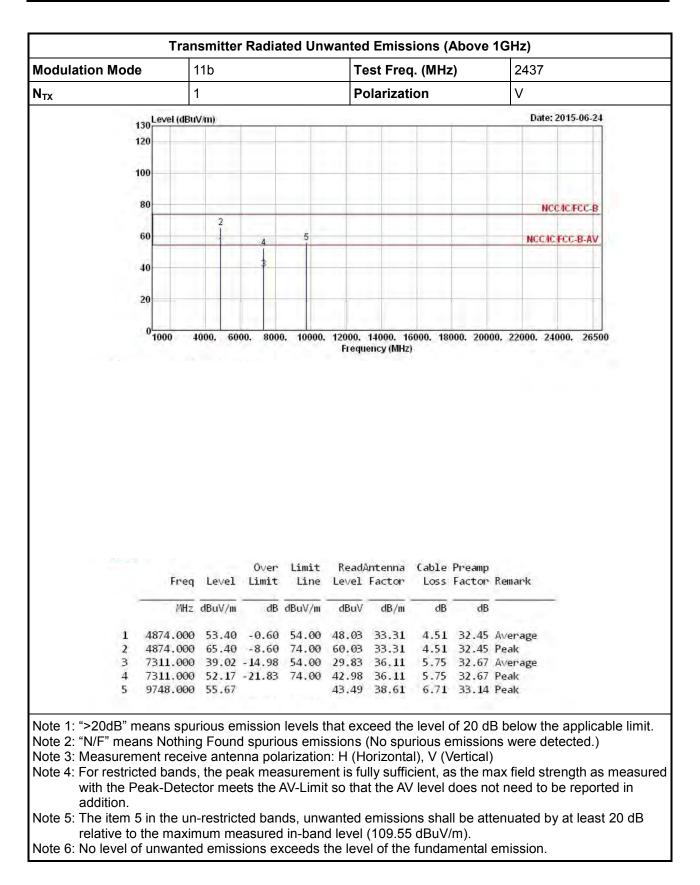

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

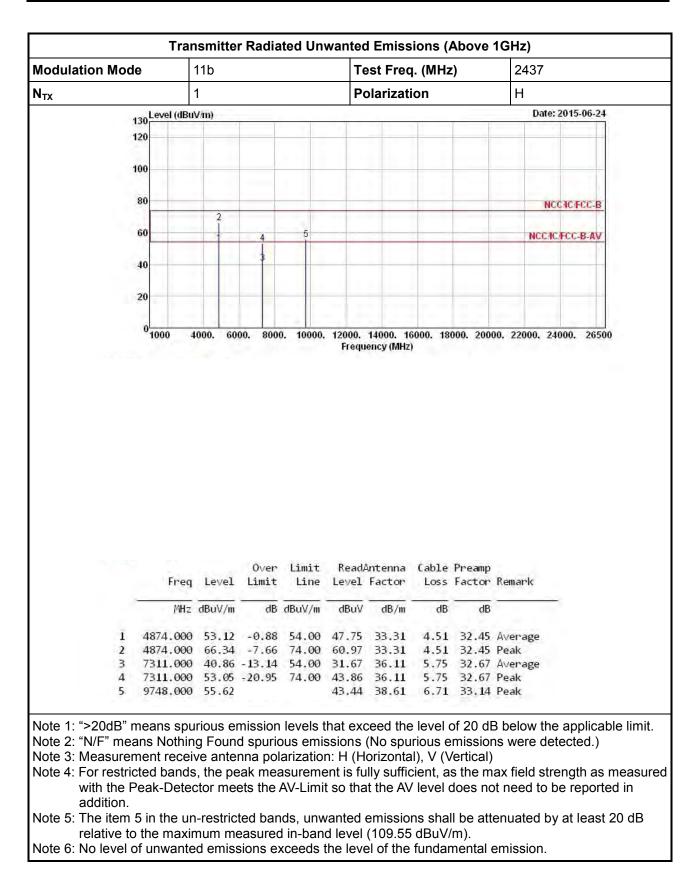
erating M	ode	1				Pola	rizatio	n		V	
erating Fu	unction	AC	C Powe	r & Radi	io link (WLAN)					
	Level (dBu)	Vim)							D	ate: 20	15-07-02
										NCCA	C/FCC-B
70					-						
60						-				_	
50	0										
	-		_				-	-	_	-	
4			3	in						6	
30	1		2	4		-	5			1	
20	0			1			-	_	_	_	
10							_	_		_	
											-
-10						-	-			-	
-24	0 30 100.	200.	300). 40		500. (iency (MHz	600.)	700.	800.	900.	1000
-24	0 30 100.	200.	30). 40				700.	800.	900.	1000
-24		200. Level	0ver	Limit	Frequ) (able			900.	1000
	Freq		Over Limit	Limit	Frequ	Antenna Factor) (able	Preamp		900.	1000
	Freq	Le∨el dBuV/m	Over Limit dB	Limit Line dBuV/m	Frequ Read. Level dBuV	Antenna Factor dB/m) Cable Loss dB	Preamp Factor dB	Remark	900.	1000
	Freq	Level dBuV/m 26.81	0∨er Limit dB -13.19	Limit Line dBuV/m 40.00	Frequ Read. Level dBuV 43.08	Antenna Factor dB/m 10.19) Cable Loss dB 1.07	Preamp Factor dB	Remark Peak	900.	1000
1 2 3	Freq MHz 43.580 284.140 297.720	Le∨el dBuV/m 26.81 26.86 32.51	Over Limit dB -13.19 -19.14 -13.49	Limit Line dBuV/m 40.00 46.00 46.00	Frequ Read. Level dBuV 43.08 38.24 43.46	Antenna Factor dB/m 10.19 12.52 12.83) Cable Loss dB 1.07 2.81	Preamp Factor dB 27.53	Remark Peak Peak	900.	1000
1 2 3 4	Freq MHz 43.580 284.140 297.720 319.060	Level dBuV/m 26.81 26.86 32.51 24.58	Over Limit dB -13.19 -19.14 -13.49 -21.42	Limit Line dBuV/m 40.00 46.00 46.00 46.00	Frequ Read. Level dBuV 43.08 38.24 43.46 35.11	Antenna Factor dB/m 10.19 12.52 12.83 13.27) (able Loss dB 1.07 2.81 2.89 2.98	Preamp Factor dB 27.53 26.71 26.67 26.78	Remark Peak Peak Peak Peak Peak	900.	1000
1 2 3	Freq MHz 43.580 284.140 297.720	Level dBuV/m 26.81 26.86 32.51 24.58 25.31	Over Limit dB -13.19 -19.14 -13.49 -21.42 -20.69	Limit Line dBuV/m 40.00 46.00 46.00 46.00 46.00	Frequ Read. Level dBuV 43.08 38.24 43.46 35.11 30.99	Antenna Factor dB/m 10.19 12.52 12.83 13.27 18.17) (able Loss dB 1.07 2.81 2.89 2.98 4.14	Preamp Factor dB 27.53 26.71 26.67	Remark Peak Peak Peak Peak Peak Peak	900.	1000

3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

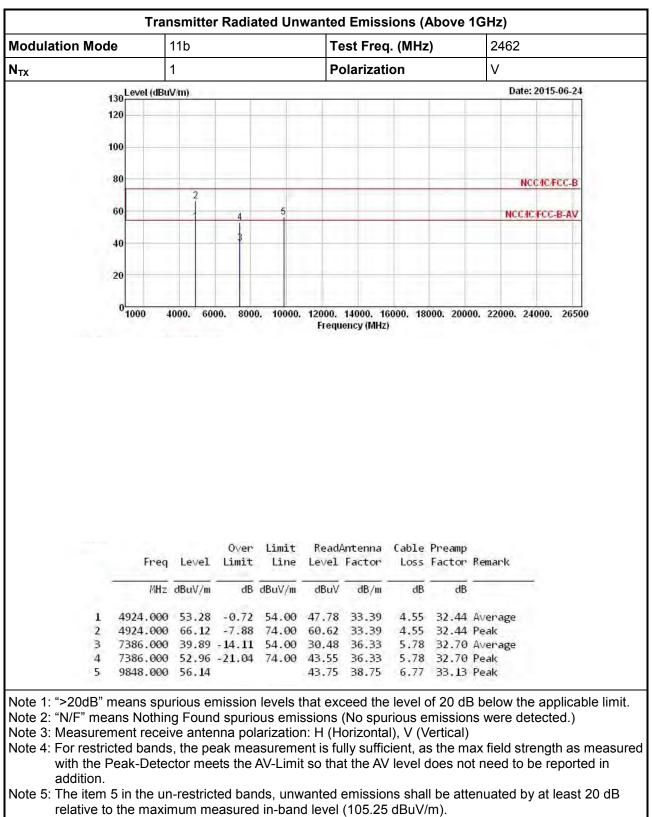


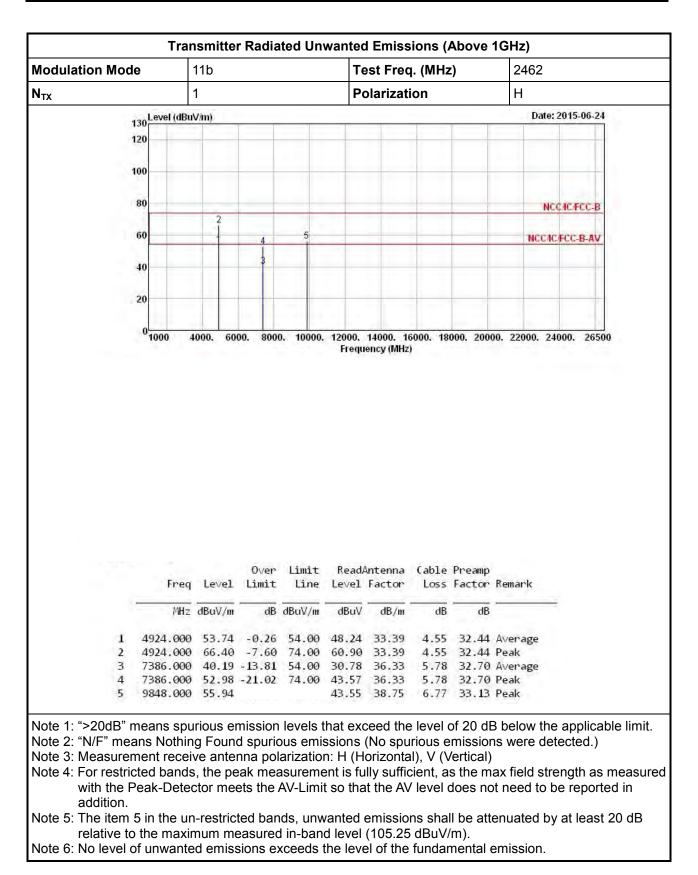
		11b				est Fre	q. (MH	z)	241	Z	
X		1			Р	olarizat	tion	-	V		
	30 Level (dB	lBuV/m)								Date: 2015-06-2	
	20										
	20										
4	00										
									-	100	
	80									NCC/IC/F	FCC-B
		2									
	60		3	4			-		NC	CAC/FCC	-B-AV
	1										
	40										
	20										
	20			_		-		-			- 11
									and the second s		
	01000	4000. 60	00. 800	0. 10000.		14000. 16 ency (MHz		000. 2000	00. 22000.	24000.	2650
	0 1000	4000. 60	00. 800		Frequ				00. 22000.	24000.	2650
		4000. 60 4000. 40	0ver	Limit	Frequ	ency (MHz)	Cable	Preamp		24000.	265
	Free		Over Limit	Limit	Frequ	ency (MHz)	Cable	Preamp		24000.	2654
1	Free	Level dBuV/m	Over Limit 	Limit Line dBuV/m	Frequ Read/ Level dBuV	Antenna Factor 	Cable Loss dB	Preamp Factor dB	Remark	24000.	265
<u>1</u> 2	Free	Level dBuV/m 53.75	Over Limit 	Limit Line dBuV/m 54.00	Frequ Read/ Level dBuV 48.50	Antenna Factor dB/m 33.22	Cable Loss dB 4.49	Preamp Factor dB	Remark	24000.	265
1.00	Frec MHz 4824.000	Level dBuV/m 53.75 66.24 52.42	Over Limit 	Limit Line dBuV/m 54.00	Frequ Read/ Level dBuV 48.50 60.99 43.41	Antenna Factor dB/m 33.22	Cable Loss dB 4.49 5.72	Preamp Factor 	Remark Average Peak Peak	24000.	265

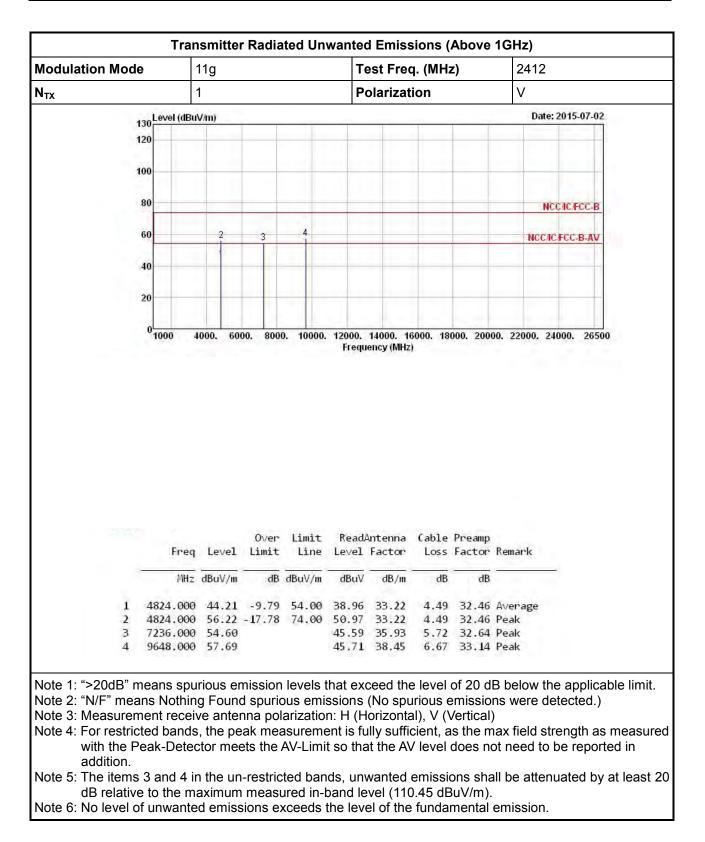

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)



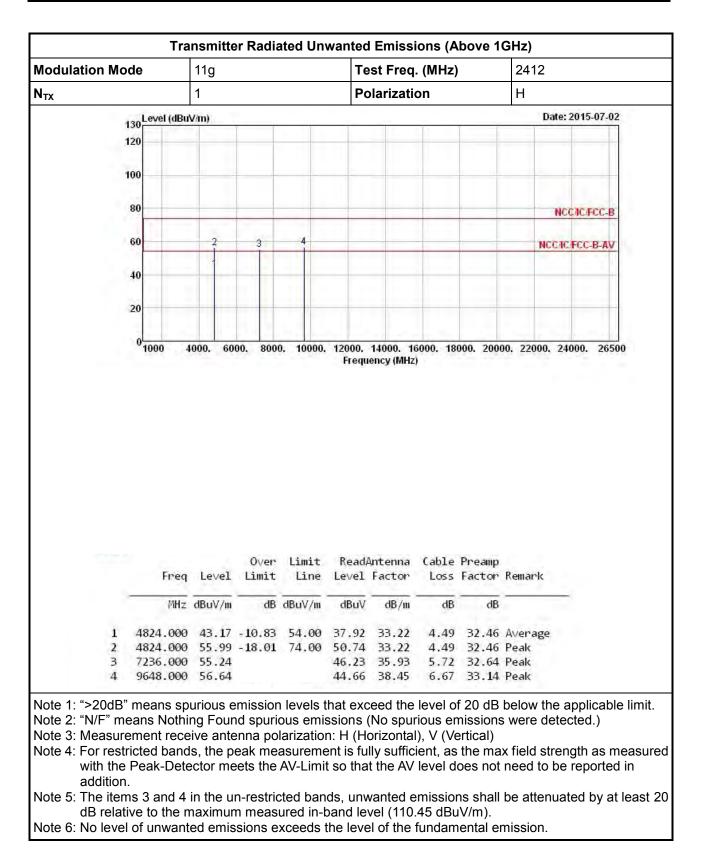
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

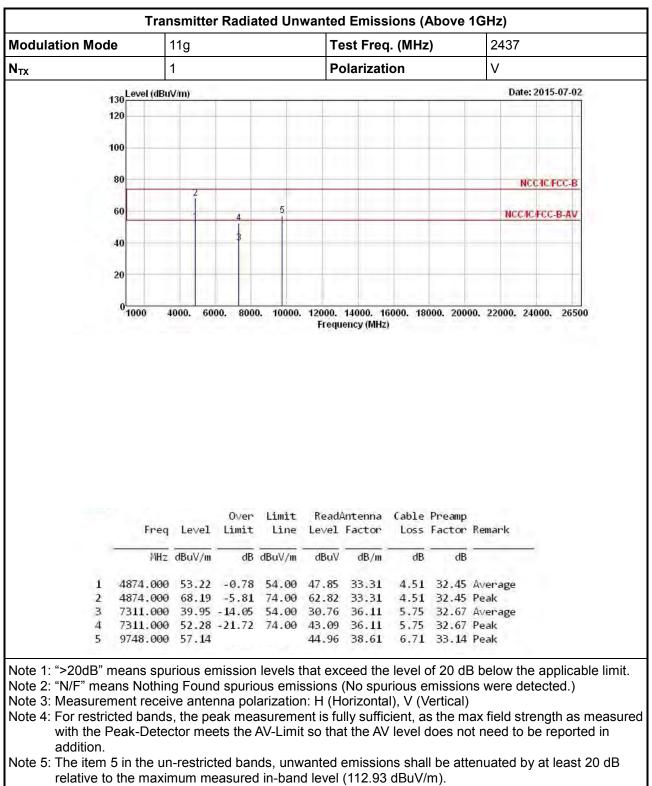


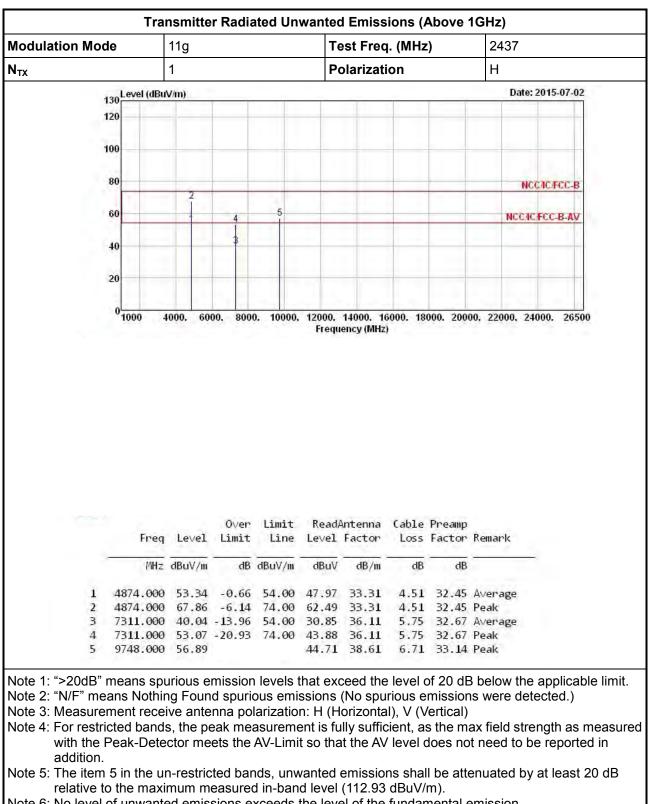


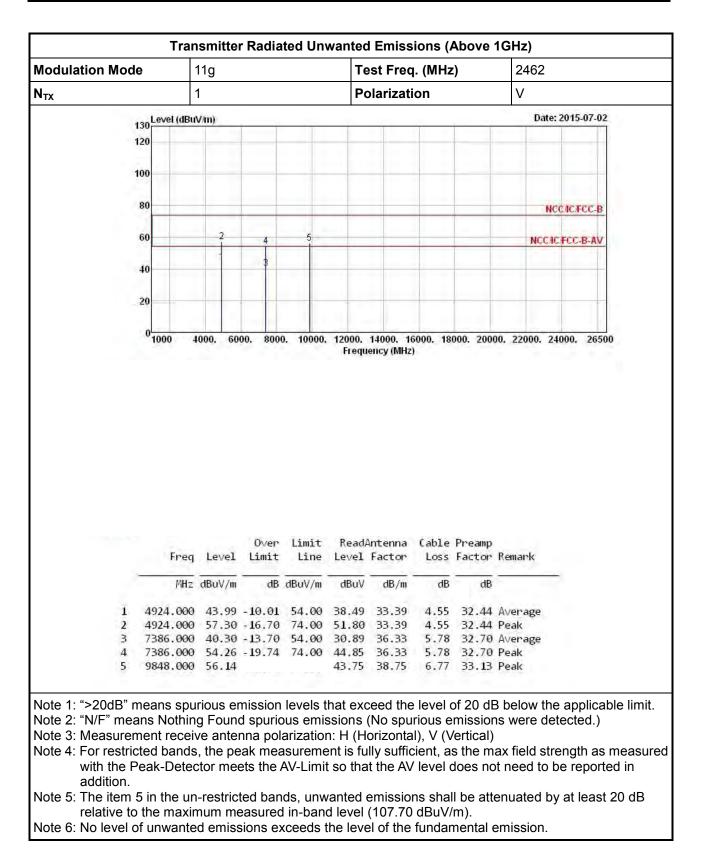


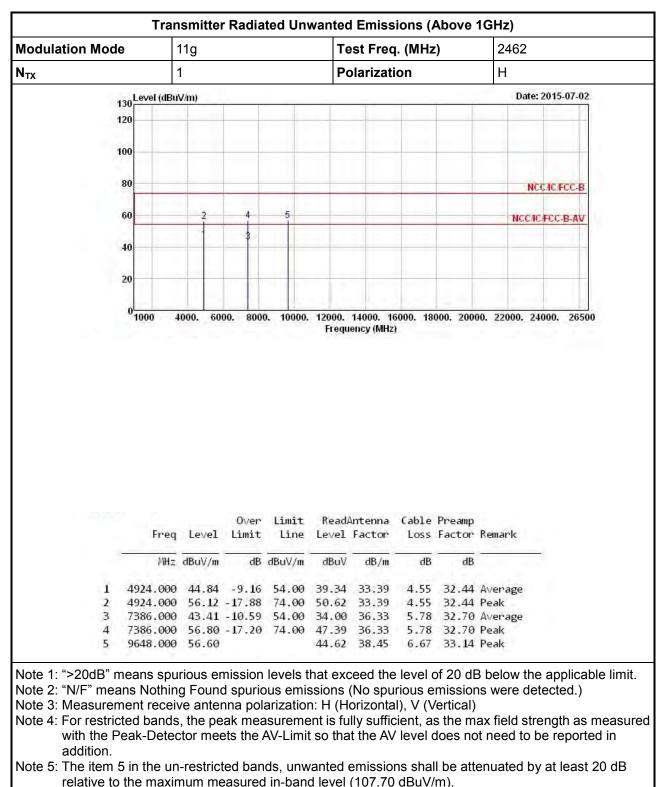
Note 6: No level of unwanted emissions exceeds the level of the fundamental emission.

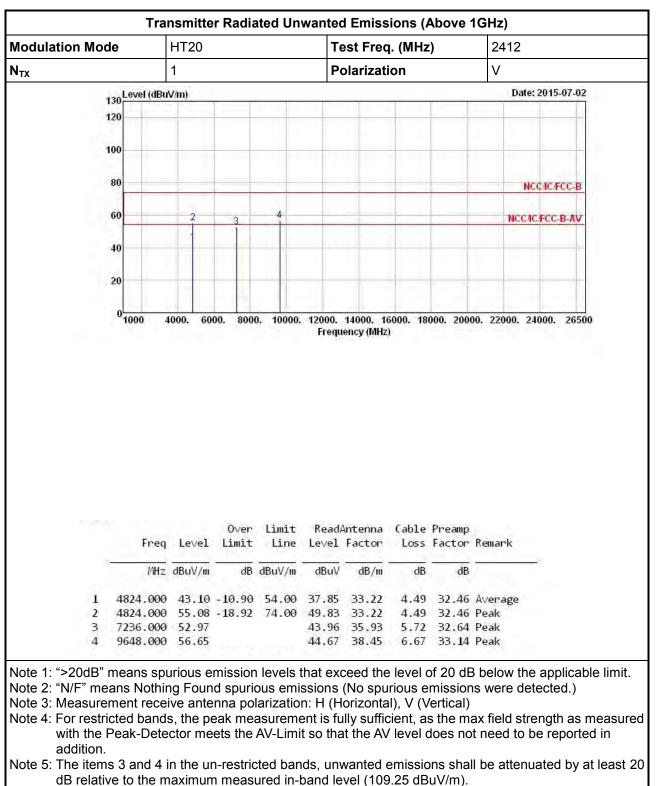


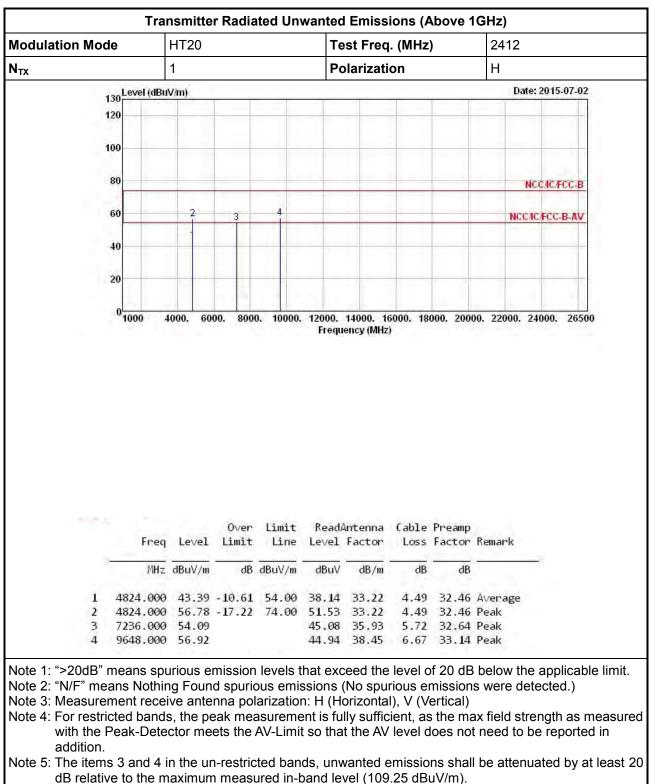


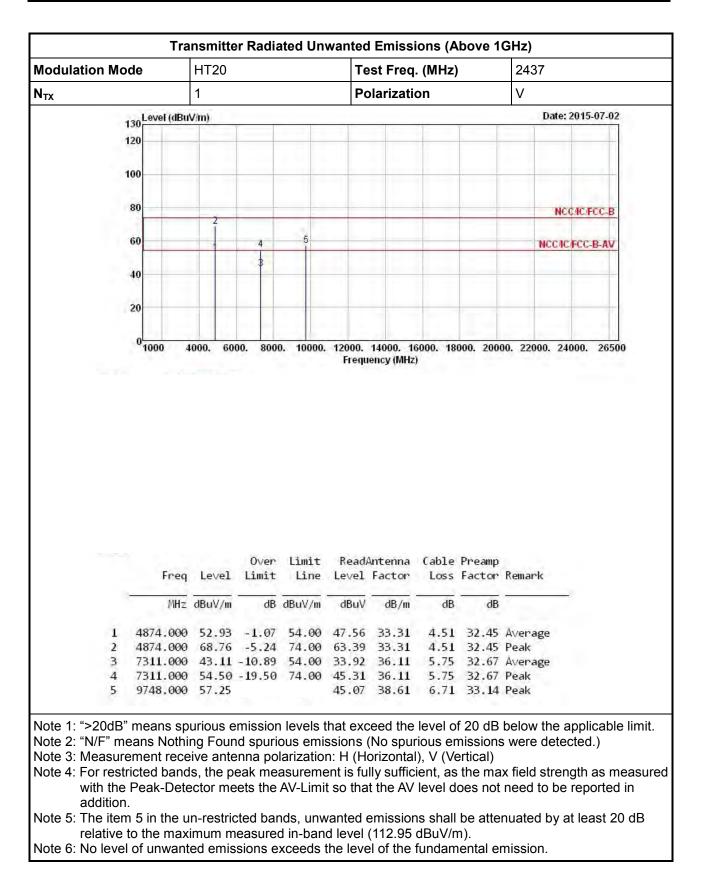


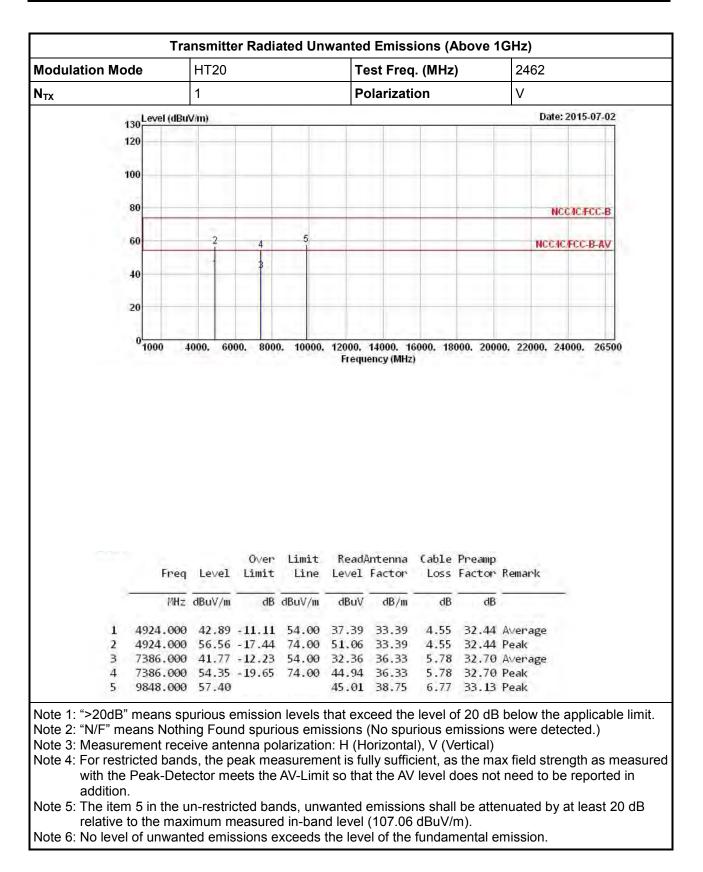


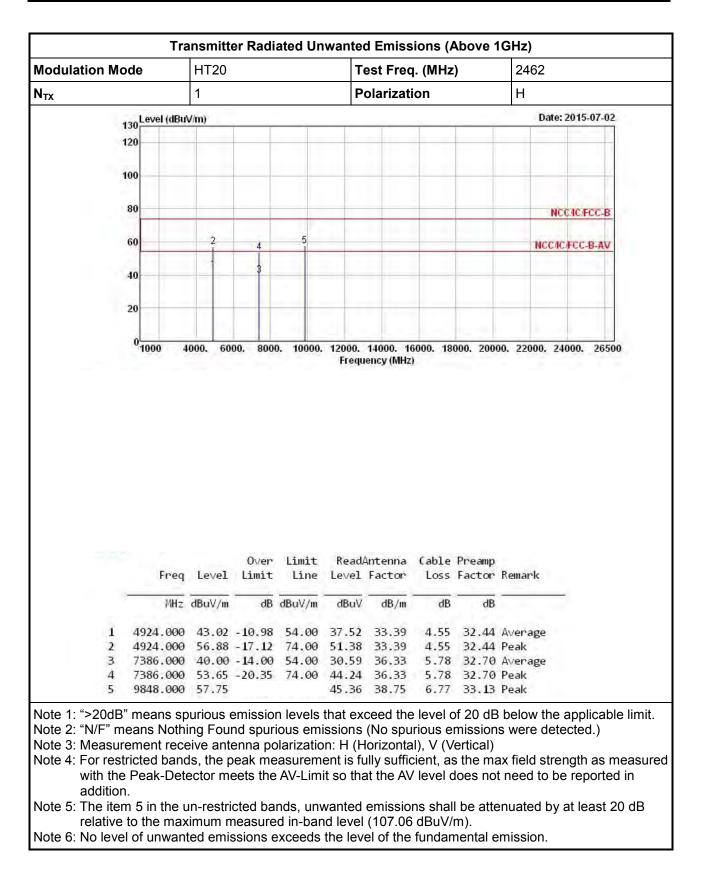


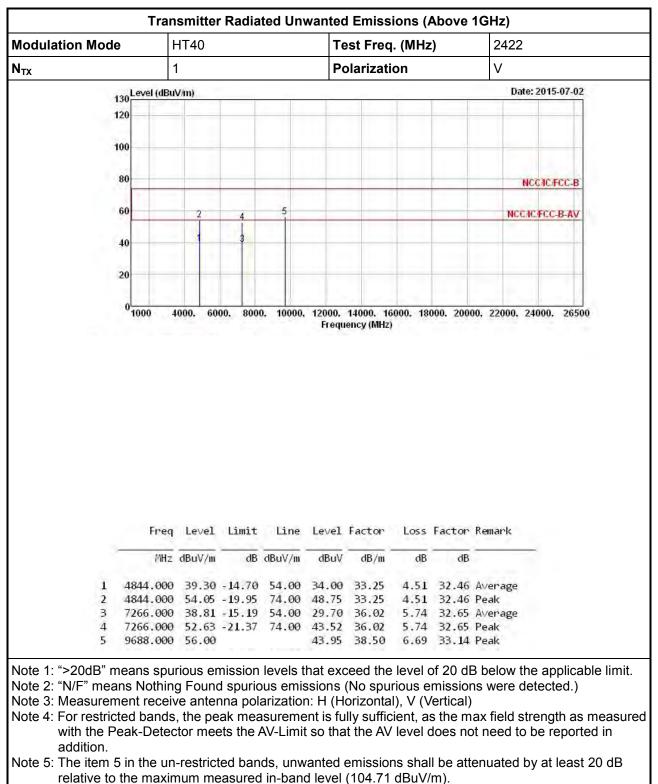


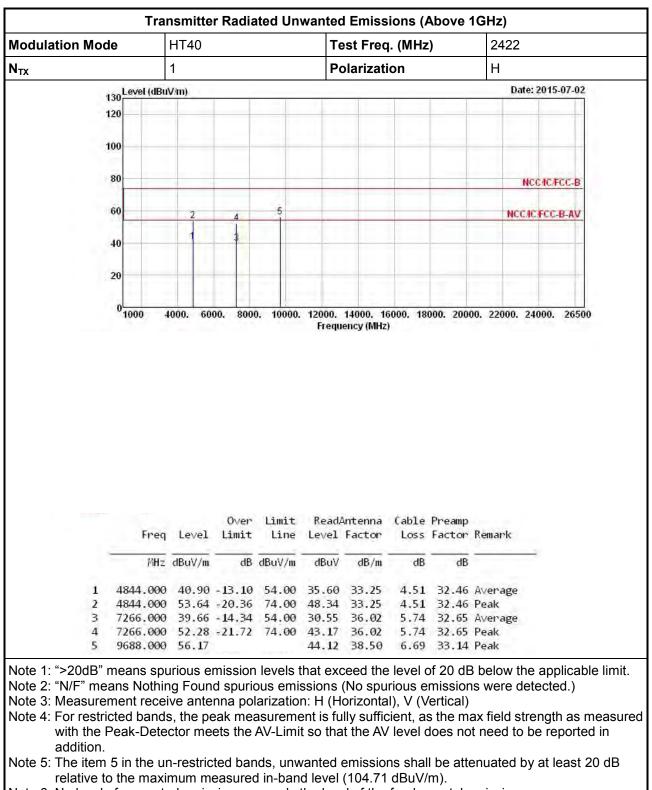


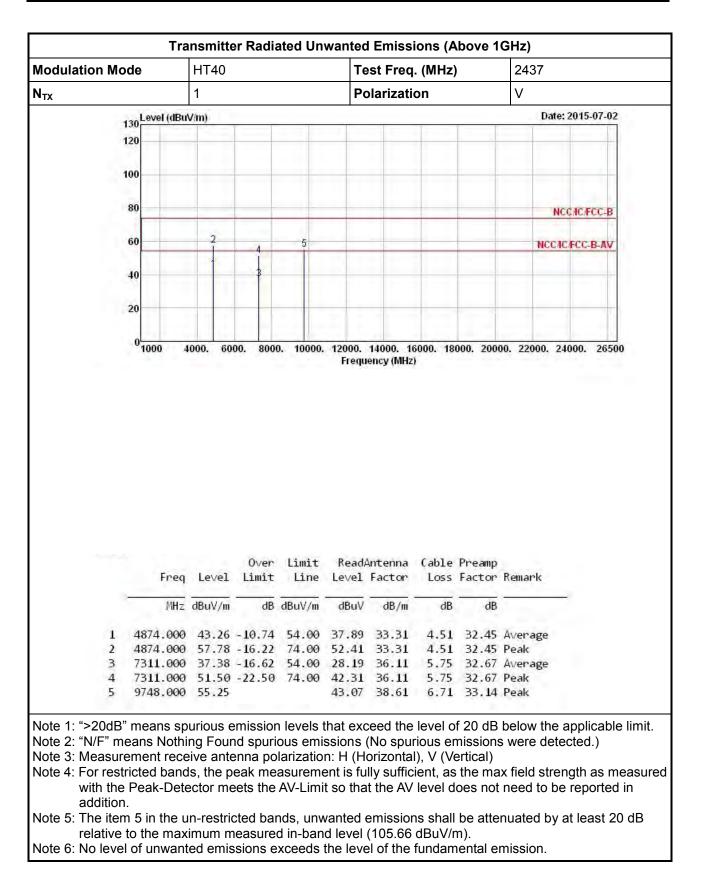


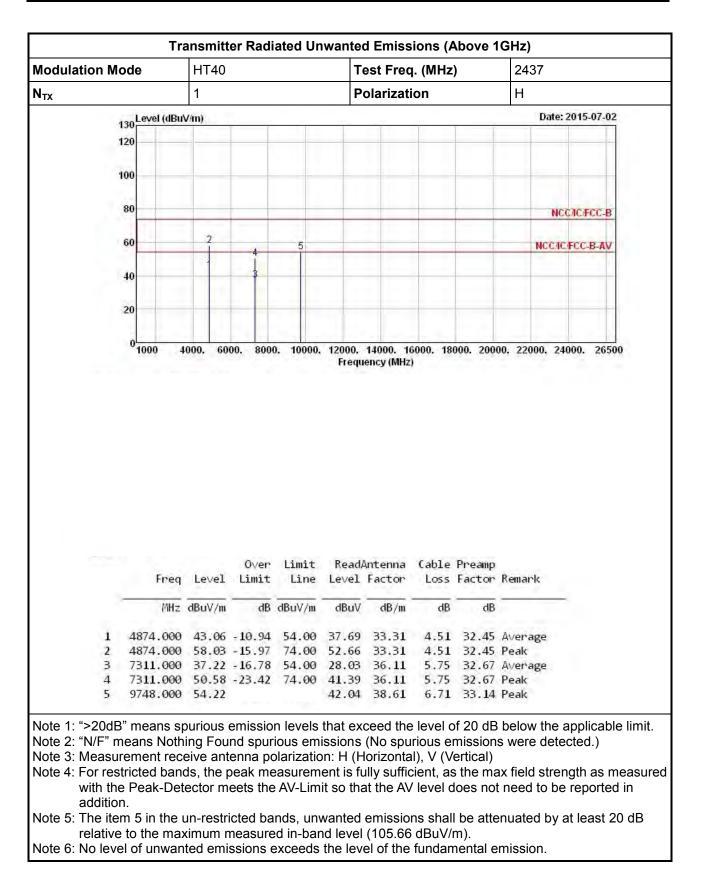


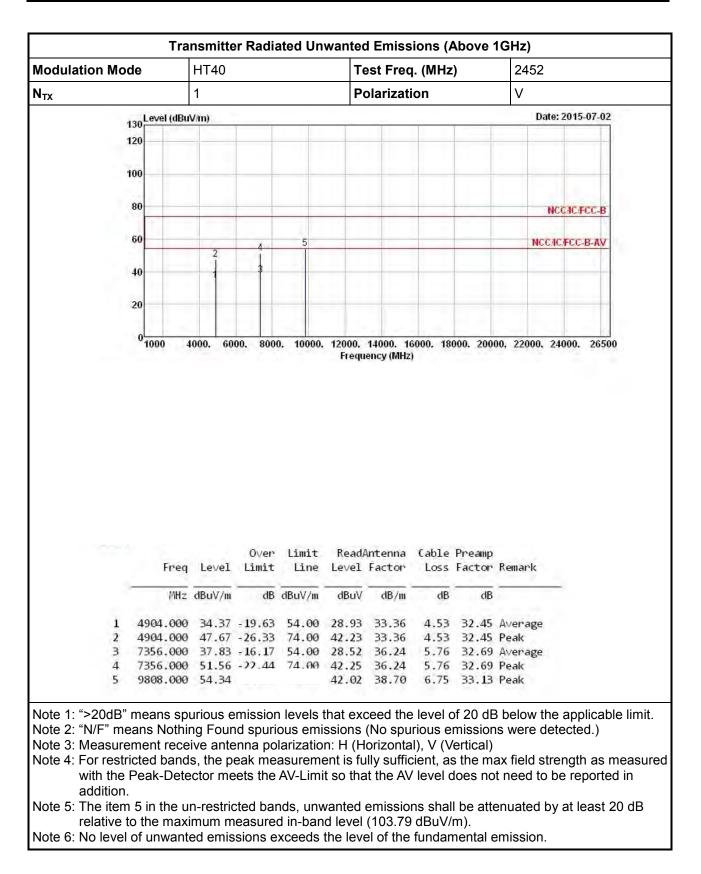


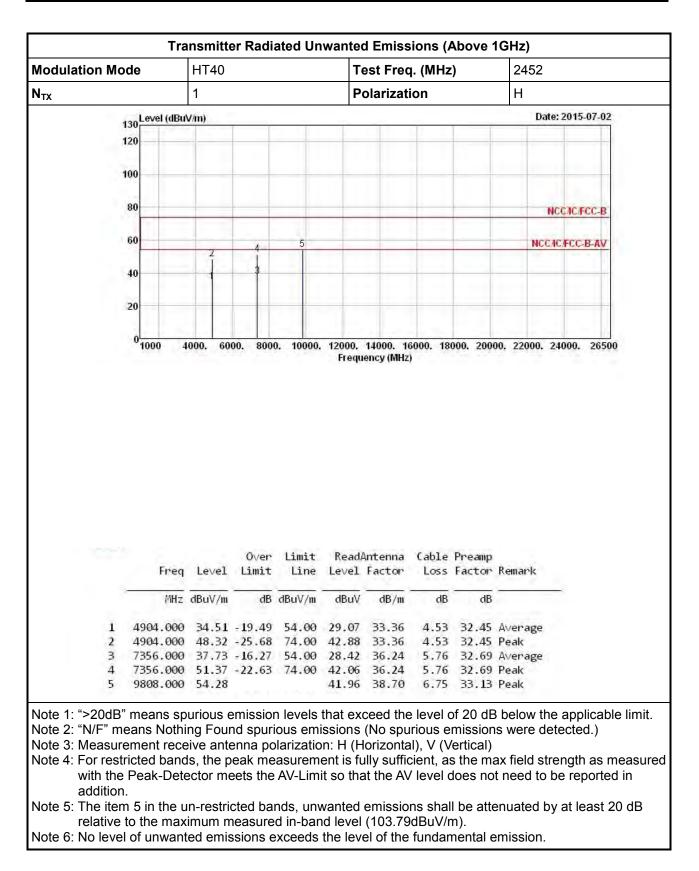












4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Apr. 15. 2015	AC Conduction
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 22, 2015	AC Conduction
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 31, 2014	AC Conduction
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	AC Conduction

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101013	9KHz~40GHz	Feb. 03, 2015	RF Conducted
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 31, 2014	RF Conducted
Power Sensor	Anritsu	MA2411B	1027452	300MHz ~ 40GHz	Jan. 29, 2015	RF Conducted
Power Meter	Anritsu	ML2495A	1124009	300MHz ~ 40GHz	Jan. 29, 2015	RF Conducted
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 15, 2014	RF Conducted

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 29, 2014	Radiation
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May 11, 2015	Radiation
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	Sep. 01, 2014	Radiation
Spectrum	R&S	FSP40	100004	9kHz ~ 40GHz	Apr. 02, 2015	Radiation
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 20, 2014	Radiation
Horn Antenna	ETS · LINDGREN	3115	6741	1GHz ~ 18GHz	Jul. 11, 2014	Radiation
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	18GHz ~ 40GHz	Jan. 27, 2015	Radiation
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 15, 2014	Radiation
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec. 12, 2014	Radiation
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiation
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiation

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	TESEQ	HLA 6120	31244	9 kHz~30 MHz	Feb. 02, 2015	Radiation

Note: Calibration Interval of instruments listed above is two year.